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Abstract

We prove the slogan, promoted by Walker twenty years ago, that

“The Witten–Reshetikhin–Turaev TQFT is a boundary condition for Crane–Yetter”

and generalize it to the non-semisimple case. To achieve this, we prove that the Crane–Yetter
4-TQFT and its non-semisimple version [CGHP23] are once-extended TQFTs, using the main
result of [Häı24].

We define a boundary condition, partially defined in the non-semisimple case, for this
theory. When the ribbon category used is modular, possibly non-semisimple, we check that
the composition of this boundary condition with the values of the 4-TQFT on bounding
manifolds, in a sense that we precise, reconstructs the Witten–Reshetikhin–Turaev 3-TQFT
and its non-semisimple version [DGG+22].
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1 Introduction

Walker explained in his unfinished notes [Wal06] how to obtain Witten–Reshetikhin–Turaev 3-
TQFTs [Wit89, RT91, Tur94] at the boundary of Crane–Yetter [CY93] 4-TQFTs. This reflects
the fact that WRT theories have an anomaly, described by Crane–Yetter.

Non-semisimple versions of Witten–Reshetikhin–Turaev theories appeared in [DGG+22]. It
was expected by Jordan–Safronov that a similar story should apply to describe them. A non-
semisimple version of Crane–Yetter appeared in [CGHP23], which indeed seems to model the
anomaly of [DGG+22].

The notion of boundary condition is very natural in physics but has taken some time to be
formalized in mathematics [Lur09, ST11, FT14, JS17]. Indeed, it only makes sense to talk about
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a boundary condition to an (at least once) extended TQFT, which not only assigns scalars to
codimension 0 manifolds and vector spaces to codimension 1 manifolds, but also linear categories
to codimension 2 manifolds, and so on, in a functorial manner. The Crane–Yetter theories, as any
state sum theory, have long been known to be extended, though this is only a folklore result. To our
knowledge, Crane–Yetter has never been written down in the literature as a symmetric monoidal
2-functor, i.e. has never been formalized as an extended theory. Our first step will therefore be to
prove this folklore result, and extend it to the non-semisimple case.

Having defined Crane–Yetter as a once-extended 4-TQFT, we can define a boundary condition
to it. Walker and Freed described how one should reconstruct WRT from this boundary condition
and Crane–Yetter. We define the anomalous theory obtained from this construction, and check
that it indeed reconstructs WRT theories and their non-semisimple versions, hence formalizing the
ideas of Walker and generalizing them to the non-semisimple case.

From this description, one expects to be able to give a fully extended description of WRT
(resp. [DGG+22]) as a fully extended boundary condition to the fully extended Crane–Yetter
(resp. [CGHP23]) theory. The Crane–Yetter theory is expected to be obtained by the Cobordism
Hypothesis from the input modular category C, which is a 4-dualizable, and actually invertible,
object in the 4-category Alg2(Pr) [JS17, BJS21, BJSS21]. The boundary condition is expected
to be obtained from the regular bimodule VectCC which is a (resp. almost) 3-dualizable object in
the 3-category Alg2(Pr)

→ [Fre, JS17, Häı23]. These expectations and the fact that this boundary
condition together with its anomaly recovers WRT theories has been formalized as a conjecture in
[Häı23].

In this paper, we prove a version of these conjectures in a non-fully-extended setting, which do
not involve the cobordism hypothesis.

2 Background

2.1 Cobordism bicategories and once-extended TQFTs

We begin by recalling the definition of the cobordism bicategory. We adopt the definition of [Häı24],
but see also [Sch09].

Definition 2.1. The bicategory of (2+1+1)-cobordisms Cob2+1+1 is the symmetric monoidal
bicategory with

objects: Closed oriented smooth surfaces Σ

1-morphisms: 3-cobordisms M : Σ− → Σ+ equipped with a collar of their boundary Σ± ×
[±1,± 1

2 ) ↪→M . Composition is given by gluing the collars, which inherits a natural smooth
structure.

2-morphisms: 4-cobordisms with cornersW :M− →M+, equipped with a side collar of their side
boundary Σ± × [−1, 1]× [±1,± 1

2 ) ↪→W compatible with the collars of M±, and considered
up to diffeomorphisms preserving M± and preserving side collars up to a reparametrization
of the [−1, 1]-coordinate. Horizontal composition is gluing the collars. Vertical composition
is gluing along M ’s, whose smooth structure is well-defined up to diffeomorphism.

It is symmetric monoidal with disjoint union.
The bicategory of non-compact (2 + 1 + 1)-cobordisms Cobnc

2+1+1 is the symmetric
monoidal sub-bicategory of Cobn+1+1 with the same objects and 1-morphisms but only those
2-morphisms where the target diffeomorphism is surjective on connected components, i.e. every
connected component of the 4-cobordisms have non-empty outgoing boundary.

The bicategory of (2+1+ ε)-cobordisms Cob2+1+ε has the same objects and 1-morphisms
as Cob2+1+1, but 2-morphisms are isotopy classes of diffeomorphisms preserving the side collars.
It comes with a symmetric monoidal strict 2-functor Cob2+1+ε → Cobnc

2+1+1 ⊆ Cob2+1+1 which
is the identity on objects and 1-morphisms and maps a diffeomorphism to its mapping cylinder.

The bicategory of non-compact (2 + 1+ ε)-cobordisms Cobnc
2+1+ε is the locally full sym-

metric monoidal sub-bicategory of Cobn+1+ε with the same objects but only those 1-morphisms
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where the target diffeomorphism is surjective on connected components, i.e. every connected com-
ponent of the 3-cobordisms have non-empty outgoing boundary, and all 2-morphisms between
these.

Definition 2.2. Let C be a symmetric monoidal bicategory.
A once-extended 4-TQFT, or a (2 + 1 + 1)-TQFT, with values in C is a symmetric monoidal
2-functor

Z : Cob2+1+1 → C .

A non-compact once-extended 4-TQFT is a symmetric monoidal 2-functor

Z : Cobnc
2+1+1 → C .

A categorified 3-TQFT, or a (2 + 1 + ε)-TQFT, is a symmetric monoidal 2-functor

Z : Cob2+1+ε → C .

A boundary condition to a once-extended 4-TQFT Z is a symmetric monoidal oplax natural
transformation

∂ : Triv ⇒ Zε

where Zε : Cobn+1+ε → Cobn+1+1
Z→ C is the restriction of Z to Cobn+1+ε and Triv :

Cob2+1+ε → C is constant equal to the monoidal unit.
A non-compact boundary condition to a once-extended 4-TQFT Z is a symmetric monoidal
oplax natural transformation

∂ : Triv ⇒ Zε,nc

where Zε,nc : Cobnc
n+1+ε → Cobn+1+1

Z→ C is the restriction of Z to Cobnc
n+1+ε.

