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Abstract. Motivated by entropic optimal transport, time reversal of diffusion processes
is revisited. An integration by parts formula is derived for the carré du champ of a
Markov process in an abstract space. It leads to a time reversal formula for a wide class
of diffusion processes in Rn possibly with singular drifts, extending the already known
results in this domain.

The proof of the integration by parts formula relies on stochastic derivatives. Then,
this formula is applied to compute the semimartingale characteristics of the time-reversed
P ∗ of a diffusion measure P provided that the relative entropy of P with respect to
another diffusion measure R is finite, and the semimartingale characteristics of the time-
reversed R∗ are known (for instance when the reference path measure R is reversible).

As an illustration of the robustness of this method, the integration by parts formula
is also employed to derive a time-reversal formula for a random walk on a graph.
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1. Introduction

The time-reversed (Y ∗t := YT−t, 0 ≤ t ≤ T ) of a Markov process (Yt, 0 ≤ t ≤ T ) remains
a Markov process. Consequently, the problem of finding its Markov generator arises
naturally. The answer to this problem is given by the so-called time reversal formula. More
precisely, we shall establish at Theorem 3.17 an integration by parts formula connecting
the carré du champ of a Markov process (its Dirichlet form) with its backward and forward
generators. This result extends the well known case of reversible processes where forward
and backward generators are equal, and is valid under mild regularity assumptions.
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Then, we apply this abstract integration by parts formula (IbP) to identify the semi-
martingale characteristics of a time-reversed diffusion process, see Theorems 1.10 and
1.14.

It is worth mentioning that this IbP formula allows a unified study of time reversal for
diffusion processes and processes with jumps. See Section 7 below where time reversal of
random walks on graphs is investigated to demonstrate the robustness of this strategy,
and the companion paper [5] where the time-reverseal of a Markov process with jumps is
investigated.

During the eighties, Föllmer gave a smart proof of the time reversal formula for a
diffusion process driven by a Brownian motion under a finite entropy condition, using
Nelson stochastic derivatives [10, 11]. In the present article, we revisit Föllmer’s proof
working out in more detail some technical steps and extending it to more general diffusion
processes. In doing so, we keep its powerful guideline based on stochastic derivatives and
entropic arguments.

We stress that our version of the time reversal formula, as well as Föllmer’s one, holds
under a finite entropy hypothesis implying a low regularity of the drift field, L2 being
typically enough. Such a situation seems not to be covered by the other main results in
the field.

Besides being an interesting topic in its own right, last years have seen a renewed inter-
est in time reversal because of its applications to the Schrödinger problem (a.k.a. entropic
optimal transport) and functional inequalities. To give some examples, in [4] and [14]
a fluid-dynamic (Benamou-Brenier) formulation of entropic optimal transport is derived
leveraging time reversal arguments, and similar ideas are also used in [2] in a mean field
setting. In all these applications, it is of fundamental importance of having a result appli-
cable to diffusions whose drift is only L2, as no more than this can be expected assuming
only finite entropy against the Brownian motion. We refer to subsection “Entropic and
deterministic optimal transports” below for a slightly more accurate discussion of the links
between time reversal and the Schrödinger problem.

Regarding functional inequalities, it is worth mentioning that Fontbona and Jourdain
[13] recover and extend the Bakry-Émery criterion using an approach based on time re-
versal. Also using time reversal in a crucial manner, a simple proof of the logarithmic
Sobolev inequality is proposed by Léonard in [27], Gentil, Léonard, Ripani and Tamanini
[15] derive the HWI inequality, and Karatzas, Schachermayer and Tschiderer [19] ob-
tain pathwise results about the exponential rate of convergence to equilibrium of some
Wasserstein gradient flows and another proof of the HWI inequality.

Outline of the article. Next Section 2 gathers basic notions about Nelson stochastic
derivatives that will be used throughout the paper. Related technical results which are
necessary during our proofs are postponed to the appendix Section A. The main general
result of the article is the integration by parts formula stated at Theorem 3.17. Section 3
is devoted to its proof. The time reversal formulas that we obtain for diffusion processes
in Sections 4 and 5, and random walks in Section 7 are corollaries of this theorem. These
time reversal formulas are stated at Theorems 4.9, 1.14, 5.7 and 7.11. Finally, in Section
6, the current-osmosis decomposition of an entropic interpolation in a diffusion setting is
discussed in detail to illustrate our main motivation for revisiting time reversal under a
finite entropy condition.

