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PARTIALLY CRITICAL TOURNAMENTS AND
PARTIALLY CRITICAL SUPPORTS

MOHAMED Y. SAYAR

Abstract. Given a tournament T = (V, A), with each subset X of V is
associated the subtournament T [X] = (X, A∩(X×X)) of T induced by
X. A subset I of V is an interval of T provided that for any a, b ∈ I and
x ∈ V \I, (a, x) ∈ A if and only if (b, x) ∈ A. For example, ∅, {x}, where
x ∈ V , and V are intervals of T called trivial. A tournament is inde-
composable if all its intervals are trivial; otherwise, it is decomposable.
Let T = (V, A) be an indecomposable tournament. The tournament T
is critical if for every x ∈ V , T [V \ {x}] is decomposable. It is partially
critical if there exists a proper subset X of V such that |X| ≥ 3, T [X]
is indecomposable and for every x ∈ V \X, T [V \ {x}] is decomposable.
The partially critical tournaments are characterized. Lastly, given an
indecomposable tournament T = (V, A), consider a proper subset X of
V such that |X| ≥ 3 and T [X] is indecomposable. The partially critical
support of T according to T [X] is the family of x ∈ V \ X such that
T [V \{x}] is indecomposable and T [V \{x, y}] is decomposable for every
y ∈ (V \ X) \ {x}. It is shown that the partially critical support con-
tains at most three vertices. The indecomposable tournaments whose
partially critical supports contain at least two vertices are characterized.

1. Introduction

A digraph D = (V,A) consists of a finite and nonempty vertex set V and
of an arc set A where an arc is an ordered pair of distinct vertices. With each
nonempty subsetX of V associate the subdigraph D[X] = (X,A∩(X×X)) of
D induced by X. For convenience, given X ( V , D[V \X] is also denoted
by D − X and by D − x when X = {x}. Given a digraph D = (V,A),
we define an equivalence relation S on V in the following way. For any
x 6= y ∈ V , xSy if x = y or x 6= y and there are vertices x = x0, . . . , xm = y
and y = y0, . . . , yn = x such that (xi, xi+1) ∈ A for 0 ≤ i ≤ m − 1 and
(yj , yj+1) ∈ A for 0 ≤ j ≤ n− 1. The equivalence classes of S are called the
strongly connected components of D.

A digraph D = (V,A) is a tournament provided that for any x 6= y ∈ V ,
(x, y) ∈ A if and only if (y, x) /∈ A. Let T = (V,A) be a tournament. Given
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x 6= y ∈ V , x −→ y means (x, y) ∈ A. Given Y ⊆ V and x ∈ V \ Y ,
x −→ Y means x −→ y for every y ∈ Y . We similarly define Y −→ x.
Given X,Y ∈ V , X −→ Y means x −→ Y for every x ∈ X. With each
tournament T = (V,A) associate its dual T ? = (V,A?) defined as follows:
(x, y) ∈ A? if (y, x) ∈ A for any x, y ∈ V . A tournament T = (V,A) is a
total order provided that for any x, y, z ∈ V , if x −→ y and y −→ z, then
x −→ z. Given a total order T = (V,A) and x, y ∈ V , x −→ y means x < y
modulo T .

A graph G = (V,E) consists of a finite and nonempty vertex set V and of
an edge set E where an edge is an unordered pair of distinct vertices. With
each nonempty subset X of V associate the subgraph G[X] = (X,E ∩

(
X
2

)
)

of G induced by X. For instance, given a set V , (V,∅) is the empty graph
on V whereas (V,

(
V
2

)
) is the complete graph. With each graph G = (V,E)

associate its complement G = (V,E) defined as follows: given x 6= y ∈ V ,
{x, y} ∈ E if {x, y} /∈ E. Given a graph G = (V,E), consider a partition p of
V . The graph G is multipartite by p if for every M ∈ p, G[M ] is empty. It is
bipartite when |p| = 2. Given a graph G = (V,E), we define an equivalence
relation C on V in the following way. For any x 6= y ∈ V , xCy if x = y or
x 6= y and there are vertices x = x0, . . . , xn = y such that {xi, xi+1} ∈ E
for i ∈ {0, . . . , n− 1}. The equivalence classes of C are called the connected
components of G. The number of connected components of G is denoted by
c(G). The graph G is connected if c(G) = 1, otherwise it is disconnected.
A vertex x of G is isolated if {x} constitutes a connected component of G.
Given a vertex x of G, the neighbourhood NG(x) of x in G is the set of y ∈ V
such that {x, y} ∈ E. The degree dG(x) of x in G is the cardinality of NG(x).

1.1. Indecomposable digraphs. Given a digraph D = (V,A), a subset I
of V is an interval [1, 7, 6, 10] (or a module [11] or a clan [5, 4]) of D provided
that for any a, b ∈ I and x ∈ V \ I, (a, x) ∈ A if and only if (b, x) ∈ A, and
(x, a) ∈ A if and only if (x, b) ∈ A. For example, ∅, {x}, where x ∈ V , and
V are intervals of D called trivial. For tournaments, the notion of interval
generalizes the usual notion of interval of a total order. Furthermore, the
intervals of a digraph share the same properties as those of a total order.

Proposition 1. Let D = (V,A) be a digraph.

(i) Given a nonempty subset W of V , if I is an interval of D, then
I ∩W is an interval of D[W ].

(ii) Given an interval I of D, if J is an interval of D[I], then J is an
interval of D.

(iii) If I and J are intervals of D, then I ∩ J is an interval of D.
(iv) If I and J are intervals of D such that I ∩ J 6= ∅, then I ∪ J is an

interval of D.
(v) If I and J are intervals of D such that I \ J 6= ∅, then J \ I is an

interval of D.
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A digraph is indecomposable [1, 7, 10] (or prime [11] or primitive [5, 4])
if all its intervals are trivial, otherwise it is decomposable. For instance, the
3-cycle T3 defined on {0, 1, 2} by 0 −→ 1 −→ 2 −→ 0 is indecomposable.
On the other hand, a total order on at least three vertices is decomposable.
Notice that a tournament with one or two vertices is indecomposable.

Remark 1. Given a tournament T = (V,A), each strongly connected com-
ponent C of T is an interval of T . Indeed consider a, b ∈ C and c ∈ V
such that a −→ c −→ b. Since a, b ∈ C, there exist b = b0, . . . , bn = a ∈ C
such that bi −→ bi+1 for 0 ≤ i ≤ n − 1. By considering the sequences
b = b0, . . . , bn, bn+1 = c and c = c0, c1 = b, we obtain c ∈ C. Therefore, for
every x ∈ V \C, we have either x −→ C or C −→ x. Given distinct strongly
connected components C and D of T , it follows that C −→ D or D −→ C.
Consequently T induces a total order on its strongly connected components.

We review some of the relevant properties of the indecomposable subdi-
graphs of an indecomposable digraph. We begin with the existence of an
indecomposable subdigraph with three or four vertices.

Proposition 2 (Sumner [12]). Given a digraph D = (V,A), with |V | ≥ 3,
if D is indecomposable, then there is a subset X of V such that |X| = 3 or
4 and D[X] is indecomposable.

To construct indecomposable subdigraphs of a larger size, we use the
following. Let D = (V,A) be a digraph. Given a proper subset X of V such
that |X| ≥ 3 and D[X] is indecomposable, consider the following subsets of
V \X:

• Ext(X) is the family of the elements x of V \X such that D[X∪{x}]
is indecomposable;
• 〈X〉 is the family of the elements x of V \X such that X is an interval

of D[X ∪ {x}];
• For each u ∈ X, X(u) is the family of the elements x of V \X such

that {u, x} is an interval of D[X ∪ {x}].
The family {Ext(X), 〈X〉} ∪ {X(u);u ∈ X} is denoted by pD[X]. Using
Proposition 1, it is simply verified that pD[X] is a partition of V \ X.
Moreover, given M ∈ pD[X] \ {Ext(X)}, D[X ∪ {x, y}] is decomposable
for x, y ∈ M . Indeed, if x, y ∈ 〈X〉, then X is an interval of D[X ∪ {x, y}].
Given u ∈ X, if x, y ∈ X(u), then {u, x, y} is an interval of D[X ∪ {x, y}].
When x ∈M and y ∈ (V \X) \M , where M ∈ pD[X] \ {Ext(X)}, or when
x 6= y ∈ Ext(X), we have the following.

Lemma 1 (Ehrenfeucht and Rozenberg [5]). Given a digraph D = (V,A),
consider X ( V such that |X| ≥ 3 and D[X] is indecomposable.

(i) For x ∈ 〈X〉 and y ∈ V \(X∪〈X〉), if D[X∪{x, y}] is decomposable,
then X ∪ {y} is an interval of D[X ∪ {x, y}].

(ii) Given u ∈ X, for x ∈ X(u) and y ∈ V \ (X ∪X(u)), if D[X ∪{x, y}]
is decomposable, then {x, u} is an interval of D[X ∪ {x, y}].
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(iii) For x 6= y ∈ Ext(X), if D[X ∪ {x, y}] is decomposable, then {x, y}
is an interval of D[X ∪ {x, y}].

The next proposition results from the preceding lemma.

Proposition 3 (Ehrenfeucht and Rozenberg [5]). Given a digraph D =
(V,A), consider X ⊆ V such that |X| ≥ 3 and D[X] is indecomposable. If
D is indecomposable and |V \X| ≥ 2, then there exist a 6= b ∈ V \X such
that D[X ∪ {a, b}] is indecomposable.

Given a digraph D = (V,A), consider X ⊆ V such that |X| ≥ 3, |V \X| ≥
2 andD[X] is indecomposable. Proposition 3 leads us to associate withD[X]
the outside graph GD[X] = (V \X,ED[X]) defined in the following manner.
For any x 6= y ∈ V \X, {x, y} ∈ ED[X] if D[X ∪ {x, y}] is indecomposable.