2.2 Categorified linear algebra

Let us quickly recall the definition of the target bicategory we will consider for our once-extended
TQFTs. Details can be found in [AR94, DS97, Kel05, BCJ15, BJS21, GJS23].

Definition 2.3. Let k be a field.
The (strict) bicategory Catk has objects small k-linear categories, 1-morphisms linear functors

and 2-morphisms natural transformations. It is symmetric monoidal the tensor product ⊗ which
is Cartesian product on objects and tensor product on spaces of morphisms.

The bicategory Bimod has objects small k-linear categories, 1-morphisms C → D are pro-
functors, or bimodule functors F : C ⊗ Dop → Vectk, and 2-morphisms natural transformations.
Composition of 1-morphisms F : C ⊗Dop → Vectk and G : D⊗ Eop → Vectk is given by the coend

(G ◦ F )(C,E) :=

∫ D∈D
F (C,D)⊗G(D,E)

It is symmetric monoidal with the usual tensor product ⊗ on linear categories.
There is a symmetric monoidal 2-functor Cat → Bimod which is the identity on objects and

post-composition with the Yoneda embedding D → D̂ on morphisms.
The (strict) bicategory Pr has objects presentable k-linear categories, 1-morphisms cocontin-

uous functors and 2-morphisms natural transformations. It is symmetric monoidal with Kelly-
Deligne tensor product.

There is a symmetric monoidal fully faithful embedding (̂−) : Bimod → Pr which maps a

category C to its free cocompletion, or presheaf category Ĉ := Fun(Cop,Vectk). A profunctor

C → D̂ extends essentially uniquely to a cocontinuous functor Ĉ → D̂ by the co-Yoneda Lemma.

The essential image of (̂−) consists of the presentable categories with enough compact-projective
objects.
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3 Skein theory as a categorified 3-TQFT

Ribbon categories are a class of particularly well-behaved Eor
2 -algebra in Catk which have a graph-

ical calculus, called skein theory, that makes sense in any 3-manifold. Skein theory for ribbon
categories has been formalized in [Tur94]. Skein categories and skein module functors associated
to cobordisms have been introduced in [Wal06, Joh21]. It is a well-known folklore result that these
constructions form a categorified TQFT, though it has never been written down as a symmetric
monoidal 2-functor. This is the subject of this section.

In order to adapt to the non-semisimple setting, we will also need to consider a tensor ideal I in
a ribbon category A as in [CGP23, BH24]. These can also be thought of as a class of Eor

2 -algebras,

this time in the bicategory Pr, by setting E := Î. These correspond to the following:

Definition 3.1. A cp-ribbon category E ∈ Pr is an Eor
2 -algebra in Pr, i.e. a presentable braided

balanced category, such that:

• E has enough compact-projectives, i.e. E ≃ Î where I is the subcategory of compact-
projective objects of E ,

• every object of I is dualizable, and

• the rigid balanced category A of dualizable objects1 of E is ribbon.

From a cp-ribbon category E we extract an inclusion (I ⊆ A) of a tensor ideal in a ribbon category,

and E can be reconstructed as Î with tensor product, braiding and balancing induced by those of
I. Note that I will not in general contain the monoidal unit, but the unit of Î is unique up to
isomorphism, or can be reconstructed as HomA(−, 1l) using the inclusion into A.

The examples coming from the setting of [Wal06] are precisely those where I = A, i.e. where
the unit of E is compact projective.

Let us recall the basic definitions of skein theory, adapted to the non-semisimple setting. Details
can be found in [BH24], see also [CGP14, Tur94, Coo23, GJS23].

Definition 3.2. An I-labeling X in a closed surface Σ is a collection of I-colored framed oriented
points in Σ. It is called admissible if there is at least one point per connected component of Σ.

An I-colored ribbon graph T compatible with two I-labellings X ⊆ Σ− and Y ⊆ Σ+ in
a 3-cobordism M : Σ− → Σ+ is the image of an embedding Γ ↪→ M of a finite oriented graph
Γ equipped with a smooth framing, with edges colored by objects of I, inner vertices colored by
appropriate morphisms in I and boundary vertices matching the colored oriented framed points
X and Y . It is called admissible if Γ ↪→M is surjective on connected components.

In our setting where cobordisms are equipped with a collar Σ± × [±1,± 1
2 ) ↪→ M , we also

require that Γ is strictly vertical inside the collar, i.e. Γ ∩ (Σ− × [−1,− 1
2 )) = X × [−1,− 1

2 ) and
Γ ∩ (Σ+ × ( 12 , 1]) = Y × ( 12 , 1]. This replaces the weaker transversality requirement of [BH24] but
does not affect the skein module where these are considered up to isotopy, as any ribbon graph
transverse to the boundary is isotopic in an essentially unique way to one that is vertical on the
collars.

The relative admissible skein module SkI(M ;X,Y ) is the vector space freely generated by
isotopy classes of admissible I-colored ribbon graphs inM compatible with X and Y quotiented by
admissible skein relation, which are usual local skein relations happening in a cube [0, 1]3 ↪→M
where we require that the ribbon graphs intersect the boundary on the cube at least once.

A diffeomorphism f : M → M ′ preserving orientation and collars induces an isomorphisms of
vector spaces

f∗ : SkI(M ;X,Y ) → SkI(M
′;X,Y )

T 7→ f(T )

which depends on f only up to isotopy.

1Note that more precisely, for smallness issues, I and A are small subcategories of all compact-projective and
dualizable objects that contain every isomorphism classes.

4



Definition 3.3. Given composeable cobordisms Σ1
M12→ Σ2

M23→ Σ3 and I-labelingsX1 ⊆ Σ1, X2 ⊆
Σ2, X3 ⊆ Σ3 the gluing of skeins is the linear map

SkI(M12;X1, X2) ⊗ SkI(M23;X2, X3) → SkI(M23 ◦M12;X1, X3)

T ⊗ T ′ 7→ T ∪ T ′

where T , T
′
are ribbon graph representatives of the skeins T, T ′, and T ∪ T ′ ⊆ M12 ∪

Σ2×I
M23 =

M23 ◦M12 is a ribbon graph as T and T
′
are both vertical in the collars of Σ2 and glue smoothly.

Definition 3.4. The skein category SkCatI(Σ) of a surface Σ has:

Objects: Admissible I-labelings in Σ

Morphisms: The relative admissible skein module SkI(Σ× [−1, 1];X,Y )

Composition: Gluing of skeins, i.e.

