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Abstract

Simple-homotopy for simplicial and CW complexes is a special kind of topo-
logical homotopy constructed by elementary collapses and expansions. In this
paper we introduce graph homotopy for graphs and Graham homotopy for
hypergraphs, and study the relation between these homotopies and the simple-
homotopy for simplicial complexes. The graph homotopy is useful to describe
topological properties of discretized geometric figures, while the Graham ho-
motopy is essential to characterize acyclic hypergraphs and acyclic relational
database schemes.

1 Introduction

Contractible transformations on graphs were introduced in [4] and [5] to study molec-
ular spaces. The simplest model of a so called molecular space is a family of unit
cubes in a Euclidean space. These models are useful in digital topology for image
processing and computer graphics. Therefore the study of combinatorial, topolog-
ical, and geometric properties of molecular spaces should be useful to understand
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properties of molecular objects. It has been illustrated that for a continuos surface
the induced intersection graph from the molecular space usually preserves essential
topological properties of the original surface. For example, given two topologically
equivalent surfaces Σ1 and Σ2 of R3, if R3 is divided into a set of congruent cubes by
coordinate hyperplanes, we have one family L1 of cubes intersecting Σ1 and another
family L2 of cubes intersecting Σ2. If the division is refined enough, the intersection
graphs G(L1) and G(L2) will be graph homotopy equivalent, that is, G(L1) can be
transformed into G(L2) by a series of contractible graph transformations (see below).
This means that some topological properties of the continuous surfaces have been
encoded into the molecular spaces. Thus it should be interesting and important to
find out what kinds of topological properties are preserved by the induced molecular
spaces. In a series of papers, Ivashchenko and Yeh studied some of these preserved
properties such as the Euler characteristic and homology groups, see [4-8] and [16].
They showed that graph transformations do not change the Euler characteristic and
the homology group of graphs for some special cases. This leads us to ask whether
the graph transformations are actually topological homotopy equivalence. The first
half of this paper is to show that a contractible graph transformation can be de-
composed into a series of compositions of elementary CW expansions and collapses
of certain associated simplicial complexes, whereby graph homotopy is reduced to a
special kind of simple-homotopy. Since simple-homotopy equivalence preserves “ho-
motopy groups,” and of course preserves “homology groups,” all results of [4] and [5]
are consequences of the present paper.

The graph homotopy and simple-homotopy are closely related to the Graham
reduction for hypergraphs, which was origionally introduced to define acyclic hyper-
graphs and acyclic database schemes, see [12]. The importance of acyclic database
schemes lies in the existence of their information-lossless decomposition, see [9] and
[10]. Recall that the second operation in the Graham reduction for hypergraphs is to
remove the hyperedges contained in another hyperedge. For this reason we associate
a simplicial complex to each hypergraph by including all non-empty subsets of any
hyperedge. With this association the first operation in the Graham reduction corre-
sponds to a special kind of homotopy on the associated simplicial complexes, and we
call this Graham homotopy. The purpose of the second half of the present paper is
to give a topological interpretation for the Graham reduction and to derive a formula
for counting the number of cycles in terms of the associated simplicial complexes.

The acyclic hypergraphs and relational database schemes were introduced easily
by the Graham reduction. However, the concepts of cycles and independent cycles
for hypergraphs and relational database schemes are still missing. We suspect that
for some combinatorial optimization problem, it is the number of cycles of certain
associated hypergraphs that determine the computational complexity. For instance,
the satifiability problem may be transformed into a problem on an induced hyper-
graph and its computational complexity will be reduced to the cycle structures of the
induced hypergraph. The detailed exposition of cycle structures for hypergraphs will
be given elsewhere.
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2 Graph Homotopy and Simple-Homotopy

Let G = (V, E) be a simple graph, that is, a graph without loops and multiple edges,
where V is the vertex set and E is the edge set; we always assume that V is finite.
For each vertex v of G, let N(v, G) denote the set of vertices of G that are adjacent
to v; the graph link of v in G, denoted L(v, G), is the subgraph of G induced by the
vertex set N(v, G). For a subgraph H of G, the joint graph link of H in G, denoted
L(H, G), is the subgraph of G induced by the intersection vertex set

N(H, G) =
⋂

v∈V (H)

N(v, G).

Notice that the graph link we defined for graphs is different from the topological link
defined for simplicial complexes in combinatorial topology. We now define contractible
graphs inductively by gluing and deleting vertices and edges as follows: (1) the graph
of a single vertex is contractible; (2) a graph is said to be contractible if it can be
obtained from a contractible graph by a sequence of the following graph operations.