Remark 2. Given a digraph D = (V,A), consider X ( V such that |X| ≥ 3
and D[X] is indecomposable. Before Lemma 1, we observed that GD[X][M ]
is empty for each M ∈ pD[X] \ {Ext(X)}. Consequently, if Ext(X) = ∅,
then GD[X] is multipartite by pD[X].

The following result is a consequence of Propositions 2 and 3.

Corollary 1 (Ehrenfeucht and Rozenberg [5]). Given an indecomposable
digraph D = (V,A) such that |V | ≥ 5. There exist x, y ∈ V such that
D − {x, y} is indecomposable.

1.2. Critical and partially critical digraphs. In Corollary 1, we may
have x = y. Whence the following definition. A vertex x of an indecom-
posable digraph D = (V,A) is critical when D − x is decomposable. Given
a subset X of V , D is X-critical if all the elements of X are critical. An
indecomposable digraph D = (V,A) is critical [10] if it is V -critical. An
indecomposable digraph D = (V,A) is partially critical [1] if there exists a
proper subset X of V such that |X| ≥ 3, D[X] is indecomposable and D is
(V \X)-critical. The following is an easy consequence of Proposition 3. For
its proof, we refer to [1, Lemma 4.1 and Proposition 4.2].

Lemma 2. Given an indecomposable digraph D = (V,A), consider X ( V
such that |X| ≥ 3 and G[X] is indecomposable. Assume that G is (V \X)-
critical. For every Y ( V such that Y ⊇ X, if G[Y ] is indecomposable, then
|V \ Y | is even. The three assertions below follow

(i) |V \X| is even;
(ii) G[X ∪ Z] is decomposable for every subset Z of V \ X such that
|Z| = 1 or 3;

(iii) for every Y ( V such that Y ) X, if G[Y ] is indecomposable, then
G[Y ] is (Y \X)-critical.

The notions of interval, of indecomposable digraph, of critical digraph and
of partially critical digraph are also introduced for graphs by identifying a
graph G = (V,E) with the digraph D = (V,A) defined as follows. For any
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x 6= y ∈ V , (x, y) ∈ A if {x, y} ∈ E. The analogue of Remark 1 for graphs
is simple.

Remark 3. Let C be a connected component of a graph G = (V,E). For
c ∈ C and x ∈ V \ C, we have {c, x} 6∈ E. Thus C is an interval of G.
Furthermore G induces an empty graph on its connected components.

To state the characterization of the critical graphs attributed to Schmerl
and Trotter [10], we introduce for n ≥ 1 the graph G2n = ({0, . . . , 2n −
1}, E2n) defined as follows (see Figure 1). For any x 6= y ∈ {0, . . . , 2n− 1},
{x, y} ∈ E2n if there exist i ≤ j ∈ {0, . . . , n−1} such that {x, y} = {2i, 2j+
1}. '
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Figure 1. G2n.

Theorem 1 (Schmerl and Trotter [10]). Given an indecomposable graph
G = (V,E) such that |V | ≥ 4, G is critical if and only if G is isomorphic to
G2n or to G2n where n ≥ 2.

Breiner, Deogun and Ille [1] characterized the partially critical graphs.
We adopt the same approach to study the partially critical tournaments.
We use similar preliminary results and we omit their proofs when they are
easily adaptable from the analogues for graphs. Our first characterization
of the partially critical tournaments (see Theorems 3 and 4) was published
in French without a proof [8]. The second one (see Theorem 5) provides a
simple proof of the main result of [7] for tournaments. Using Theorems 3 and
4, we conclude with the study of the partial critical support of a tournament.
The notion of partially critical support comes from that of critical support
introduced in [9] as follows.

Given an indecomposable digraph D = (V,A), the family of its non-
critical vertices is called its support and is denoted by σ(D). The critical
support of D is the family σc(D) of x ∈ σ(D) such that D − x is critical.
The next two results are obtained in [9].
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Proposition 4. For every indecomposable tournament T = (V,A), with
|V | ≥ 7, |σc(T )| ≤ 1.

Theorem 2. For every indecomposable digraph D = (V,A), with |V | ≥ 7,
|σc(D)| ≤ 2.

In terms of partial criticality, we obtain the following notion. Given an
indecomposable digraph D = (V,A), consider X ( V such that |X| ≥ 3 and
D[X] is indecomposable. The partially critical support of D according to
D[X] is the family σpD[X](D) of x ∈ V \X such that D−x is indecomposable
and ((V \{x})\X)-critical. In the last section, we show by using Theorem 5
that the partially critical support of an indecomposable tournament contains
at most three vertices (see Lemma 10). Lastly, we characterize the indecom-
posable tournaments whose partially critical supports contain at least two
vertices (see Theorem 6 and Corollary 4).

2. Preliminaries

We use the following easily verified properties of G2n.

Observation 1. Consider an integer n ≥ 1.
(i) For i ∈ {0, . . . , n− 1}, dG2n(2i) = n− i and dG2n(2i+ 1) = i+ 1.
(ii) G2n is bipartite by B(G2n) = {{0, 2, . . . , 2n− 2}, {1, 3, . . . , 2n− 1}}.
(iii) The permutation ψ2n of {0, . . . , 2n − 1}, which interchanges i and

(2n − 1) − i for i ∈ {0, . . . , 2n − 1}, and Id{0,...,2n−1} are the only
automorphisms of G2n.

(iv) Assume that n ≥ 2. For every j ∈ {0, . . . , 2n − 1}, G2n − j admits
a single non-trivial interval Ij determined by I0 = {2, . . . , 2n − 1},
I2n−1 = {0, . . . , 2n− 3} and Ij = {j − 1, j + 1} for 1 ≤ j ≤ 2n− 2.

In the case of tournaments, we refine the partition pD[X] as follows. Given
a tournament T = (V,A), consider X ⊆ V such that |X| ≥ 3, |V \X| ≥ 2
and T [X] is indecomposable. The element 〈X〉 of pT [X] is divided into
X− = {x ∈ 〈X〉 : x −→ X} and X+ = {x ∈ 〈X〉 : X −→ x}. Similarly,
for each u ∈ X, X(u) is divided into X−(u) = {x ∈ X(u) : x −→ u} and
X+(u) = {x ∈ X(u) : u −→ x}. We introduce the three families qT [X] =
{Ext(X), X−, X+}∪{X−(u), X+(u)}u∈X , q−T [X] = {X−}∪{X−(u)}u∈X and
q+T [X] = {X+} ∪ {X+(u)}u∈X .

Remark 4. Given a tournament T = (V,A), consider X ⊆ V such that
|X| ≥ 3, |V \X| ≥ 2 and T [X] is indecomposable. Assume that Ext(X) = ∅.
For any x 6= y ∈ V \X, we have {x, y} is an interval of T [X ∪{x, y}] if and
only if x and y belong to the same element of qT [X].

Now, we examine the outside graph GT [X] associated with an indecom-
posable subtournament T [X] of an indecomposable tournament T . We omit
the proof of the next two results. Their corresponding results are [1, Lemma
2.6] and [1, Lemma 2.7] respectively.
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Lemma 3. Given a tournament T = (V,A), consider X ⊆ V such that
|X| ≥ 3 and T [X] is indecomposable. If Ext(X) = ∅, then the following two
assertions hold.

(i) If I is an interval of T such that I ∩X = ∅, then I is an interval
of GT [X] and there exists N ∈ qT [X] such that I ⊆ N .

(ii) Let M ∈ pT [X] and N ∈ qT [X] such that N ⊆M . If I is an interval
of GT [X] such that I ⊆ N and if I is an interval of T [M ], then I is
an interval of T .

Lemma 4. Given a tournament T = (V,A), consider X ⊆ V such that
|X| ≥ 3 and T [X] is indecomposable.

(i) If I is an interval of T such that X ⊆ I, then the elements of V \ I
are isolated vertices of GT [X].

(ii) Given u ∈ X, if I is an interval of T such that I ∩X = {u}, then
the elements of I \ {u} are isolated vertices of GT [X].

Consequently, if T admits a non-trivial interval I such that I ∩X 6= ∅, then
GT [X] possesses isolated vertices.

Given an indecomposable tournament T = (V,A), consider X ⊆ V such
that |X| ≥ 3 and T [X] is indecomposable. By Lemma 2, if T is (V \X)-
critical, then T [X ∪ {a, b, c}] is decomposable for distinct elements a, b, c of
V \ X. We consider the following two situations. Once again, we refer to
the corresponding results [1, Lemma 4.3] and [1, Lemma 4.4] respectively.

Lemma 5. Given a tournament T = (V,A), consider X ⊆ V such that
|X| ≥ 3 and T [X] is indecomposable. Given distinct elements a, b, c of
V \ X such that {a, b}, {a, c} ∈ ET [X], if T [X ∪ {a, b, c}] is decomposable,
then {b, c} is an interval of T [X ∪{a, b, c}] and hence there exists N ∈ qT [X]

such that b, c ∈ N .

Lemma 6. Given a tournament T = (V,A), consider X ⊆ V such that
|X| ≥ 3 and T [X] is indecomposable. Given M,N ∈ pT [X], consider a ∈M
and b 6= c ∈ N such that {a, b} ∈ ET [X] and {a, c} /∈ ET [X]. If T [X∪{a, b, c}]
is decomposable, then the following assertions are satisfied

(1) If N = 〈X〉, then X ∪ {a, b} is an interval of T [X ∪ {a, b, c}];
(2) If N = X(u), where u ∈ X, then {u, c} is an interval of

T [X ∪ {a, b, c}].

3. Example

The following example illustrates the main steps of the characterization
of the partially critical tournaments based on the outside graph (see The-
orems 3 and 4 below). Consider the tournament T = (V,A) defined on
V = X ∪ {x0, . . . , x2m−1} ∪ {y0, . . . , y2n−1} as follows, where X = {0, 1, 2},
m ≥ 2 and n ≥ 2 (see Figure 2).