Theorem 1.14 which is stated in this introductory section is an extension of Theorem
4.9. Its proof is almost verbatim the same as Theorem 4.9’s proof.
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Entropic and deterministic optimal transports. Let us start presenting some aspect
of our main motivation for revisiting time reversal of Markov processes.
Entropic optimal transport dates back to the seminal articles [34, 35] by Schrödinger and
was rigorously rephrased in terms of large deviations of empirical measures of particle
systems by Föllmer in his Saint-Flour lecture notes [12]. One wants to minimize the
relative entropy

H(P |R) := EP log(dP/dR)

with respect to the law R of some reference Markov process on a time interval [0, T ] among
all Markov measures P with prescribed initial and final marginals.
To fix the ideas in this introductory discussion, following Schrödinger and Föllmer, our
reference measure R is the law of a Brownian motion. We denote by Pt the t-marginal
of P , i.e. the law under P of the position at time t, and P ∗ the time-reversal of P. The
quantity H(P |R)−H(P0|R0) appears as an average forward kinetic action (again a result
by Föllmer). Since time-reversal is a one-one mapping, we have

H(P ∗|R∗) = H(P |R) (1.1)

which allows us to interpret H(P |R) − H(PT |RT ) as a backward kinetic action. Taking
the half sum, we arrive at

H(P |R) = function(P0, PT ) + Acu(P ) + Aos(P ), (1.2)

where the current action term Acu(P ) is purely kinetic with a direct interpretation in
terms of deterministic optimal transport :

inf {Acu(P ); P : P0 = µ0, PT = µT )} = T−1W 2
2 (µ0, µT ),

with W2 the standard quadratic Wasserstein distance. This is the Benamou-Brenier for-
mula. It turns out that the osmotic action term

Aos(P ) = Aos([P ]) (1.3)

only depends on the marginal flow [P ] := (Pt)0≤t≤T of P (it is directly linked to some
Fisher information). This important identity follows from the time reversal formula, which
is the main goal of this paper.

The decomposition (1.2) with (1.3) plays a major rôle in the comparison between de-
terministic and entropic optimal transports. In particular, we see that for a given flow of
marginals µ := (µt)0≤t≤T ,

inf {H(P |R); P : Pt = µt, 0 ≤ t ≤ T} = function(µ0, µT ) + Aos(µ) + ABB(µ)

where ABB(µ) := inf {Acu(P ); P : Pt = µt, 0 ≤ t ≤ T} is the Benamou-Brenier action of
µ : the fundamental notion of Otto calculus on the Wasserstein space of probability
measures, see [1, 37]. The osmotic action, whose appearance is tightly connected to time
reversal, quantifies the difference between the standard deterministic transport cost and
its entropic analogue.

It is worth mentioning that similar considerations apply to large deviation functionals of
mean-field interacting particles (as opposed to non-interacting particle systems leading to
the relative entropy H(P |R)), as for example in [2]. It brings us with a new interpretation
in terms of Wasserstein geometry of the celebrated contributions of Dawson and Gärtner
on the large deviations of mean-field particle systems [7, 6].

Although this article focuses on time reversal, in order to clarify our motivation for
studying time reversal thirty-five years after it was well understood, we give some details
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about these considerations at Section 6, where Proposition 6.2 is the rigorous statement
of (1.2) and (1.3).

Time reversal formula for a diffusion process. General time reversal formulas for
diffusion processes are well known since the 80’s. Consider a diffusion process Y satisfying

dYt = bt(Yt) dt+ σt(Yt) dBt, 0 ≤ t ≤ T,

with B a Brownian motion, b a drift vector field and σ a matrix field associated to
the diffusion field a := σσt, (σt is the transposed of σ.) Assuming that the law of Yt is
absolutely continuous at each time t, under various hypotheses on b and a, one can prove
that the time-reversed process Y ∗ is again a diffusion process with diffusion matrix field
a∗t = aT−t and drift field

b∗t (y) = −bT−t(y) +∇·(µT−taT−t)(y)/µT−t(y), (1.4)

where µt is the density of the law of Yt with respect to Lebesgue measure. This is not a
straightforward result because a reversed semimartingale might not be a semimartingale
anymore, see [38].

