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1 Introduction

The goal of this master thesis is to understand the links between factorisation homology, which is a

generalisation of singular homology one could call tailor-cut for n-manifolds, and skein algebras, which are

classical surface/link invariants derived from the Kauffman bracket.

The first part of this master thesis exposes skein categories, which are a general way to encode tangle

invariants obtained by local – skein – relations.

The skein algebra of an oriented surface Σ is obtained as linear combinations of isotopy classes of framed links

on the thickened surface Σ × (0, 1) modulo the Kauffman bracket relationsx:

= q +q−1 and = (−q2
− q−2) .

where the links depicted here coincide outside the little ball.

In Section 2, we study skein algebras and stated skein algebras, a version for marked surfaces with boundary,

which behaves nicely under the action of cutting along an arc.

These skein relations are an example of a more general construction, based on the same idea but where the

local relations take place in any ribbon category. We study in Section 3 and 5 ribbon categories which arise as

categories of finite dimensional comodules over a quantum group.

A coalgebra C gives rise to an abelian category C–comod f in of finite dimensional comodules over C.

A bialgebra A gives a monoidal category A–comod f in. Namely A coacts on tensor products of vector spaces.

A Hopf algebra H gives a rigid category H–comod f in, with duals given in Vectk.

A co-quasi-triangular Hopf algebra gives a braided category H–comod f in.

Finally, a coribbon Hopf algebra gives a ribbon category H–comod f in.

The stated skein algebra S(B) of the bigon is a quantum group with coproduct given by cutting along the arc

•

•

c . It is isomorphic to the well-known quantum group Oq2 (SL2), and is coribbon with a geometric definition

of braiding and twist.

Ribbon categories will play an important role as they provide link invariants through the Reshetikhin–Turaev

functor, which we present in Section 5. To any framed tangle in R2
× [0, 1] whose strands are coloured with

objects of a ribbon category V, we can associate a morphism in V determining an isotopy invariant of the

tangle. Formally, we get a functor RT : Tan f r
V
→ V from V-coloured framed tangles to V, preserving the

structures of ribbon categories.
The category RibbonV is obtained by also inserting coupons in the defini-

tion, coloured with morphisms of V, replacing framed tangles by ribbon

tangles, and allowing linear combinations of those. This construction can

be extended to any oriented surface Σ, not justR2 here, and one obtains the

category RibbonV(Σ). There is no canonical functor RibbonV(Σ)→V but we

can always evaluate RT locally on a disk of Σ. The skein category SkV(Σ),

studied in Section 6, is the quotient of RibbonV(Σ) where two tangles are

identified if they are equal outside a little cube of Σ × [0, 1], and coincide

after evaluation under the Reshetikhin–Turaev functor on this cube. We

obtain Kauffman-bracket-like local relations: the ones satisfied in V after

evaluation under RT.

AV-coloured ribbon graph :

(X,+) (Y,−) (Y,−)

> > >

>

T

(Z,+) (Z,−)

<
<
X

f : X ⊗ Y∗ → X∗ g : Y∗ ⊗ T→ X ⊗ T

In particular, the usual skein algebra is the algebra of endomorphisms of ∅ in the skein category with colours in

the ribbon category Oq2 (SL2)–comod f in, which satisfies the demanded relations between braiding, identity and

duality morphisms coloured by a generating object V.
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The second part of this master thesis studies the theory of factorisation homology for (oriented, framed) n-

manifolds. Factorisation homologies are a generalisation of classical homology theories with coefficients. They

satisfy a generalised ⊗-excision property, and the same monoidal and invariance axioms. They are defined

on the category M f ldn of topological n-manifolds and embeddings, but not on Top. They take values in a

symmetric monoidal∞-category (or topological category) C⊗ and have as coefficients an E f r
n -algebra in C⊗.

A topological category is a category whose Hom-sets are topological spaces, such that the composition is

continuous. We define in Section 7 the notion of an En-algebra in a symmetric monoidal topological category:

an object X equipped with a family of products X⊗k
→ X parametrised by the smooth framed embeddings

tkR
n
→ Rn. If n = 1, this is the notion of a homotopy-associative algebra object, and as n increases it gets more

and more commutative. For n = 2 one could say it is a braided algebra object, with braiding the homotopy

between the product and its opposite. When all the embeddings of Rn are supposed to be oriented

instead of framed, one obtains the notion of an Eor
n -algebra. If we consider all topological embeddings, we

obtain the notion of an E f r
n -algebra.

These notions are, however, best defined in the context of∞-categories, presented in Section 8. An∞-category

is a simplicial set whose points are thought of as objects of the category, and edges morphisms. It must satisfy

an extension condition, which makes composition of morphisms well-defined up to homotopy. Homotopy

here is to be reinterpreted as ≥ 2-morphisms, i.e. ≥ 2 cells of the simplicial set.

The data of an E f r
n -algebra A is encoded in a symmetric monoidal ∞-functor Disktn → C

⊗. Factorisation

homology gives a way of extending it to any n-manifold M. The resulting object
∫

MA ∈ C provides both a

geometric invariant of M, and an algebraic invariant ofA. We construct it in Section 9. The same constructions

can be made in the oriented or framed cases.

As for ordinary homologies with coefficients, factorisation homologies can be described by an axiomatic point

of view, as symmetric monoidal∞-functors satisfying a ⊗-excision property, called homologies. An Eilenberg–

Steenrod-like theorem states that such homologies are determined by their value at Rn, their coefficients, and

are obtained as factorisation homology of these coefficients.

A special case that will be of particular interest is when n = 2 and C⊗ = Cat× seen as a 2-category with

natural isomorphisms. Indeed, E1-algebras in Cat corresponds to monoidal categories, E2-algebras to braided

categories and Eor
2 -algebras to balanced categories, an example of which is ribbon categories. Hence the

factorisation homology of a ribbon category over a surface is well-defined. In Section 10, using the Eilenberg–

Steenrod theorem for factorisation homology and an excision property of skein categories, we show:

Theorem 1.1 (Cooke): LetV be a ribbon category and Cat×k the∞-category of small k-linear categories. The factori-

sation homology
∫ Cat×k
−
V : M f ldor

2 → Cat×k is equivalent to the skein category functor SkV(−).

To prove this theorem, we introduce the notion of module category and of Tambara relative tensor product.

In particular, the skein category SkV(Σ) of a punctured surface Σ with coefficients in a ribbon category V is

a V-module category. For V = Oq2 (SL2)–comod f in, a theorem in [BBJ18] shows that it is represented by an

algebra object AΣ. This object, however, does not live in V but in its free cocompletion Free(V) which is an

Eor
2 -algebra in LFPk. Then, the factorisation homology over Σ of this Eor

2 -algebra is isomorphic to both the free

cocompletion of SkV(Σ) and to the category of AΣ-modules in Free(V). Juliet Cooke proves that the algebra of

Oq2 (SL2)-invariants of AΣ is the skein algebra of Σ, and a theorem of Thang Lê and Tao Yu states that AΣ can

be obtained as the stated skein algebra of the surface punctured by a disk instead of a point and marked by a

single point on the boundary of the removed disk.
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Part I

The skein Category of a surface
Skein algebras and their stated generalisation are presented in [CL19], with emphasis on the example of the

bigon and the quantum group Oq2 (SL2). Quantum groups and the way they provide monoidal, rigid, braided

and ribbon categories are studied in [Kas95] or [Maj95]. Links invariants obtained from ribbon categories were

introduced in [Tur10]. Finally, the skein category of a surface is defined in [Coo19].

2 Skein Algebras

The Kauffman bracket is a well-known invariant for framed links obtained by local relations. Skein algebras

generalise it in any thickened oriented surfaces, which are locally R3 so where the local relations make sense.

It can then be extended to marked surfaces with boundary, with the notion of stated skein algebra. In the case

of the bigon B, we obtain the quantum group Oq2 (SL2).

A framed link in R3 is a possibly empty unoriented closed 1-submanifold equipped with a framing, i.e. a

continuous choice of a transverse vector at each point. A framed link invariant is a map 〈.〉 : {framed links in

R3
}/isotopy→ R where R is a commutative ring. The Kauffman bracket depends on an invertible parameter

q ∈ R. For example, R = C or R = C[q±]. It can be used to define the Jones polynomial for unframed links. A

local relation is one that takes place in any little cube of R3, namely any embedding φ : D3
→ R3. Consider

a framed link L which is exactly inside a little cube, with framing coming out of the paper, called

blackboard framing. Then we can decompose it into two other links Lh and Lv which are exactly L outside

the little cube, and respectively and outside. Namely, we add the relation L = qLv + q−1Lh. This

relation is actually between isotopy classes of links.

p Definition 2.1: The Kauffman bracket of a link is its image in the R-module generated by isotopy classes of

framed links inR3 modulo the following Kauffman (or skein) relations. Let L be a framed link and φ : D3
→ R3

a little cube in R3, we ask :

= q +q−1 and = (−q2
− q−2) .

Where each drawing represents the isotopy class of a link which is exactly like the others outside the little cube,

and as depicted inside. y

If one chooses a link diagram for a framed link L with blackboard framing, all the crossings can be removed

using the first relation, and then all circles using the second. Hence the Kauffman bracket has values in R.

One can show that the value we obtain is well-defined and to not depend on how one eliminates each crossing

and circle. Moreover, it is multiplicative, namely 〈L t L′〉 = 〈L〉.〈L′〉, with a well-separated disjoint union. For

example, one can take push L into R2
× (0, 1

2 ) and L′ into R2
× ( 1

2 , 1) and then take their disjoint union.

Example : The Kauffman bracket of the Hopf link is computed as follows:

〈 〉 = q 〈 〉 + q−1
〈 〉 = q2

〈 〉 + 〈 〉 + 〈 〉 + q−2
〈 〉 = (−q2

− q−2)(−q4
− q−4).

2.1 The skein algebra of a surface One can easily generalise this idea by taking the quotient of isotopy classes

of framed links in any 3-manifold M (or thickened oriented surface S × (0, 1) here) by the skein relation where

3



φ is a little cube of M instead of R3. However, every link cannot be killed down to an element of R any longer:

there are non-empty links without crossings nor small circles, like the core of a cylinder.

p Definition 2.2: Let S be an oriented surface. The skein algebra S̊(S) is the R-module generated by isotopy

classes of framed links in S × (0, 1) modulo the skein relations in a little cube of S × (0, 1):

= q +q−1 and = (−q2
− q−2) .

where the links here coincide outside the little cube and are as depicted inside, with blackboard framing.

It is an algebra with product given by superpositionS× (0, 1)tS× (0, 1)→ S× (0, 1) induced by (0, 1)t (0, 1) '

( 1
2 , 1) t (0, 1

2 ) ↪→ (0, 1). y

Examples : • The skein algebra of the disk is R.

• The skein algebra of the cylinder S1
× (0, 1) is isomorphic to R[X]. The element X is the core of the cylinder.

p Definition 2.3: A framed link on S is simple if it has no double points (two points with same S-coordinate)

nor trivial circles (bounding a disk). y

Proposition 2.4: The set of isotopy classes of simple framed links forms an R-basis for S̊(S).

2.2 Stated skein algebras The skein algebra does not take into account the boundary of S : S̊(S) = S̊(S̊).

Using only closed links, one cannot cut a surface along an arc. Stated skein algebras generalise skein algebras

for marked surfaces with boundary, and make cutting along an arc well-defined. This cutting/gluing provides

stated skein algebras with an excision property.

p Definition 2.5: A marked surface is a compact oriented surface with boundary S with a finite set P ⊆ ∂S of

boundary points. We noteS = SrP and call this the marked surface. We note ∂PS the boundary components

of S that contains a point of P and ∂S := ∂PS r P.

A stated tangle α on S is an unoriented, framed, compact, properly embedded 1-submanifold of S × (0, 1)

whose boundary ∂α ⊆ ∂S× (0, 1) has vertical framing and comes equipped with a state st : ∂α→ {+,−}. We call

height the (0, 1)-coordinate of a point, and require that all boundary points of α laying over a same boundary

component b of ∂S have distinct heights. An isotopy of stated tangles is an isotopy with values in stated

tangles, in particular preserving the height order over a same boundary component. y

Given a square root q
1
2 ∈ R

× of q, we can define stated skein algebras of marked surfaces.

p Definition 2.6 ( [CL19]): The stated skein algebra S(S) of a marked surface S is the R-module generated by

isotopy classes of stated tangles on Smodulo the stated skein relations

= q + q−1 , = (−q2
− q−2) ,

>+
−

= q−
1
2

>

,

>+
+

=

>

−

−
= 0 and

>

−

+ = q2

>+
−

+q
1
2

>

where the arrows on the boundary edges represent the relative height order of the two points. y

Remark 2.7: It is easy to check that S(S tS′) ' S(S) ⊗ S(S′) since all relations happen in a connected disk.

p Definition 2.8: A stated tangle onS is simple if it has no double points nor trivial circles. Given an orientation

o on ∂S. It is called o-ordered if the height order of boundary points on a same boundary component is

increasing in the direction of o. It is called increasingly stated if + signs are always above − signs on a same

boundary component, namely the states are also increasing in the direction of o. y

4



Proposition 2.9: The set of isotopy classes of increasingly stated o-ordered simple framed tangles forms an R-basis for

S(S).

Let S be a marked surface and c an ideal arc on S, i.e. an embedding (0, 1)→ S joining two points of P. Note

Cutc(S) the marked surface obtaining by cutting S along c. Given a stated tangle α on S we can cut it along c

and get a tangle on Cutc(S). To get a stated tangle of Cutc(S) we only need states on ∂cα := α∩ (c× (0, 1)), which

we assume is finite, transversal with different heights and vertical framing. We say such a choice is compatible

if the two different copies of x ∈ ∂cα in Cutc(S) have same states. The resulting stated tangle is called a lift of α.

S
•

•

c
α

•

•

c
ε1

ε2

Cutc(S)
•

•

c
α̃ε1

ε2

Theorem 2.1 ( [CL19]): The map ρc : S(Σ)→ S(Cutc(Σ)), α 7→
∑

li f ts α̃

α̃ is well-defined (it only depends on the isotopy

class of α) and is an injective algebra morphism.

Fundamental example : The bigon B is the marked surface (D, {±i}), the disk with two marked points. The

algebra S(B) is generated by αµ,ν =
•

•

µ ν , µ, ν ∈ {±}, and has R-module basis the αµ̄,ν̄ =
> <

•

•

·
·
·

·
·
·

µ1 ν1

µn νn

where

µ̄ = (µ1, . . . , µn) and ν̄ = (ν1, . . . , νn) are ascending sequences of signs. Cutting along the ”unique” arc joining

the two marked points
•

•

c gives a morphism ∆ = ρc : S(B)→ S(Bt B) ' S(B)⊗S(B). Along with the counit

ε : S(B)→ R defined on the basis by ε(αµ̄,ν̄) = δµ̄,ν̄, it turns S(B) into a bialgebra, a notion we define and study

in the next section.

3 Quantum groups and braided categories

Quantum groups, or Hopf algebras, arise naturally from the finite-comodules-category point of view.

Coalgebras give abelian categories, bialgebras give monoidal categories, Hopf algebras give rigid categories

and coquasitriangular Hopf algebras give rigid braided categories. There is a sort of converse, see [EGNO15].

This exposition is made from the finite-modules-category point of view in [Maj95].

p Definition 3.1: Let k be a field. A k-linear category is a category enriched over Vectk (see Appendix B), i.e.

whose Hom-sets have k-vector space structures, which are preserved by composition.

The category Catk has objects small k-linear categories and morphisms functors preserving the k-linear structure.

It has usual natural transformations. We work in Catk throughout this section. y

p Definition 3.2: A coalgebra is a k-vector space C equipped with a coproduct ∆ : C→ C ⊗ C, denoted ∆ =

or algebraically ∆(c) = c(1) ⊗ c(2) where the sum is implicit, and a counit ε : C→ k, denoted ε = • , such that:

coassociativity: (IdC ⊗ ∆) ◦ ∆ = = = (∆ ⊗ IdC) ◦ ∆ and

counit: (IdC ⊗ ε) ◦ ∆ =
•

= = IdC =
•

= (ε ⊗ IdC) ◦ ∆.