• T [X] = T3.
• {x0, x2, . . . , x2m−2} −→ X −→ {y0, y2, . . . , y2n−2}.
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• 2 −→ {x1, x3, . . . , x2m−1} −→ {0, 1}.
• {0, 2} −→ {y1, y3, . . . , y2n−1} −→ 1.
• {x0, x1, . . . , x2m−1} −→ {y0, y1, . . . , y2n−1}.
• T [{x0, x2, . . . , x2m−2}] = x2m−2 < x2m−4 < · · · < x0 and
T [{x1, x3, . . . , x2m−1}] = x2m−1 < x2m−3 < · · · < x1.
• T [{y0, y2, . . . , y2n−2}] = y0 < y2 < · · · < y2n−2 and
T [{y1, y3, . . . , y2n−1}] = y1 < y3 < · · · < y2n−1.
• For i, j ∈ {0, . . . ,m− 1}, x2i+1 −→ x2j if and only if j ≤ i

(in Figure 2, only the arcs x2i+1 −→ x2j are represented).
• For i, j ∈ {0, . . . , n− 1}, y2i −→ y2j+1 if and only if i ≤ j

(in Figure 2, only the arcs y2i −→ y2j+1 are represented).
Clearly X− = {x0, x2, . . . , x2m−2}, X+ = {y0, y2, . . . , y2n−2}, X−(0) =

{x1, x3, . . . , x2m−1} and X+(0) = {y1, y3, . . . , y2n−1}. Therefore Ext(X) =
∅, pT [X] = {〈X〉, X(0)} and qT [X] = {X−, X+, X−(0), X+(0)}. The first
claim follows from Remark 2 and from Lemma 1.

Claim 1.
(1) The function {0, . . . , 2m−1} −→ {x0, . . . , x2m−1}, defined by i 7→ xi

for i ∈ {0, . . . , 2m − 1}, realizes an isomorphism from G2m onto
GT [X][{x0, . . . , x2m−1}];

(2) The function {0, . . . , 2n − 1} −→ {y0, . . . , y2n−1}, defined by j 7→
yj for j ∈ {0, . . . , 2n − 1}, realizes an isomorphism from G2n onto
GT [X][{y0, . . . , y2n−1}];

(3) For x ∈ {x0, x1, . . . , x2m−1} and y ∈ {y0, y1, . . . , y2n−1}, {x, y} /∈
ET [X].

Claim 2. The tournament T is indecomposable.

Proof. Consider an interval I of T such that |I| ≥ 2. We must show that
I = V . For a contradiction, suppose that I ∩ X = ∅. As Ext(X) = ∅, it
follows from Lemma 3 that I is an interval of GT [X] contained in an element
N of qT [X]. Thus there exists Y = {x0, . . . , x2m−1} or {y0, . . . , y2n−1} such
thatN ⊆ Y . By Proposition 1, I is an interval ofGT [X][Y ]. Since |I| ≥ 2 and
since N ( Y , I would be a non-trivial interval of GT [X][Y ]. But GT [X][Y ]
is indecomposable by Theorem 1 and Claim 1. Therefore I ∩ X 6= ∅. It
follows also from Claim 1 that {x0, . . . , x2m−1} and {y0, . . . , y2n−1} are the
connected components of GT [X]. In particular GT [X] has no isolated vertices.
It follows from Lemma 4 that I is a trivial interval of T and hence I = V . �

Claim 3. The tournament T is (V \X)-critical.

Proof. It suffices to verify the following
• {x1, 0} is an interval of T − x0;
• V \ {x2m−1, x2m−2} is an interval of T − x2m−1;
• for i ∈ {1, . . . , 2m− 2}, {xi−1, xi+1} is an interval of T − xi;
• {y1, 0} is an interval of T − y0;
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Figure 2. A (V \X)-critical tournament.

• V \ {y2n−1, y2n−2} is an interval of T − y2n−1;
• for every j ∈ {1, . . . , 2n− 2}, {yj−1, yj+1} is an interval of T − yj .

�

4. The first results

We consider an indecomposable tournament T = (V,A) and a proper
subset X of V such that |X| ≥ 3 and T [X] is indecomposable. We do not
assume that T is (V \X)-critical. Following Lemma 2, we only assume that
T [X ∪ Y ] is decomposable for every subset Y of V \ X such that |Y | = 1
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or 3. In particular note that Ext(X) = ∅. The proof of the first lemma is
identical to that of [1, Corollary 4.5].

Lemma 7. The outside graph GT [X] has no isolated vertices.

Lemma 8. If X− 6= ∅ and X+ 6= ∅, then X− −→ X+. Similarly, for
every u ∈ X, if X−(u) 6= ∅ and X+(u) 6= ∅, then X−(u) −→ X+(u).

Proof. First, consider a ∈ X− and b ∈ X+. By Lemma 7, there exists
a′ ∈ V \ X such that {a, a′} ∈ ET [X]. Since a and b are not in the same
element of qT [X], it follows from Lemma 5 that {a′, b} /∈ ET [X]. By Lemma 6,
X ∪{a, a′} is an interval of T [X ∪{a, a′, b}]. Thus a −→ b because X −→ b.

Second, given u ∈ X, consider a ∈ X−(u) and b ∈ X+(u). By Lemma 7,
there exists a′ ∈ V \ X such that {a, a′} ∈ ET [X]. By Lemma 5 {a′, b} /∈
ET [X]. It follows from Lemma 6 that {u, b} is an interval of T [X ∪{a, a′, b}].
Thus a −→ b because a −→ u. �

Lemma 9. For every M ∈ qT [X], T [M ] is a total order.

Proof. Let M ∈ qT [X]. By interchanging T and T ?, assume that M ∈ q−T [X].
By Remark 1, it suffices to establish that each strongly connected component
of T [M ] is reduced to a singleton. Since T is indecomposable, we verify that
each strongly connected component of T [M ] is an interval of T . Let S be a
strongly connected component of T [M ]. For a contradiction, suppose that
there exists x ∈ V \ S such that S is not an interval of T [S ∪ {x}]. Thus
S− = {s ∈ S : s −→ x} and S+ = {s ∈ S : x −→ s} are nonempty. It
follows from Remark 4 that S is an interval of T [X ∪ S]. Moreover S is
an interval of T [M ] by Remark 1. Therefore x /∈ M ∪ X. We show that
S− −→ S+ or S+ −→ S− so that T [S] would not be strongly connected.

First, assume that M = X−. By Lemma 8, X− −→ X+ when X+ 6= ∅.
Therefore x /∈ X ∪ 〈X〉. Let s− ∈ S− and s+ ∈ S+. Since x −→ s+ −→ X
and s− −→ X ∪ {x}, it follows from Lemma 1 that {s+, x} ∈ ET [X] and
{s−, x} /∈ ET [X]. By Lemma 6, X ∪{s+} is an interval of T [X ∪{s−, s+, x}].
Thus s− −→ s+ because s− −→ X. Consequently S− −→ S+.

Second, assume that M = X−(u) where u ∈ X. By Lemma 8, X−(u) −→
X+(u) when X+(u) 6= ∅. Thus x /∈ X ∪X(u). For example, assume that
u −→ x and consider any s− ∈ S− and s+ ∈ S+. Since u −→ x −→ s+ and
{u, s−} −→ x, it follows from Lemma 1 that {s+, x} ∈ ET [X] and {s−, x} /∈
ET [X]. By Lemma 6, {u, s−} is an interval of T [X ∪ {s−, s+, x}]. Thus
s+ −→ s− because s+ −→ u. Consequently S+ −→ S− when u −→ x. �

Proposition 5. For every connected component C of GT [X], GT [X][C] is
bipartite by two elements of qT [X] and T [X ∪ C] is indecomposable.

Proof. We begin with the following observation. For every M ∈ qT [X], if
M ∩ C 6= ∅, then M ⊆ C. Suppose for a contradiction that there is M ∈
qT [X] such that M ∩C 6= ∅ and M \C 6= ∅. Let y ∈M ∩C and z ∈M \C.
By Lemma 7, there are y′ ∈ C and z′ ∈ V \C such that {y, y′} ∈ ET [X] and
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{z, z′} ∈ ET [X]. Clearly {y, z}, {y′, z}, {y, z′}, {y′, z′} /∈ ET [X]. Assume that
M ⊆ 〈X〉. By interchanging T and T ?, assume that M = X−. It follows
from Lemma 6 applied to T [X ∪ {y, y′, z}] that X ∪ {y, y′} is an interval
of T [X ∪ {y, y′, z}]. Since z −→ X, we get z −→ y. But, by the same
lemma applied to T [X ∪ {y, z, z′}], we obtain that X ∪ {z, z′} is an interval
of T [X∪{y, z, z′}] and y −→ z. A similar approach provides a contradiction
when M ⊆ X(u) where u ∈ X.

Now, we prove that GT [X][C] is bipartite. By Lemma 7, there exist a 6=
a′ ∈ C such that {a, a′} ∈ ET [X]. Consider MC , NC ∈ qT [X] such that a ∈
MC and a′ ∈ NC . By Remark 2, MC 6= NC . Furthermore MC ∪NC ⊆ C by
the above observation. We show that C ⊆MC∪NC . Let b ∈ C. There exists
a sequence a = a0, . . . , an = b ∈ C such that {ai, ai+1} ∈ ET [X] for every i ∈
{0, . . . , n−1}. We verify that a1 ∈ NC . This is obvious when a1 = a′. When
a1 6= a′, a0, a1, a

′ are distinct element of V \X such that {a0, a1}, {a0, a
′} ∈

ET [X]. By Lemma 5 applied to T [X ∪ {a0, a1, a
′}], a1 ∈ NC . Assume that

n ≥ 2 and consider i ∈ {1, . . . , n − 1}. Since {ai, ai−1}, {ai, ai+1} ∈ ET [X],
it follows from Lemma 5 that ai−1 and ai+1 belong to the same element
of qT [X]. Therefore a0, a2, . . . ∈ MC and a1, a3, . . . ∈ NC . In particular
b = an ∈ MC ∪ NC . Consequently C = MC ∪ NC . As GT [X][MC ] and
GT [X][NC ] are empty by Remark 2, GT [X][C] is bipartite by {MC , NC}.