(GO1) Deleting a vertex: A vertex v of a graph G can be deleted if its graph
link L(v, G) is contractible;

(GO2) Gluing a vertex: If H is a contractible subgraph of G, then a vertex v
not in G can be glued to G to produce a new graph G′ so that the graph
link L(v, G′) is H;

(GO3) Deleting an edge: An edge uv of G can be deleted if the joint graph link
L(uv, G) = L(u,G) ∩ L(v, G) of u and v is contractible;

(GO4) Gluing an edge: For two non-adjacent vertices u and v of G, the edge
uv can be glued to G if the joint graph link L(uv, G) of u and v is
contractible.

By this definition all complete graphs are contractible; it is shown that chordal graphs
are contractible, see [16]. Two graphs G1 and G2 are said to be graph homotopy
equivalent if G1 can be obtained from G2 by a series of graph operations (GO1-GO4).
It is clear that the graph homotopy defines an equivalence relation on the class of
graphs so that graphs are classified into graph homotopy classes. This classification of
graphs may be related to the classification of topological spaces by certain topological
transformations. To see this relationship we associate with each graph a simplicial
complex.

Let us recall that an abstract simplicial complex over a finite set V is a collection
K of non-empty subsets of V , called (open) cells, such that V =

⋃
σ∈K σ, and for each

σ ∈ K, if ρ ⊂ σ and ρ 6= ∅, then ρ ∈ K. An open cell σ is called a face of an open cell
τ if σ ⊂ τ , denoted σ ≤ τ or τ ≥ σ; σ is called a facet of τ if τ = σ ∪ {v} for some
v 6∈ σ. The geometric realization |K| is the metric space of non-negative real-valued
functions f on V such that there is a simplex σ so that

∑
v∈σ f(v) = 1 and f(v) = 0
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for all v 6∈ σ; and the metric is given by

d(f, g) =

[∑

v∈V

(f(v)− g(v))2

] 1
2

,

see [14]. A simplicial map from a simplicial complex K1 over V1 to a simplicial complex
K2 over V2 is a map f : V1 −→ V2 such that if σ is a simplex of K1, then f(σ) is
a simplex of K2. A graph homomorphism from a graph G1 to a graph G2 is map
f : V (G1) −→ V (G2) such that for each edge uv of G1, f(u)f(v) is an edge of G2.
Given a graph G, let ∆(G) denote the collection of all complete subgraphs of G; it is
clear that ∆(G) is a simplicial complex, called the clique complex of G, for complete
subgraphs are also called cliques in graph theory.

Let us denote by G the category of graphs with graph homomorphisms and by
K the category of simplicial complexes with simplicial maps. If f : G1 −→ G2 is
a graph homomorphism, then for any complete subgraph Ki of i vertices in G1, its
image f(Ki) is a complete subgraph in G2. Then we have an induced simplicial map
∆f : ∆(G1) −→ ∆(G2), given by ∆f (Ki) = f(Ki).

Conversely, given a simplicial complex K. Let ski(K) denote the i-dimensional
skeleton of K, i.e., ski(K) = {σ ∈ K : σ has at most i + 1 elements}, i ≥ 0. The 0-
skeleton together with the 1-skeleton give rise to a graph sk(K) = (sk0(K), sk1(K)−
sk0(K)), where the vertex set is the 0-skeleton and the edge set is the pure 1-skeleton.
Then sk defines a functor sk : K −→ G. For each graph G, it is clear that sk∆(G) = G.
Notice that in general we do not have ∆sk(K) = K for every simplicial complex K.
For instance, if K is the boundary of a tetrahedron, i.e., K consists of all non-empty
subsets of V except V itself, then sk(K) is the complete graph K4, so ∆(K4) represents
a solid tetrahedron, including the cell V . Of course, ∆skK = ∆(K4) is different from
K. However, if we take the first barycentric subdivision sdK of K, it is easy to see
that ∆sk(sdK) = sdK. We state this as the following proposition.

Proposition 2.1 The map ∆ is a functor from the category G of graphs to the cate-
gory K of simplicial complexes, and the map sk is a functor from K to G. Moreover,
for any graph G and any simplicial complex K, sk∆(G) = G and ∆sk(sdK) = sdK.