Algebraically, coassociativity reads c(1)(1) ⊗ c(1)(2) ⊗ c(2) = c(1) ⊗ c(2)(1) ⊗ c(2)(2) which we note c(1) ⊗ c(2) ⊗ c(3).

A right C-comodule is a k-vector space V equipped with a coaction ∆V : V → V ⊗ C denoted ∆V = •

CV

or

5



∆(v) = v(1) ⊗ c(2), such that •

C
•

C
V

= •

V C
C

(coassociativity) and •

V •

=
V

= IdV (counit).

Note C–comod the category of right C-comodules, with morphisms the linear maps f : V → W preserving the

coaction and the counit, namely ∆W ◦ f = ( f ⊗ IdC) ◦ ∆V and εW ◦ f = εV, and C–comod f in the full subcategory

spanned by finite dimensional comodules. y

The category C–comod of comodules over a coalgebra form a k-linear abelian category.

Remark 3.3: The graphical depiction of the coproduct and counit above are an example of the graphical calculus,

see for example [Tur10]. We denote objects by points and tensor product of objects by juxtaposition of points

· · ·
V1 V2 V3

. A bunch of straight lines · · ·
V1 V2 V3

. . .V1 V2 V3

denote the identity. We denote morphisms by drawings

linking two sets of points, which read bottom to top. There may be inserted coupons · · ·
V1 V2 V3

. . .V1 W2 W3

f

, coloured

by corresponding morphisms, here f : V2 ⊗ V3 →W2 ⊗W3. Composition is given by vertical superposition.

3.1 Bialgebras and monoidal categories

p Definition 3.4: A monoidal category C⊗ is a category C equipped with a bifunctor ⊗ : C × C → C, an object

1C ∈ C and three natural isomorphisms α : (−⊗−)⊗− ⇒ −⊗ (−⊗−), l : 1⊗− ⇒ − and r : −⊗ 1⇒ − satisfying

the pentagon X ⊗ ((Y ⊗ Z) ⊗ T)

(X ⊗ (Y ⊗ Z)) ⊗ T

((X ⊗ Y) ⊗ Z) ⊗ T

X ⊗ (Y ⊗ (Z ⊗ T))

(X ⊗ Y) ⊗ (Z ⊗ T)

and the triangle

(X ⊗ 1) ⊗ Y

X ⊗ Y

X ⊗ (1 ⊗ Y)
α

r l
, X,Y,Z,T ∈ C.

In other words, two parenthesised products of objects X1, . . . ,Xn (preserving the order) with arbitrary insertions

of the object 1C are canonically isomorphic.

A monoidal functor F : C⊗ → D⊗ is one endowed with a natural isomorphism F(−) ⊗ F(−)⇒̃F(− ⊗ −) and an

isomorphism F(1C)→̃1D coherent with associativity and unit natural isomorphisms. y

There are many well-known examples of monoidal categories, such as Topt, Top×, Cat× or Vect⊗. The category

Catk is monoidal with × the product on objects and k-linear tensor product on morphisms.

p Definition 3.5: A bialgebra is an algebra (A,m, 1) equipped with a coalgebra structure (A,∆, ε) such that ∆

and ε are algebra morphisms. We denote m = and 1 = . The compatibility conditions read = ,

where the crossing here simply represents the flip of tensors, and • • = • . y

Fundamental example : The stated skein algebra of the bigonS(B) is a bialgebra with ∆ the splitting morphism.

It can be described as follows. Let q ∈ k r {0}, Oq2 (SL2) is the free non-commutative k-algebra generated by

a, b, c, d modulo the relations ca = q2ac, db = q2bd, ba = q2ab, dc = q2cd, bc = cb, ad − q−2bc = 1 and

da − q2cb = 1. The coproduct can be written ∆

a b

c d

 =

a b

c d

 ⊗
a b

c d

 and the counit ε

a b

c d

 =

1 0

0 1

 on

generators. The isomorphism S(B)→ Oq2 (SL2) is given by α++ 7→ a, α−− 7→ d, α+− 7→ b and α−+ 7→ c.

Proposition 3.6: The category A–comod of comodules over a bialgebra A is monoidal with ⊗ = ⊗k with coaction on

tensor product given by V ⊗k W
∆V⊗∆W
−→ (V ⊗ A) ⊗ (W ⊗ A)

IdV⊗τA,W⊗IdA
−→ V ⊗W ⊗ A ⊗ A

IdV⊗IdW⊗m
−→ V ⊗W ⊗ A.
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3.2 Hopf algebras and rigid categories Hopf algebras are the preferred candidate for quantum groups. They

generalise both groups and Lie algebras, and allow “quantum” variants of these.

p Definition 3.7: LetC⊗ be a monoidal category. A left dual for an object V ∈ C is an object V∗ together with two

morphisms ev = : V∗⊗V → k and coev = : k→ V⊗V∗ such that (ev⊗ IdV∗ )(IdV∗ ⊗ coev) = = IdV∗

and (IdV ⊗ ev)(coev ⊗ IdV) = = IdV. y

These identities give that HomC(X ⊗ V,Y)
−⊗IdV∗
−→ HomC(X ⊗ V ⊗ V∗,Y ⊗ V∗)

−◦(IdX⊗coev)
−→ HomC(X,Y ⊗ V∗) and

HomC(X,Y ⊗ V∗)
−⊗IdV
−→ HomC(X ⊗ V,Y ⊗ V∗ ⊗ V)

(IdY⊗ev)◦−
−→ HomC(X ⊗ V,Y) are mutual inverses. Namely, − ⊗ V is

left adjoint to − ⊗ V∗. Similarly, V∗ ⊗ − is left adjoint to V ⊗ −.

The left dual is unique up to canonical isomorphism. It is actually functorial with f ∗ := f .

There is a similar notion of right dual ∗V with ev = : V ⊗ ∗V → k and coev = : k → ∗V ⊗ V satisfying

= and = . From the definitions, the right dual of a left dual V∗ is ∗(V∗) = V.

A category with both left and right duals for every object is called rigid.

Example : In Vect, only finite dimensional vector spaces have duals. For V with basis (ei)i, its dual is V∗ =

Hom(V, k) with the usual evaluation and the coevaluation given by coev(1) =
∑

i ei ⊗ ei. The tensor product is

symmetric so right and left duals coincide. Hence Vect f in is rigid.

p Definition 3.8: A Hopf algebra is a bialgebra H equipped with an antipode S : H → H denoted S such that

S = = S . Though unusual, we, moreover, assume that S is invertible, which is true in general as soon as

H is finite dimensional or (co)-quasi-triangular. y

Examples : • A group G gives rise to a Hopf algebra kG which is the k-vector space with basis G, product the

product in G, unit the unit of G, coproduct given by ∆g = g ⊗ g, counit εg = 1 and antipode Sg = g−1.

• A Lie algebra g gives rise to a Hopf algebra U(g) which is the enveloping algebra of g with coproduct

∆ξ = ξ ⊗ 1 + 1 ⊗ ξ, counit εξ = 0 and antipode Sξ = −ξ.

Fundamental example : The bialgebraOq2 (SL2) is a Hopf algebra with S

a b

c d

 =

 d − q2b

−q−2c a

on generators,

which extends on all Oq2 (SL2) with the fact that S is an anti-algebra morphism. It has a geometric depiction on

S(B) with S
( > <

•

•

·
·
·

·
·
·

µ1 ν1

µm νn

β
)

=
> <

•

•

·
·
·

·
·
·

−νn −µm

−ν1 −µ1

β

.
m∏

i=1

(C−µi
µi

)−1.
n∏

i=1

C−νi
νi

, where C−+ = −q−
5
2 and C+

−
= q−

1
2 .

Proposition 3.9: For H a Hopf algebra, the category H–comod f in is rigid, with duals given by duals in Vect. Duality

in Vect gives V∗ ⊗H ' Hom(V,H), hence the H-coaction on a form f : V → k should be an element ∆ f ∈ Hom(V,H).

It is given by ∆ f (v) = f (v(1)) ⊗ Sh(2) on left duals, and by ∆ f (v) = f (v(1)) ⊗ S−1h(2) on right duals, v ∈ V.

p Definition 3.10: Let H be a Hopf algebra. An H-comodule algebra is an H-comodule A endowed with a

product m : A⊗A→ A and a unit 1A : k→ A which are morphisms of H-comodules. Algebraically, for a, b ∈ A,

we get ∆(a.b) = ∆(a).∆(b) = a(1).b(1) ⊗ a(2).b(2), with the first product in A and the second in H (given by the

monoidal structure), and ∆(1A) = 1A ⊗ 1.

A right module over A is an H-comodule V equipped with an associative map of H-comodules � : V ⊗A→ V.

Algebraically, (v� a)� b = v� (a.b) and ∆(v� a) = ∆(v)�∆(a) = v(1) � a(1) ⊗ v(2).a(2). A morphism of A-modules

is a morphism of H-comodules that commutes with the actions �. y

7



3.3 Co-quasi-triangular Hopf algebras and braided categories

p Definition 3.11: A braided category is a monoidal category C⊗ equipped with a braiding, i.e. a natural

isomorphism c : ⊗ → ⊗op denoted such that: cU⊗V,W =
WVU

=
WVU

= (cU,W ⊗ IdV) ◦ (IdU ⊗ cV,W).

It is called symmetric if cX,Y ◦ cY,X = IdX⊗Y for all objects X,Y ∈ C. y

p Definition 3.12: A co-quasi-triangular Hopf algebra H is a Hopf algebra equipped with a co-R-matrix, or

R-form, R : H ⊗ H → k which is invertible by convolution, i.e. there exists R−1 : H ⊗ H → k such that

∀a, b ∈ H, R(a(1) ⊗ b(1))R−1(a(2) ⊗ b(2)) = ε(a)ε(b), and satisfying b(1).a(1).R(a(2) ⊗ b(2)) = R(a(1) ⊗ b(1)).a(2).b(2) ,

R(ab ⊗ c) = R(a ⊗ c(1)).R(b ⊗ c(2)) and R(a ⊗ bc) = R(a(1) ⊗ c).R(a(2) ⊗ b). y

Fundamental example : The Hopf algebra Oq2 (SL2) admits a co-R-matrix defined geometrically on S(B) by

R(α ⊗ β) = ε

•

<•>

α

β . On the generators, R


a ⊗ a b ⊗ b a ⊗ b b ⊗ a

c ⊗ c d ⊗ d c ⊗ d d ⊗ c

c ⊗ a d ⊗ b c ⊗ b d ⊗ a

a ⊗ c b ⊗ d a ⊗ d b ⊗ c

 =


q 0 0 0

0 q 0 0

0 0 0 q−1

0 0 q−1 q − q−3

.

Proposition 3.13: The category H–comod of comodules over a co-quasi-triangular Hopf algebra H is braided with

braiding cV,W : V ⊗W →W ⊗ V given by cV,W(v ⊗ w) = w1 ⊗ v1.R(v2 ⊗ w2).

4 Excision for stated skein algebras

Stated skein algebras are actually a great example of Oq2 (SL2)-comodules. This structure moreover gives a

nice algebraic formulation of excision for stated skein algebras. This is essentially Section 4 of [CL19].

Given a marked surfaceS and a boundary edge e ofS, we can consider an ideal arc

c going along e but inside S̊. The piece between e and c is a bigon, and the splitting

morphism along c gives a morphism ∆ = ρc : S(S) → S(S t B) ' S(S) ⊗ S(B).

This gives S(S) the structure of a right Oq2 (SL2)-comodule. The algebra structure

on S(S) is compatible, namely S(S) is a Oq2 (SL2)-comodule algebra. If one sees

the edge e at the left instead of the right of the surface, one gets a structure of left

Oq2 (SL2)-comodule.

ec

e c

Remark 4.1: Actually, we get such a structure for each boundary edge of S, and if S has n boundary edges,

S(S) is an Oq2 (SL2)⊗n-comodule.

Let S1 and S2 be two marked surfaces and e1 and e2 two boundary edges of

respectivelyS1 andS2. We seeS(S1) as a rightOq2 (SL2)-comodule andS(S2)

as a left Oq2 (SL2)-comodule.

e1 e2

We note S = S1 ∪e1=e2 S2 the surface obtained by glueing S1 and S2 along e1 and e2, and e the common image

of e1 and e2 in S, which is an ideal arc. We have Cute(S) = S1 tS2, and Theorem 2.1 gives an injective algebra

morphism ρe : S(S)→ S(S1tS2) ' S(S1)⊗S(S2). Note that by definition, the splitting morphism has values

in lifts of tangles on S, namely tangles on S1 t S2 which have all possible signs on e1 and e2. In particular,

if we note ∆1 and ∆2 the coproducts of S(S1) and S(S2), such a lift α̃ ∈ S(S1 t S2) ' S(S1) ⊗ S(S2) verifies

∆1 ⊗ Id2(α̃ = Id1 ⊗ ∆2(α̃).

p Definition 4.2: Let H be a Hopf algebra, M1 a right H-comodule and M2 a left H-comodule, with coproducts

denoted respectively ∆1 and ∆2. The cotensor product of M1 and M2 over H is the subalgebra of M1 ⊗M2

defined as M1�HM2 := {x ∈M1 ⊗M2 / ∆1 ⊗ Id2(x) = Id1 ⊗ ∆2(x)}. y
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Theorem 4.1 ( [CL19]): The stated skein algebra of a gluing S = S1 ∪e1=e2 S2 maps isomorphically on the cotensor

product of S(S1) and S(S2) over S(B).

There is another form of excision which seems more appropriate to parallel Section

10. Consider the same S1 and S2, which we both see as right Oq2 (SL2)-comodules,

but this time instead of gluing e1 on e2 we glue them on two edges of a triangle.

This way, the resulting surfaceS still has a boundary component whereS1 andS2

had one, and we only have to deal with right comodules.

e1

e

e2

p Definition 4.3: Let H be a co-quasi-triangular Hopf algebra and M1 and M2 two right H-comodule algebras.

The category of H-comodules is braided, so we have an isomorphism cM1M2 : M1⊗M2 →M2⊗M1. The braided

tensor product of M1 and M2 is the H-comodule algebra M1⊗HM2 which is the H-comodule M1 ⊗M2 endowed

with the product ∗ defined by (x1 ⊗ x2) ∗ (y1 ⊗ y2) = (x1 ⊗ 1).cM1M2 (x2 ⊗ y1).(1 ⊗ y2). y

Theorem 4.2 ( [CL19]): The stated skein algebra of a gluing along a triangle S = S1 ∪e1=t1 T ∪t2=e2 S2 maps isomor-

phically on the braided tensor product of S(S1) and S(S2).

5 Ribbon categories and link invariants

In [Sel09], the author proves coherence theorems which state that the drawings (graphical calculus) are

coherent, and represent one and only one morphism. This means in particular that rigid categories provide

invariants of tangles without crossings, braided categories of braids, braided rigid categories of tangles without

the first Reidemeister move, and finally ribbon categories of framed tangles.

5.1 The category of tangles

p Definition 5.1: A tangle α in a 3-manifold with boundary M is an unoriented, framed, compact, properly

embedded 1-sub-manifold of M. Its boundary ∂α ⊆ ∂M is a finite set of points.

The category Tan of tangles inR2
×[0, 1] has objects finite sets of points [n] = {1, . . . ,n}×{0} ⊆ R2 and morphisms

from [m] to [n] isotopy classes of tangles in R2
× [0, 1] with boundary the union of [n] ⊆ R2 ↪→ R2

× {1} and

[m] ⊆ R2 ↪→ R2
×{0}. Composition is given by vertical juxtaposition, and contraction [0, 1]t[0, 1]

[ 1
2 ,1]t[0, 1

2 ]
−→ [0, 1].

Identities are given by n straight lines [n] × [0, 1]. y

Example of composition in Tan :

• • • •

• •

◦

• •

• •

=

• • • •

• •

.

The category Tan is monoidal with tensor product given by horizontal juxtaposition. On objects, we get

[n] ⊗ [m] = [n + m]. The unit object is the empty set.

Example of tensor product in Tan :

• • • •

• •

⊗

• •

• •

=

• • • •

• •

• •

• •

.