SkI(Σ× [−1, 1];X1, X2)⊗ SkI(Σ× [−1, 1];X2, X3) → SkI(Σ× [−1, 1];X1, X3)

using the unitor diffeomorphism Σ× [−1, 1] ◦ Σ× [−1, 1] ≃ Σ× [−1, 1].

The admissible skein bimodule functor of M : Σ− → Σ+ is the functor

SkI(M) : SkCatI(Σ+)⊗ SkCatI(Σ−)
op → Vect

(Y,X) 7→ SkI(M ;X,Y )
(3.1)

The action of morphisms in SkCatI(Σ) and SkCatI(Σ
′) is induced by gluing of skeins and unitor

diffeomorphisms.
A diffeomorphism f : M → M ′ defines a natural isomorphism f∗ : SkI(M) ⇒ SkI(M

′) whose
components has been defined above. It depends on f only up to isotopy.

Note that SkI(M) is a morphism from SkCatI(Σ+) to SkCatI(Σ−) in Bimod. This contravari-
ance also appears in [Wal06], where skeins are treated as the dual theory to a TQFT. We emphasize
that this is only a nuisance and not a deep issue, since Cob ≃ Cobop via orientation reversal. We
will denote Bimodhop opposite bicategory in the horizontal direction (i.e. for 1-morphisms).

The following result has been shown in [BH24, Thm. 2.21] in a 1-categorical setting, see also
[Wal06, Thm. 4.4.2]. The definition of a symmetric monoidal 2-functor is recalled in [Sch09, Def.
A.5 and 2.5].

Theorem 3.5. Given a tensor ideal I in a ribbon category A, there exists a categorified TQFT

SkI : Cob2+1+ε → Bimodhop

with SkI(Σ) = SkCatI(Σ), SkI(M) = SkI(M) and SkI(f) = f∗.

Proof. We much exhibit for any composable pair Σ1
M12→ Σ2

M23→ Σ3 an isomorphism

Sk(M23) ◦ Sk(M12)→̃Sk(M23 ◦M12)

compatible with 2-morphisms in M and M ′.
This is the data for any objects X1, X3 of SkCat(Σ1),SkCat(Σ3) of an isomorphism∫ X2∈SkCat(Σ2)

SkI(M12;X1, X2)⊗ SkI(M23;X2, X3)→̃SkI(M12 ∪
Σ2

M23;X1, X3) .

There is a natural such morphism which is given by gluing of skeins. It is shown to be an iso-
morphism in [BH24, Thm. 2.21]. The proof there happens in two steps: first the arguments
of [Wal06, Thm. 4.4.2] shows that the gluing of skeins is an isomorphism from the LHS to the
space of skeins in M12 ∪

Σ2

M23 which intersect Σ2 at least once on every connected components.

Then [BH24, Lem. 2.11] proves that the inclusion of this space in the RHS is an isomorphism.
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This isomorphism is natural with respect to diffeomorphisms in M and M ′ preserving collars as

(f ∪ f ′)(T ∪ T ′
) = f(T ) ∪ f ′(T ′

).
By definition, we also have

SkI(idΣ) = HomSkCatI(Σ)(−,−) = idSkCatI(Σ)

and these isomorphisms are readily checked to be compatible with associators and unitors. This
proves that SkI is a 2-functor.

We now turn to symmetric monoidality. We have an isomorphism of vector spaces

SkI(M ;X,Y )⊗ SkI(M
′;X ′, Y ′)→̃SkI(M ⊔M ′;X ⊔X ′, Y ⊔ Y ′)

simply given by disjoint union of ribbon graphs. It induces an isomorphism of categories

SkCatI(Σ)⊗ SkCatI(Σ
′)→̃SkCatI(Σ ⊔ Σ′)

which is disjoint union on objects, and a natural isomorphism

SkI(M)⊗ SkI(M
′)⇒̃SkI(M ⊔M ′)

where we implicitly used the isomorphism of categories above to match the source and target.
The skein category of the empty surface has only one object, the empty collection of points, with

endomorphisms scalars times the empty ribbon graph, its identity, which is indeed the monoidal
unit in Bimod.

All the coherence modifications of [Sch09, Def. 2.5] are identities.

4 Extended non-semisimple Crane–Yetter

In this section we will extend the categorified TQFT

SkI : Cob2+1+ε → Bimodhop

into a possibly non-compact once-extended 4-TQFT

Z : Cob2+1+1 → Bimodhop

under some additional conditions on the category A.
We will construct this TQFT by specifying its values on the standard attachments of 0–4-

handles, check that they satisfy handle cancellation and ι-invariance and use the main result of
[Häı24].

This TQFT is a once-extended version of [CGHP23], and the values on handle attachments are
constructed there. We will recall the definitions for the readers convenience, but refer to [CGHP23]
for details.

4.1 Hypothesis and structure on the input category

In this section, A is a finite ribbon tensor category over an algebraically closed field k in the
sense of [EGNO15] and I ⊆ A is the tensor ideal of projective objects. We denote P1l ∈ I a
projective cover of the unit, equipped with its projection ε1l : P1l → 1l. For any projective object
P , let sP : P → P ⊗ P1l be a section of idP ⊗ε1l : P ⊗ P1l → P . By definition this means that
idP = (idP ⊗ε1l)◦sP which at the levels of skeins means that we can introduce a P1l-colored strand
ending with a ε1l whenever there is a projective-colored strand.

We further assume that A is unimodular which is equivalent to asking that P1l is self dual.
This implies that A has a non-degenerate modified trace

tP : EndA(P ) → k , P ∈ I
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which is unique up to scalar by [GKP22, Cor. 5.6]. We assume that a choice of modified trace has
been made. It fixes the choice of a morphism η1l : 1l → P1l such that tP1l

(η1l ◦ ε1l) = 1. The modified
trace being non-degenerate implies that it induces a non-degenerate pairing

tP (− ◦ −) : HomA(1l, P )⊗HomA(P, 1l) → k

We denote
Ω =

∑
i

xi ⊗ xi ∈ HomA(P, 1l)⊗HomA(1l, P )

the associated copairing, i.e. (xi)i and (xi)i are dual basis with respect to tP . We also denote

ΛP :=
∑
i

xi ◦ xi ∈ EndA(P ) .

Let G ∈ I be a projective generator of A, e.g. take G to be the direct sum of all irreducible
projectives. By [CGPV], or [CGHP23, Thm. 1.10], there exist a chromatic morphism based at
any P ∈ I [CGHP23, Sec. 1.3]

cP : G⊗ P → G⊗ P

We further assume that A is chromatic non-degenerate in the sense that the morphism

∆0
P1l

:= TIKZ

is non-zero. This implies the existence of a gluing morphism [CGHP23, Def 1.5]

g : P1l → P1l

We will sometimes assume that A is even chromatic compact in the sense that ε1l ◦ g is
non-zero. This implies that there exists a non-zero global dimension

ζ ∈ k×

such that ζ−1 idP1l
is a gluing morphism.