2

In order to give topological interpretation for graph homotopy, we need the con-
cept of simple-homotopy for simplicial complexes and CW complexes. Let K be a
simplicial complex. A face pair is an ordered pair (σ, τ) of open cells such that σ is a
facet of τ . A face pair (σ, τ) is said to be free in K if both σ and τ are open cells of K
and σ is not a face of any open cells of K other than τ . If L can be obtained from K
by a series of the following elementary simplicial collapses and elementary simplicial
expansions, we say that K is simple-homotopy equivalent to a simplicial complex L.
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τ σ
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Figure 1: K collapses to L and L expands to K

(SC) Elementary simplicial collapse: A free face pair (σ, τ) of K can be
deleted;

(SE) Elementary simplicial expansion: A face pair (σ, τ) can be added to K
if σ and τ are not open cells of K, while all the faces of τ other than σ
are open cells of K.

We say that K collapses simplicially to L or L expands simplicially to K, written

K
SC→ L or L

SE→ K, if L can be obtained from K by a sequence of only elementary
simplicial collapses, see Figure 2. It is easy to see that every simplicial cone collapses
to a point.

As pointed out by Whitehead [2], it is technically difficult to treat simple-homotopy
in the context of simplicial complexes. To the author’s understanding, in the category
of simplical complexes one lacks flexibility to construct new cells without introducing
new vertices. Thus Whitehead introduced CW complexes. A CW complex K is a
Hausdorff space, which is divided into a collection of disjoint open cells {eα} of various
dimensions, such that the following conditions are satisfied.

(CW1) Each closed cell ēα is a disjoint union of finitely many open cells eβ;

(CW2) For each open cell eα, there is a continuous map φα : Qn −→ K, where
Qn is homeomorphic to the standard closed unit ball Bn of dimension
n = dim eα, such that φ is a homeomorphism from Qn − ∂Qn onto eα

and φ(∂Qn) ⊂ ēα−eα, where ∂Qn is homeomorphic to the standard unit
sphere Sn−1;

(CW3) A subset A ⊂ K is closed if and only if A ∩ ēα is closed in ēα for all eα.

The maps φα are called characteristic maps of the cells eα; the set skn(K) = {eα :
dim eα ≤ n} is called the n-skeleton of K; and the geometric realization |skn(K)| =⋃

dim eα≤n eα is a closed subspace of K. We always assume that the number of cells in
a CW complex is finite and the highest dimension of cells is called the dimension of
the CW complex.

An ordered pair (en−1, en) of cells in a CW complex K is said to be free if
en−1 ⊂ ∂en and there exists a ball pair (Qn−1, Qn) homeomorphic to (Bn−1, Bn), where
Qn−1 ⊂ ∂Qn, such that the restriction φe|Qn−1 of the characteristic map φe : Qn −→ K
of en is the characteristic map of en−1. We say that K collapses to a CW complex L by
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an elementary CW collapse if K has a free pair (en−1, en) of cells and L = K−en−1∪en.
In this circumstance we also say that L expands to K by an elementary CW expan-
sion. Two CW complexes are said to be simple-homotopy equivalent if one can be
obtained from another by a series of elementary CW collapses and elementary CW
expansions.

It is clear that simple-homotopy for simplicial complexes and CW complexes is a
special kind of topological homotopy. In particular, elementary simplicial and CW
collapses and expansions preserve topological invariants. In the following section we
need regular CW complexes, regular CW expansions and regular CW collapses. A
CW complex is called regular if every closed cell is homeomorphic to a closed simplex
and its face ordering is isomorphic to the face ordering of the simplex. Expansions and
collapses in regular CW complexes are called regular CW expansions and collapses.

3 Graph Homotopy Reduction

We shall show in this section that the graph homotopy can be reduced to simple-
homotopy for regular CW complexes. To this end, we first show that the edge deletion
and gluing are redundant in the following lemmas. This fact follows from a private
communication with G. Chang [1].

Lemma 3.1 For any graph G and a vertex v not in G, the cone graph G ∗ v, where
V (G ∗ v) = V (G) ∪ {v} and E(G ∗ v) = E(G) ∪ {uv : u ∈ V (G)}, is contractible.

Proof We show this by induction on the number of vertices of G. It is obviously true
when G has only one vertex. Suppose it is true for any graph with k or less vertices.
Now consider an arbitrary graph G with k + 1 vertices. Let u be a vertex of G; the
cone graphs L(u,G) ∗ v and (G − u) ∗ v are contractible by induction hypothesis.
Notice that L(u,G) ∗ v is contained in (G − u) ∗ v. Then G ∗ v can be obtained by
gluing u to L(u,G)∗v in (G−u)∗v. Thus G∗v is contractible by definition of vertex
gluing. 2

Lemma 3.2 The edge deletion (gluing) can be realized by the composition of a vertex
deletion (gluing) and a vertex gluing (deletion).