For this identity to hold, it is assumed in [16, 28] that b is locally Lipschitz (for a
Sobolev-type relaxation of this regularity property, see [33]), and that either a is bounded
away from zero or that the derivative ∇a in the sense of distribution is controlled locally.
Haussmann and Pardoux [16] take a PDE approach, while Millet, Nualart and Sanz [28]
rely on stochastic calculus of variations. The existence of an absolutely continuous density
follows from a Hörmander type condition (PDE formulation in [16] and consequence of
Malliavin calculus in [28]).

Föllmer’s approach significantly departs from these strategies. Under the simplifying
hypothesis that a is the identity matrix, it is assumed in [11] that the law P of Y has a
finite entropy

H(P |R) <∞, (1.5)

with respect to the law R of a Brownian motion with some given initial probability
distribution. In particular, the drift field b of P satisfies

∫
[0,T ]×Rn |bt(y)|2 µt(y)dtdy <

∞ and might be singular, rather than locally Lipschitz as required in [16, 28]. As a
consequence of this finite entropy assumption, Föllmer proves the time reversal formula

b∗t (y) = −bT−t(y) +∇ log µT−t(y) (1.6)

(recall a = Id) where the derivative is in the sense of distributions, without invoking any
already known result about the regularity of µ.

With entropic optimal transport in mind, the hypothesis (1.5) is mandatory. This rules
out the Lipschitz regularity of b which is required in “non-Föllmerian” approaches. There-
fore, developing the entropic approach to time reversal is a necessary step of the research
program attached to entropic optimal transport. Following a previous unpublished work
by Cattiaux and Petit [3], the present article overcomes this gap, keeping the powerful
guideline of Föllmer’s proof based on stochastic derivatives and entropic arguments.

Main results of the article. Our main results are the IbP formula for the carré du
champ of a general Markov process and the time reversal formula for a diffusion process.
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IbP formula for the carré du champ of a Markov process. Its expression is

EP

(
(
−→
L P
t u+

←−
L P
t u)[Xt]v(Xt) +

−→
Γ P
t (u, v)[Xt]

)
= 0, (1.7)

where
−→
L P ,
←−
L P are the forward and backward extended generators of the Markov measure

P, and
−→
Γ P is its forward extended carré du champ. See Section 2 for more detail about

these notions. This IbP formula is valid for a sufficiently large class of regular functions
u and v.
No entropic argument is used to prove this result whose precise statement is given at
Theorem 3.17. On the contrary, the main technical problem we face is to show that this
IbP is valid under minimal regularity assumptions on P to be able to apply it to general
Markov measures typically satisfying a finite entropy condition.
The reason for calculating with extended generators is twofold:

(1) Unlike semigroup generators (which are associated to topological function spaces),
extended generators are low-sophisticated objects which are tailor-made for mar-
tingale problems : the relevant notion we work with in this article. This allows us
to consider lowly regular path measures P .

(2) As already noticed by Nelson in [31], one can view Markov generators as stochastic
derivatives, see Appendix A. This natural idea permits to perform computations
along trajectories, using stochastic calculus to obtain expressions for the generators
and carré du champ operators. Our main technical result proved in this spirit is
Lemma 3.9. It is the keystone of the proof of the IbP formula.

Time reversal formula for a diffusion process. The law P of the above process Y solves
the martingale problem

P ∈ MP(b, a)

meaning that for any u ∈ C2
c (Rn), the process u(Xt) −

∫ t
0

−→
L su(Xs) ds is a local P -

martingale, where the forward generator
−→
L is defined by

−→
L tu(x) = b(t, x) · ∇u(x) + ∆atu(x)/2, (t, x) ∈ [0, T ]× Rn,

with ∆a :=
∑

1≤i,j≤n aij∂
2
ij. One also writes

P ∈ MP(µ, b, a)

to specify the initial marginal measure P0 = µ if necessary.
The Markov generator of a Kolmogorov diffusion is

Au = (−a∇U ·∇u+∇·(a∇u)) /2,

where a is a field on Rn (not depending on time) with values in the set S+ of all symmetric
positive matrices and U is a differentiable numerical function. The equilibrium measure
of this dynamics is

m(dx) = e−U(x) dx.