Example 4.1. If A is semisimple and (Si)i=1,...,n are its simples, with S0 = 1l, then:
– P1l = 1l,
– any scalar times the usual categorical trace λ tr is a modified trace,
– the copairing is ΩSi = λ−1δi,0 id⊗ id,
– a projective generator is given by G = ⊕iSi,
– c := λ · ⊕i qdim(Si) idSi

is a chromatic morphism,
– ∆0

P1l
= λ

∑
i qdim(Si)

2 id1l which is non-zero when chark = 0 or when A is separable

– in this case, g = 1
λ2

∑
i qdim(Si)2

id1l is a gluing morphism, and

– the global dimension is ζ = λ2
∑

i qdim(Si)
2.

Note that there exists precisely two values of λ for which ζ = 1.

4.2 The construction

We give an operation on admissible skein module associated to each 4-dimensional handle attach-
ment, and then check that they define an extended TQFT.

The 4-handle We define a natural transformation

Z4 : SkI(S
3) ⇒ SkI(∅)

In this case, the incoming and outgoing boundary of S3 are both the empty surface, and SkI(S
3) :

SkCat(∅)⊗ SkCatI(∅)op → Vect is just the data of one vector space SkI(S
3) = SkI(S

3, ∅, ∅). The
natural transformation Z4 is just the data of a linear map, which we will still denote Z4 by abuse,

Z4 : SkI(S
3) → k
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We take this map to be the invariant of I-colored admissible ribbon graphs induced by the modified
trace [GPT09, GP18] as in [CGHP23]. If T ∈ SkI(S

3) is the closure of a 1-1-tangle Tcut whose
endpoints are both colored by a projective P , we set

Z4(T ) := tP (RT(Tcut))

where RT denote the usual Reshetikhin–Turaev evaluation functor [Tur94]. This is well-defined by
the work of Geer–Patureau-Mirand et al. and there is no naturality to check in this case.

The 3-handle We define a natural transformation

Z3 : SkI(S
2 × D1) ⇒ SkI(D3 × S0) .

Both 3-cobordisms S2×D1 and D3×S0 have incoming boundary S2×S0, and outgoing boundary
∅. Let X ∈ SkCatI(S

2 × S0) be an admissible I-labelling, which we may write X = X+ ⊔X− as
S2 × S0 = S2 × {+} ⊔ S2 × {−}, and T ∈ SkI(S

2 ×D1;X+ ⊔X−) an I-colored ribbon graph. We
want to “cut” T in two pieces.

An object P ∈ I induces an I-labeling in S2 with a single point colored by P , which by abuse we
will still call P ∈ SkCatI(S

2). As S2 is connected, any object of SkCatI(S
2) is actually isomorphic

to an object of this form. If X is any configuration of points, then P is the tensor product of all its
colors, with duals for negatively oriented points. Similarly, a morphism f ∈ HomA(P, P

′) induces
a morphism in SkCatI(S

2), and morphisms of this form generate all morphisms.
As in the proof of Theorem 3.5, we have an equivalence

SkI(S
2 × D1, X+ ⊔X−) ≃

∫ P∈SkCatI(S
2)

SkI(S
2 × [0, 1];X+, P )⊗ SkI(S

2 × [−1, 0];P ⊔X−)

Let us denote T+ ⊗ T− two skeins in the RHS that glue to T .
Given a morphism f : P → 1l, we get a skein which by abuse we will still denote f ∈ SkI(D3, P )

which has a single vertex colored by f at 0 ∈ D3 linked by a straight line to P ∈ SkCatI(S
2).

Similarly, for Ω ∈ HomA(P, 1l)⊗HomA(1l, P ) we get a skein Ω ∈ SkI(D3 × S0).
We set

Z3(T ) := (T+ ⊔ T−) · ΩP

where (T+ ⊔ T−) · − is the action of morphisms in SkCatI(S
2 × S0) on SkI(D

3 × S0). It is well-
defined, i.e. preserves the coend relation in the coend above, by naturality of ΩP [CGHP23, Lem.
1.1]. It is natural as for any morphism S in SkCatI(S

2×S0) we have Z3(S ·T ) = S ·(T+⊔T−) ·ΩP .

The 2-handle We define a natural transformation

Z2 : SkI(S
1 × D2) ⇒ SkI(D2 × S1) .

Both 3-cobordisms S1×D2 and D2×S1 have incoming boundary S1×S1, and outgoing boundary
∅. Let X ∈ SkCatI(S

1 × S1) be an admissible I-labelling and T ∈ SkI(S
1 × D2;X).

We may isotope T so that it does not intersect the core S1 × {0}.
We set

Z2(T ) := T ∪ ({0} × S1)

where the cocore {0} × S1 is colored in red, which is interpreted as a skein via the red-to-blue
operation of [CGHP23], i.e. using a chromatic morphism.

This operation does not depend on how we isotoped T to be disjoint from the core by [CGHP23,
Lem. 2.4] nor on how we applied the red-to-blue operation or on the choice of a chromatic morphism
by [CGHP23, Lem. 2.3]. Both of these operations can be chosen to leave T unchanged near the
boundary, which shows naturality of Z2.
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The 1-handle We define a natural transformation

Z1 : SkI(S
0 × D3) ⇒ SkI(D1 × S2) .

Both 3-cobordisms S0×D3 and D1×S2 have incoming boundary S0×S2, and outgoing boundary
∅. Let X = X+ ⊔ X− ∈ SkCatI(S

0 × S2) be an admissible I-labelling and T = T+ ⊔ T− ∈
SkI(S

0 × D3;X+ ⊔X−).
As above, me may isotope T to be disjoint from S0 × {0} and introduce two P1l-strands in T+

and T− ending by a vertex v± which we may isotope to be at 0 ∈ D3. Removing a neighborhood of
S0×{0} we obtain a skein which we will denote T+∖v+⊔T−∖v− ∈ SkI(S

0×S2×[0, 1]);X,P1l⊔P1l).
This exhibits T as

T = (T+ ∖ v+ ⊔ T− ∖ v−) · (ε1l ⊔ ε1l)
where we see ε1l as a skein in SkI(D3;P1l) as above.