Proof Let G be a graph with vertices u and v adjacent. If the joint graph link
L(uv, G) is contractible, we need to find some vertex deletion and gluing to have the
edge uv removed from G.

Let w be a vertex not in G. Since (L(v, G) − u) ∗ v is a contractible subgraph
of G, we can glue w to (L(v, G) − u) ∗ v in G. Notice that both L(uv, G) and
(L(v, G) − u) ∗ w are contractible and L(uv, G) is contained in (L(v, G) − u) ∗ w.
Then L(uv, G) ∗ u

⋃
(L(v, G) − u) ∗ w is contractible, because it can be obtained by

gluing u to L(uv, G) in (L(v, G) − u) ∗ w. It is clear that the graph link of v in
G

⋃
((L(v, G)− u) ∗ v) ∗ w is L(uv, G) ∗ u

⋃
(L(v, G)− u) ∗ w, which has been shown

to be contractible. Thus v can be removed by a vertex deletion. Rename the vertex
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u u uv v w w

wgluing deleting v

L(uv) L(uw) L(uvw)

Figure 2: Edge deletion is realized by vertex gluing and vertex deletion

w as v. We have removed the only edge uv by a vertex gluing and a vertex deletion,
see Figure 3.

The edge gluing is similar by reversing the procedure. 2

Theorem 3.3 Let G be a graph and let H be a subgraph of G. If ∆(H) is regularly
CW homotopy equivalent to a point, then, for a vertex v not in G, the simplicial
complex ∆(G) is regularly CW homotopy equivalent to ∆(G ∪H ∗ v).

Proof To start with, let us assume that ∆(H) is constructed from a point {v0} of
H by a series of regular CW expansions and collapses with free pairs (σi, τi) of cells,
1 ≤ i ≤ m. We write

{p}(σ1, τ1)
t1(σ2, τ2)

t2 · · · (σm, τm)tm = ∆(H), (1)

where ti = ±1. For (σi, τi)
±1, the positive one +1 means that (σi, τi) is an expansion

and the negative one −1 means that (σi, τi) is a collapse. The following algorithm
tells us how to construct a series of regular CW expansions and collapses by which
∆(G∪H ∗v) can be constructed from ∆(G). Let us run the expansions and collapses
that correspond to the free pairs (σi, τi) of cells in getting ∆(H) from {v0} in (1).

The Reduction Algorithm

Step 1 For {v0}, do expansion (v, v0 ∗ v) to ∆(G).

Step 2 When applying the pair (σi, τi) in (1) with ti = +1, if σi and τi are cells
of ∆(G), do expansion (σi ∗ v, τi ∗ v); if σi and τi are not cells of ∆(G),
do expansion (σi, τi) first and expansion (σi ∗ v, τi ∗ v) next.

Step 3 When applying the pair (σi, τi) in (1) with ti = −1, if σi and τi are cells
of ∆(G), do collapse (σi ∗ v, τi ∗ v); if σi and τi are not cells of ∆(G), do
collapse (σi ∗ v, τi ∗ v) first and collapse (σi, τi) next.

For i = 1, · · · ,m, define

ri =

{
+1 if ti = +1, σi and τi are not cells of ∆(G)
0 otherwise;

si =

{
−1 if ti = −1, σi and τi are not cells of ∆(G)
0 otherwise.

7



For a free pair (σ, τ) of cells, we understand that (σ, τ)0 = 1, meaning that (σ, τ) is
neither an expansion nor a collapse, and so nothing will be changed when (σ, τ)0 is
applied. The final CW complex constructed by the algorithm can be written as

{v0}(v, v0 ∗ v)+1(σ1, τ1)
r1(σ1 ∗ v, τ1 ∗ v)t1(σ1, τ1)

s1

· · · (σm, τm)rm(σm ∗ v, τm ∗ v)tm(σm, τm)sm . (2)

We need to show that the algorithm actually works, that is, at each step, the expan-
sions and collapses can be executed properly and the final CW complex (2) is the
same as ∆(G ∪H ∗ v).

In Step 1, since v is not a vertex of G, then (v, v0 ∗ v) is a free pair of cells for
∆(G). Thus the expansion (v, v0 ∗ v)+1 can be executed properly.