The category Tan is braided with c[n],[m] =
•

•

•

•

•

•

•

•

•

•

[n] [m]

: [n] ⊗ [m] → [m] ⊗ [n], which is natural by sliding

tangles across the intersection.
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The category Tan is rigid with duals [n]∗ = [n], evaluation
• •• •• •

and coevaluation
•• •• ••

. The identities

= and = are obvious since we take isotopy classes of tangles. Note that these work perfectly

fine for right duals too. There is actually a general feature in this.

Proposition 5.2: In a braided category C⊗, left duals are right duals. Namely, if V∗ is a left dual of V, then it is also a

right dual with =
<

= ◦ cV,V∗ and = < = c−1
V,V∗ ◦ .

We want to construct isotopy invariants of tangles, namely monoidal functors F : Tan → C⊗. Since Tan is

braided, F( ) induces a braiding on (its image in) C⊗. Conversely, if C⊗ is braided, we would like to define

a functor F : Tan → C. We already know how to represent , with the braiding in C. Of course, not every

tangle can be obtained by composition and juxtaposition of identities and braidings (the evaluation above for

example), but we do get a functor from the wide subcategory Braid ⊆ Tan of braids. For any choice of object

X ∈ C, [1] 7→ X extends to a unique braided functor F : Braid→ C⊗.

Seemingly, for a functor F : Tan → C
⊗, the evaluation and coevaluation of [1] in Tan would map to

evaluation and coevaluation maps of X = F([1]), making it self-dual. This is too restrictive, and we will remove

this condition by changing the category Tan.

p Definition 5.3: The category Tanor of oriented tangles has objects finite sequences η̄ of + or −, which we still

see as a set of (now oriented) points in R2, and morphisms isotopy classes of oriented tangles. We impose that

a strand coming out of a positively oriented point should be oriented upward, and of a negatively oriented

downward. Hence composition (gluing) preserves the orientation. y

Example of composition in Tanor :

•
+
•
+
•
−
•
−

•
+

•
−

>

<

< ◦

+
• •
−

−
• •

+

<

<
=

•
+
•
+
•
−
•
−

<

−
• •

+

<
< .

The category Tanor has essentially the same monoidal and braided structure than Tan. Duality changes,

however, because if we orient the evaluation described above, we get a morphism η̄ ⊗ −mirror(η̄) → ∅. In

the construction of tangles invariants, we now get F(+) = X and F(−) = X∗. There is, however, a problem

of coherence. The twist < is equal to the identity in Tanor and (in this representation) will be sent to a

composition of left evaluation, braiding and right coevaluation that is not necessarily the identity in C. Again,

we prefer to change Tan rather than C.

p Definition 5.4: The category Tan f r of framed oriented tangles has objects finite sets of oriented points η̄,

and morphisms isotopy classes of framed oriented tangles, with blackboard framing on the boundary. Hence

composition preserves the framing. y

Now the twist < with blackboard framing is non-trivial in Tan f r because it induces a twist in the framing if

straightened. Equivalently, we can consider ribbon tangles instead of framed tangles and see the twist as .

There is a little problem now with our definition of and given in Proposition 5.2: they differ from the

“good” definition in Tan f r by a twist. Concretely, in Tan f r the double loop > is trivial, though the morphism

it represents in C (a composition of braidings and left and right duality morphisms) may not be. To correct

this, we need an action of the twist on C.
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p Definition 5.5: A twist on a braided category C⊗ is a natural isomorphism θ : IdC ⇒ IdC compatible with

monoidal structure : θV⊗W = θV ⊗θW ◦ cW,V ◦ cV,W . A braided category endowed with a twist is called balanced.

A ribbon category is a rigid balanced categoryV whose twist is compatible with duality : θV∗ = (θV)∗. y

Remark 5.6: The category Tan f r with twist < is ribbon, and actually motivates the definition. The compati-

bility conditions are = and = .

Theorem 5.1 ( [Tur10]): LetV⊗ be a ribbon category and V an object ofV. There exists a unique monoidal functor,

called the Reshetikhin–Turaev functor, RTV : Tan f r
→ V such that RTV(+) = V, RTV(−) = V∗, RTV( ) = cV,V,

RTV( ) = ev, RTV( ) = coev and RTV( < ) = θV.

Remark 5.7: Here, the right duality morphisms have been corrected with twists to untwist the ribbon: =

<

θ
= ◦ cV,V∗ ◦ (θV ⊗ IdV∗ ) and =

θ−1

<

= (IdV∗ ⊗ θ−1
V ) ◦ c−1

V,V∗ ◦ . Concretely, θV provides a

square root for the image of the double loop > with definitions of Proposition 5.2, and adding a θ−1 to each

appearing in it makes it trivial.

5.2 Coribbon Hopf algebras and ribbon categories Following the line of Section 3, we want to know when

the category of finite dimensional comodules over a co-quasi-triangular Hopf algebra is ribbon.

p Definition 5.8: A coribbon Hopf algebra is a co-quasi-triangular Hopf algebra H equipped with a coribbon

functional, i.e. a map θ : H→ k such that :

(1) θ is invertible by convolution: there exists θ−1 : H→ k such that θ(a(1))θ−1(a(2)) = θ−1(a(1))θ(a(2)) = ε(a),

(2) θ is central: θ(a(1))a(2) = a(1)θ(a(2)),

(3) compatibility with product: θ(ab) = R(b(1) ⊗ a(1))θ(b(2))θ(a(2))R(a(3) ⊗ b(3)) and

(4) compatibility with antipode: θ ◦ S = θ. y

Proposition 5.9: The category H–comod of comodules over a coribbon Hopf algebra H is balanced with twist on a

H-comodule V given by θV : V
∆V
→ V ⊗H

IdV⊗θ
→ V. The category H–comod f in is ribbon.

Idea of proof : It is a map of H-comodules because θ is central, and an isomorphism because θ is invertible.

The compatibilities with monoidal structure and duality are respectively given by compatibility of θ with

product and antipode, as monoidal structure and duality are defined via product and antipode. �

Remark 5.10: In the literature (see [Wak03] for the coribbon case, or [Kas95] for the ribbon case), the coribbon

functional is defined to be θ−1 in our definition. The compatibility condition are hence deformed. In particular,

if H is finite dimensional, the usual ribbon element in the dual Hopf algebra H∗ is given by the inverse of our

coribbon functional on H.

Fundamental example : The stated skein algebra of the bigon S(B), and hence the quantum group Oq2 (SL2), is

a coribbon Hopf algebra with θ(α) = ε

•

<•>

α
. On the generators, θ

 a b

c d

 = −q3

 a b

c d

. It is central
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because the splitting morphism ∆ is well-defined and does not depend on whether we cut right or left from the

loop. It is invertible with θ−1 obtained the same way but with the inverse twist. Compatibility with product

comes from θ(α.β) = ε

•

<
•

>

β

α = ε

•

<
•

>

β

α = R(β(1) ⊗ α(1))θ(β(2))θ(α(2))R(α(3) ⊗ β(3)) and compatibility

with antipode from θ(Sβ) = ε

•

<•>

β

− −

× coeff = εS

•

<
•

>

β = εS

•

<•>

β
= θ(β), because ε ◦ S = ε.

5.3 Skein relations It is remarkable to notice that we do re-obtain the skein relations, that were used (in this

paper) to define the quantum group Oq2 (SL2), after their interpretation under the Reshetikhin–Turaev functor

Tan f r
→ Oq2 (SL2)–comod f in for a particular self-dual object V.

p Definition 5.11: The standard co-representation of the quantum group Oq2 (SL2) is the 2-dimensional vector

space V = k〈v0, v1〉with coaction ∆V

(
v0 v1

)
=

(
v0 v1

)
⊗

 a b

c d

. y

The dual V∗ of V has basis (v∗0, v
∗

1) and coaction ∆V∗ (v∗0, v
∗

1) = (v∗0 ⊗ d − q2v∗1 ⊗ b,−q−2v∗0 ⊗ c + v∗1 ⊗ a). It is

isomorphic to V with ϕ :

 V → V∗

(v0, v1) 7→ (−qv∗1, q
−1v∗0)

. Hence V is self-dual with = ev ◦ (ϕ ⊗ IdV) and

= (IdV ⊗ ϕ−1) ◦ coev, with ev and coev the usual in Vect.

Proposition 5.12: Let RTV : Tan f r
→ Oq2 (SL2)–comod f in be the functor with RTV(+) = V given in Theorem 5.1.

Then,

RTV
•

• •

•

= q.RTV

•

•

•

•

+q−1.RTV

••

••

and RTV = (−q2
− q−2).RTV .

Proof : The first three are morphisms V ⊗ V → V ⊗ V. In the basis (v0 ⊗ v0, v1 ⊗ v1, v0 ⊗ v1, v1 ⊗ v0),

RTV
•

• •

•

=


q 0 0 0

0 q 0 0

0 0 0 q−1

0 0 q−1 q − q−3

, RTV

•

•

•

•

=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 and RTV

••

••

=


0 0 0 0

0 0 0 0

0 0 −q2 1

0 0 1 −q−2

,

and the first relation holds. The second is between morphisms k→ k, and indeed RTV = −q2
− q−2. �

6 The skein Category

The skein category is a way to construct invariants of tangles on an oriented surface Σ with local relations,

in the spirit of skein algebras, those which hold after evaluation under the Reshetikhin–Turaev functor. These

relations take place in a ribbon categoryV, called colours, or coefficients.

6.1 V-coloured ribbon graphs In the preceding Section, we had a different functor RTX : Tan f r
→V for each

object X of a ribbon category V. They can be patched together if we think that RTX is defined on tangles

coloured by the object X.
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p Definition 6.1: The category Tan f r
V

ofV-coloured framed tangles has objects finite sets of coloured points, i.e.

finite sequences (X̄, η̄) of pairs (X,±), X ∈ V. It has morphisms from (X̄, η̄) to (Ȳ, µ̄) isotopy classes of oriented

framed (or ribbon) tangles from η̄ to µ̄ with each strand coloured by an object of V, and such that the two

extremity points of a (non-circular) strand have same colour as the strand. y

There are two little improvements to make. First, the skein relation (or, say, its form in Proposition 5.12)

contains sums with coefficients of morphisms. We assume V is a k-linear category, and all its structure

morphisms (⊗, c, θ, ev, coev) are k-linear. Second, we want to consider all morphisms of V (not just the ones

obtained from the structure morphisms) and to identify (X,−) and (X∗,+).

p Definition 6.2: A V-coloured ribbon graph between coloured points

is a coloured oriented ribbon tangle with coupons. A coupon is an

embedding of a little square [0, 1]2 inR2
× (0, 1), and the ends of a ribbon

strand may be glued to either a point (X,±) with blackboard framing or

to a part of the top or bottom edge of a coupon. We mark the end of

a ribbon strand glued to a coupon with + if it is going upward, and −

if it is going downward in the coupon. Each ribbon strand is coloured

by an object of V and each coupon with ribbon strands coming from

the bottom face ((X1,±), . . . , (Xn,±)), in this order, and from the top face

((Y1,±), . . . , (Ym,±)) is coloured by a morphism f : X±1 ⊗ · · · ⊗ X±n →

Y±1 ⊗ · · · ⊗ Y±m, where X+ = X and X− = X∗.

AV-coloured ribbon graph :

(X,+) (Y,−) (Y,−)

> > >

>

T

(Z,+) (Z,−)

<
<
X

f : X ⊗ Y∗ → X∗ g : Y∗ ⊗ T→ X ⊗ T

y

p Definition 6.3: The category RibbonV ofV-coloured ribbon graphs has objects finite sets of coloured points

and morphisms the k-vector space generated by isotopy classes of V-coloured ribbon graphs. It is monoidal

by juxtaposition, and rigid, braided and ribbon by the usual morphisms (without use of coupons). y

Remark 6.4: By taking k-sums of ribbon graphs we obtain a k-linear category. Coupons provide

representations for all morphisms of V. The identification (X,−) ' (X∗,+) is made by the

identity coupon IdX∗ : X∗ → X∗ with entry a downward oriented X-coloured ribbon and output

an upward oriented X∗-coloured ribbon. (X,−)

(X∗,+)

IdX∗

<
>

6.2 Skein categories There are still some criticisms to be made. We would like to merge coupons from top to

bottom and obtain the composition of maps, and merge them side by side to obtain tensor product of maps.

We would like to delete identity coupons, identify ev and coev coupons with simply cap and cup ribbons, and

so on. Namely, all those things that coincide after the following functor.

Theorem 6.1 (Turaev): LetV be a k-linear ribbon category, then there is a unique functor RT : RibbonV → V such

that RT((X,±)) = X±, RT(X Y) = cX,Y, RT( ) = ev, RT( ) = coev, RT( < ) = θ and RT( f ) = f .

p Definition 6.5: The skein category SkV(R2) for a k-linear ribbon categoryV is the quotient of RibbonV where

two linear sums of ribbon graphs are identified if they give the same morphism under RT inV. y

Remark 6.6: Since RT is full, via coupons, it induces an equivalence of categories SkV(R2)→V.

p Definition 6.7: Let Σ be an oriented surface with boundary. Replacing R2 by Σ in every definition:

The category Tan(Σ) has objects finite sets of points of Σ and morphisms tangles in Σ × [0, 1] joining a set in

Σ × {0} to the other in Σ × {1}.

Tanor(Σ) has objects finite sets of oriented points of Σ and morphisms oriented tangles.
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Tan f r(Σ) has objects finite sets of oriented framed points of Σ and morphisms oriented framed tangles.

Tan f r
V

(Σ) has objects finite sets of coloured points of Σ and morphisms coloured framed tangles.

RibbonV(Σ) has objects finite sets of coloured points of Σ and morphisms coloured ribbon graphs. y

Remark 6.8: In our definition forR2, we did not allow all finite sets of (framed) points, but only the ones of the

form [n] = {1, . . . ,n} × {0} (with blackboard framing). The categories obtained are equivalent.

As in R2, we would like to identify two (linear sums of) ribbon graphs which give the same morphism in V

under the Reshetikhin–Turaev functor. This functor is not well-defined on RibbonV(Σ), it is, however, on a little

cube φ : [0, 1]3
→ Σ × [0, 1]. Given a ribbon graph F on Σ which intersect φ(∂[0, 1]3) on either the top or the

bottom face, transversally, it induces by restriction a ribbon graph on this little cube, which can be evaluated

as RT(φ−1(F|im φ)) inV.

p Definition 6.9: The skein category SkV(Σ) with coefficients in a k-linear ribbon categoryV is the quotient of

RibbonV(Σ) by the local relation
∑
λiFi = 0 if all of the Fi’s coincide outside a little cube φ : [0, 1]3

→ Σ × [0, 1],

intersect φ(∂[0, 1]3) on either the top or the bottom face, transversally, and give the zero morphism inV after

evaluation of the functor RT on this little cube, namely
∑
λiRT(φ−1(Fi|im φ)) = 0. y

Remark 6.10: For a general surface Σ, the categories defined above are not monoidal because there is no notion

of horizontal juxtaposition, which we used in R2. However, if Σ = C × [0, 1] for a 1-manifold C, the category

SkV(C × [0, 1]) is monoidal with tensor product induced by C × [0, 1] t C × [0, 1]
[0, 1

3 ]t[ 2
3 ,1]

↪→ C × [0, 1].

Remark 6.11: The construction of skein categories with coefficients in a ribbon category V is functorial with

respects to embeddings of surfaces f : Σ → Σ′, which induces a functor SkV( f ) : SkV(Σ) → SkV(Σ′) by

mapping framed points and ribbon graphs to their images under f . They remain ribbon graphs because f is

an embedding. We have a functor SkV :

 M f ldor
2 → Catk

Σ 7→ SkV(Σ)
, which will be further studied in Section 10.

The philosophy of skein categories is very close to the one of skein algebras. We consider framed tangles over

a surface Σ (but with different “kind” of tangles for different colours) and quotient by some local relations in

a little cube (but the relations can be anything taking place in V, and not necessarily the skein relations). It

turns out that skein algebras do appear as a special case of skein categories. But first, in the category SkV(Σ) we

have tangles with boundaries instead of links. To avoid them, we consider the endomorphisms of the empty

set SkAlgV(Σ) := End∅(SkV(Σ)). It is an algebra with composition, which is vertical stacking here. If the k-linear

ribbon category isOq2 (SL2)–comod f in and all ribbon graphs are coloured by the object V introduced in Definition

5.11 and have no coupons, then we showed in Proposition 5.12 that we quotient by the skein relations.