Using the isomorphism P1l ≃ P ∗
1l mapping ε1l to η1l, we may think of a gluing morphism g :

P1l → P1l as a skein g ∈ SkI(D1 × S2;P1l ⊔ P1l).
We set

Z1(T ) = (T+ ∖ v+ ⊔ T− ∖ v−) · g
This is well-defined and does not depend on the choice of a gluing morphism or on how we intro-
duced P1l-strands by [CGHP23, Proposition 5.1]

The 0-handle In the case where A is chromatic compact, i.e. there exists ζ ∈ k× the global
dimension satisfying ε1l ◦ g = ζ−1ε1l, we set

Z0 : SkI(∅) ⇒ SkI(S
3)

by mapping 1 ∈ k to ζΓ0 ∈ SkI(S
3) where Γ0 is the admissible skein in S3 with a single strand

colored by P1l and two coupons ε1l and η1l.

Theorem 4.2. Let A be a chromatic non-degenerate category, I = Proj(A) and t a modified trace.
Then there exists a unique non-compact (2+1+1)-TQFT

ZA : Cobnc
2+1+1 → Bimodhop

extending SkI and given by Z4, . . . , Z1 on the standard handle attachments of index 4, . . . , 1.
If A is moreover chromatic compact, then ZA extends in a unique way to a fully defined (2 +

1 + 1)-TQFT
ZA : Cob2+1+1 → Bimodhop

given by Z0 on the 0-handle.

Proof. We apply [Häı24]. The fact that our assignment on handles satisfies handle cancellations
and invariance under reversal of the attaching spheres is checked in [CGHP23].

4.3 Properties

For the applications in Section 6 we will be interested in the special case when A is modular in the
sense of [Lyu95, DGG+22]. In this case, the TQFT constructed above is very simple in dimension
4, and almost all of its data is located ”at the boundary”.

Proposition 4.3. Suppose A is a possibly non-semisimple modular tensor category. Then:
A is chromatic compact and the TQFT ZA constructed above is invertible for any choice of

non-degenerate modified trace t.
The red-to-blue operation used in our construction agrees with the red-to-blue operation of

[DGG+22].
There are exactly two choices of modified trace for which ZA(S

4) = 1. If we use one of these,
the natural transformations ZA(W ) : SkI(M−) → SkI(M+), for fixed M−,M+, depend only on
the signature of W . Moreover, if M is a closed 3-manifold, T ⊆M is admissible and W :M → ∅
is a bounding 4-manifold, we have

ZA(W )(T ) = DGGPRA(M,T, σ(W )) .
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Proof. The fact that modular implies chromatic compact is immediate from [CGHP23, Def. 1.7].
The invertibility statement is [CGHP23, Thm. 5.8] for the (3+1)-part, and follows from [SP18]
for the whole theory. The fact that the red-to-blue operations coincide is explained in [CGHP23,
Thm. 1.10, Eq. (8)].

Choose a modified trace t. By [CGHP23, Prop 5.7], the (3+1)-TQFT obtained from κ t is
differs from the one obtained from t by an Euler characteristic term. As χ(S4) = 2, there are
exactly two choices for κ such that ZA,κ t(S

4) = 1, namely κ = ±D−1 for D a square root of the
global dimension ζ = ZA,t(S

4).
We now assume we have chosen one of the two modified traces above, so ζ = ∆+∆− = 1.

As every cobordism act by isomorphisms, we can pre-compose and side compose W by bounding
manifolds without loosing information and it is equivalent to check the dependence on W for W
closed. As the signature is additive when gluing on closed boundary components, the signature of
the closed up manifold is the sum of signature of the initial manifold and the manifold we closed
it up with.

As g = 1, the action of a disjoint union of two 4-handles is the same as that of first using a
3-handle to connect the two balls and then using only one 4-handle. This allows us to further
reduce to the case where W is connected.

As observed in [CGHP23, Def. 1.7], or [DGG+22, Lem. 4.4], as A is modular we have

∆0
P = ΛP , P ∈ I

where the endomorphism ∆0
P is obtained by encircling a P strand by a red circle. Reading the

handles backwards, and using Akbulut’s dotted circle convention, this is saying that one may
replace a dotted circle (the RHS) by a plain circle (the LHS). As W is connected we may assume
it has only one 0-handle, and applying this observation to every 1-handle we may further reduce
to simply connected W .

The scalar Z(W ) is multiplicative under connected sum as Z(S4) = 1. As Z(CP2)Z(CP 2) ̸= 0,
it is stable under CP2-stabilization. Finally, two simply connected closed 4-manifolds are CP2-
stably diffeomorphic if and only if they have same signature. And Z(W ) depends only on the
signature of W as claimed.

Finally, if M is closed and T ⊆ M is admissible by [CGHP23, Thm. 4.4 and 5.9] (if W is
obtained by 2- and 4-handles there, and for any W by the arguments above) we have

Z(W )(T ) = Z(CP2)
σ(W ) L′(M,T ) = DGGPRA(M,T, σ(W ))

where L′ is the renormalized Lyubashenko invariant introduced in [DGG+22] and DGGPRA is the
TQFT introduced there, which gives invariants of 3-manifolds equipped with an admissible ribbon
graph and a “signature defect” integer.

5 The regular boundary conditions to skein theory

In this section we will define a possibly non-compact boundary condition

∂ : Triv ⇒ SkI

given by the empty skein.
This boundary condition will be non-compact when I ̸= A, which is quite different from the

non-compact cases of Section 4. In the case of interest for Section 6, we will assume that A is
modular, in which case Z is defined on all cobordisms, but ∂ will still be non-compact when A is
non-semisimple.

Recall that SkI is contravariant in the direction of 1-morphism. This is only an annoyance as
one can always take opposite orientation on cobordisms to make it covariant, and when we say
a boundary condition to SkI we mean a boundary condition to this covariant functor. However,
to avoid confusion or having to introduce a different notation, let us recall what explicit data a
boundary condition to a contravariant functor represents.

Definition 5.1. A boundary condition to a categorified TQFT Zε : Cob2+1+ε → C contravariant
in the direction of 1-morphism is the data of

10



For every object Σ: a 1-morphism ∂(Σ) : 1lC → Zε(Σ)

For every cobordism M : Σ′ → Σ: a 2-morphism

1lC Zε(Σ)

1lC Zε(Σ′)

∂Σ

Zε(M)

∂Σ′

∂(M
)

Symmetric monoidal structure: 2-isomorphisms ∂(Σ) ⊗ ∂(Σ′) ⇒ ∂(Σ ⊔ Σ′) and ∂(∅) ⇒ 1lC
with appropriate symmetric monoidal structure of Zε inserted to make the source and target
of the 1-morphisms match.