In Step 2, before we have applied expansion (σi, τi)
+1 to

{v0}(σ1, τ1)
t1 · · · (σi−1, τi−1)

ti−1 (3)

in (1), by definition of free pair of cells all the facets ρi of τi other than σi must have
been contained in (3), but σi and τi are not contained in (3). This means that in (3)
the last operation related to ρi is an expansion, while the last operations related to
either σi or τi, if exist, are collapses. It follows clearly that ρi ∗ v is contained in

{v0}(v, v0 ∗ v)+1(σ1, τ1)
r1(σ1 ∗ v, τ1 ∗ v)t1(σ1, τ1)

s1

· · · (σi−1, τi−1)
ri−1(σi−1 ∗ v, τi−1 ∗ v)ti−1(σi−1, τi−1)

si−1 , (4)

and (σi ∗ v, τi ∗ v) are not contained in (4). If σi and τi are cells of ∆(G), then
(σi ∗ v, τi ∗ v) is already a free pair of cells to (4). If σi and τi are not cells of ∆(G),
then (σi, τi) is a free pair of cells to (4). Thus we can do expansion (σi, τi) to (4) to
have

{v0}(v, v0 ∗ v)+1(σ1, τ1)
r1(σ1 ∗ v, τ1 ∗ v)t1(σ1, τ1)

s1

· · · (σi−1, τi−1)
ri−1(σi−1 ∗ v, τi−1 ∗ v)ti−1(σi−1, τi−1)

si−1(σi, τi)
ri . (5)

Therefore (σi ∗ v, τi ∗ v) is a free pair of cells to (5).
The argument in Step 3 is similar. When (1) is running over, ending at ∆(H),

the complexes ∆(G) and ∆(H ∗ v) are contained in (2), and the cells not in ∆(G),
if expanded at some time, must have been collapsed finally. So (2) is the same as
∆(G ∪H ∗ v). 2

Corollary 3.4 If G is a contractible graph, then ∆(G) is regularly CW homotopy
equivalent to a point.

Proof Let T ti
i (1 ≤ i ≤ n) denote the vertex gluing or vertex deletion such that

{v}T t1
1 · · ·T tn

n = G,

where v is a vertex (may or may not be in G), ti = ±1, T ti
i is a vertex gluing for

ti = +1 and a vertex deletion for ti = −1. Obviously, the single point ∆({v}) is
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simple-homotopy equivalent to a point. By Theorem 3.3, ∆({v}) is regularly CW ho-
motopy equivalent to ∆({v}T t1

1 ); again, ∆({v}T t1) is regularly CW homotopy equiv-
alent to ∆({v}T t1

1 T t2
2 ); and so on. By transitivity, ∆({v}T t1

1 · · ·T tn
n ) is regularly CW

homotopy equivalent to a point. 2

The following theorem follows immediately from Theorem 3.3 and Corollary 3.4.

Theorem 3.5 Let G be a graph and H a contractible subgraph. Then for a vertex
v not in G, the simplicial complex ∆(G) is regularly CW homotopy equivalent to
∆(G ∪H ∗ v).

We have shown that homotopy groups, as well as homology groups, are invariant
under graph transformations. Of course, the Euler characteristic is unchanged under
graph transformations. Especially, the main results in [4-8] and [16] are consequences
of Theorem 3.5.

4 Graham Homotopy

Hypergraphs are useful structures to study relational databases, see [12]. Acyclic
hypergraphs, which are the extension of trees in graph theory, correspond to acyclic
database schemes. The Graham reduction for defining acyclic hypergraphs can be
viewed as a new type of combinatorial homotopy, which is much stronger than sim-
plicial homotopy, CW homotopy, and graph homotopy. The acyclic database schemes
came from the work of many people, see the bibliography and comments of [12], pp.
482-284. The database scheme problems were first formulated by Namibar [13] in
terms of hypergraphs. The algorithm (Graham reduction) to test acyclicity for hy-
pergraphs was first introduced by M. H. Graham [3]; Yu and Ozsoyoglu [17-18] also
independently formulated the algorithm in terms of “join graphs.”

A hypergraph H = (V, E) consists of a finite set V , whose elements are called
vertices, and a collection E = {σ1, σ2, · · · , σn} of non-empty subsets of V , called
hyperedges or cells, such that V =

⋃n
i=1 σi; H is said to be reduced if there are no

hyperedges σi and σj such that σi ⊂ σj and σi 6= σj. A vertex v of H is said to
be isolated if v ∈ σi for one i and v 6∈ σj for all j 6= i. The Graham reduction for
hypergraphs are the following operations.

(GR1) Deleting an isolated vertex;

(GR2) Deleting σi if σi ⊂ σj for some j 6= i.

A hypergraph is said to be acyclic if it can be reduced to have no hyperedges by the
Graham reduction. Otherwise, it is said to be cyclic.