Lastly, we establish that T [X ∪C] is indecomposable. More precisely, we
prove that if T [X ∪ C] admits a non-trivial interval I, then I ∩X = ∅ and
I would be a non-trivial interval of T as well. Suppose for a contradiction
that I ∩ X 6= ∅. By Lemma 4 applied to T [X ∪ C], GT [X][C] admits
isolated vertices. Thus C would be a singleton which contradicts Lemma 7.
Therefore I ∩ X = ∅. As Ext(X) = ∅, it follows from the first assertion
of Lemma 3 applied to T [X ∪ C] that I is an interval of GT [X][C] and
I ⊆M ∩C where M ∈ qT [X]. Since C = MC ∪NC , I ⊆MC or I ⊆ NC . For
instance, assume that I ⊆MC . We apply the second assertion of Lemma 3
to show that I is an interval of T . By denoting by M ′ the element of pT [X]

containing MC , we must verify that I is an interval of GT [X] and of T [M ′].
By Remark 3, C is an interval of GT [X]. As I is an interval of GT [X][C], it
follows from Proposition 1(ii) that I is an interval of GT [X]. It remains to
verify that I is an interval of T [M ′]. Since I is an interval of T [X ∪C] with
I ⊆MC , I is an interval of T [MC ] by Proposition 1(i). By Lemma 8, MC is
an interval of T [M ′]. Thus I is an interval of T [M ′] by Proposition 1(ii). �

5. Characterization of partially critical tournaments

Proposition 5 and Lemma 2 suggest an hereditary property of the partial
criticality by considering the connected components of the corresponding
outside graph. The first theorem follows.

Theorem 3. Given a tournament T = (V,A), consider a proper subset X
of V such that |X| ≥ 3 and T [X] is indecomposable. The tournament T is
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indecomposable and (V \X)-critical if and only if the three assertions below
hold.

(H1) If X− 6= ∅ and X+ 6= ∅, then X− −→ X+. Similarly, for every
u ∈ X, if X−(u) 6= ∅ and X+(u) 6= ∅, then X−(u) −→ X+(u);

(H2) For every connected component C of GT [X], there are distinct ele-
ments MC and NC of qT [X] such that GT [X][C] is bipartite by {MC ,
NC};

(H3) For each connected component C of GT [X], T [X ∪C] is indecompos-
able and C-critical.

Proof. To begin, assume that T is indecomposable and (V \X)-critical. As-
sertion H1 is Lemma 8. Assertion H2 follows from Proposition 5 and Asser-
tion H3 follows from Proposition 5 and Lemma 2.

Conversely, assume that Assertions H1, H2 and H3 are satisfied. We begin
with three remarks. First, consider a connected component C of GT [X]. By
Assertion H3, T [X ∪ C] is indecomposable and C-critical. It follows that
|C| > 1, that is, GT [X] does not have isolated vertices.

Second, given x ∈ V \X, denote by C the connected component of GT [X]

which contains x. By Assertion H3, T [X ∪ C] is indecomposable and C-
critical. By Lemma 2 applied to T [X ∪ C], T [X ∪ {x}] is decomposable.
Consequently Ext(X) = ∅.

Third, consider a connected component C of GT [X]. By the first remark,
|C| > 1. By Assertion H2, there are distinct elements MC and NC of qT [X]

such that GT [X][C] is bipartite by {MC , NC}. Denote by M and N the
elements of pT [X] such that MC ⊆M and NC ⊆ N . Since |C| > 1, there are
c 6= c′ ∈ C such that {c, c′} ∈ ET [X]. By Remark 2, GT [X][M ] and GT [X][N ]
are empty and hence M 6= N . So we may also assume in Assertion H2 that
MC and NC are not included in the same element of pT [X].

Now, we show that T is indecomposable. Otherwise consider a non-trivial
interval I of T . Since Ext(X) = ∅ and since GT [X] does not have isolated
vertices, it follows from Lemma 4 that I ∩ X = ∅. By lemma 3, there is
M ∈ qT [X] such that I ⊆ M . Let C be a connected component of GT [X]

such that M ∩ C 6= ∅. It follows from Assertion H2 that M ⊆ C. Thus I
would be a non-trivial interval of T [X ∪C] which contradicts Assertion H3.

Lastly, we prove that T is (V \X)-critical. Consider an element x of V \X
and denote by C the connected component of GT [X] which contains x. By
Assertion H3, T [X ∪ C] − x admits a non-trivial interval J . As T [X] is
indecomposable, X ⊆ J , |J ∩ X| = 1 or J ∩ X = ∅. We distinguish the
following three cases to obtain a non-trivial interval of T − x.

First, assume that X ⊆ J . We prove that V \(C\J) is an interval of T−x.
Clearly (C \J)\{x} 6= ∅ and (C \J)\{x} ⊆ 〈X〉. For instance, assume that
C ∩X− 6= ∅. By Assertion H2, X− ⊆ C. Furthermore it follows from our
third remark that there exists M ∈ qT [X] \ {X−, X+} such that GT [X][C] is
bipartite by {X−,M}. Thus (C \ J) \ {x} ⊆ X−. Given y ∈ (C \ J) \ {x},
it is sufficient to verify that X ∪ {z} is an interval of T [X ∪ {y, z}] for every
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z ∈ V \ (C \ J). If z ∈ X ∪ C, then z ∈ J and J ∩ (X ∪ {y, z}) = X ∪ {z}
is an interval of T [X ∪ {y, z}]. Assume that z ∈ V \ (X ∪ C). Since C is
a connected component of GT [X], we have {y, z} /∈ ET [X]. By Lemma 1,
if z /∈ 〈X〉, then X ∪ {z} is an interval of T [X ∪ {y, z}]. If z ∈ 〈X〉, then
z ∈ X+ because X− ⊆ C. By Assertion H1, X− −→ X+ and hence y −→ z.
As y ∈ X−, we obtain y −→ X ∪ {z}.

Second, assume that there exists u ∈ X such that J ∩X = {u}. We prove
that J is an interval of T −x. We have J \{u} 6= ∅ and J \{u} ⊆ X(u)∩C.
For instance, assume that C∩X−(u) 6= ∅. By Assertion H2, X−(u) ⊆ C. It
follows from our third remark that there exists M ∈ qT [X] \{X−(u), X+(u)}
such that GT [X][C] is bipartite by {X−(u),M}. Thus J \ {u} ⊆ X−(u).
Given y ∈ J \ {u}, it is sufficient to verify that {u, y} is an interval of
T [X ∪ {y, z}] for every z ∈ (V \ J) \ {x}. If z ∈ X ∪ C, then z /∈ J
and J ∩ (X ∪ {y, z}) = {u, y} is an interval of T [X ∪ {y, z}]. Assume that
z ∈ V \ (X ∪C). As C is a connected component of GT [X], we have {y, z} /∈
ET [X]. Lemma 1 permits us to conclude when z /∈ X(u). When z ∈ X(u),
z ∈ X+(u) because X−(u) ⊆ C. By Assertion H1, X−(u) −→ X+(u).
In particular y −→ z and thus {u, y} −→ z because z ∈ X+(u). Since
y ∈ X(u), {u, y} is an interval of T [X ∪{y}]. Therefore {u, y} is an interval
of T [X ∪ {y, z}].

Third, assume that J∩X = ∅. We prove that J is an interval of T−x. By
Assertion H2, there exist MC 6= NC ∈ qT [X] such that GT [X][C] is bipartite
by {MC , NC}. Since Ext(X) = ∅, it follows from the first assertion of
Lemma 3 applied to T [X ∪C]− x that J is an interval of GT [X][C]− x and
J ⊆ N \{x} where N = MC or NC . Therefore J is an interval of T [N \{x}].
To show that J is an interval of T − x, we apply the second assertion of
Lemma 3 to T − x. Denote by M the element of pT [X] which contains N .
By Assertion H1, N is an interval of T [M ] and hence N \{x} is an interval of
T [M \ {x}]. By Proposition 1(ii), J is an interval of T [M \ {x}]. It remains
to verify that J is an interval of GT [X] − x. As already observed, J is an
interval of GT [X][C]−x. It follows from Remark 3 that C \{x} is an interval
of GT [X] − x. By Proposition 1(ii), J is an interval of GT [X] − x. �

Given a tournament T = (V,A), consider a proper subsetX of V such that
|X| ≥ 3 and T [X] is indecomposable. Now, we characterize the tournament
T when it is indecomposable and (V \X)-critical and when the outside graph
GT [X] is connected. When |V \X| ≤ 2, we have: T is indecomposable and
(V \X)-critical if and only if Ext(X) = ∅. Consequently, we assume that
|V \X| ≥ 3. Proposition 5 is completed by the next proposition.