Such that

For every diffeomorphism f :M− →M+: the following equality holds:

1lC Zε(Σ) Zε(Σ)

1lC Zε(Σ′) Zε(Σ′)

∂Σ

Zε(M−) Zε(M+)

∂Σ′

∂(M
−) Zε(f) =

1lC Zε(Σ)

1lC Zε(Σ′)

∂Σ

Zε(M+)

∂Σ′

∂(M
+
)

For every composeable 1-morphisms Σ3
M32→ Σ2

M21→ Σ1: the following equality holds:

1lC Zε(Σ1)

1lC Zε(Σ3)

∂Σ1

Zε(M21◦M32)

∂Σ3

∂(
M21

◦M
32
)

=

1lC Zε(Σ1)

1lC Zε(Σ2)

1lC Zε(Σ3)

∂Σ1

Zε(M21)

∂Σ2

Zε(M32)

∂Σ3

∂(M
21
)

∂(M
32
)

Coherence of the symmetric monoidal structure: see [Sch09, Def. 2.7].

A non-compact boundary condition is one that only gives values to 3-cobordisms with non-empty
incoming boundary Σ′ in every connected component.

Let I ⊆ A be a tensor ideal in a ribbon category.

Definition 5.2. Let Σ be a surface. We define the 1-morphism ∂I(Σ) from 1l to SkCatI(Σ) in
Bimod by

∂I(Σ) : SkCatI(Σ)
op → Vect
X 7→ SkI(Σ× [0, 1];X, ∅)

called the distinguished object in [BH24].
If I = A, then this presheaf is actually representable, and represented by any number of points

all colored by the monoidal unit, which we will call the empty collection of points.

Definition 5.3. Let M : Σ′ → Σ be a cobordism with where π0(Σ
′) → π0(M) is surjective. We

define a natural transformation

1lC SkI(Σ)

1lC SkI(Σ
′)

∂IΣ

SkI(M)

∂IΣ
′

∂I(
M)

whose component on X ∈ SkCatI(Σ
′) is

(∂I(M))X : SkI(Σ
′ × [0, 1];X, ∅) → SkI(M ;X, ∅)

T 7→ i∗T

11



where i : Σ′ × [0, 1] ↪→M is the collar of the boundary, and we have used the equivalence

(SkI(M) ◦ ∂I(Σ))(X) :=

∫ Y ∈SkCatI(Σ)

SkI(Σ× [0, 1];Y, ∅)⊗ SkI(M ;X,Y )
glue
≃ SkI(M ;X, ∅)

as in Theorem 3.5. The transported skein i∗T is indeed admissible as i is surjective on connected
components. We think of this as “extending T by the empty skein in M”.

Note that if I = A, then this is defined for every M .

Theorem 5.4. There exists a (non compact if I ≠ A) boundary condition

∂I : Triv ⇒ SkI

with ∂I(Σ) and ∂I(M) as defined above.

Proof. The symmetric monoidal structure is the identity, which simplifies a lot the verification.
We simply have to check naturality with respect to diffeomorphisms and composition.

Let f :M →M ′ be a diffeomorphism preserving the collars, then indeed f∗(i∗T ) = i∗T as i∗T
is concentrated near the collars.

Let Σ3
M32→ Σ2

M21→ Σ1 be composeable, and take T ∈ SkI(Σ3 × [0, 1];X, ∅). Then ∂(M32)(T )
is (i3)∗T , which we may isotope to meet Σ2 × I ⊆ M23 and write as T ′ ∪ T ′′ for some T ′ ∈
SkI(Σ2 × [0, 1];Y, ∅), T ′′ ∈ SkI(M ;X,Y ). Then

(∂I(M21) ◦h idM32) ◦ ∂I(M32)(T ) = (i2)∗T
′ ∪ T ′′ ∈ SkI(M21 ◦M32;X, ∅)

is equal to i∗ ◦ (i3)∗(T ), where i : M32 ↪→ M21 ◦ M32 is the canonical inclusion, and hence to
∂I(M21 ◦M32)(T ).

6 Non-semisimple WRT at the boundary of Crane–Yetter

In this section we will explain how to obtain Witten–Reshetikhin–Turaev 3-TQFTs, and their
non-semisimple generalizations [DGG+22], from the once-extended 4-TQFT ZI defined in Section
4 and its boundary condition ∂I defined in Section 5.

We assume in this section that A is a modular category in the sense of [Lyu95, DGG+22] (which
include semisimple modular categories in the sense of [Tur94] but allow non-semisimple examples),
and that I ⊆ A is the ideal of projective objects, so I = A if and only if A is semisimple.

We begin by explaining how to obtain an anomalous theory out of the data Z, ∂. This is a
fairly general and known construction.

Definition 6.1. The category of filled (n+ 1)-cobordisms Cobfilledn+1 has:

Objects: Closed n-manifolds Σ equipped with a bounding (n+ 1)-manifold H : ∅ → Σ

Morphisms: Cobordisms M : Σ → Σ′ equipped with a bounding (n+2)-manifold

∅ Σ

∅ Σ′

H

M

H′

W

Definition 6.2. Let Z : Cob2+1+1 → C be a once-extended TQFT contravariant in the direction
of 1-morphisms and ∂ : Triv → Zε a (resp. non-compact) boundary condition to Z.

The anomalous theory2 AZ,∂ associated to Z, ∂ is the symmetric monoidal functor

AZ,∂ : Cobfilledn+1 → ΩC := EndC(1lC)[
∅ H→ Σ

]
7→

[
1lC

∂(Σ)−→ Z(Σ)
Z(H)−→ 1lC

]


∅ Σ

∅ Σ′

H

M

H′

W

 7→


1lC Z(Σ) ∅

1lC Z(Σ′) ∅

∂(Σ) Z(H)

Z(M)

∂(Σ′) Z(H′)

∂(M
)

Z(W
)


2This terminology is maybe only appropriate when Z is an invertible theory, which will be the case in our

example.
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If ∂ is non-compact, then AZ,∂ is also non-compact, i.e. it is only defined on the category

Cobfilled,nc2+1 of cobordisms with non-empty incoming boundary in every connected component.

The category of filled cobordisms has been suggested by Walker as the right source category
for WRT theories. It is more standard to consider a smaller category where we have forgotten part
of the data of the filling.

Definition 6.3. The category C̃ob2+1 has objects surfaces equipped with a Lagrangian L ⊆ H1(Σ)
and morphisms 3-cobordisms equipped with an integer n ∈ Z. Composition is given by composing
the cobordisms, adding the integers and adding a Maslov index of the three Lagrangians involved

as defined in [Wal91, Section 2]. The category C̃ob
nc

2+1 is the subcategory where 3-cobordisms must
have incoming boundary in every connected component.