For any hypergraph H = (V, E) we associate a simplicial complex

∆(H) = {σ : ∅ 6= σ ⊂ σi for some σi ∈ E}.
It is clear that the reduced hypergraphs over V are in one-to-one correspondence
with the simplicial complexes over V . We shall give a topological interpretation of
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the Graham reduction on simplicial complexes. Let us first combine (GR1) and (GR2)
together as one operation.

(GR) Delete a vertex v from V and from all hyperedges σi if v belongs to
exactly one maximal hyperedge.

If a vertex v belongs to exactly one maximal hyperedge, say σ1, then ∆(H) can be
obtained by gluing v to the closed simplex ∆(σ1 − v). Obviously, this gluing can
be obtained by a series of elementary simplicial expansions. Therefore we have the
following theorem.

Theorem 4.1 The application of a Graham reduction (GR) to a hypergraph H cor-
responds to a simple collapse on the associated simplicial complex ∆(H). Moreover,
if ∆(H) = ∆(sk(∆(H))), then (GR) corresponds to a graph homotopy on sk(∆(H)).

2

For each cell σ ∈ ∆(H), the link of σ in ∆(H) is the simplicial complex

lk(σ, ∆(H)) = {τ ∈ ∆(H) : σ ∩ τ = ∅, σ ∪ τ ∈ ∆(H)}.

Notice that for a maxiaml cell σ the link lk(σ, ∆(H)) is an empty set. Let c0(H)
denote the number of connected components of ∆(H) and c(σ,H) the number of
connected components of lk(σ, ∆(H)) for each σ ∈ ∆(H). The cycle rank r(H) was
introduced by Lee in [9-11] to generalize the ordinary cycle rank in graph theory.

Definition 4.2 The cycle rank of a hypergraph H is the integer

r(H) = c0(H) +
∑

σ∈∆(H)

[c(σ,H)− 1].

Theorem 4.3 The cycle rank of a hypergraph is an integer invariant under Graham
reduction (GR).

Proof Let v be a vertex of a maximal cell, say τ , such that v is not a vertex of any
other maximal cellss. Let H ′ be the hypergraph on V − {v} obtained from H by
having v removed. For convenience we write τ − v instead of τ − {v}. For any cell σ
in ∆(H), we have the following four cases.

Case 1: v 6∈ σ and σ 6= τ − v. Then c(σ,H ′) = c(σ,H);
Case 2: v 6∈ σ and σ = τ − v. Then c(τ − v, H ′) = c(τ − v, H)− 1;
Case 3: v ∈ σ and σ 6= τ . Then c(σ,H) = 1;
Case 4: v ∈ σ and σ = τ . Then c(τ,H) = 0.

Notice that the cell σ in Case 3 and Case 4 will vanish from ∆(H ′) when v is removed
from H. Thus we have

r(H) = c0(H) + [c(τ − v, H)− 1] + [c(τ,H)− 1]

+
∑
v 6∈σ

σ 6=τ−v

[c(σ,H)− 1] +
∑
v∈σ
σ 6=τ

[c(σ,H)− 1]

10



= c0(H) + [c(τ − v, H ′)− 1] +
∑
v 6∈σ

σ 6=τ−v

[c(σ,H ′)− 1]

= c0(H
′) +

∑

σ∈∆(H′)
[c(σ,H ′)− 1]

= r(H ′).

2

Theorem 4.4 A hypergraph H is acyclic if and only if r(H) = 0. Moreover, the
cycle rank is always non-negative.

Proof It follows from Theorem 4.3 that if H is acyclic, then r(H) = 0. Suppose H
is cyclic. Apply (GR) to reduce the hypergraph H to a hypergraph H ′ so that it
cannot be further reduced by (GR). Then the maximal hyperedges τ1, · · · , τm of H ′

must satisfy the following properties:

τi ⊂
⋃

j 6=i

τj; τi 6⊂ τj for i 6= j and (τi − τj) ∩ τk 6= ∅ for some k 6= i. (6)

Notice that c(σ,H ′) ≥ 1 for any σ ∈ ∆(H ′), except τ1, · · · , τm, and c(τi, H
′) = 0,

1 ≤ i ≤ m. Denote I(H ′) = {τi ∩ τj 6= ∅ : 1 ≤ i ≤ m, 1 ≤ j ≤ m, i 6= j}. Since
c0(H

′) ≥ 1, it suffices to show that
∑

σ∈I(H′)
[c(σ,H ′)− 1] ≥ m.