Proposition 6. Given an indecomposable tournament T = (V,A), consider
a proper subset X of V such that |X| ≥ 3, |V \X| ≥ 3 and T [X] is indecom-
posable. Assume that T [X ∪ Y ] is decomposable for every Y ⊆ V \X such
that |Y | = 1 or 3. If GT [X] is connected, then there exists an isomorphism
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f from G2n onto GT [X][C] such that

pT [X] = qT [X] = {f({0, . . . , 2n− 2}), f({1, . . . , 2n− 1})}
and satisfying

(K1) if {f(0), f(2), . . . , f(2n − 2)} = X− or X+(u), where u ∈ X, then
T [{f(0), f(2), . . . , f(2n−2)})] = f(2n−2) < f(2n−4) < · · · < f(0);

(K2) if {f(0), f(2), . . . , f(2n − 2)} = X+ or X−(u), where u ∈ X, then
T [{f(0), f(2), . . . , f(2n− 2)}] = f(0) < f(2) < · · · < f(2n− 2);

(K3) if {f(1), f(3), . . . , f(2n − 1)} = X− or X+(u), where u ∈ X, then
T [{f(1), f(3), . . . , f(2n− 1)}] = f(1) < f(3) < · · · < f(2n− 1);

(K4) if {f(1), f(3), . . . , f(2n − 1)} = X+ or X−(u), where u ∈ X, then
T [{f(1), f(3), . . . , f(2n−1)}] = f(2n−1) < f(2n−3) < · · · < f(1).

Proof. To begin, we prove that GT [X] is indecomposable. We establish that
if I is a non-trivial interval of GT [X] which is maximal under inclusion among
the non-trivial intervals of GT [X], then I would be a non-trivial interval of
T . By Proposition 5, there exist M 6= N ∈ qT [X] such that GT [X] is bipartite
by {M,N}. We have pT [X] = qT [X] = {M,N}. Since GT [X] is a connected
and bipartite graph, I ⊆ M or I ⊆ N . For instance, assume that I ⊆ M .
Since Ext(X) = ∅, we apply the second assertion of Lemma 3 to prove that
I is an interval of T . It suffices to verify that I is an interval of T [M ]. Let
x ∈ M \ I. As I is a maximal non-trivial interval of GT [X], I ∪ {x} is not
an interval of GT [X]. There is α ∈ (M ∪N) \ (I ∪ {x}) such that I ∪ {x} is
not an interval of GT [X][I ∪ {x, α}]. Since GT [X][M ] is empty by Remark 2,
α ∈ N . As I is an interval of GT [X], we have either {α, x} ∈ ET [X] and
{α, i} /∈ ET [X] for i ∈ I or {α, x} /∈ ET [X] and {α, i} ∈ ET [X] for i ∈ I. We
apply Lemma 6 as follows. First, assume that M = 〈X〉. By interchanging
T and T ?, assume that M = X−. If {α, x} ∈ ET [X] and {α, i} /∈ ET [X] for
i ∈ I, then X ∪ {α, x} is an interval of T [X ∪ {α, i, x}] for i ∈ I so that
I −→ x. If {α, x} /∈ ET [X] and {α, i} ∈ ET [X] for i ∈ I, then X ∪ {α, i}
is an interval of T [X ∪ {α, i, x}] for i ∈ I so that x −→ I. Second, assume
that there exists u ∈ X such that M = X(u). By interchanging T and T ?,
assume that M = X−(u). If {α, x} ∈ ET [X] and {α, i} /∈ ET [X] for i ∈ I,
then {i, u} is an interval of T (X ∪ {α, i, x}) for i ∈ I so that x −→ I. If
{α, x} /∈ ET [X] and {α, i} ∈ ET [X] for i ∈ I, then {x, u} is an interval of
T [X ∪ {α, i, x}] for i ∈ I so that I −→ x. It follows that I is an interval of
T [M ].

Now, we establish that there exists an isomorphism f from G2n onto
GT [X]. First, we verify that {NGT [X]

(x);x ∈M} is totally ordered by inclu-
sion. Otherwise there are x 6= y ∈M and α, β ∈ N such that {x, α} ∈ ET [X],
{y, α} 6∈ ET [X], {x, β} /∈ ET [X] and {y, β} ∈ ET [X]. For instance, assume
that M = X−. By Lemma 6 applied to T ([X ∪ {x, y, α}], X ∪ {x, α} is
an interval of T ([X ∪ {x, y, α}] so that y −→ x. On the other hand, by
Lemma 6 applied to T ([X ∪ {x, y, β}], we obtain x −→ y as well. We get
a similar contradiction when M = X+, X−(u) or X+(u) where u ∈ X.
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Therefore we may set M = {x0, . . . , xn−1} with NGT [X]
(xi) ⊇ NGT [X]

(xi+1)
for 0 ≤ i ≤ n−2. As GT [X] is connected, GT [X] does not admit isolated ver-
tices. Thus NGT [X]

(x0) = N and NGT [X]
(xn−1) 6= ∅. Clearly NGT [X]

(xn−1)
is an interval of GT [X]. Since GT [X] is indecomposable, |NGT [X]

(xn−1)| = 1.
Let i ∈ {0, . . . , n − 2}. We have NGT [X]

(xi) \NGT [X]
(xi+1) is an interval of

GT [X]. Furthermore {x ∈ M : NGT [X]
(x) = NGT [X]

(xi)} is an interval of
GT [X]. It follows that |NGT [X]

(xi) \ NGT [X]
(xi+1)| = 1 for 0 ≤ i ≤ n − 2.

Consequently we may denote the elements of N by α0, . . . , αn−1 in such
a way that NGT [X]

(xi) = {α0, . . . , αn−i−1} for 0 ≤ i ≤ n − 1. Therefore
f : {0, . . . , 2n − 1} −→ V \ X, defined by 2i 7→ xi and 2i + 1 7→ αi for
0 ≤ i ≤ n − 1, realizes an isomorphism from G2n onto GT [X]. Clearly
pT [X] = qT [X] = {f({0, . . . , 2n− 2}), f({1, . . . , 2n− 1})}.

Finally, we verify that Assertions K1, . . . , K4 are satisfied. For Asser-
tion K1, assume that {f(0), f(2), . . . , f(2n − 2)} = X− or X+(u) where
u ∈ X. Given i < j ∈ {0, . . . , n − 1}, we have {f(2i), f(2i + 1} ∈ ET [X]

and {f(2i+ 1), f(2j)} /∈ ET [X]. We apply Lemma 6 to T [X ∪ {f(2i), f(2i+
1), f(2j)}] as follows. If {f(0), f(2), . . . , f(2n− 2)} = X−, then X ∪ {f(2i),
f(2i+1)} is an interval of T [X∪{f(2i), f(2i+1), f(2j)}]. If {f(0), f(2), . . . ,
f(2n− 2)} = X+(u), then {u, f(2j)} is an interval of T [X ∪ {f(2i), f(2i+
1), f(2j)}]. In both cases, we obtain f(2j) −→ f(2i). Therefore

T [{f(0), f(2), . . . , f(2n− 2)}] = f(2n− 2) < f(2n− 4) < · · · < f(0).

Assertion K2 is deduced from Assertion K1 by considering T ? instead of T .
Indeed T ? is also indecomposable and (V \X)-critical. Moreover GT ?[X] =
GT [X]. Thus f is also an isomorphism from G2n onto GT ?[X]. Finally,
Assertions K3 and K4 are deduced from the two first by considering the
isomorphism f ◦ψ2n (see Observation 1(iii)) from G2n onto GT [X] instead of
f . Indeed f({1, 3, . . . , 2n− 1}) = (f ◦ψ2n)({0, 2, . . . , 2n− 2}). For instance,
concerning Assertion K3, assume that {f(1), f(3), . . . , f(2n − 1)} = X− or
X+(u) where u ∈ X. It follows from Assertion K1 applied to f ◦ ψ2n that

T [{(f ◦ ψ2n)(0), (f ◦ ψ2n)(2), . . . , (f ◦ ψ2n)(2n)}]
= (f ◦ ψ2n)(2n− 2) < (f ◦ ψ2n)(2n− 4) < · · · < (f ◦ ψ2n)(0),

that is,

T [{f(1), f(3), . . . , f(2n− 1)}] = f(1) < f(3) < · · · < f(2n− 1).

�

Using Assertions K1,...,K4, we obtain the following characterization.

Theorem 4. Given a tournament T = (V,A), consider a proper subset X of
V such that |X| ≥ 3, |V \X| ≥ 3 and T [X] is indecomposable. Assume that
GT [X] is connected. The tournament T is indecomposable and (V\X)-critical
if and only if Ext(X) = ∅ and there exists an isomorphism f from G2n onto
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GT [X] such that pT [X] = qT [X] = {f({0, . . . , 2n−2}), f({1, . . . , 2n−1})} and
satisfying Assertions K1,...,K4.

Proof. To begin, assume that T is indecomposable and (V \X)-critical. It
follows from Lemma 2 and Proposition 6 that Ext(X) = ∅ and such an
isomorphism f from G2n onto GT [X] exists.

Conversely, suppose for a contradiction that T admits a non-trivial inter-
val I. Since GT [X] does not admit isolated vertices, it follows from Lemma 4
that I∩X = ∅. As Ext(X) = ∅, it follows from Lemma 3 that I is an inter-
val of GT [X] and either I ⊆ f({0, . . . , 2n−2}) or I ⊆ f({1, . . . , 2n−1}). Thus
I would be a non-trivial interval of GT [X] which contradicts Theorem 1. Fi-
nally, we prove that T is (V\X)-critical. Given x ∈ V \X, we show that T−x
admits a non-trivial interval. By considering f ◦ψ2n (see Observation 1(iii))
instead of f , assume that x ∈ {f(0), f(2), . . . , f(2n − 2))}. By Observa-
tion 1(iv), either GT [X] − x admits a single isolated vertex or GT [X] − x
admits an unordered pair as a non-trivial interval. Since Ext(X) = ∅, we
distinguish the three following cases.