The projection

π : Cobfilled2+1 → C̃ob2+1

takes a pair (Σ, H) to (Σ,Ker(i∗ : H1(Σ → H1(H))) and a pair (M,W ) to (M,σ(W )). Composition

in C̃ob2+1 is defined precisely to make this assignment preserve composition, using Wall’s non-
additivity theorem.

The TQFT

WRTA : C̃ob2+1 → Vect

is defined in [Tur94, Wal91] for any semisimple modular category A with a chosen square root D
of its global dimension. The TQFT

DGGPRA : C̃ob
nc

2+1 → Vect

is defined in [DGG+22] for any non-semisimple modular category A with a chosen modified trace
t and square root D of its global dimension (called modularity parameter in [DGG+22]). In this
paper, we will not consider decorations by ribbon graphs living in the 3-cobordisms.

We have seen in Section 4 that given such a modular category A, we have a scalar choice of
ways to extend SkI , with I = Proj(A), into a once-extended theory ZI , corresponding to a choice
of modified trace. If a choice of modified trace and square root of the global dimension has been
made as above, we define ZI to be the theory obtained by using the modified trace D−1 t. We
denote AI : Cobfilled,nc2+1 → Vect ≃ ΩBimod the anomalous theory associated to ZI , ∂I , which is
non-compact when I ≠ A.

Theorem 6.4. Let A be a semisimple modular tensor category and I = A, then

Cobfilled2+1 Vect

C̃ob2+1

AA

π

W
RT

A

commutes up to symmetric monoidal natural isomorphism.

Theorem 6.5. Let A be a non-semisimple modular tensor category and I = Proj(A), then

Cobfilled,nc2+1 Vect

C̃ob
nc

2+1

AI

π

DG
GP

RA

commutes up to symmetric monoidal natural isomorphism.

Proof. Given ∅ H→ Σ, we need to give a natural isomorphism

ηΣ,H : AI(Σ)→̃DGGPRA(Σ) .
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On the one hand, we have

AI(Σ) :=

∫ X∈SkCatI(Σ)

SkI(Σ× [0, 1];X, ∅)⊗ SkI(H;X)
glue
≃ SkI(H; ∅)

is the admissible skein module of H with empty boundary points.
On the other hand, the state spaces of DGGPR are defined via the universal construction of

[BHMV95], i.e. as a quotient of the vector space generated by all 3-manifolds N bounding Σ
equipped with an admissible I-colored ribbon graph T . Let us denote [N,T ] ∈ DGGPR(Σ) the
induced vector. The quotient asks the relation

∑
i[Ni, Ti] = 0 if for every N ′, TN ′ of boundary

−Σ, the invariant of closed 3-manifold
∑

i DGGPR(Ni ∪
Σ
N ′, Ti ⊔ T ′, ni) = 0, where ni is a Maslov

index computed in the composition of N ′ and Ni.
The map ηΣ,H is the canonical map to the quotient. It is shown to be well-defined in [DGG+22,

Prop. 4.11] (and is called π there), and surjective when H is connected. We defer to Lemma 6.6
the proof that it is an isomorphism.

The symmetric monoidal structure of DGGPR is given by taking disjoint union on these gen-
erators [DGG+22, Prop. 4.8], hence ηΣ,H is symmetric monoidal.

We are left with the core of the proof: checking that ηΣ,H is natural. Let M : Σ → Σ′ be a
3-cobordism between filled surfaces equipped with a bounding 4-manifold W : H ∪

Σ
M ⇒ H ′.

The action of M,W on a vector [H,T ] ∈ DGGPR(Σ) is given by

DGGPR(M,σ(W ))([H,T ]) = Z(CP2)
σ(W )[H ∪

Σ
M,T ] .

This is now a skein living in the gluing of M and H, and not in H ′ as we would hope. We would
like to relate it to a element of the form [H ′, T ′]. This is asking: what is the skein T ′ ⊆ H ′ so that
the invariants

Z(CP2)
σ(W )+n−n′

DGGPR(H ∪
Σ
M ∪

Σ′
N ′, T ∪ TN ′)

?
= DGGPR(H ′ ∪

Σ′
N ′, T ′ ∪ TN ′)

match for any N ′, TN ′ , where n and n′ are Maslov indices.
By Proposition 4.3, each of these scalars is given by bounding the 3-manifold by a 4-manifold,

and evaluation it under the TQFT Z. Let W ′ : H ′ ∪
Σ′
N ′ → ∅ be a bounding 4-manifold. Then

W ′◦(W ◦h idN ′) is a bounding manifold for H∪
Σ
M ∪

Σ′
N ′. By construction, the skein Z(W )(T ) ⊆ H ′

satisfies Z(W ′)(Z(W )(T ) ∪ TN ′) = Z(W ′ ◦ (W ◦h idN ′))(T ∪ TN ′), i.e. precisely

Z(CP2)
σ(W )[H ∪

Σ
M,T ] = [H ′,Z(W )(T )]

as the integer σ(W )+n−n′ computes the difference of signature betweenW ′ andW ′ ◦(W ◦h idN ′).
This concludes naturality.

Lemma 6.6. The natural transformation η is a natural isomorphism.

Let us first describe explicitly the admissible skein modules of handle bodies.

Lemma 6.7. Let I ⊆ A be a tensor ideal in a ribbon category and H a genus-g handlebody. Then
there is a vector space isomorphism

SkI(H) ≃
( ⊕
(Pi)i∈Ig

HomA(P1 ⊗ P ∗
1 ⊗ · · · ⊗ Pg ⊗ P ∗

g , 1l)
)
/⟨(f, id) ∼ (id, f∗), f : Pi → P ′

i ⟩

where for f : Pi → P ′
i and ψ : P1 ⊗ P ∗

1 ⊗ · · · ⊗ P ′
i ⊗ P ∗

i ⊗ · · · ⊗ Pg ⊗ P ∗
g → 1l , the relation

(f, id) ∼ (id, f∗) denotes the usual “coend” relation

ψ ◦ (id⊗ · · · ⊗ f ⊗ idP∗
i
⊗ · · · ⊗ id) ∼ ψ ◦ (id⊗ · · · ⊗ idPi ⊗f∗ ⊗ · · · ⊗ id) .
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Proof. The handlebody Hg is obtained form a ball B3 by gluing g pairs of disks.
By Theorem 3.5, the admissible skein module SkI(Hg) is obtained as the coend

SkI(Hg) ≃
∫ P1,...,Pg∈I

SkI(B
3;P1, P

∗
1 , . . . , Pg, P

∗
g )

which, as SkI(B
3;X) ≃ HomA(X, 1l), is indeed the RHS above.