For each maximal cell of ∆(H ′), say τ1, there exists a maximal cell, say τ2, such that
τ1 ∩ τ2 6= ∅. Since (6), τ1 − τ2 6= ∅. Again by (6), τ1 − τ2 must intersect another
maximal cell, say τ3. Thus (τ1 − τ2)∩ τ3 6= ∅. Of course τ1 ∩ τ2 6= τ1 ∩ τ3. This shows
that τ1 contributes a component τ1−τ2 in lk(τ1∩τ2, ∆(H ′) and a component τ1−τ3 in
lk(τ1∩τ3, ∆(H)). This means that for each cell τi∩τj 6= ∅ with i 6= j, lk(τi∩τj, ∆(H ′))
contains at least two components τi − τj and τj − τi. Consider the bipartite graph
with the vertex set I(H ′) ∪ {τ1, · · · , τm} and edges (τi ∩ τj, τi) and (τi ∩ τj, τj), then∑

σ∈I(H′) c(σ,H ′) should be the number of edges of the bipartite graph. Thus

∑

σ∈I(H′)
c(σ,H ′) =

1

2




m∑

i=1

deg(τi) +
∑

σ∈I(H′)
deg(σ)




≥ 1

2
(2m + 2|I(H ′)|)

= m + |I(H ′)|.
So we have a contradiction r(H) = r(H ′) ≥ c0(H

′) ≥ 1. The non-negativity of the
cycle rank follows from the same argument. 2

The non-negativity of the cycle rank r(H) for a hypergraph H automatically gives
rise to an inequality about the number of components of ∆(H) and the number of
components of the links lk(σ, ∆(H)) at cells σ.
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Corollary 4.5 Let ∆ be a simplicial complex with #(∆) cells. Let c0(∆) denote
the number of connected components of |∆| and c(σ) the number of components of
lk(σ, ∆)). Then ∑

σ∈∆

c(σ) ≥ #(∆)− c0(∆).

2

The present proof of Theorem 4.3 has a clear topological interpretation, that is,
(GR2) is unnecessary from topological point of view; this is why we can ignore (GR2)
and modify (GR1) to (GR). It should be pointed out that Theorem 4.3 was first
proved in [15] with respect to ear removal, which can be viewed as composition of a
series of consecutive operations of (GR1) and (GR2). Another proof of Theorem 4.3
with respect to (GR1) and (GR2) is given in [11].

Let H1 and H2 be hypergraphs. If H2 can be reduced from H1 by one (GR),
the operation from H1 to H2 is called an elementary Graham collapse; the reverse
operation from H2 to H1 is called an elementary Graham expansion. Two hypergraphs
are said to be Graham homotopy equivalent if one can be obtained from another
by a series of elementary Graham collapses and expansions. There are examples
of hypergraphs that are simple-homotopy equivalent to a point, but not Graham
homotopy equivalent to a point, namely, cyclic.

Example 4.6 The hypergraph S consisting of the following hyperedges

{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}
is not Graham homotopy equivalent to a point. Since the reduced hypergraph consists
of the hyperedges {1, 2, 3}, {1, 2, 4} and {1, 3, 4}, it is easy to check that r(S) = 1.
The geometric realization of S is the boundary of a tetrahedron with one open face
removed. Obviously, S is simple-homotopy equivalent to a point. This example also
shows that the converse of Theorem 4.7 is not true, because sk(S) is chordal.

Theorem 4.7 If H is an acyclic hypergraph, then G = sk∆(H) is chordal.

Proof Suppose G is not chordal for some acyclic hypergraph H. Then there is a
cycle v1v2 · · · vnv1 in G without chords, n ≥ 4. If vi−1vi ∈ τi and vivi+1 ∈ τi+1

for some maximal hyperedges τi and τi+1, then vi−1 6∈ τi+1 and vi+1 6∈ τi, for in
other case vi−1vi+1 will be a chord. Hence τi 6= τi+1 and each vi belongs to two
maximal hyperedges. Thus no vertex vi can be removed by (CR). Notice that when
some vertices other than those vi are removed by (GR) in the reduction process, the
non-removable property of vi still holds. By definition of acyclicity, H is cyclic, a
contradiction. 2

Corollary 4.8 If a hypergraph H is Graham homotopy equivalent to a point, then H
can be reduced to a point only by elementary Graham collapses.