Proposition 6.12: Suppose k = C and q ∈ C× is generic, the skein algebra S̊(Σ) of a surface Σ is isomorphic to the

endomorphism algebra SkAlgV(Σ) of the skein category SkV(Σ) forV = Oq2 (SL2)–comod f in.

Idea of proof : Every finite dimensionalOq2 (SL2)-comodule is semi-simple and every finite dimensional simple

Oq2 (SL2)-comodule is a direct summand in some tensor product V⊗n of V. It is hence enough to consider tangles

coloured by V⊗n, which are n strands coloured by V. Moreover, every coupon can be removed because the

morphisms V⊗n
→ V⊗m are generated by the image under RT of tangles without coupons. �
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Part II

Factorisation homology
En-algebras were introduced as topological operads in [May72] for his n-fold loop space recognition prin-

ciple. They can be extended in any topological category, or in the handiest notion of ∞-category presented

in [Lur09]. The notions of monoidal, braided and balanced categories arise nicely as E1-, E2- and Eor
2 -algebras in

Cat. Factorisation homology is a way to extend an En-algebra, seen as a functor on n-disks, to any n-manifold.

It is presented in [AF15], or in [Gin14]. Factorisation homologies prove to be quite analogous to the usual

singular homologies with coefficients, and satisfy an Eilenberg–Steenrod theorem. Finally, the thesis [Coo19]

shows how skein categories defined in Section 6 compute factorisation homologies.

7 En-algebras

An En-algebra is an algebra object which is homotopy-associative (E1-algebra) and homotopy commutative

with a homotopy which is coherent up to order n.

7.1 Little n-cubes operad An operad is a way to represent continuous families of (abstract) products and

relations between them.

p Definition 7.1: A symmetric topological operad is a family of weak Hausdorff compactly generated spaces

P(k) =
{

•

1 · · · k }
∈ CG, k ∈N, which we think as families of products of arity k, together with:

A continuous composition map c :


P(k) × P(d1) × · · · × P(dk) → P(d1 + · · · + dk)

•

1 · · · k

× •

1 · · · d1

× · · · × •

1 · · · dk

7→ •

1 k

•

· · · d1

•

· · · dk

· · ·
which

is associative, i.e. such that the composition of three rows of products does not depend on the order of

composition.

A unit for the composition 1 ∈ P(1) represented by a straight line .

A continuous right action P(k) x Sk which intuitively consists in reversing the inputs: •

1 · · · k

· σ =

1 · · · k

σ(1)· · ·σ(k)

compatible with the composition, such that the last drawing makes sense.

Namely, c(mk · σ; nd1 , ...,ndk ) = c(mk; ndσ−1(1)
, ...,ndσ−1(k)

) · σ(d1, ..., dk), where σ(d1, ..., dk) acts on blocks of di elements,

and c(mk; nd1 · σ1, ...,ndk · σk) = c(mk; nd1 , ...,ndk ) · (σ1 ⊕ ... ⊕ σk) y

p Definition 7.2: A morphism of operad f : P → Q is a family of Sk-equivariant continuous maps fk : P(k)→

Q(k) commuting with composition.

Let X be a topological space, the operad EndX of endomorphisms of X is defined by EndX(k) = Map(Xk,X),

composition is the composition and product of maps, namely c( f , g1, . . . , gk) = f ◦ (g1 × · · · × gk), andSk acts by

interchanging the inputs. It is the operad of all possible products Xk
→ X.

A P-algebra over an operad P is a topological space X endowed with a morphism of operads P → EndX. It is

a family of products in X parametrised by P. y

p Definition 7.3: The little n-cubes operad En is the operad of rectilinear embeddings tk(0, 1)n
→ (0, 1)n.

Namely, En(k) = Embrect(tk(0, 1)n, (0, 1)n) =

tk fi
/

fi :
(0, 1)n

→ (0, 1)n

(x1, . . . , xn) 7→ (ai
1x1 + bi

1, . . . , a
i
nxn + bi

n)
, ai

j > 0

.
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Composition is given by composition and disjoint union of maps, andSk acts by interchanging the little cubes.y

There are inclusions of operads En−1 ↪→ En by taking the identity on the nth coordinate (ai
n = 1, bi

n = 0 above).

Hence an En-algebra is always a Ek-algebra for k ≤ n. The colimit of E1(k) ↪→ E2(k) ↪→ E3(k) ↪→ · · · is denoted

E∞(k). Their family form an operad E∞ with composition and Sk-action induced from the ones of the En’s.

Examples : • An E1-algebra is a space endowed with a homotopy-associative product m : X × X → X, the

image of l t r : (0, 1) t (0, 1)
(0, 1

2 )t( 1
2 ,1)

−→ (0, 1). The associativity is given by the homotopy

l ◦ l t l ◦ r t r

l t r ◦ l t r ◦ r
.

There are higher associativity homotopies, like the well-known pentagon for 4-term associativity.
•An E2-algebra is a space endowed with a homotopy-associative product m and with

two homotopies h, (hop)−1 : m h
∼ mop which are not demanded to be homotopic, plus

some higher coherence conditions.
and

• An E3-algebra is an E2-algebra where h and (hop)−1 are homotopic by two non-homotopic homotopies.

• An E∞-algebra is a space endowed with a homotopy commutative product. Each space E∞(k) of arity k

products is contractible.

There is a canonical example of En-algebra for a based topological space X: the n-fold

loop space ΩnX of maps (In, ∂In)→ (X, x). The product on ΩnX induced by an embedding

m : tkIn
→ In is obtained by doing the k maps on the images of the k little cubes, with

basepoint elsewhere. Namely, m( f1, . . . , fk) for f1, . . . , fk ∈ ΩnX is the map In
→ X depicted

hereby.

f1
· · ·

fkx

Theorem 7.1 (Recognition, [May72]): Any connected En-algebra is weakly homotopy equivalent to some ΩnX.

7.2 En-algebras in topological categories Now, the notion of an algebra over an operad can be generalised in

other contexts. Intuitively, operads are just a way of parametrising products Xk
→ X, here X ∈ Top, and this is

done by a continuous map P(k)→Map(Xk,X). For this to make sense in another category C, there must be (1)

a topological structure on the sets HomC(X,Y) and (2) a notion of product X × Y.

Remark 7.4: We demanded compactly generated spaces in Definition 7.1 in order to have internal Hom, namely

a power space XY right adjoint to the product. This is a reasonable assumption to add.

p Definition 7.5: A topological category C is a category enriched over Top, i.e. whose Hom-sets are (compactly

generated) topological spaces : HomC(X,Y) = MapC(X,Y) ∈ Top, and such that the composition is continuous. A

functor of topological categories is a functor of the underlying categories (forgetting the topological structures)

that induces continuous maps on the Hom-sets (called mapping spaces). Their category is denoted by CatTop.y

The notion of symmetric monoidal topological category is not so easy to define (some ideas will be given in

Section 8). However, we can accept that a symmetric monoidal structure on its underlying category such that all

involved functors are functors of topological categories should be a symmetric monoidal topological category,

and we will call this a 2-strict symmetric monoidal topological category. In general, we shouldn’t require for the

pentagon to commute “on the nose”, but only up to homotopy, and require some higher coherence conditions

on this homotopy.

Given a 2-strict symmetric monoidal topological category C⊗, an En-algebra would be a family of maps

En(k) = MapTop(tk(0, 1)n, (0, 1)n) → MapC(X⊗k,X) that commutes with composition and Sk-action. However,

written in this form, it is much handier to define it as a functor of topological categories.

p Definition 7.6: The topological category Diskrect
n of little n-cubes has objects finite disjoint unions tk(0, 1)n
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and mapping spaces MapDiskrect
n

(tk(0, 1)n,tr(0, 1)n) = Embrect(tk(0, 1)n,tr(0, 1)n).

It is more conventional, and equivalent, to consider the topological category Disk f r
n of smooth framed n-disks

with objects finite disjoint unions ofRn (' (0, 1)n) and mapping spaces Emb f r(tkR
n,trRn), smooth embeddings

respecting the canonical framing of Rn. The injection Embrect(tk(0, 1)n,tr(0, 1)n) ↪→ Emb f r(tkR
n,trRn) is a

deformation retract.

They are both 2-strict symmetric monoidal topological categories with disjoint unions. y

It is easy to verify that an En-algebra (as sketched above, or more formally in Top) corresponds to a symmetric

monoidal functor of topological categories Diskrect,t
n → C

⊗. The only difference is that in the latter we consider

maps in Embrect(tk(0, 1)n,tr(0, 1)n), but these are obtained as disjoint unions of maps in Embrect(tk(0, 1)n, (0, 1)n)

since (0, 1)n is connected. The condition monoidal is important for “abstract products” in Embrect(tk(0, 1)n, (0, 1)n)

to map to products X⊗k
→ X.

p Definition 7.7: An En-algebra in a 2-strict symmetric monoidal topological category C⊗ is a symmetric

monoidal functor of topological categories Disk f r,t
n → C

⊗. Their category is AlgDisk f r
n

(C) := Fun⊗(Disk f r,t
n ,C⊗).

We will often call En-algebra the image of Rn under the actual En-algebra Disk f r
n → C. y

The notion of En-algebra in Top coincides with the notion of En-algebra in Top up to homotopy. From an En-

algebra seen as a functor Diskrect
n → Top one induces an En-algebra using the retraction Emb f r(tkR

n,trRn) �

Embrect(tk(0, 1)n,tr(0, 1)n), and from an En-algebra one induces an En-algebra by restriction on the subspace

Embrect(tk(0, 1)n,tr(0, 1)n) ↪→ Emb f r(tkR
n,trRn). The two constructions are homotopy inverses, and we won’t

make any difference between En and En in Top. In particular, the Recognition Theorem 7.1 still holds for

En-algebras.

There are other (and this time, non-equivalent) variants of En-algebras.

p Definition 7.8: The topological category Diskor
n of smooth oriented n-disks has objects finite disjoint unions

tkR
n and mapping spaces MapDiskor

n
(tkR

n,trRn) = Embor(tkR
n,trRn).

An Eor
n -algebra is a symmetric monoidal functor of topological categories Diskor,t

n → C
⊗.

The topological category Diskn of topological n-disks has objects finite disjoint unions tkR
n and mapping

spaces MapDiskn (tkR
n,trRn) = Emb(tkR

n,trRn).

An E f r
n -algebra is a symmetric monoidal functor of topological categories Disktn → C⊗.

Note the inclusions Disk f r
n ↪→ Diskor

n ↪→ Diskn, and the unexpected association Disk f r
n ; En and Diskn ; E f r

n . y

7.3 En-algebras in Cat The example that interests us the most, for Section 10, is the notion of En-algebras

(actually, Eor
2 -algebras) in the category Cat of small categories. It is not, however, a topological category, but

a strict (2,1)-category. Namely, there are “morphisms between morphisms”, the natural isomorphisms, which

are all invertible.

p Definition 7.9: A strict (2,1)-category C is a category enriched over groupoids, i.e. whose Hom-sets are the

objects set of a groupoid : HomC(X,Y) = Ob(MorC(X,Y)) where MorC(X,Y) ∈ Grpd is a small category whose

arrows (which we call 2-morphisms) are all invertible. Moreover, the composition should be given as functors

MorC(Y,Z) ×MorC(X,Y)→MorC(X,Z). See Appendix B for more details.

A functor of strict (2,1)-categories is a functor of the underlying categories (forgetting the groupoid structures)

that induces (or more precisely is the restriction on the set of objects of) functors on the Hom-groupoids. y

The 2-morphisms here play the role of homotopies in topological categories. However, they are indivisible

cells, unlike homotopies which are continuums of the objects they deform. But the two worlds speak:

p Definition 7.10: Let X be a topological space, its fundamental groupoid π≤1X has objects points on X and

17



morphisms homotopy classes of paths between those points, with composition the concatenation of path. It is,

of course, functorial in X.

Let C be a topological category, it induces a strict (2,1)-category π≤1C with same objects and by taking the

fundamental groupoid of each mapping space. y

p Definition 7.11: An En-algebra in Cat is a symmetric monoidal functor π≤1Disk f r,t
n → Cat×, and similarly for

Eor
n - and E f r

n -algebras. y

Proposition 7.12: An E1-algebra in Cat (actually, the image of R) is a monoidal category C.

Idea of proof : The embedding l t r : (0, 1) t (0, 1)
(0, 1

2 )t( 1
2 ,1)

−→ (0, 1) maps to a functor ⊗ : C × C → C which is a

tensor product. Indeed, the unit ∅maps to a unit 1C. The isotopy, i.e. path in Emb f r(t3R,R),

l ◦ l t l ◦ r t r

l t r ◦ l t r ◦ r

maps to a natural isomorphism α : (−⊗−)⊗− ⇒ −⊗ (−⊗−). Similarly

l t ∅

Id
and

∅ t r

Id
map to left and right

unit natural isomorphisms l : −⊗ 1C ⇒ − and r : 1C ⊗− ⇒ −. It is easy to check that the paths compared in the

pentagon or in the triangle in Definition 3.4 are homotopic. Hence they coincide as elements of π≤1Disk f r
n , and

map to the same natural isomorphism, so the pentagon and the triangle commute in C. �

Proposition 7.13: An E2-algebra in Cat (the image of R2) is a braided category C.

Idea of proof : An E2-algebra is in particular an E1-algebra, so a monoidal category with tensor product

induced by , the image of l t r in Disk f r
1 ↪→ Disk f r

2 . Moreover, we get a natural isomorphism c : ⊗ → ⊗op

from the isotopy . The isotopies and
( )

◦

( )
are homotopic, hence

induce the same natural isomorphisms. Namely, cU⊗V,W = (cU,W ⊗ IdV) ◦ (IdU ⊗ cV,W). �

Proposition 7.14: An E3-algebra in Cat (the image of R3) is a symmetric monoidal category C.

Idea of proof : The braiding and its inverse are homotopic in R3, so cU,V = cV,U
−1. �

Proposition 7.15: An Eor
2 -algebra in Cat (the image of R2) is a balanced category C.

Idea of proof : An Eor
2 -algebra is in particular an E2-algebra. The isotopy , which consists of turning the

disk around itself, induces a natural isomorphism θ : IdC ⇒ IdC, which is a twist. �

This presentation using strict (2, 1)-categories is but a trick to make Section 10 understandable without ∞-

categories, which we will introduce briefly now.

8 ∞-categories

Higher category theory is a tool to study homotopy theory in a categorical context. The central idea is to add

higher morphisms that should be thought of as homotopies between morphisms, then homotopies between

homotopies, and so on. This doesn’t describe all higher categories, because homotopies are always invertible,
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but the notion of (∞, 1)-categories, where all ≥ 2-morphisms are invertible.

A simple way to obtain (∞, 1)-categories is the notion of topological categories described above. However,

some more discrete, or cellular, higher categories hardly fit in this setting, such as the category Cat with 2-

morphisms the natural isomorphisms, and our description of strict (2,1)-categories is not really sustainable.

The notion of∞-categories described by [Lur09] is an elegant solution, where∞-categories are simplicial sets

satisfying some extension property. It was first introduced by Joyal under the name of quasi-categories.

8.1 Definition of ∞-categories As described above, topological spaces provide groupoids: the fundamental

groupoid π≤1X. This is the truncated version of the∞-groupoid associated with a topological space.

p Definition 8.1: A topological space X induces a simplicial set Sing(X) whose points are points of X, edges

are paths on X, and more generally n-cells are continuous maps ∆n → X with obvious face maps obtained by

restriction. We define this to be an∞-groupoid, noted π≤∞X. y

The simplicial set Sing(X) satisfies nice extension properties, namely it is a Kan complex:

p Definition 8.2: The horn Λi
n ⊆ ∆n, 0 ≤ i ≤ n in the sub-simplicial set of ∆n obtained by removing the interior

(the n-cell) and the interior of the face opposite to the vertex i. It is called an inner horn if 0 < i < n.

A Kan complex is a simplicial set K such that every horn Λi
n → K can be extended to ∆n → K:

Λi
n K

∆n
∃

. y

We want to define ∞-groupoids to be Kan complexes, which coincide essentially with the image of Sing(−).