A morphism φ in the RHS maps to the skein
• • . . . •

φ

P1 > P2< Pg

>

Proof of Lemma 6.6. Let us first suppose that Σ is connected and H : ∅ → Σ is a handle body. It
is shown in [DGG+22, Prop. 4.11] that ηΣ,H is surjective. We will prove that it is an isomorphism
by showing that SkI(H) and DGGPRI(Σ) have the same dimension.

The description of Lemma 6.7 can be related to the coend description of state spaces of
[DGG+22, Sec. 4.1]. Remember that the coend L is defined as the colimit

L =

∫ X∈A
X ⊗X∗ =

(
⊕X∈A X ⊗X∗)/⟨(f, id) ∼ (id, f∗), f : X → Y ⟩

We only consider projectives in our case, but by [KL01, Proposition 5.1.7] this does not change

this colimit and L ≃
∫ P∈I

P ⊗ P ∗. Note that by [KL01, Corollary 5.1.8], the infinite nature of
this colimit is unnecessary, and we could allow only P = G the projective generator. We will still

denote it
∫ P∈I

, but it will be useful to remember that everything is finite.
It is shown in [DGG+22, Proposition 4.17 and Lemma 4.1 at V = 1l] that

DGGPRI(Σ) ≃
(
HomA(L⊗g, 1l)

)∗
where g is the genus of Σ. Using the definition of the colimit, the vector space HomA(L⊗g, 1l)
is obtained as a limit: the subspace of the product ΠHomA(P1 ⊗ P ∗

1 ⊗ · · · ⊗ Pg ⊗ P ∗
g , 1l) of the

collections that satisfy the (f, id) ∼ (id, f∗) relations. The dual of this limit is then (using the fact
everything is finite) the colimit

DGGPRI(Σ)≃
( ⊕
(Pi)i∈Ig

HomA(P1 ⊗ P ∗
1 ⊗ · · · ⊗ Pg ⊗ P ∗

g , 1l)
∗)/⟨(f, id) ∼ (id, f∗), f : Pi → P ′

i ⟩

This is almost the same as the formula we gave for SkI(H), though there are duals. We have
an isomorphism HomA(P1 ⊗ P ∗

1 ⊗ · · · ⊗ Pg ⊗ P ∗
g , 1l)

∗ ≃ HomA(P1 ⊗ P ∗
1 ⊗ · · · ⊗ Pg ⊗ P ∗

g , 1l) given
by the modified trace paring, and noticing that by design P1 ⊗ P ∗

1 ⊗ · · · ⊗ Pg ⊗ P ∗
g is self-dual

up to isomorphism. These isomorphisms preserve the (f, id) ∼ (id, f∗) relations, and induce an
isomorphism on the quotient. Hence SkI(H) and DGGPRI(Σ) have the same dimension, and ηΣ,H

is an isomorphism when H is a handle body.
If H is a disjoint union of handle bodies, then ηΣ,H is still an isomorphism by monoidality.
Now, consider a general bounding 3-manifoldM : ∅ → Σ. Denote H : ∅ → Σ a disjoint union of

handle bodies. Any two 3-manifold with same boundary are related by a 4-cobordismsW :M ⇒ H.
It can be thought of as a morphism (idΣ,W ) in Cobfilled2+1 where the 3-cobordism part is the identity.
It induces a map Z(W ) ◦h id∂(Σ) : SkI(M, ∅) → SkI(H, ∅) which is an isomorphism because Z is

invertible, and an isomorphism Z(CP2)
σ(W ) id : DGGPRI(Σ) → DGGPRI(Σ). Naturality of η

implies that ηΣ,M and ηΣ,H are related by these isomorphisms, hence ηΣ,M is an isomorphism.
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(3+1)-TQFTs from non-semisimple ribbon categories. 2023. arXiv:2306.03225.

[CGP14] Francesco Costantino, Nathan Geer, and Bertrand Patureau-Mirand. Quantum invariants of
3-manifolds via link surgery presentations and non-semi-simple categories. J. Topol., 7(4):1005–
1053, 2014.

[CGP23] Francesco Costantino, Nathan Geer, and Bertrand Patureau-Mirand. Admissible Skein Mod-
ules. 2023. arXiv:2302.04493.

[CGPV] Francesco Costantino, Nathan Geer, Bertrand Patureau-Mirand, and Alexis Virelizier. Chro-
matic maps for finite tensor categories. arXiv:2305.14626.

[Coo23] Juliet Cooke. Excision of skein categories and factorisation homology. Adv. Math., 414:Paper
No. 108848, 51, 2023. arXiv:1910.02630.

[CY93] Louis Crane and David Yetter. A categorical construction of 4d topological quantum field
theories. In Quantum topology, volume 3 of Ser. Knots Everything, pages 120–130. World Sci.
Publ., River Edge, NJ, 1993. arXiv:hep-th/9301062.

[DGG+22] Marco De Renzi, Azat M. Gainutdinov, Nathan Geer, Bertrand Patureau-Mirand, and Ingo
Runkel. 3-Dimensional TQFTs from non-semisimple modular categories. Selecta Math. (N.S.),
28(2):Paper No. 42, 60, 2022. arXiv:1912.02063.

[DS97] Brian Day and Ross Street. Monoidal bicategories and Hopf algebroids. Adv. Math., 129(1):99–
157, 1997.

[EGNO15] Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. Tensor categories, volume
205 of Mathematical Surveys and Monographs. American Mathematical Society, Providence,
RI, 2015.

[Fre] Daniel S. Freed. Remarks on fully extended 3-dimensional topological field theories. 2011,
Talk at String-Math, https://web.ma.utexas.edu/users/dafr/stringsmath_np.pdf.

[FT14] Daniel S. Freed and Constantin Teleman. Relative quantum field theory. Comm. Math. Phys.,
326(2):459–476, 2014. arXiv:1212.1692.

[GJS23] Sam Gunningham, David Jordan, and Pavel Safronov. The finiteness conjecture for skein
modules. Invent. Math., 232(1):301–363, 2023. arXiv:1908.05233.

[GKP22] Nathan Geer, Jonathan Kujawa, and Bertrand Patureau-Mirand. M-traces in (non-
unimodular) pivotal categories. Algebr. Represent. Theory, 25(3):759–776, 2022.
arXiv:1809.00499.

[GP18] Nathan Geer and Bertrand Patureau-Mirand. The trace on projective representations of quan-
tum groups. Lett. Math. Phys., 108(1):117–140, 2018. arXiv:1610.09129.

[GPT09] Nathan Geer, Bertrand Patureau-Mirand, and Vladimir Turaev. Modified quantum dimensions
and re-normalized link invariants. Compos. Math., 145(1):196–212, 2009. arXiv:0711.4229.
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