Proof By Theorem 4.3 the cycle rank r(H) is invariant under Graham reduction
(GR). Since the cycle rank of a point is zero, then r(H) = 0. By Theorem 4.4, H is
acyclic. Thus H can be contracted to a point only by elementary Graham collapses.
2
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Figure 3: Bing’s house

5 Bing’s House

In this section we use Bing’s house to describe the significant difference of simple-
homotopy and graph homotopy from Graham homotopy. Bing’s house is a closed
topological surface (not a 2-manifold), see Figure 3. It is well-known that Bing’s
house is simple-homotopy equivalent to a point, but can not be contracted to a point
only by elementary collapses, see [2], because there is no free pair of cells. Bing’s house
can be realized by a graph Gb, whose vertices and edges are shown in Figure ??. Like
the situation of simple-homotopy, we shall see that Gb is graph homotopy equivalent
to a point, but can not be contracted to a point only by vertex deletion. The latter
can be checked directly by computing the graph links of vertices of Gb, all are not
contractible, as follows:

L(u1) is the union of two cycles u2u7v7v1u2 and u4u5v5v1u4;
L(u2) is the cycle u1u7u6u3v3v2v1u1;
L(u3) is the cycle u2u6u4v3u2;
L(u5) is the cycle u1u4u6v5u1;
L(u6) is the cycle u2u3u4u5v5v6v7u7u2;
L(v1) is the union of three cycles u1u2v2v7u1, u1u4v4v5u1, and u1v5w1v7u1;
L(v2) is the cycle u2v1v7v6w2v3u2;
L(v3) is the cycle u2u3u4v4w4w3w2v2u2;
L(v5) is the union of two cycles u1u5u6v6v4v1u1 and v1v4v6w6w5w1v1.

By symmetry, L(u4) and L(u7) are isomorphic to L(u2) and L(u5) respectively; L(v4),
L(v6), and L(v7) are isomorphic to L(v2), L(v1), and L(v5) respectively; L(wi) are
isomorphic to L(ui) for i = 2, 3, 4, 5, 7; L(w1) and L(w6) are isomorphic to L(u6) and
L(u1) respectively.

To see that Gb is graph homotopy equivalent to a point, notice that we can glue
the edges u2v7, u4v5, u2v6, u4v6, u3v6, v3v6, v6w3, and w3w6 consecutively to Gb to fill
up the “lower room” of ∆(Gb), because the joint graph links of these pair of vertices,
listed below, are all contractible.

L(u2v7) is the path u6u7u1v1v2;
L(u4v5) is the path u6u5u1v1v4, isomorphic to L(u2v7);
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Figure 4: The graph Gb of Bing’s house
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Figure 5: Gb is graph homotopy equivalent to G′ and G′ is contractible

L(u2v6) is the path u6v7v2;
L(u4v6) is the path u6v5v4, isomorphic to L(u2v6);
L(u3v6) is the path u2u6u4;
L(v3v6) is the path w2v2u2u3u4v4w4;
L(v6w3) is the path w2v3w4;
L(w3w6) is the path w2v6w4.

Similarly, we can glue the edges v7w2, v5w4, v1w2, v1w4, v1w3, v1v3, u3v1, and u1u3

consecutively to fill up the “upper room” of ∆(Gb), because the joint graph links of
these pair of vertices are isomorphic to those joint graph links of the edges for filling
up the “lower room.” By gluing all those edges for filling up the two “rooms,” Gb

is expanded to a graph G′; ∆(G′) is a triangulated solid cube. Notice that L(v1, G
′)

and L(v6, G
′) are isomorphic and contractible, see Part (a) of Figure 5. Then v1 and

v6 can be deleted from G′ to obtain a graph G′′. Now the graph links of u1, u6,
w1, and w6 in G′′ are all isomorphic and contractible, see Part (b) of Figure 5. Re-
move the vertices u1, u6, w1, w6 from G′′, we obtain a contractible graph G′′′, see Part
(c) of Figure 5. We thus have proved that Gb is graph homotopy equivalent to a point.

The above example shows that for graph homotopy, as well as for simple-homotopy,
there is no straightforward algorithm to test whether a simplicial complex is con-
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tractible. However, for Graham homotopy, the situation is quite different. If a sim-
plicial complex is Graham homotopy equivalent to a point, then it can always be
reduced to a point only by elementary Graham collapses. This special property of
Graham homotopy makes it useful to the theory of algorithms of theoretical computer
science. This hints that, if we compare elementary collapses to the forward steps in
a computer algorithm and elementary expansions to backtracks, then an algorithm
with backtracks is essentially different from one without backtracks (possibly the dif-
ference is between polynomial and exponential). Though we could not formulate our
ideas on the comparison of algorithms and homotopies in a precise way, yet we believe
that our point of view is still useful and is worth to be explored. Graham homotopy
also suggests that some stronger homotopies need be studied even for contractible
spaces. The numerical characterizations for simple-homotopy and graph homotopy
of simplicial complexes are particularly wanted.
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