This definition is actually a relaxation of the following presentation of groupoids.

p Definition 8.3: Let C be a small category, its nerve N(C) is the simplicial set whose n-simplices are the set

of functors from the poset 〈n〉 = {0 < · · · < n} to C, or more concretely of sequences of n composable arrows.

Face maps derive from face maps in posets, and consist in dropping the first or last arrow, or composing two

arrows. Degeneracy maps consist in adding an identity. y

Proposition 8.4: A simplicial complex K is the nerve of a small category C = K1 if and only if every

inner horn Λi
n → K can be extended uniquely to ∆n → K. Here, K1 is the 1-skeleton of K.

Λi
n K

∆n
∃!

Proof : The oriented graph K1 becomes a category if it has composition and identities. Composition is given

by the (unique) extension of Λ1
2 → K : x z

yf g
∃! . Identity is the degenerated 1-simplex over a point.

Associativity is given by the extension of either Λ1
3 or Λ2

3. �

Proposition 8.5: A simplicial complex K is the nerve of a groupoid G = K1 if and only if every horn Λi
n → K can be

extended uniquely to ∆n → K.

Proof : The extension of Λ0
2 → K : x x

yf f−1

Idx
provides a left inverse, and the extension of Λ2

2 a right inverse.�

We know how to switch from groupoids to∞-groupoids, and from groupoids to categories.

p Definition 8.6: An ∞-category is a simplicial set C such that every inner horn Λi
n → C can be extended to

∆n → C. The points ofC are called its objects, and its edges its morphisms. The extension of Λ1
2 gives a notion of

composition between morphisms, which is well-defined only up to homotopy, i.e. 2-morphism, i.e. 2-simplex.
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An∞-functor is a map of simplicial sets. It maps 2-simplices to 2-simplices, and hence preserves composition,

at least up to homotopy. The category of∞-categories is denoted by Cat∞. y

The category Cat∞ has higher structure. A “natural transformation” between∞-functors F,G : C → D should

be a collection of elements of MapC(F(x),G(x)), and is encoded in an ∞-functor ∆1 × C → D. There are higher

transformation encoded by∞-functors ∆n × C → D. To get an∞-category Cat∞, we should recall only natural

isomorphisms, i.e. natural transformations that are invertible up to higher transformations.

Remark 8.7: There is a notion of mapping space MapC(x, y) between two objects x and y of an ∞-category C,

whose n-simplices are morphisms ∆1 × ∆n → C mapping the face {0} × ∆n to the n-simplex degenerated on x

and the face {1} × ∆n to the n-simplex degenerated on y. This simplicial set is a “space”, i.e. a Kan complex.

Hence every ≥ 2-morphism in C is invertible, and∞-categories are indeed a model for (∞, 1)-categories.

Topological and ∞-categories are equivalent in a suitable sense (they are Quillen equivalent). An ∞-category

induces a topological category with the remark above. A topological category induces an ∞-category via

the topological nerve. It looks like the usual nerve but encodes moreover the notions of homotopy between

morphisms. The topological nerve N(C) of a topological category C is the simplicial set with points the objects

of C and edges the morphisms of C. It has 2-simplices
0 2

1f01 f12

f02

H homotopies H between f02 and f12 ◦ f01.

Intuitively, its n-simplices are homotopies that fill the n-simplex. For a more precise definition see [Lur09].

Examples : • The topological category Disk f r
n gives an ∞-category also noted Disk f r

n by taking its topological

nerve. To define En-algebras in the∞-category setting, we still need to define the notion of symmetric monoidal

∞-category.

• The strict (2,1)-category Cat “extends” to an∞-category by taking all ≥ 3 morphisms to be identities.

Concretely, 0-simplices are small categories,

1-simplices are functors 0 1
F01 ,

2-simplices are natural isomorphisms η012 : F12 ◦ F01 ⇒ F02,
0 2

1F01 F12

F02

⇒ .

The boundary of a 3-simplex
0 1

2
3

F01

F12

F23

gives a square of natural isomorphisms
F23 ◦ F12 ◦ F01 F13 ◦ F01

F23 ◦ F02 F03

η123
η013η012

η023

,

and a 3-simplex is a commutative square of this form. Intuitively, the homotopy inside a 3-simplex can only

be an equality.

The boundary of a 4-simplex is a cube of natural isomorphisms, and fills if and only if the cube commutes,

which is automatic as all its faces do (they are 3-simplices). Homotopies between equalities are indeed simple.

p Definition 8.8: A full sub-∞-category of an∞-category C spanned by a subset of objects V ⊆ C0 is the largest

sub-simplicial set of C containing only the vertices of V. It is easy to check that it is indeed an∞-category, with

extensions given in C. y

8.2 Weak equivalences We define weak equivalences here for topological categories, but one can also define

them for∞-categories. Topological and∞-categories are (Quillen) equivalent only up to weak equivalence.

p Definition 8.9: A morphism f : x→ y in a topological category is called an equivalence if it has a homotopy

inverse, i.e. if there exists g : y→ x and homotopies (paths in the mapping spaces) g ◦ f h
∼ Idx and f ◦ g h

∼ Idy.

A functor of topological categories F : C → D is a weak equivalence if:
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(1) it is weakly essentially surjective, every object ofD is equivalent to an object of the image of F

(2) for all objects x, y of C, MapC(x, y)
F(−)
→ MapD(F(x),F(y)) is a weak homotopy equivalence y

Example : The topological categories Diskrect
n and Disk f r

n are weakly equivalent.

8.3 Symmetric monoidal∞-categories In order to generalise them to the∞-category setting, we need to see

symmetric monoidal categories as pseudofunctors Fin∗ → Cat.

p Definition 8.10: A pseudofunctorC → Cat, whereC is a category, is an assignment on objects and morphisms

as a functor but that preserves identities and composition only up to natural isomorphism, and satisfies some

identity and associativity conditions.

More precisely, it is an ∞-functor p : N(C) → Cat. Indeed, such an ∞-functor maps a 2-simplex in N(C)

σ :
0 2

1f g

g ◦ f

= to a 2-simplex in Cat
0 2

1p( f ) p(g)

p(g ◦ f )

⇒ , namely a natural isomorphism p(σ) : p(g) ◦ p( f )⇒ p(g ◦ f ).

It satisfies some higher relations encoded in the fact that the boundaries of 3-simplices commute. y

p Definition 8.11: The category Fin∗ has objects finite pointed sets (represented by 〈n〉 = {∗, 1, . . . ,n}, n ∈ N)

and morphisms pointed maps.

For a pseudofunctor p : Fin∗ → Cat, we noteC〈n〉 = p(〈n〉). The morphisms ρi :
〈n〉 → 〈1〉

i 7→ 1

0, . . . , i − 1, i + 1, . . . ,n 7→ ∗

induce functors p(ρi) : C〈n〉 → C〈1〉. The Segal map is the functor Φn :=
∏n

i=1 p(ρi) : C〈n〉 → (C〈1〉)n. y

Proposition 8.12: A symmetric monoidal category corresponds to an∞-functor p : N(Fin∗)→ Cat such that all Segal

maps Φn, n ∈N, are equivalences in Cat, i.e. have a homotopy inverse (which is an inverse up to natural isomorphisms).

Proof : Given such an∞-functor p : N(Fin∗)→ Cat, the category C = C〈1〉 has a monoidal structure induced by

⊗ = p

 〈2〉 → 〈1〉

1, 2 7→ 1

 : C〈2〉
Φ2
' (C)2

→ C. The functor (−⊗−)⊗− is the compositionC〈3〉
1,2 7→1
→ C〈2〉

1,2 7→1
→ C, hence

is homotopic (natural isomorphic) to p(1, 2, 3 7→ 1). Similarly,−⊗(−⊗−) isC〈3〉
2,3 7→2
→ C〈2〉

1,2 7→1
→ C and is homotopic

to p(1, 2, 3 7→ 1) and hence to (−⊗−)⊗−. The identity is given by p(〈0〉 = {∗} → 〈1〉) : C〈0〉
Φ0
' ∗ → C, and identity

natural isomorphisms by p(1, 2 7→ 1) ◦ p(1 7→ 1 or 2)⇒ p(1 7→ 1)⇒ IdC. The pentagon and triangle conditions

arise as boundary of (bunches of) 3-simplices, hence commutative diagrams of natural isomorphisms. The

symmetry natural isomorphism is given by ⊗op
' p(1, 2 7→ 1) ◦ p(1, 2 7→ 2, 1)⇒ p((1, 2 7→ 1) ◦ (1, 2 7→ 2, 1)) = ⊗.

Conversely, a symmetric monoidal category gives an∞-functor p : N(Fin∗)→ Cat with the same definitions. �

p Definition 8.13: A symmetric monoidal ∞-category is an ∞-functor p : N(Fin∗) → Cat∞ such that all Segal

maps Φn, n ∈N, are equivalences in Cat∞. Again, we say that C = p(〈1〉) is a symmetric monoidal∞-category.y

Here, the pentagon and triangle conditions still appear as boundaries of 3-simplices, and hence should commute

inCup to 3-morphisms. However, 3-morphisms in Cat∞may not be equalities, and have non-trivial behaviours.

Hence we also require higher coherence relations between these 3-morphisms, all encoded in the∞-functor p.

Examples : • The∞-category Cat× is symmetric monoidal.

• Any symmetric monoidal category C⊗ gives a symmetric monoidal∞-category N(C)⊗.

• The topological nerve of a 2-strict symmetric monoidal topological category is a symmetric monoidal ∞-

category.
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p Definition 8.14: Let C and D be two symmetric monoidal ∞-categories with monoidal structures p, q :

N(Fin∗) → Cat∞. A symmetric monoidal ∞-functor F : p → q is a 2-morphism in Cat∞, namely a homotopy

invertible ∞-functor F : ∆1 × N(Fin∗) → Cat∞ such that F |{0}×N(Fin∗) = p and F |{1}×N(Fin∗) = q. By abuse, we say

that F = F (∆1 × 〈1〉), which is a 1-simplex in Cat∞, namely an ∞-functor F : C → D, is a symmetric monoidal

∞-functor.

The tensor product is preserved up to natural isomorphism:

C
2 C

〈2〉 C

D
2 D

〈2〉 D

ρ1, ρ2

∼

1, 2 7→ 1

ρ1, ρ2
∼

1, 2 7→ 1

F (∆1 × 〈2〉) FF2

. y

Remark 8.15: The Grothendieck construction classifies ∞-functors N(Fin∗) → Cat or Cat∞ by some kind of

fibrations C⊗ → Fin∗ where C⊗ ∈ Cat or Cat∞. This is the standard definition for symmetric monoidal ∞-

categories.

p Definition 8.16: An E f r
n - (resp Eor

n -, En-) algebra in a symmetric monoidal ∞-category C is a symmetric

monoidal∞-functor F : Diskn → C (resp Diskor
n → C, Disk f r

n → C). y

Examples : • An En-algebra in a topological category F : Diskn → C induces an En-algebra N(F) : N(Diskn) →

N(C) via the topological nerve.

• Monoidal, braided, balanced and symmetric monoidal categories give respectively E f r
1 -, E f r

2 -, E2- and E f r
3 -

algebras in the∞-category Cat.

9 Factorisation homology

Factorisation homology takes a topological input, a manifold M of dimension n, and an algebraic input,

an En-algebra A, in a symmetric monoidal ∞-category C. It produces an object
∫

MA ∈ C which is both a

topological (though not always homotopy) invariant of M and an algebraic invariant of A. It is relative to a

tangential structure on M, for example framed or oriented, which are developed in Appendix C. Factorisation

homology is very similar to singular homology with coefficients, and satisfies an axiomatic description and an

Eilenberg–Steenrod theorem.

Most definitions are given using categorical tools, such as colimits and Kan extensions, which are defined for

∞-categories in Appendix B. The intuitions, however, differ very little.

9.1 Definition of factorisation homology An E f r
n -algebra A in a symmetric monoidal ∞-category C is a

symmetric monoidal ∞-functor A : Disktn → C
⊗. Factorisation homology is simply a tool to extend this from

n-disks to all n-manifolds.

p Definition 9.1: The topological category M f ldn has objects topological manifolds M of dimension n which

admit a finite good cover, i.e. a finite cover M = ∪iUi such that each Ui is homeomorphic toRn, and, moreover,

any intersection ∩ jU j is either empty or homeomorphic to Rn. It has morphisms embeddings of topological

manifolds. It is symmetric monoidal with disjoint union.

The topological category Diskn is precisely its full subcategory spanned by disjoint unions of Rn. y

We are in the situation Diskn

M f ldn

C

i

A

?

where we want to extend some functorA along an inclusion functor i.

This inclusion induces a functor i∗ : Fun(M f ldn,C)→ Fun(Diskn,C) by restriction, and we want to find the best

lift ofA through it.
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p Definition 9.2: The left Kan extension of A along i is an initial object of the slice category (A ↓ i∗), see

Appendix A, namely a functor L = LaniA : M f ldn → C together with a natural transformation η : A→ i∗L = L◦i

which is initial among such pairs. In particular, NatM f ldn→C(L,S)
i∗(−)◦η
−→ NatDiskn→C(A,S ◦ i) is an isomorphism

for all S : M f ldn → C. y

Remark 9.3: If it exists for allA : Diskn → C, the functor Lani− provides a left adjoint to i∗.

We would ideally like the Kan extension L to actually extend A, so we know where to send disks. Now for

any manifold M, each embeddingD ↪→ M should induce a map L(D) = A(D)→ L(M). A good candidate for

L(M) is the colimit of all theseA(D) forD ↪→M, with ”relations” the intersections of disks.

Proposition 9.4 ( [McL98]): If the colimits L(M) := colim
(
(i ↓ M)

p1
→ Diskn

A
→ C

)
displayed below exist for all

M ∈M f ldn, they provide the left Kan extension ofA along i. A left Kan extension obtained this way is called pointed.

iD iD′ iD′′

M

f f ′ f ′′

ih ih′

p1
7→
D D′ D′′

h h′

A
7→
A(D) A(D′) A(D′′)

A(h) A(h′)

colim
7→
A(D) A(D′) A(D′′)

L(M)

A(h) A(h′)
In particular, if C is cocomplete the left Kan extension always exists.

Remark 9.5: Here Diskn is a full subcategory of M f ldn, hence this colimit for M ∈ Diskn is trivial (IdM is terminal

in (i ↓M)) and therefore L|Diskn = A and η = Id.

p Definition 9.6: LetA : Diskn → C be an E f r
n -algebra and M ∈M f ldn a n-manifold. The factorisation homology

over M with coefficients inA is the colimit
∫

MA := colim
(
(i ↓M)

p1
→ Diskn

A
→ C

)
. y

Namely, we reconstruct M from its disks by taking the colimit of
A

( )
A

( )
A

( ) .

p Definition 9.7: A symmetric monoidal∞-category C⊗ is ⊗-presentable if

(1) C is locally presentable i.e. cocomplete and generated by λ-presentable objects, see Appendix A.

(2) For every object V ∈ C, the∞-functor V ⊗ − preserves small colimits. y

Theorem 9.1 (Ayala–Francis): Let C be a ⊗-presentable symmetric monoidal∞-category.

There is an adjunction
∫

: AlgDiskn (C) = Fun⊗(Diskn,C)� Fun⊗(M f ldn,C) : i∗.

Idea of proof : The factorisation homology exists becauseC is cocomplete, and is the left adjoint of i∗ by Remark

9.3. It takes values in symmetric monoidal∞-functors because tensor product in C preserves colimits. �

From now on we fix a ⊗-presentable symmetric monoidal∞-category C.

These definitions and results transpose easily to the framed case, with the categories M f ld f r
n and Disk f r

n of

smooth framed manifolds and disks, or to the oriented case with M f ldor
n and Diskor

n .

9.2 Manifolds with boundary In order to define excision for factorisation homology, we need to extend it to

the context of manifolds with boundaries.

p Definition 9.8: The topological category M f ld∂n has objects topological manifolds with boundary (M, ∂M) of

dimension n which admit a finite good cover, i.e. a finite cover M = ∪iUi such that each Ui is homeomorphic to
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Rn orR≥0×Rn−1, and, moreover, any intersection∩ jU j is either empty or homeomorphic toRn orR≥0×Rn−1. It

has morphisms embeddings of topological manifolds with boundary, sending the boundary in the boundary.