First, assume that GT [X] − x admits an isolated vertex y belonging to
〈X〉. We verify that V \ {x, y} is an interval of T − x. It follows from
Observation 1(i) that x = f(0) and y = f(1). By interchanging T and
T ?, assume that {f(1), f(3), . . . , f(2n − 1)} = X−. By Assertion K3,
f(1) −→ {f(3), . . . , f(2n − 1)}. Moreover, for i ∈ {1, . . . , n − 1}, we have
{f(1), f(2i)} /∈ ET [X]. Since {f(0), f(2), . . . , f(2n − 2)} 6= 〈X〉, it follows
from Lemma 1 that X ∪{f(2i)} is an interval of T [X ∪{f(1), f(2i)}]. Thus
f(1) −→ f(2i) because f(1) ∈ X−. Therefore f(1) −→ X∪{f(2), . . . , f(2n−
2)}∪{f(3), . . . , f(2n−1)}, that is, y −→ V \{x, y}. Consequently V \{x, y}
is an interval of T − x.

Second, assume that GT [X] − x admits an isolated vertex y belonging
to X(u) where u ∈ X. We verify that {u, y} is an interval of T − x. As
previously, x = f(0) and y = f(1). It follows from Assertions K3 and
K4 that T [{f(1), f(3), . . . , f(2n − 1)} ∪ {u}] = u < f(1) < f(3) < · · · <
f(2n − 1) or f(2n − 1) < f(2n − 3) < · · · < f(1) < u. In both instances,
{u, f(1)} is an interval of T [{f(1), f(3), . . . , f(2n−1)}∪{u}]. Moreover, for
i ∈ {1, . . . , n − 1}, we have {f(1), f(2i)} /∈ ET [X]. Since f(2i) /∈ X(u), it
follows from Lemma 1 that {u, f(1)} is an interval of T [X ∪ {f(1), f(2i)}].
Thus {u, f(1)} is an interval of T [X ∪{f(2), . . . , f(2n− 2)}]. It follows that
{u, y} = {u, f(1)} is an interval of T − x.

Third, assume that GT [X] − x admits no isolated vertices. By Obser-
vation 1(iv), there exists i ∈ {1, . . . , n − 1} such that x = f(2i) and
{f(2i−1), f(2i+1)} is an interval of GT [X]−x. It follows from Assertions K3
and K4 that {f(2i−1), f(2i+ 1)} is an interval of T [{f(1), f(3), . . . , f(2n−
1)}]. Since Ext(X) = ∅, it follows from Lemma 3 applied to T − x that
{f(2i− 1), f(2i+ 1)} is an interval of T − x. �



68 MOHAMED Y. SAYAR

Corollary 2. Given an indecomposable tournament T = (V,A), consider
X ( V such that |X| ≥ 3 and T [X] is indecomposable. If T is (V \X)-
critical, then for every x ∈ V \ X, GT [X] − x admits at most one isolated
vertex and T − x admits a unique non-trivial interval Ix. More precisely

(1) if GT [X] − x admits a single isolated vertex y and if y ∈ 〈X〉, then
Ix = V \ {x, y};

(2) if GT [X]−x admits a single isolated vertex y and if y ∈ X(u), where
u ∈ X, then Ix = {u, y};

(3) if GT [X] − x admits no isolated vertices, then |Ix| = 2 and Ix is the
unique interval of GT [X][C]−x, where C is the connected component
of GT [X] containing x.

Proof. Consider an element x of V \ X. Denote by C the connected com-
ponent of GT [X] which contains x and by MC the element of qT [X] which
contains x. By Proposition 5, there is NC ∈ qT [X]\{MC} such that GT [X][C]
is bipartite by {MC , NC}. Assume that |C| ≥ 3. By Theorem 3, T [X ∪C] is
indecomposable and C-critical. By Theorem 4, there exists an isomorphism
fC from G|C| onto GT [X][C] such that

{MC , NC} = {fC({0, 2, . . . , |C| − 2}), fC({1, 3, . . . , |C| − 1})}.

By considering fC ◦ ψ|C| (see Observation 1(iii)) instead of fC , assume that
MC = fC({0, 2, . . . , |C| − 2}). When |C| = 2, fC denotes the bijection from
{0, 1} onto C such that fC(0) = x and we set MC = {x} and NC = {fC(1)}.

Denote by Wx the set of the isolated vertices of GT [X]− x. By Lemma 7,
GT [X] does not admit isolated vertices. Consequently Wx is the set of the
isolated vertices of GT [X][C] − x and Wx ⊆ NC . Clearly Wx = {fC(1)} if
|C| = 2. When |C| ≥ 3, it follows from Observation 1(i) that Wx 6= ∅
if and only if x = fC(0). Moreover Wx = {fC(1)} if x = fC(0). Using
Observation 1(iv), we associate with x subsets Ix and Jx of V \ {x} by
distinguishing the following three cases. First, if Wx = ∅, then Ix = Jx is
the unique interval of GT [X][C] − x. Second, if Wx = {y} and y ∈ X(u),
where u ∈ X, then Ix = Jx = {u, y}. Third, if Wx = {y} and y ∈ 〈X〉, then
Jx = (X∪C)\{x, y} and Ix = V \{x, y}. By the discussion at the end of the
proof of Theorem 4 applied to T [X ∪ C], Jx is an interval of T [X ∪ C]− x.
Then, by the discussion at the end of the proof of Theorem 3 applied to T ,
Ix is an interval of T − x.

Now, we verify that Ix is the unique non-trivial interval of T − x. Let Lx
be a non-trivial interval of T − x.

First, assume that X ⊆ Lx. We have (V \ {x}) \ Lx 6= ∅ and (V \ {x}) \
Lx ⊆ 〈X〉. Moreover, it follows from the first assertion of Lemma 4 that
(V \ {x}) \ Lx ⊆ Wx. As previously observed, |Wx| ≤ 1 and hence there is
y ∈ (V \X)\{x} such that Wx = {y} ⊆ 〈X〉. It follows that Lx = V \{x, y}
and Lx = Ix.

Second, assume that Lx∩X = {u}. We have Lx\{u} 6= ∅ and Lx\{u} ⊆
X(u). Furthermore Lx\{u} ⊆Wx by the second assertion of Lemma 4. Since
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|Wx| ≤ 1, there is y ∈ (V \X) \ {x} such that Wx = {y}. Thus Lx = {u, y}
and Lx = Ix.

Finally, assume that Lx ∩ X = ∅. As Ext(X) = ∅ by Lemma 2, it
follows from Lemma 3 applied to T − x that Lx is an interval of GT [X] − x
and there is N ∈ qT [X] such that Lx ⊆ N \ {x}. By Proposition 5, there
exists a connected component D of GT [X] such that N ⊆ D. Clearly Lx is
a non-trivial interval of T [X ∪D] − x. As T [X ∪D] is indecomposable by
Theorem 3, x ∈ D and hence C = D. Therefore N ∈ {MC , NC} and Lx
is a non-trivial interval of GT [X][C]− x because Lx ⊆ N \ {x}. Necessarily
|C| ≥ 4 and it follows from Observation 1(iv) that (fC)−1(x) 6= 0. As above
observed, Wx 6= ∅ if and only if (fC)−1(x) = 0. Thus Wx = ∅. Since Ix is
the unique non-trivial interval of GT [X][C]− x when Wx = ∅, Lx = Ix. �

Discussion. Let us explain how Theorems 3 and 4 allow us to generate
partially critical tournaments. Consider an indecomposable tournament τ =
(X,Aτ ) with |X| ≥ 3. Let G = (V,E) be a disconnected graph such that
V ∩ X = ∅ and |X| ≥ c(G) − 1. Denote the connected components of
G by C1, . . . , Cc(G). Moreover, for each 1 ≤ d ≤ c(G), assume that |Cd|
is even and there exists an isomorphism fd from G|Cd| onto G[Cd]. Set
Md = fd({0, 2, . . . , |Cd| − 2}) and Nd = fd({1, 3, . . . , |Cd| − 1}).

We construct a V-critical and indecomposable tournament T = (X∪V,A)
such that T [X] = τ and GT [X] = G. By Theorems 3 and 4, we must have
qT [X] = {Md, Nd}1≤d≤c(G) and Nd, Md are not included in the same element
of pT [X]. By choosing 〈X〉 as an element of pT [X], we need c(G)− 1 distinct
elements u1, . . . , uc(G)−1 of X to obtain pT [X] = {〈X〉}∪ {X(ud)}1≤d≤c(G)−1

and qT [X] = {X−, X+}∪{X−(ud), X+(ud)}1≤d≤c(G)−1. Given 1 ≤ d ≤ c(G),
we have to associate with Md and Nd two distinct elements of qT [X] =
{X−, X+}∪{X−(ud), X+(ud)}1≤d≤c(G)−1 which are not included in the same
element of pT [X] = {〈X〉}∪{X(ud)}1≤d≤c(G)−1. For example, set M1 = X−,
Nc(G) = X+ and for 1 ≤ d ≤ c(G)− 1, Nd = X+(ud) and Md+1 = X−(ud).
Now, the tournament T is entirely determined in the following way.

• Given v ∈ V and x ∈ X, the arc of T between x and v comes from
the definition of qT [X]. For instance, we have M1 = X− −→ X.
• Let v 6= w ∈ V such that v and w do not belong to the same element

of pT [X]. The arc of T between v and w is provided by Lemma 1
using the fact that {v, w} is an edge of G or not. For instance, given
d 6= e ∈ {1, . . . , c(G)−1} such that (ud, ue) ∈ Aτ , consider v ∈ X(ud)
and w ∈ X(ue). We have (v, w) ∈ A if and only if {v, w} 6∈ E.
• Let v 6= w ∈ V such that v and w belong to the same element of
pT [X] without belonging to the same element of qT [X]. The arc of
T between v and w is given by Assertion H1 of Theorem 3. For
instance, we have M1 = X− −→ Nc(G) = X+.
• Let v 6= w ∈ V such that v and w belong to the same element of qT [X].

The arc of T between v and w is given by Assertions K1,. . . ,K4 of
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Theorem 4. For instance, let v = f1(2i) ∈ X− and w = f1(2j) ∈ X−
where i 6= j ∈ {0, . . . , |C1|/2}. We have (v, w) ∈ A if and only if
j < i.

If G is connected, we proceed in the same way by choosing pT [X] = {〈X〉,
X(u)} and qT [X] = {X−, X+(u)} where u ∈ X.

The example presented in Section 3 (see Figure 2) is obtained as above
from τ = T3 and from a graph G admitting two connected components C1

and C2 by choosing M1 = X−, N1 = X−(0), M2 = X+ and N2 = X+(0).

6. Applications

6.1. A new proof of the main result of [7] for tournaments. We
begin with a new characterization of partially critical tournaments when
the considered tournaments are assumed to be indecomposable. This is
naturally suggested by Propositions 5 and 6.

Theorem 5. Given an indecomposable tournament T = (V,A), consider a
proper subset X of V such that |X| ≥ 3 and T [X] is indecomposable. The
tournament T is (V \X)-critical if and only if T [X ∪ Y ] is decomposable for
every Y ⊆ V \X such that |Y | = 1 or 3.

Proof. If T is (V \X)-critical, it suffices to apply Lemma 2. Conversely,
assume that T [X ∪ Y ] is decomposable for every Y ⊆ V \ X such that
|Y | = 1 or 3. We prove that the tournament T is (V \X)-critical by us-
ing Theorem 3. Assertions H1 of Theorem 3 follows from Lemma 8. For
Assertions H2 and H3, consider a connected component C of GT [X]. By
Proposition 5, there exist MC 6= NC ∈ qT [X] such that GT [X][C] is bipar-
tite by {MC , NC}. Lastly, we must show that T [X ∪ C] is indecompos-
able and C-critical. By Proposition 5, T [X ∪ C] is indecomposable. If
|C| ≤ 2, then |C| = 2 and T [X ∪ C] is C-critical because Ext(X) = ∅. As-
sume that |C| ≥ 3. It follows from Proposition 6 applied to T [X ∪ C] that
there exists an isomorphism f from G2n onto GT [X] such that {MC , NC} =
{f({0, . . . , 2n− 2}), f({1, . . . , 2n− 1})} and satisfying Assertions K1,...,K4.
As Ext(X) = ∅, it follows from Theorem 4 applied to T [X∪C] that T [X∪C]
is C-critical. Consequently, Assertion H3 of Theorem 3 holds also and hence
T is (V \X)-critical. �

Theorem 5 provides a quick and simple proof of the main result of [7] for
tournaments.

Corollary 3. Given an indecomposable tournament T = (V,A), consider
X ⊆ V such that |X| ≥ 3 and T [X] is indecomposable. If |V \X| ≥ 4, then
there exist x 6= y ∈ V \X such that T − {x, y} is indecomposable.

Proof. We apply several times Proposition 3 from an indecomposable sub-
tournament T [Z] of T where X ⊆ Z ( V and |V \ Z| is even. If |V \X| is
even, then choose Z = X. Assume that |V \X| is odd so that |V \X| ≥ 5.
By Lemma 2, the tournament T is not (V \X)-critical because |V \ X| is
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odd. It follows from Theorem 5 that there exists a subset Y of (V \X) such
that |Y | = 1 or 3 and T [X ∪ Y ] is indecomposable. It suffices to choose
Z = X ∪ Y . �

For a digraph, we have to assume that |V \X| ≥ 6 (see [7]). The above
improvement of this threshold for tournaments answers also a question of
Dammak [3]. As noticed in [7, Remark 1], this improvement does not hold
for digraphs. In fact, Theorem 5 is false, even for graphs, as shown in the
next remark.

Remark 5. Recall that a graph G = (V,E) is identified with the digraph
D = (V,A) defined by: for x 6= y ∈ V , (x, y) ∈ A if {x, y} ∈ E. Let
H = (X,E) be an indecomposable graph with |X| ≥ 4. Given v0, . . . , v2n 6∈ X
(where n ≥ 2) and u ∈ X, consider the graph H ′ defined on X∪{v0, . . . , v2n}
by

• H ′[X] = H;
• for x ∈ X and w ∈ {v0, . . . , v2n}, {x,w} is an edge of H ′ if and only

if {x, u} is an edge of H and there is i ∈ {0, . . . , n − 1} such that
w = v2i+1;
• for w,w′ ∈ {v0, . . . , v2n}, {w,w′} is an edge of H ′ if and only if there

is i ∈ {0, . . . , 2n− 1} such that {w,w′} = {vi, vi+1}.
We obtain pH′[X] = {〈X〉, X(u)} where 〈X〉 = {v2i; 0 ≤ i ≤ n} and X(u) =
{v2i+1; 0 ≤ i ≤ n− 1}. Furthermore the outside graph GH′[X] is the path on
{v0, . . . , v2n} whose edges are {vi, vi+1} for 0 ≤ i ≤ 2n−1. It follows that H ′

is indecomposable and H ′[X∪Y ] is decomposable for each Y ⊆ {v0, . . . , v2n}
such that |Y | = 1 or 3. But H ′ is not {v0, . . . , v2n}-critical because H ′ − v0
is indecomposable.

6.2. The partially critical support of tournaments. By adding one
vertex to a partially critical tournament, it is easy to construct an indecom-
posable tournament whose partially critical support is a singleton. Consider
a (V \X)-critical and indecomposable tournament T = (V,A) where X ( V
such that |X| ≥ 5 and T [X] is indecomposable. Given α 6∈ V , consider any
indecomposable tournament T ′ defined on X ∪ {α} such that T ′[X] = T .
Then consider the unique tournament T1 defined on V ∪ {α} such that
T1[X ∪ {α}] = T ′, T1[V ] = T and {α, v} 6∈ E(GT1[X]) for every v ∈ V . It is
simply verified that T1 is indecomposable and σpT1[X](T1) = {α}.

To extend a partially critical tournament to an indecomposable tourna-
ment whose partially critical support contains at least two vertices, we must
add at least three vertices and we cannot use an element of Ext(X). For
instance, consider the tournament T = (V,A) examined in Section 3. We
verified that T is indecomposable and (V \X)-critical where X = {0, 1, 2}.
Given α, β, γ 6∈ V , consider the tournament T2 defined on V ∪ {α, β, γ} by

• T2[V ] = T ;
• 0 −→ {α, β} −→ 2 and α −→ 1 −→ β;
• {1, 2} −→ γ −→ 0;
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• γ −→ {α, β} and α −→ β;
• γ −→ {x1, x3, . . . , x2m−1} ∪ {y1, y3, . . . , y2n−1} −→ {α, β};
• {x0, x2, . . . , x2m−2} −→ {α, β, γ} −→ {y0, y2, . . . , y2n−2}.

We have X−(1) = {α}, X+(1) = {β} and X+(2) = {γ} so that {α}, {β},
{γ} ∈ qT2[X]. Since {α, γ}, {β, γ} ∈ E(GT2[X]) and {α, β, γ} is a connected
component of GT2[X], we obtain α, β ∈ σpT2[X](T2). This construction is
generalized in Theorem 6. For the sequel, it is important to notice the
following.

Remark 6. Given an indecomposable tournament T = (V,A), consider
X ( V such that |X| ≥ 3 and T [X] is indecomposable. Let α ∈ σpT [X](T ).
It follows from Theorems 3 and 4 applied to T − α that for each M ∈ qT [X]

such that M \{α} 6= ∅, there exists N ∈ qT [X] \{M} such that N \{α} 6= ∅
satisfying

• (M \ {α}) ∪ (N \ {α}) is a connected component of GT [X] − α;
• GT [X][(M \ {α}) ∪ (N \ {α})] is bipartite by {M \ {α}, N \ {α}};
• GT [X][(M \ {α}) ∪ (N \ {α})] is isomorphic to G2|M\{α}|.

Thus |M \ {α}| = |N \ {α}|.

As another consequence of Theorem 5, we obtain that the partially critical
support of an indecomposable tournament contains at most three vertices.

Lemma 10. Let T = (V,A) be an indecomposable tournament. For every
X ( V such that |X| ≥ 3 and T [X] is indecomposable, |σpT [X](T )| ≤ 3.

Proof. As σpT [X](T ) ⊆ σ(T )∩ (V \X), assume that σ(T )∩ (V \X) 6= ∅, that
is, T is not (V \X)-critical. By Theorem 5, there is Y0 ⊆ V \X such that
T [X ∪ Y0] is indecomposable and |Y0| = 1 or 3. Let α ∈ σpT [X](T ). Since
T − α is ((V \ {α})\X)-critical, it follows from Theorem 5 that T [X ∪ Y ]
is indecomposable for each Y ⊆ (V \ {α}) \ X with |Y | = 1 or 3. Thus
Y0 6⊆ (V \ {α}) \X, that is, α ∈ Y0. Consequently σpT [X](T ) ⊆ Y0. �

The next constitutes the main step in describing an indecomposable tour-
nament whose partially critical support contains at least two vertices.

Proposition 7. Given an indecomposable tournament T = (V,A), consider
X ( V such that |X| ≥ 3 and T [X] is indecomposable. If |σpT [X](T )| = 2 or
3, then {α} ∈ qT [X] for every α ∈ σpT [X](T ).

Proof. Consider an element α of σpT [X](T ) and denote by M the element
of qT [X] containing α. Seeking a contradiction, suppose that |M | ≥ 2. By
Remark 6 there exists N ∈ qT [X]\{M} such that (M\{α})∪N is a connected
component of GT [X] − α and

(1) |M | = |N |+ 1.
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Consider an element β of σpT [X](T ) \ {α}. By Remark 6, there exists N ′ ∈
qT [X] \ {M} such that N ′ \ {β} 6= ∅ satisfying (M \ {β}) ∪ (N ′ \ {β}) is a
connected component of GT [X] − β and

(2) |M \ {β}| = |N ′ \ {β}|.