The topological category Disk∂n is its full subcategory spanned by disjoint unions of Rn and of R≥0 ×Rn−1.

They are both symmetric monoidal with disjoint union. y

As before, a Disk∂n-algebra in C⊗ is a symmetric monoidal functor Disk∂,tn → C
⊗. The factorisation homology

for manifolds with boundary is defined as its left Kan extension along Disk∂n ↪→M f ld∂n.

There are oriented and framed variants of these categories, introduced in Appendix C. For example, M f ld∂,∗→∗n

is the category of framed (topological) manifolds with framed boundary, where the framing on the boundary

is induced from the framing in the interior with inwards normal.

Example : The∞-category M f ld∂,∗∗→∗1 is the∞-category of topological 1-manifolds with boundary where both

the interior and the boundary are framed, but where there are two possible choices of framing on the boundary,

namely inwards or outwards.

The subcategory Disk∂,∗∗→∗1 contains Disk f r
1 , so objects of the form (−1, 1) their disjoint unions and

their framed embeddings, for objects without boundary.

It also contains a copy of Disk∂,∗→∗1 which has objects disjoint unions of [−1, 1) and of (−1, 1) and

framed embeddings between them, so Disk f r
1 is a part of Disk∂,∗→∗1 and we think of it as acting

from the right.

[

[

Finally, it contains another copy of Disk∂,∗→∗1 which has objects disjoint unions of (−1, 1] and of

(−1, 1) and framed embeddings between them, so Disk f r
1 is a part of Disk∂,∗→∗1 and we think of it

as acting from the left.

]

]

A Disk∂,∗∗→∗1 -algebra A : Disk∂,∗∗→∗1 → C hence induces by restriction a Disk1-algebra A = A((−1, 1)), and two

Disk∂,∗→∗1 -algebras M− = A([−1, 1)) and M+ = A((−1, 1]) which come with respectively a right and a left A-action

induced by the figures above.

The category M f ld∂,∗∗→∗1 has, moreover, an object [−1, 1] which has two boundaries with different orientations.

It is obtained from Disk∂,∗∗→∗1 by gluing [−1, 1) and (−1, 1] along (−1, 1).

Proposition 9.9: The factorisation homology
∫

[−1,1]A of a Disk∂,∗∗→∗1 -algebraA is the relative tensor product M−⊗AM+.

Idea of proof : Such a relative tensor product has not been defined here yet, it can be defined as the colimit of

a two-sided bar construction. The main idea is to identify the action of A from the right on M− and from the

left on M+ up to homotopy, which is exactly what the gluing of factorisation homology does. �

In this paper, we may rather see this proposition as a definition. A concrete construction of such a relative

tensor product is given in Section 10 in the particular case of C⊗ = Cat×k .

9.3 Axioms for factorisation homology Factorisation homology, as singular homology with coefficients, is

characterised by a few axioms, similar to Eilenberg–Steenrod’s.

p Definition 9.10: A collar gluing is a continuous map f : M → [−1, 1] such that f |(−1,1) is a fibre bundle

with fibre a manifold M0 = f−1({0}) over (−1, 1). We say it is the collar gluing of M− = f−1([−1, 1)) and

M+ = f−1((−1, 1]) along A = f−1((−1, 1)) 'M0 × (−1, 1) and denote it M = M− ∪A M+. y

More generally, taking pre-images of f gives an ∞-functor f−1 : Disk∂,∗∗→∗1 /[−1,1] → M f ld f r
n /M from little disks

(with up to one boundary) in [−1, 1] to submanifolds of M.

Given a symmetric monoidal ∞-functor F : M f ld f r
n → C, one gets a symmetric monoidal ∞-functor F ◦ f−1 :
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Disk∂,∗∗→∗1 /[−1,1]

f−1

→ M f ld f r
n /M

p1
→ M f ld f r

n
F
→ C whose colimit we note inaccurately

∫
[−1,1] F ◦ f−1. Proposition 9.9

still gives an equivalence
∫

[−1,1] F ◦ f−1
' F(M−) ⊗F(A) F(M+).

Dropping the arrow p1 above, one gets a cocone F ◦ f−1
⇒ F(M), arising from each (D′ ↪→ D)

f−1

→ (M′ ↪→M) F
→

(F(M′)→ F(M)). Hence there is a canonical morphism F(M−)⊗F(A) F(M+)→ F(M) by universality of the colimit.

p Definition 9.11: A symmetric monoidal ∞-functor F : M f ld f r
n → C satisfies the ⊗-excision if for any collar

gluing f , the canonical morphism F(M−) ⊗F(A) F(M+)→ F(M) is an equivalence.

Such an∞-functor is called a homology theory. We noteH(M f ldn,C) the full sub-∞-category of Fun⊗(M f ldn,C)

of∞-functors satisfying the ⊗-excision. y

Example : Factorisation homology with coefficients in an E f r
n -algebraA : Diskn → C, where C is ⊗-presentable,

provides a symmetric monoidal∞-functor
∫
−
A : M f ldn → C.

Proposition 9.12: Factorisation homology satisfies the ⊗-excision, namely
∫

M−
A⊗∫

AA

∫
M+
A '

∫
MA.

Idea of proof : The colimit in the construction of
∫

[−1,1] F ◦ f−1 above completes the colimit for
∫

MA. �

Finally, we have an Eilenberg–Steenrod theorem for those homologies.

Theorem 9.2 ( [AF15]): There is a weak equivalence of ∞-categories
∫

: AlgDiskn (C)↔̃H(M f ldn,C) : i∗ between

Diskn-algebras on C and homology theories, implemented by factorisation homology and restriction to Diskn.

Here restriction to Diskn gives the coefficients of the homology theory by Remark 9.5. It is sometimes called

evaluation at Rn, identifying a Diskn-algebraA : Diskn → Cwith the algebra object A = A(Rn) ∈ C.

Remark 9.13: This theorem holds in the oriented and framed cases as well.

Corollary 9.14: A symmetric monoidal ∞-functor F : M f ldn → C which satisfies the ⊗-excision is equivalent to the

factorisation homology
∫
−

F(Rn) with coefficients in F(Rn).

9.4 Computations Finally, we compute some classical examples of factorisation homology, namely for C =

Ch≥0(Z)⊕, C = Top× and for the case n = 1. Section 10 is devoted to n = 2 and C = Cat, in the oriented case.

p Definition 9.15: The category Ch≥0(Z) has objects positively graded chain complexes of abelian groups

and morphisms morphisms of chain complexes. It is monoidal with direct sum of chain complexes. It is

enriched over sSet with morphisms between two chain complexes P∗ and Q∗ the simplicial set (Mor(P∗,Q∗))n =

HomCh≥0(Z)(P∗ ⊗C∗(∆n),Q∗), where C∗(∆n) are the singular chains of the n-simplex. Taking geometric realisation,

it is enriched over Top, and taking the topological nerve it becomes an ∞-category, which we still denote

Ch≥0(Z). y

Proposition 9.16 ( [AF15, example 3.28]): The∞-category AlgDisk f r
n

(Ch≥0(Z)⊕) of En-algebra in Ch≥0(Z)⊕ is equiv-

alent to Ch≥0(Z). The equivalence Ch≥0(Z) → AlgDisk f r
n

(Ch≥0(Z)⊕) is given by taking the abelian group structure on

a chain complex, which is a commutative, and hence En-, algebra structure. By abuse, we say that an En-algebra in

Ch≥0(Z)⊕ is simply a chain complex.
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Proposition 9.17: Factorization homology with coefficients in a chain complex is given by singular homology with

same coefficients.

Idea of proof : The ⊗-excision property in Ch≥0(Z)⊕ is equivalent to the Mayer-Vietoris long exact sequence,

hence singular homology is a homology theory and is equivalent to factorisation homology with same coeffi-

cients. �

Proposition 9.18: Let A be an E1-algebra inC, namely a homotopy-associative algebra. The only interesting 1-manifold

is the circle S1. The factorisation homology
∫

S1 A is equivalent to HC∗A, the Hochschild complex of A.

Proof : The circle is the collar gluing of two intervals along shorter intervals on their extremities. The⊗-excision

gives
∫

S1 A ' A ⊗A⊗Aop A = HC∗A. �

This example is well-known when C⊗ is (the nerve of) Vect⊗k , so that A is a usual algebra.

Proposition 9.19 (Non-abelian Poincaré Duality): Let ΩnX be an En-algebra in Top× where X is n− 1 connective

and M ∈ M f ld f r
n a framed n-manifold. The factorisation homology

∫
M ΩnX is equivalent to the space of compactly

supported sections of X over M, Γc(M,X) = { f : M→ X such that outside a compact K ⊆M, f is constant equal to the

basepoint of X}.

Proof : For M = Rn, Γc(Rn,X) ' ΩnX. Moreover, one can prove that the symmetric monoidal ∞-functor

Γc(−,X) satisfies ⊗-excision. By Corollary 9.14, it is equivalent to factorisation homology with coefficients in

Γc(Rn,X) ' ΩnX. Lurie outlines a more direct proof in [Lur14a]. �

10 The skein category and factorisation homology

To conclude, we compute skein categories via factorisation homology, and skein algebras via skein categories

and factorisation homology with coefficients in categories of representations of quantum groups. This section

is based on [Coo19].

10.1 Tambara relative tensor product We introduce a better suited notion of relative tensor product, called

Tambara relative tensor product, which happens to be equivalent to the one of Proposition 9.9.

p Definition 10.1: A right A-module over a k-linear monoidal category A is a k-linear categoryM endowed

with a bilinear action functor � : M×A → M with a natural associativity isomorphism β : (− � −) � − ⇒

− � (− ⊗ −) and a natural unity isomorphism η : − � 1A ⇒ − satisfying the expected pentagon and triangle

conditions.

A left A-module is defined similarly. Given a right A-moduleM and a left A-module N , a bilinear functor

F : M×N → C is called A-balanced if it is endowed with a natural isomorphism i : F(m � a,n)→̃F(m, a � n)

coherent with the associativity isomorphisms β and η. An A-balanced natural transformation between A-

balanced functors is one that preserves the balancings i. y

p Definition 10.2: The Tambara relative tensor product ofM andN overA is given by the categoryM⊗A N

with same objects thanM×N and morphisms generated by the ones ofM×N and a natural isomorphism

im,a,n : (m � a,n)→̃(m, a � n) satisfying the pentagon and triangle conditions. It comes with a projection functor

P :M×N →M⊗A N . y
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Proposition 10.3: The Tambara relative tensor productM⊗A N ofM andN overA with P :M×N →M⊗A N

gives an equivalence of categories FunA-balanced(M×N ,C) ' Funk(M⊗A N ,C).

Proposition 10.4: LetM be a rightA-module andN a leftA-module. They define a Disk∂,∗∗→∗1 -algebra A in Cat×k by

setting A((−1, 1)) = A, A([−1, 1)) =M, A((−1, 1]) = N , A( ) = ⊗, A(
[

[
) = � and A(

]

]
) = �.

Moreover, there is an equivalence of categoriesM⊗A N '
∫

[−1,1] A between the Tambara relative tensor product and

the one of Proposition 9.9.

10.2 Skein categories are k-linear factorisation homology We now want to prove that skein categories with

coefficients in a (fixed) k-linear ribbon category V, namely the functor SkV :

 M f ldor
2 → Catk

Σ 7→ SkV(Σ)
, is the

factorisation homology with coefficients in the Eor
2 -algebra in Catk, i.e. balanced category,V. The main part is

that it satisfies ⊗-excision, which we will prove using Tambara relative tensor product here.

First, SkV : M f ldor,t
2 → Cat×k is monoidal since points or ribbon graphs on a disjoint union of surfaces is a pair

of such on each surface.

Proposition 10.5: The functor SkV : M f ldor
2 → Catk induces an∞-functor between the associated∞-categories.

Proof : SkV is already defined on the 1-skeleton. The 2-skeleton of M f ldor
2 corresponds to homotopies of

embeddings, i.e. isotopies, whereas the 2-skeleton of Catk corresponds to natural isomorphisms.

An isotopy λ : M × [0, 1] → N between embeddings f and g induces a natural

isomorphism ribλ : SkV( f )⇒ SkV(g). For an object m = {(mi, ηi,Xi)}, mi ∈ M, Xi ∈ V,

the ribbon graph ribλ,m : f (m)→ g(m) is the one drawn by (λ({mi} × −),−) in Σ × [0, 1]

with strands oriented according to ηi and coloured by Xi. Its inverse is given by ribλ̄.
>X

<X′

•
+g(m)

•
−

•
+f (m)
•
−

λ

Homotopic isotopies give isotopic ribbon graphs, so SkV extends by equalities on the ≥ 3-skeleta. �

It is actually a symmetric monoidal∞-functor M f ldor,t
2 → Cat×k . This is very handy: for example SkV|Diskor

2
is an

Eor
2 -algebra in Catk, it is the Eor

2 -algebraV ' SkV(R2).

Proposition 10.6: If A = C × [0, 1] for a 1-manifold C, the category SkV(A) is monoidal with tensor product induced

by C × [0, 1] t C × [0, 1]
[0, 1

3 ]t[ 2
3 ,1]

↪→ C × [0, 1].

Proof : The associativity natural isomorphism of SkV(C × [0, 1]) is ribα, where α = , the left unit is

ribl, l = and the right unit is ribr, r = . (These isotopies read top to bottom) �

To define the Tambara relative tensor product of skein categories, we still need to see SkV(M) as a module

category over SkV(C × [0, 1]) for C a well-embedded part of ∂M.
p Definition 10.7: A thick right embedding of a 1-manifold C in a surface with

boundary M is an embedding Θ :
(
(−1, 1] × C, {1} × C

)
→

(
M, ∂M

)
. It induces

a self-embedding E : M→ M isotopic to IdM by pushing (−1, 1] into (−1,− 1
2 ],

an isotopy denoted λ. It induces too an embedding Φ : A = C× [0, 1]→M by

restriction, which we think of as an inclusion, whose image is disjoint from

the image of E.

M
λE(M)

Θ Φ

∂M

CA
y
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Proposition 10.8: A thick right embedding C→M induces a right SkV(A)-module structure on SkV(M).

Proof : Since E and Φ have disjoint images, EtΦ : MtA→M is an embedding.

The action functor � : SkV(M) × SkV(A) ' SkV(M t A)→ SkV(M) is the functor

induced by E tΦ.

The associativity natural isomorphism is β = ribE(λ̄) t ribl1(λ̄) t ribr, where l1 is

extended on M by the identity outside Φ(A). The component βm,a,b : (m�a)�b =

E2(m)tE(Φ(a))tΦ(b)→ m�(a⊗b) = E(m)tΦ(l1(a))tΦ(r1(b)) is depicted hereby.

The unity natural isomorphism is η = ribλ̄.

•
E(m)

•
E2(m)

ribE(λ̄),m

•
l1(a)

•
E(a)

ribl1(λ̄),a

•
r1(b)

•
b

ribr,b

�
Similarly, a thick left embedding C → N is an embedding [0, 2) × C → N and induces a self-embedding

EN : N→ N isotopic by λN to IdN and an embedding ΦN : A = C × [0, 1]→ N.

Given thick right and thick left embeddings M← C→ N, the surface M ∪A N is the gluing :

It is a collar gluing, and all collar gluings can be obtained this way.

M ∪A N

M

N

A
ΦM

ΦN
y

Theorem 10.1: Let M ∪A N be the collar gluing of two thick embeddings M ← C → N. The skein category

SkV(M ∪A N), together with the projection SkV(M) × SkV(N) → SkV(M ∪A N) induced by the two embeddings

M ↪→M ∪A N and N ↪→M ∪A N, gives the Tambara relative tensor product of the right SkV(A)-module SkV(M) and

the left SkV(A)-module SkV(N).

Idea of proof : We describe an isomorphism F : SkV(M) ⊗SkV(A) SkV(N)→ SkV(M ∪A N).

On SkV(M)×SkV(N) ' SkV(MtN) it is induced by EMtEN. Finally,

F(i) = ribE(λ̄M)tribλN◦ribλ̄M
tribλM . The component im,a,n : (m�a,n) =

E2
M(m)tEM(ΦM(a))tEN(n)→ (m, a�n) = EM(m)tEN(ΦN(a))tE2

N(n)

is depicted hereby.