We prove that β ∈M and N = N ′ by distinguishing the following two cases.
First, assume that there exist u ∈M \ {α} and v ∈ N such that {u, v} ∈

ET [X] and β /∈ {u, v}. As (M \ {β}) ∪ (N ′ \ {β}) is a connected component
of GT [X] − β, {u, v} ⊆ (M \ {β}) ∪ (N ′ \ {β}). Thus v ∈ N ∩N ′ and hence
N = N ′. It follows from (1) and (2) that β ∈M .

Second, assume that for any u ∈ M \ {α} and v ∈ N , if {u, v} ∈ ET [X],
then β ∈ {u, v}. By Remark 6, GT [X][(M \ {α}) ∪N ] is bipartite by {M \
{α}, N} and is isomorphic to G2|N |. Thus |M \{α}| = |N | = 1. By denoting
by u the unique element of M \ {α} and by v this one of N , we have
{u, v} ∈ ET [X] and β ∈ {u, v}. By Remark 2, {α, u} /∈ ET [X]. Since {u, v}
is a connected component of GT [X]−α, u is an isolated vertex of GT [X]− v.
By Lemma 7, GT [X] − β does not admit isolated vertices so that β = u.
Therefore v is an isolated vertex of GT [X] − {α, β}. As v is not an isolated
vertex of GT [X] − β, {α, v} ∈ ET [X]. Consequently v ∈ N ∩ N ′ and hence
N = N ′.

In both cases, we obtain β ∈ M and N = N ′. Since (M \ {α}) ∪ N
is a connected component of GT [X] − α and (M \ {β}) ∪ N is a connected
component of GT [X] − β, M ∪N is a connected component of GT [X].

To obtain a contradiction, we prove that {α, β} is an interval of T . Denote
by L the element of pT [X] such that M ⊆ L. Using Lemma 3, we have to
prove that Ext(X) = ∅, {α, β} is an interval of GT [X] and {α, β} is an
interval of T [L].

As seen in the proof of Lemma 10, if there exists a ∈ V \ X such that
a ∈ Ext(X), that is, T [X ∪ {a}] is indecomposable, then σpT [X](T ) ⊆ {a}.
Thus Ext(X) = ∅.

To show that {α, β} is an interval of GT [X], it suffices to prove that {α, β}
is an interval of GT [X][M ∪ N ] because M ∪ N is a connected component
of GT [X]. By Remark 6, there exists an isomorphism f from G2|N | onto
GT [X][(M\{α})∪N ]. SinceGT [X][(M\{α})∪N ] is bipartite by {M\{α}, N},

N = {f(0), f(2), . . . , f(2|N | − 2)} or {f(1), f(3), . . . , f(2|N | − 1)}.

By considering f ◦ ψ2|N | (see Observation 1(iii)) instead of f , assume that
N = {f(1), f(3), · · · , f(2|N | − 1)}. Similarly, there exists an isomorphism g
fromG2|N | ontoGT [X][(M\{β})∪N ] such thatN = {g(1), g(3), · · · , g(2|N |−
1)}. By Theorem 4, either

T [N ] = f(1) < f(3) < · · · < f(2|N | − 1)

= g(1) < g(3) < · · · < g(2|N | − 1)
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or

T [N ] = f(2|N | − 1) < f(2|N | − 3) < · · · < f(1)

= g(2|N | − 1) < g(2|N | − 3) < · · · < g(1).

It follows that f(2i+ 1) = g(2i+ 1) for 0 ≤ i ≤ |N | − 1. Thus

dGT [X][(M\{α})∪N ](γ) = dGT [X][(M\{β})∪N ](γ)

for every γ ∈ N . Therefore, for every γ ∈ N , {α, γ} ∈ ET [X] if and only if
{β, γ} ∈ ET [X]. As GT [X][M ] is empty by Remark 2, {α, β} is an interval of
GT [X][M ∪N ].

Lastly, we prove that {α, β} is an interval of T [L]. Since {α, β} is an
interval of GT [X][M ∪N ], the function h : (M \{α})∪N −→ (M \{β})∪N ,
defined by β 7→ α and γ 7→ γ for γ ∈ (M ∪N) \ {α, β}, is an isomorphism
from GT [X][(M \ {α}) ∪N ] onto GT [X][(M \ {β}) ∪N ]. Thus g−1 ◦ h ◦ f is
an automorphism of G2|N |. As f(2i + 1) = g(2i + 1) for 0 ≤ i ≤ |N | − 1,
(g−1 ◦ h ◦ f)({1, 3, . . . , 2|N | − 1}) = {1, 3, . . . , 2|N | − 1}. It follows from
Observation 1(iii) that g−1 ◦ h ◦ f = Id{0,··· ,2|N|−1}. Therefore f−1(β) =
g−1(α) and f−1(γ) = g−1(γ) for every γ ∈ (M \ {α, β}) ∪ N . We obtain
f(m) = g(m) for every m ∈ {0, 2, . . . , 2|N | − 2} \ {f−1(β)}. By Theorem 4,
either

T [M \ {α}] = f(0) < f(2) < · · · < f(2|N | − 2) and

T [M \ {β}] = g(0) < g(2) < · · · < g(2|N | − 2)

or

T [M \ {α}] = f(2|N | − 2) < f(2|N | − 4) < · · · < f(0) and

T [M \ {β}] = g(2|N | − 2) < g(2|N | − 4) < · · · < g(0).

Thus {α, β} is an interval of T [M ]. Furthermore, it follows from Lemma 8
that either {α, β} −→ L \M or L \M −→ {α, β}. Consequently {α, β} is
an interval of T [L]. �

Theorem 6. Given a tournament T = (V,A), consider X ( V such that
|X| ≥ 3, T [X] is indecomposable and Ext(X) = ∅. Given α 6= β ∈ V \X,
T is indecomposable and α, β ∈ σpT [X](T ) if and only if there exists γ ∈
(V \X) \ {α, β} satisfying

• {α}, {β}, {γ} ∈ qT [X];
• {α, β, γ} is a connected component of GT [X];
• {α, γ} ∈ ET [X] and {β, γ} ∈ ET [X];
• T − {α, β, γ} is indecomposable and ((V \ {α, β, γ})\X)-critical.

Proof. To begin, assume that T is indecomposable and α, β ∈ σpT [X](T ). It
follows from Proposition 7 that {α}, {β} ∈ qT [X]. As α ∈ σpT [X](T ) and
{β} ∈ qT [X], it follows from Remark 6 that there is N ∈ qT [X] \ {{β}}
such that {β} ∪ (N \ {α}) is a connected component of GT [X] − α with
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|N \ {α}| = 1. Since {α} ∈ qT [X], there is γ ∈ (V \ X) \ {α, β} such that
N = {γ}. Thus γ is an isolated vertex of GT [X] − {α, β}. By Lemma 7,
GT [X] − β does not admit isolated vertices and hence {α, γ} ∈ ET [X]. Since
β ∈ σpT [X](T ) and since {β}, {γ} ∈ qT [X], with {α, γ} ∈ ET [X], it follows from
Remark 6 that {α, γ} is a connected component of GT [X]−β. Furthermore,
as {β}∪(N \{α}) = {β, γ} is a connected component of GT [X]−α, {α, β, γ}
is a connected component of GT [X]. Lastly, since α ∈ σpT [X](T ) and {β, γ}
is a connected component of GT [X] − α, it follows from Theorems 3 and 4
that (T − α)− {β, γ} is indecomposable and ((V \ {α, β, γ})\X)-critical.

Conversely, assume that the four assertions above are satisfied. For a
contradiction, suppose that T admits a non-trivial interval I. Since T −
{α, β, γ} is indecomposable and ((V \{α, β, γ})\X)-critical, GT [X]−{α, β, γ}
has no isolated vertex. As {α, γ}, {β, γ} ∈ ET [X], GT [X] has no isolated
vertex as well. It follows from Lemma 4 that I ∩ X = ∅. By Lemma 3,
there exists M ∈ qT [X] such that I ⊆ M . Since {α}, {β}, {γ} ∈ qT [X], M ⊆
(V \X)\{α, β, γ} and hence I would be a non-trivial interval of T−{α, β, γ}.
It follows that T is indecomposable. Lastly, we verify that α ∈ σpT [X](T ).
As {α, β, γ} is a connected component of GT [X] and {β, γ} ∈ ET [X], {β, γ}
is a connected component of GT [X] −α. Thus the connected components of
GT [X] − α are {β, γ} and those of GT [X] − {α, β, γ}. Since T − {α, β, γ} is
indecomposable and ((V \ {α, β, γ})\X)-critical, it follows from Theorems 3
and 4 that T − α is indecomposable and ((V \ {α})\X)-critical, that is,
α ∈ σpT [X](T ). Similarly β ∈ σpT [X](T ). �

In the first part of the last proof, we can also observe that γ ∈ σpT [X](T ) if
and only if {α, β} ∈ ET [X]. The following is then an immediate consequence
of Theorem 6.

Corollary 4. Given a tournament T = (V,A), consider X ( V such that
|X| ≥ 3, T [X] is indecomposable and Ext(X) = ∅. Given distinct elements
α, β, γ of V \X, T is indecomposable and σpT [X](T ) = {α, β, γ} if and only
if the following hold

• {α}, {β}, {γ} ∈ qT [X];
• {α, β, γ} is a connected component of GT [X];
• GT [X][{α, β, γ}] is complete;
• T − {α, β, γ} is indecomposable and ((V \ {α, β, γ})\X)-critical.
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et clôture d’une relation, Order, Description and Roles (Amsterdam) (M. Pouzet and
D. Richard, eds.), North-Holland, 1984, pp. 313–342.

7. P. Ille, Indecomposable graphs, Discrete Math. 173 (1997), 71–78.
8. M. Y. Sayar, Les tournois partiellement critiques, C. R. Math. Acad. Sci. Paris 346

(2008), 249–252.
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