•
EM(m)

•
E2

M(m)

ribEM( ¯λM),m

•
EN(n)

•
E2

N(n)

ribEN (λN ),n

•
EM(a)

•
a

rib ¯λM ,a

•
EN(a)

ribλN ,a

The functor F is essentially surjective because any point in the middle region A can be pushed in, say, EN(N).

It is full because any ribbon graph in EM(M) or EN(N) can be obtained from a ribbon graph in M or N, and any

ribbon graph in the middle region can be pushed in, say, EN(N) leaving only straight lines crossing the middle

region, that are of the type F(i).

It is faithful because any isotopy can be cut to pieces corresponding to isotopies in EM(M) or in EN(N), naturality

of i, isomorphicity of i or pentagon and triangle conditions. The rather technical proof is done in [Coo19]. �

Theorem 10.2 ( [Coo19]): Let V be k-linear ribbon category, and hence an Eor
2 -algebra in Catk. The skein category

∞-functor SkV : M f ldor,t
2 → Cat×k is equivalent to the k-linear factorisation homology

∫ Cat×k

−

V : M f ldor,t
2 → Cat×k of

surfaces with coefficients inV.

Proof : The skein category ∞-functor is a symmetric monoidal ∞-functor SkV : M f ldor,t
2 → Cat×k . It satisfies

⊗-excision by Theorem 10.1 and Proposition 10.4. Hence it is equivalent to the factorisation homology with

coefficients in SkV(R2) ' V by Corollary 9.14. �

10.3 The algebra AΣ For a punctured surface Σ, SkV(Σ) is a V-module category and, for suitable choices of

V, a theorem of [BBJ18] shows that it is even represented by an algebra object AΣ. This object, however, does

not live in the ribbon category V, but in its free cocompletion Free(V), and one should consider factorisation

homology of this category, which is an Eor
2 -algebra in LFPk.
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p Definition 10.9: The strict (2,1)-category LFPk has objects locally finitely presentable k-linear categories and

morphisms functors which are both cocotinuous (which preserve small colimits) and compact (which maps

compact objects to compact objects). Its 2-morphisms are natural isomorphisms.

It is equipped with the Kelly–Deligne tensor product � characterised by Cocont(A �B,C) ' Cocont(A,B;C) '

Cocont(A,Cocont(B,C)) where Cocont is the category of cocontinuous functors between cocomplete categories.y

This makes LFP�k a ⊗-presentable symmetric monoidal∞-category.

p Definition 10.10: Let C be a k-linear category, its cocompletion is a cocomplete k-linear category Free(C) with

a functor i : C → Free(C) which is initial (in the 2-categorical sense) among such pairs. Namely, each functor

F : C → D, where D is k-linear and cocomplete, factorises up to natural isomorphism as F⇒̃F̂ ◦ i with F̂

cocontinuous, and this factorisation is unique up to unique natural isomorphism. y

This cocompletion is given by the Yoneda embedding C → Fun(Cop,Vectk) = Free(C).

Proposition 10.11 (Kelly): The free cocompletion Free(C) of a small k-linear category C is locally finitely presentable.

Example : We take k = C and q ∈ C× generic. The free cocompletion of the ribbon categoryOq2 (SL2)–comod f in is

the category Oq2 (SL2)–comod of all comodules on Oq2 (SL2). It is still monoidal, braided and balanced, and gives

an Eor
2 -algebra in LFPk. For the following, we take V = Oq2 (SL2)–comod f in and E = Free(V) ' Oq2 (SL2)–comod.

The following holds more generally when one replaces SL2(C) by another simply connected Lie group.

Proposition 10.12 (Cooke): There are equivalences of categories
∫ LFPk

Σ
E =

∫ LFPk

Σ
Free(V) ' Free

(∫ Catk

Σ
V

)
'

Free (SkV(Σ)). This actually holds for any small k-linear ribbon categoryV.

Let Σ be a punctured surface, one can always enlarge the puncture to be a

removed small disk, and choose an arc on its boundary, coloured in red in

the figure hereby. This arc can be thickened in the surface, locally, which

gives a thickened embedding (0, 1) → Σ. As we have seen in Proposition

10.8, this gives a structure of right SkV((0, 1)× [0, 1]) ' V-module category

on SkV(Σ) =
∫ Catk

Σ
V. This works exactly the same in the LFPk-context,

namely the embedding E t Φ : Σ t (0, 1) × [0, 1] → Σ induces a functor∫ LFPk

Σ
E ×

∫ LFPk

(0,1)×[0,1] E →
∫ LFPk

Σ
E, where

∫ LFPk

(0,1)×[0,1] E ' E, which gives the

E-module category structure.

Σ
t

E tΦ

E(Σ)

The algebra AΣ is defined as the internal endomorphism of a distinguished object on this E-module category.

p Definition 10.13: LetA be a k-linear monoidal category andM a rightA-module category. Let M1 and M2

be two objects of M. The internal Hom of M1 and M2 with respects to the A-module structure is an object

Hom(M1,M2) ∈ A together with a natural isomorphism ηX : HomM(M1 � X,M2) ' HomA(X,Hom(M1,M2)) for

every object X ofA. y

Remark 10.14: The internal Hom of two objects ofM lives inA, so it is not really internal.

p Definition 10.15: The evaluation map is evM1,M2 = η−1
Hom(M1,M2)(IdHom(M1,M2)) : M1 � Hom(M1,M2)→M2.

The composition map is c : Hom(M1,M2) ⊗ Hom(M2,M3) → Hom(M1,M3) associated by η with the morphism

evM2,M3 ◦ (evM1,M2 � IdHom(M2,M3)) : M1 � Hom(M1,M2) ⊗Hom(M2,M3)→M2 � Hom(M2,M3)→M3.

In particular, an internal endomorphism End(M) := Hom(M,M) is an algebra object inA. y
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p Definition 10.16: The embedding ∅ ↪→ Σ induces a functor
∫ LFPk

∅
E = Free(SkV(∅) = Free({k}) = Vectk →∫ LFPk

Σ
E. The image of k under this functor is called the distinguished object of

∫ LFPk

Σ
E and is denoted OE,Σ. It is

actually the image of the empty set under the inclusion functor SkV(Σ)→ Free(SkV(Σ)) '
∫ LFPk

Σ
E. y

p Definition 10.17: The moduli algebra of Σ with coefficients in E is AΣ := End(OE,Σ) ∈ E. It is an Oq2 (SL2)-

comodule algebra, namely the algebra structure m : AΣ ⊗ AΣ → AΣ is a morphism of Oq2 (SL2)-comodules.

It is an Oq2 (SL2)-comodule, and we can define the algebra of invariants AΣ := Ainv
Σ

= {x ∈ AΣ, ∆x = x ⊗ 1}. y

Theorem 10.3 ( [BBJ18]): Let Σ be a punctured surface, the factorisation homology
∫ LFPk

Σ
E in LFPk of the Eor

2 -algebra

E over Σ is equivalent to the category of right modules over AΣ.

Example : For Σ = R2, we consider HomFree(SkV(R2))(∅�V, ∅) ' HomFree(V)=E(k⊗V, k) ' HomE(V,AR2 ), and indeed

AR2 = k. A right k-module is simply an Oq2 (SL2)-comodule, and
∫ LFPk

R2 E ' E. Graphically on SkV(R2), it comes

down to the fact that every ribbon graph on R2 can be evaluated by the Reshetikhin–Turaev functor to give a

single coupon:

HomSkV(R2)(∅� V, ∅) = HomSkV(R2)((V,+), ∅) =

{
•

(V,+)

f : V ⊗ X→ X

>
>

X

}
≡
Sk

{
•

(V,+)

f : V → k

>

}
= HomE(V, k).

Theorem 10.4 (Cooke): Let Σ be a punctured surface, the algebra of invariants AΣ of the surface is isomorphic to its

skein algebra SkAlgV(Σ) = End∅(SkV(Σ)) ' S̊(Σ).

Idea of proof : First, OE,Σ is compact and Hom∫ LFPk
Σ

E
(OE,Σ,OE,Σ) = HomFree(SkV(Σ))(∅, ∅) = HomSkV(Σ)(∅, ∅) =

SkAlgV(Σ), see [Coo19]. Then, by definition of internal Hom, Hom∫ LFPk
Σ

E
(OE,Σ � k,OE,Σ) ' HomE(k,AΣ) =

Ainv
Σ

= AΣ. �

Graphically, a morphism in SkV(Σ) between ∅ � ∅ = ∅ and ∅ is just a ribbon graph without free ends, and

corresponds to a link on Σ modulo the skein relations. In general, we must consider morphisms between ∅�V,

a point (V,+) near the red arc, and ∅. Considering the monoidal structure, we may see it as an ordered sequence

of points near the red arc, and by analogy with stated skein algebras we will talk of height order (the actual

order is given by distance to the red arc, but as for stated skein algebras we will represent points on the arc and

the order by an orientation of the arc).

We are looking for a correspondence

>

•V1

•V2

•V3

g

! f : V1 ⊗ V2 ⊗ V3 → AΣ.

When each boundary point is colored by the standard co-representation V, which is always possible up to

adding a projection, and when there are no coupons, the colored ribbon graph is simply a tangle. The vector

space V is generated by two vectors v+ and v−, and the value of f on vε1 ⊗ · · · ⊗ vεk is the same tangle with states

(ε1, . . . , εk).

Theorem 10.5 (Thang T.Q. Lê and Tao Yu): Let Σ be a punctured surface and S the marked surface obtained from

Σ by removing an open disk instead of the puncture, and marking a single point on the newly created boundary. The

moduli algebra AΣ with coefficients E = Oq2 (SL2)–comod is isomorphic as an Oq2 (SL2)-comodule algebra to the stated

skein algebra S(S).
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Appendices

A Category theory

In this appendix we define some well-known notions of category theory that have been used in this paper.

Most definitions come from [McL98]. Presentable categories are studied in [AR94].

A.1 Slice category First we give the definition of the category of arrows over an object, called slice category.

p Definition A.1: Let C be a category and X ∈ C an object. The slice category of objects over X is the category

C/X whose objects are pairs (Y, f ) where Y is an object of C and f is a morphism Y → X. Its morphisms are

commutative triangles
Y Z

X
f g

h

, namely a morphism (Y, f )→ (Z, g) is a morphism h : Y→ Z over X in C.

Dually, the categoryCX/ of objects under X has objects pairs (Y, f : X→ Y) and morphisms similar commutative

triangles. y

This definition can be extended for maps over or under more than one object.

p Definition A.2: Let p : D → C be a functor, the slice category C/p of objects over p has objects are pairs (Y, f )

where Y is an object of C and f is a cone δ(Y) ⇒ p, where δ(Y) is the constant functor D → C. Its morphisms

are commutative triangles
δ(Y) δ(Z)

p
f g

δ(h)

, namely a morphism (Y, f )→ (Z, g) is a morphism h : Y→ Z in C such

that g ◦ δ(h) = f .

Dually, the category Cp/ of objects under p has objects pairs (Y, f : p ⇒ δ(Y)) of an object and a cocone of p on

this object, and morphisms similar commutative triangles. y

Remark A.3: As objects of C/p are cones on p, the terminal object of C/p is precisely the limit of p. Dually, the

initial object of Cp/ is the colimit of p.

We would like to write this definition as a special case of the first where C = Fun(D,C) and X = p but we cannot

because the object Y and morphism h live at the level of C and not in Fun(D,C).

p Definition A.4: Let S : D → C be a functor and X ∈ C an object. The comma category (S ↓ X) of objects

S-over X has objects pairs (A ∈ D, f : S(A) → X) and morphisms commutative triangles
S(A) S(B)

X
f g

S(h)

, where

h : A→ B is a morphism inD.

There is a canonical projection (S ↓ X)→D by forgetting the arrow f , and keeping only the object A ofD and

the morphisms h between them.

Dually, the category (X ↓ S) of objects S-under X has objects (A, f : X → S(A)) and morphisms h : A → B,

S(h) ◦ f = g. y

An initial (dually terminal) object in such a comma category is called a universal arrow. They recover the

notions of colimits (dually limits) and of left (dually right) Kan extension.

A.2 Locally presentable categories A finite set can be characterised by the fact that when it maps to a

(possibly infinite) union of space, it always factors through a finite union. This is the notion of compact, or

finitely presentable, object.
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p Definition A.5: Let λ be a regular cardinal. A categoryD is said λ-filtered if any subcategory of size (objects

and morphisms) strictly smaller than λ admits a cocone inD.

A λ-filtered colimit is a colimit over a λ-filtered diagram category. It is hence trivial on every subcategory of

size < λ. y

p Definition A.6: An object K of a categoryC is saidλ-presentable if the functor HomC(K,−) : C → Set preserves

λ-filtered colimits. We note PresλC their full subcategory. When λ = ℵ0, we talk about finitely presentable

objects, or compact objects. y

Examples : • An object of Set is λ-presentable if and only if it is of cardinal < λ. It is finitely presentable if and

only if it is finite.

• A group is finitely presentable if and only if it is presentable in the usual sense.

• A small category in Cat is finitely presentable if and only if it has finitely many objects and finitely many

morphisms between any two objects.

p Definition A.7: A category C is locally λ-presentable if:

(1) C is cocomplete,

(2) PresλC is essentially small, and

(3) any object of C is a λ-filtered colimit of λ-presentable objects. y

Examples : • There is only a set of finite sets up to isomorphism, namely N, and any set is obtained as the

colimit of its finite subsets. Hence Set is locally finitely presentable.

• Seemingly, a small category is obtained as the colimit of its finite subcategories, and the category Cat is locally

finitely presentable.

• A vector space is locally presentable if and only if it is finite dimensional, and again Vectk is locally finitely

presentable.

• The category Top is not locally λ-presentable for any cardinal λ.

B Higher category theory

In Section 9, we used many notions that were defined for categories, but not for ∞-categories, yet. This

Appendix gives the missing definitions of slice ∞-categories, limits and colimits in ∞-categories, and Kan

extensions. All and more is detailed in [Lur09].

B.1 Enriched categories First, we formalise a notion we have used implicitly throughout this paper.

p Definition B.1: Let V⊗ be a monoidal category, such as Set× for ordinary categories, Vect⊗k for k-linear

categories, Top× for topological categories or Grpd× for strict (2,1)-categories.

AV-enriched category C is :

— a collection of objects of C

— an object MorC(x, y) ofV for each pair of objects x, y ∈ C, called morphisms between x and y

— an arrow cx,y,z : MorC(y, z) ⊗MorC(x, y)→MorC(x, z) inV for each triple of objects, called composition

— an arrow Ix : 1V →MorC(x, x) for each object x ∈ C, called identities

which satisfy the usual associativity and unity relations, namely:

(MorC(z, t) ⊗MorC(y, z)) ⊗MorC(x, y) MorC(z, t) ⊗ (MorC(y, z) ⊗MorC(x, y))

MorC(y, t) ⊗MorC(x, y) MorC(z, t) ⊗MorC(x, z)

MorC(x, t)

cy,z,t ⊗ Id Id ⊗ cx,y,z

α

cx,y,t cx,z,t

and
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MorC(y, y) ⊗MorC(x, y)

1V ⊗MorC(x, y)

MorC(x, y) ⊗MorC(x, x)

MorC(x, y) ⊗ 1VMorC(x, y)
Ix ⊗ IdId ⊗ Iy

cx,x,ycx,y,y

rl
commute.

A V-enriched functor F between V-enriches categories C and D is an assignment x 7→ Fx from objects of C

to objects of D and a collection of arrows MorC(x, y)
F(−)
→ MorD(Fx,Fy) inV, x, y ∈ C, which maps identities to

identities and which commutes with composition, namely:

MorC(y, z) ⊗MorC(x, y)

MorD(Fy,Fz) ⊗MorD(Fx,Fy)

MorC(x, z)

MorD(Fx,Fz)

cx,y,z

cFx,Fy,Fz
F(−) ⊗ F(−) F(−)

and
1V

MorC(x, x)

MorD(Fx,Fx)

Ix

IFx

F(−)

commute.

AV-enriched natural transformation η betweenV-enriched functors F,G : C → D is a collection of components

ηx : 1V →MorD(F(x),G(x)), x ∈ C, which are natural in the usual sense, namely:

MorC(x, y)

1V ⊗MorC(x, y)

MorC(x, y) ⊗ 1V

MorD(Fy,Gy) ⊗MorD(Fx,Fy)

MorD(Gx,Gy) ⊗MorD(Fx,Gx)

MorD(Fx,Gy)

l−1

r−1

ηy ⊗ F(−)

G(−) ⊗ ηx

cFx,Fy,Gy

cFx,Gx,Gy
commutes. y

B.2 Slice ∞-category Arrows in ∞-categories are already defined: they are 1-simplices, and morphisms

between arrows too: they are 2-simplices, i.e. triangles as in Definition A.1 that are not commutative but

“filled”. Similarly, cones over an∞-functors are easy to define, as well as morphisms between cones. However,

we do not want a category of arrows or cones, but an ∞-category, namely we also want higher morphisms

between them. To encode easily the shape of all these higher morphism, we introduce the join construction.

p Definition B.2: The join S ? T of two simplicial sets S and T is the simplicial set defined by:

(S?T)(0 < 1 < ... < n) =

n∐
i=−1

S(0 < ... < i)×T(i + 1 < ... < n), where S(∅) = ∗. It comes with inclusions S ↪→ S?T

given by the term S(0 < 1 < ... < n) × ∗ above, and T ↪→ S ? T given by ∗ × T(0 < 1 < ... < n). y

It should be thought of as the juxtaposition P < Q of posets, and the above formula computes the nerves of the

posets, namely N(P < Q) = N(P)?N(Q). In particular, ∆n?∆m = ∆n+m+1. Topologically, it corresponds to the join

construction: if we note X = |S| and Y = |T| then |S ? T| = |S|?|T| = X×[0, 1]×Y
/

(x, 0, y) ∼ (x, 0, y′), (x, 1, y) ∼ (x′, 1, y).

Example : For S = ∆0 = ∗, the join ∗ ? T is the shape of a cone on T, namely it has a n + 1-simplex for each

n-simplex of T doing a cone of base this simplex and tip S. Topologically, ∗ ? X = CX is a cone.

In the simplicial world, left and right cone are different because the edges have different orientations, and T? ∗

is the shape of a cocone on T.

p Definition B.3: Let p : K → C be an ∞-functor. The slice ∞-category C
/p of objects over p is given by:

(C
/p)n = HomsSet(∆n,C

/p) := Homp(∆n ? K,C), where Homp here represents the morphisms ∆n ? K → C which

coincide with p on K ↪→ ∆n ? K→ C.

Dually, the slice ∞-category Cp/ of objects under p is given by: (Cp/)n = HomsSet(∆n,Cp/) := Homp(K ? ∆n,C),

again the morphisms K ? ∆n
→ Cwhich coincide with p on K ↪→ K ? ∆n

→ C. y

Proposition B.4 (Lurie): The simplicial sets C
/p and Cp/ are ∞-categories as soon as C is one. Moreover, their weak

equivalence classes only depend on the one of C.
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An object of Cp/ is a morphism from the cocone shape K ? ∆0
→ C which coincides

with p on K. If we note X its value on ∆0, it is exactly a cocone f : p ⇒ X, namely a

morphism fv : p(v)→ X for each vertex v of K, a 2-morphism fe between p(e), fv0 and

fv1 for each edge e joining v0 and v1 in K, and so on...
X

fe
•

p(v0)

•

p(v1)

p(e) >

fv1

fv0

A morphism of Cp/ is a morphism K ∗∆1
→ Cwhich coincides with p on K. It restricts

to two cocones f : p ⇒ X and g : p ⇒ Yon the vertices of ∆1, and gives, moreover, a

morphism h between them. Precisely, it gives a morphism h : X → Y, a 2-morphism

hv between fv, gv and h for each vertex v of K, a 3-morphism between fe, ge, hv0 and

hv1 (which fill the tetrahedra hereby) for each edge e , and so on...

X

Y

h
fe

ge

hv1

•

p(v0)

•

p(v1)

p(e) >

fv1

fv0

gv1

gv0

Example : For K = ∗ and p(∗) = X is an object of C, we note C
/p = C

/X. An object of C
/X is a 1-simplex f of target

X, namely a pair (Y, f ) where Y ∈ C0 is an object of C and f : Y→ X is a morphism of C. Higher morphisms are

2-simplices σ :
Y Z

X
f g

h

, and so on...

Remark B.5: For i : D ⊆ C a full sub-∞-category and X ∈ C0 an object of C, the comma-category (i ↓ X) is

simply the full sub-∞-category of C
/X spanned by pairs (Y, f : Y→ X) where Y ∈ D0.

So we don’t need to introduce general comma-categories for Section 9 to make sense.

B.3 Limits in∞-categories Following Remark A.3, we define the limit or colimit of an∞-functor as a terminal

or initial object of the slice category.

p Definition B.6: An object X of an ∞-category C is initial if for every object Z the space MapC(X,Z) is con-

tractible. If it exists, the initial object of C is unique up to essentially unique equivalence.

Dually, X is terminal if for every object Z the space MapC(Z,X) is contractible. y

p Definition B.7: The limit of an∞-functor p : K → C is the terminal object of C
/p, and its colimit is the initial

object of Cp/, if they exist. y

B.4 Kan extensions We define left Kan extensions for the easier particular case of an inclusion of a full

sub-∞-category, which is what we used with Diskn ↪→M f ldn.

p Definition B.8: Let i : D ⊆ M be a full sub-∞-category and A : D → C an ∞-functor. We want to extend

A along the inclusion functor i. Consider a commutative diagram
D

M

C

i

A

L

in Cat∞. For M ∈ M0

an object, the ∞-functor L : M → C induces a cocone on AM :
(D ↓M) → D

A
→ C

(D, f : D→M) 7→ D 7→ A(D)
by

LM :
(D ↓M) L

→ C
/L(M)

(D, f : D→M) 7→ (L(D) = A(D),L( f ) : L(D)→ L(M))
.

We say that L is the pointed left Kan extension ofA along i if this cocone LM exhibits L(M) as the colimit ofAM

in C for each object M ∈ M0. y

C Tangential structure

We want to define tangential structures for topological manifolds, such as framed or oriented, and more,

namely the B-framing of [AF15]. We need both a homotopy-theoretic classification of such structures (see for
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example [Coh02]) and a notion of tangent bundle for topological manifolds (see [Lur14b]).

C.1 Classification of fibre bundles Structures on tangent bundles arise as properties of their underlying fibre

bundle.

p Definition C.1: Let B and F be topological spaces. A fibre bundle of base B and fibre F is a continuous map

p : E → B, where E is called the total space, together with a local trivialisation atlas, namely an open cover

U = (Ui)i of B with trivialisation maps ϕUi : p−1(Ui)→ Ui × F such that the

p−1(Ui) Ui × F

Ui

p

ϕUi

p1 commute. For

naturality, we suppose the atlas maximal.

A morphism of fibre bundles (p : E→ B)→ (p′ : E′ → B′) is a commutative square

E E′

B B′
p

f̃

f
p′

. A morphism

of fibre bundles above a same base B is one with f = IdB.

A section of a fibre bundle p : E→ B is a map s : B→ E such that p ◦ s = IdB. y

For a fibre bundle p : E → B, the trivialisation maps on two trivial open sets U and V of B give transition

functions ψU,V : (U ∩ V) × F
ϕ−1

U
→ p−1(U ∩ V)

ϕV
→ (U ∩ V) × F. This transition map induce the identity on B, and

hence (as soon as B and F are compactly generated) is equivalent to a map ΨU,V : U ∩ V → Homeo(F).

These maps determine the fibre bundle up to isomorphism, by gluing together trivial bundles Ui × F for each

trivial open Ui ∈ U along the transition functions.

For G a subgroup of Homeo(F), we wonder if we may take ΨU,V : U ∩ V → G, at least for a subcover of U. If

this is the case, we say that the fibre bundle p reduces on G. We say that p is reduced on G if we have chosen a

maximal open coverU′ ⊆ U with transition functions taking values in G.

p Definition C.2: Let G be a topological group. A principal G-bundle is a fibre bundle with fibre G reduced on

G, where G ⊆ Homeo(G) by translation. Consequently, the action of G on the total space is well defined, because

translations are G-equivariant.

Equivalently, it is a fibre bundle G ↪→ P
p
→ B together with a free fibrewise continuous right action P x G

which acts transitively on the fibres, and such that the trivialisation maps (again, on a given maximal subatlas)

are G-equivariant.

A morphism of principal G-bundles is a G-equivariant morphism of fibre bundles.

We note PGB the set of isomorphism classes of principal G-bundles. y

These principal G-bundles are simply a general way to describe fibre bundles with transitions functions taking

values in G. For example, if G is a subgroup of some Homeo(F), then a principal G-bundle is the same data as a

fibre bundle with fibre F reduced on G. Indeed, one can construct one from the other by gluing trivial bundles

(with fibre either F or G) along the transitions functions, which take values in G in both cases.

Example : A vector bundle of rank n is the same data as a principal GLn(R)-bundle.

p Definition C.3: Let G be a topological group. A universal G-bundle is a principal G-bundle G ↪→ EG
p
→ BG

where EG is a contractible topological space. The space BG is called the classifying space of G. y

Proposition C.4: Let X be a topological space and p : P → B a principal G-bundle. A continuous map f : X → B

induces a principal G-bundle f ∗p on X by the pullback

f ∗P

X

P

B

y

. This pullback bundle depends only on the homotopy
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class of f , namely we have a map [X,B]→ PGX.

If p : EG→ BG is a universal G-bundle, this map [X,BG]→ PGX is a bijection.

We have an explicit construction for the classifying space of a topological group G. The topological category

BG is the category with one object ∗ and morphisms Hom(∗, ∗) = G, with composition given by multiplication in

G. The simplicial set BG is the topological nerve of BG. Finally, the classifying space BG of G is the geometric

realisation of BG. This construction is functorial, and in particular for H < G a subgroup, the inclusion gives a

map ι : BH→ BG.

Proposition C.5: Let X be a topological space, p : P → X a principal G-bundle, classified by a map f : X → BG,

and H < G a subgroup. Then p reduces on H if and only if f factorises through ι up to homotopy. Namely, we have

a homotopy commutative triangle X BG

BH

f
∃ f̃

ι
. A choice of a homotopy class of such a lift f̃ corresponds to a

reduction of p on H.

Example : A principal G-bundle p : P → X is trivial is and only if its classifying map f can be chosen to be

constant, i.e. if it factorises up to homotopy through ∗ = B1→ BG.

C.2 Tangent microbundles The tangent bundle of a manifold is usually defined with respects to a differential

structure. We present here the notion of tangent microbundle, which generalises it for topological manifold.

The general idea is to consider as ”tangent space” of a point x ∈M a small neighbourhood of this point, which

is homeomorphic to Rn. The transition functions will take values in Top(n) := Homeo(Rn).

p Definition C.6: A micro bundle is a continuous map p : E → B together with a section s : B → E, such

that p is a fibre bundle of fibre Rn locally around s(B). Namely, for all b ∈ B in the base, there exists an open

U 3 b containing b and a subopen V ⊆ p−1(U) in E containing s(U), such that there is a homeomorphism

ϕU : V→̃U ×Rn preserving both p and s, i.e. with p = projU ◦ ϕU and ϕU ◦ s = (i0 : U
U×{0}
↪→ U ×Rn).

An equivalence of microbundles p : E → B and p′ : E → B is a homeomorphism f : U → U′ between open

neighbourhoods of the section U ⊇ s(B) and U′ ⊇ s′(B) which preserves p and s, namely p′ ◦ f = p and f ◦ s = s′.y

Example : Microbundles generalise fibre bundles of fibre Rn reduced on Top∗(n) := Homeo∗(Rn), the subgroup

of Top(n) of homeomorphisms that fix the origin. The section is then given by the origin. In particular, a vector

bundle induces a microbundle. The novelty is that in microbundles we only demand a bundle behaviour near

the section, and not globally.

The inclusion Top∗(n)→ Top(n) is a deformation retract, and one can show that a Top(n)-bundle (a fibre bundle

with fibre Rn) reduces canonically on Top∗(n), and hence induces a microbundle.

p Definition C.7: Let M ∈ M f ldn be a topological manifold. Its tangent microbundle is the projection p = p1 :

M ×M→M, with diagonal section s = ∆ : M→M ×M. y

If M is a smooth manifold, then its tangent microbundle is equivalent to its tangent vector bundle.

Theorem C.1 (Kister-Mazur): Any microbundle on a paracompact base is equivalent to a Top(n)-bundle.

Thus, the tangent microbundle of a topological manifold is equivalent to a (unique up to isomorphism)

Top(n)-bundle which is classified by a (homotopy class of) map τM : M → BTop(n). This map is called the
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tangent classifier of M. It can be obtained in a maybe more transparent way, by:

τ :
M f ldn

Yoneda
→ Pshv(M f ldn) restr

→ Pshv(Eucn) ' Spaces/BTop(n)

M 7→ Emb(−,M) 7→ Emb(Rn,M) 7→ τM
, where Eucn is the full subcategory of

M f ldn containing only Rn. The last equivalence is, however, not so easy to describe.

Written in this form, it is easier to see that τ is an∞-functor. It is monoidal symmetric becauseRn is connected.

C.3 B-framing We can now define a very general notion of tangential structure on a topological manifold,

called B-framing.

p Definition C.8: Let B → BTop(n) be a continuous map and M ∈ M f ldn a topological manifold. A B-framing

on M is a factorisation (up to homotopy) through B of its tangent classifier τ. Namely, it is a homotopy

commutative diagram M BTop(n)

B

τM

g

. y

p Definition C.9: The∞-categorie M f ldB
n of B-framed manifolds is the pullback

M f ldB
n

M f ldn

Spaces/B

Spaces/BTop(n)

y

in sSet.

The full subcategory DiskB
n is the one spanned by disjoint unions of Rn. They are both monoidal symmetric

with disjoint union. y

Examples : • The∞-category Disk∗n is equivalent to the∞-category Disk f r
n used to define En-algebras.

• The∞-category DiskBO(n)
n is equivalent to the∞-category of smooth embeddings of smooth disks.

• The∞-category DiskBSO(n)
n is equivalent to the∞-category of Diskor

n used to define Eor
n -algebras.

These definitions extend to manifolds with boundary. There is an inclusion map Top(n − 1) → Top(n) by

extending with the identity on the nth coordinate, but it does not take into consideration a boundary. Actually,

there are homotopy equivalences Top(n−1)→̃Emb(Rn−1,Rn−1)→̃Emb∂(R≥0×Rn−1,R≥0×Rn−1). There is a tangent

classifier for manifolds with boundaries (M, ∂M) which restricts to τ∂M on the boundary and to τM on the interior.

On the boundary, we actually consider embeddingsR≥0 ×Rn−1 ↪→M, which are homotopy equivalent to their

restriction on the boundary.

p Definition C.10: Let (B∂ → B)→ (BTop(n − 1)→ BTop(n)) be a commutative square. A B-framing of a mani-

fold with boundary (M, ∂M) is a factorisation of its tangent classifier (∂M→M) (BTop(n − 1)→ BTop(n))

(B∂ → B)

τ∂M, τM

.

We note M f ld∂,B∂→B
n the∞-category of B-framed manifolds with boundary. Its full subcategory Disk∂,B∂→B

n is the

one spanned by disjoint unions of Rn and of R≥0 ×Rn−1. y

Examples : • For B∂ = ∅, we obtain B-framed manifolds without boundary.

• The category of framed manifolds with framed boundary is M f ld∂,∗→∗n . Its subcategory Disk∂,∗→∗n is used to

define the Swiss Cheese operad. Concretely, it contains framed embeddings tRn
→ Rn (the En operad) as well

as framed embeddings with boundary (tRn) t (tR≥0 ×Rn−1)→ R≥0 ×Rn−1.

• The ∞-category M f ld∂,∗∗→∗1 used in Section 9 is M f ld∂,{−1,1}→[−1,1]
1 , namely with B-framing associated with the

tangent classifier of the manifold with boundary [−1, 1]. More concretely, the interior of [−1, 1] is framed so

B = ∗. The two boundaries may are framed too, but with different framings. Indeed, for one boundary the

manifold is at the right, and for the other at the left. Hence B∂ is two points ∗∗.
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