Expanding the divergence term, we see that the drift field of the generator is

va,m := (∇·a− a∇U)/2.

Hypotheses 1.8.
(i) U ∈ C1(Rn), a is invertible and in C1(Rn, S+),
(ii) for some K ≥ 0, x·va,m(x) + tr a(x) ≤ K(1 + |x|2) for all x ∈ Rn.
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It is a standard result that under these hypotheses, the martingale problem MP(m, va,m, a)
admits a unique solution denoted by

R ∈ MP(m, va,m, a), (1.9)

which is m-reversible. This implies in particular that R∗ = R.

Theorem 1.10 (Time reversal formula). Under the Hypotheses 1.8 on R given at (1.9),
let P ∈ P(Ω) be Markov and such that

H(P |R) <∞.

Then, for all t the density µt := dPt/dLeb exists and the time reversal P ∗ of P is a
solution of the martingale problem

P ∗ ∈ MP(b∗, a)

with

b∗t (x) = −bT−t(x) +∇·(µT−ta)(x)/µT−t(x), dtPt(dx)-a.e. (1.11)

where the divergence is in the sense of distributions.
This is an extension of (1.4) to a low regularity setting which is made precise as follows.
For almost every t the density ρt := dPt/dm admits a distributional spatial derivative ∇ρt
satisfying ∫

[0,T ]×Rn
|∇ log ρt|2a dPtdt <∞. (1.12)

and (1.11) is equivalent to

(bt + b∗T−t)/2− va,m = a∇ log
√
ρt, dtdPt-a.e. (1.13)

Furthermore, P ∗ is the unique solution of MP(PT , b
∗, a) among the set of all Q ∈ P(Ω)

such that H(Q|R) <∞.

This theorem is a restatement of Theorem 4.9 which is stated in terms of stochastic
velocities, especially the fundamental identity (1.13) which is synthetically expressed in
terms of the osmotic momentum βos,P |R at (4.11).

An extension of Theorem 1.10. Note that unlike [16, 28], it is assumed in Theorem
1.10 that the diffusion matrix field a does not depend on t. However, our method allows
to extend the results of [16, 28] to a finite entropy setting. Indeed, the method of proof
of the present article is perturbative: if one knows the time-reversal formula for some
reference path measure R ∈ M(Ω), then a time-reversal also holds for any P ∈ P(Ω) such
that H(P |R) <∞.

A careful inspection of the proof of Theorem 4.9 (a.k.a. Theorem 1.10) shows that it
extends to the case where the reference measure R might not be reversible.

Theorem 1.14 (Time-reversal formula, again). Let us assume that the reference measure
R ∈ M(Ω) and its time reversal R∗ both solve uniquely their respective martingale problems
MP(R0, b

R, a) and MP(R∗0 = RT , b
R∗ , a∗) in the sense of (4.2), where bR, bR∗ are locally

bounded fields and a is continuous on [0, T ]× Rn. The following assertions are verified.
(a) For all 0 ≤ t ≤ T, we have a∗t = aT−t.
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(b) Assume also that for all 0 < t < T the time marginal Rt is absolutely continuous with
respect to Lebesgue measure, and H(P |R) <∞ again.
Then, P and P ∗ uniquely solve MP(bP , a) and MP(bP

∗
, a∗) respectively, in the sense

of (4.2). The identity (1.13) becomes

(bPt + bP
∗

T−t)/2− (bRt + bR
∗

T−t)/2 = at∇ log
√
ρt, dtdPt-a.e., (1.15)

where ρt = dPt/dRt and the gradient is in the sense of distribution, and (1.12) still
holds: ∫

[0,T ]×Rn
|∇ log ρt|2at dPtdt <∞.

Proof. Statement (a) is a consequence of (3.14) at Lemma 3.13-(b) applied to R, whose
assumptions are satisfied by Theorem 3.17-(b).
The proof of item (b) is similar to the proof of Theorem 4.9, almost verbatim. The
uniqueness of the solution to the martingale problems for R and R∗ is necessary for
invoking Girsanov’s theory at Proposition 4.6. Finally, the local boundedness of the
semimartingale characteristics of R and R∗ implies the boundedness of

−→
LRu and

←−
LRu

for any u ∈ C2
c (Rn). This enters the proof of Lemma 4.7 in an essential manner. �

Remark 1.16. A typical hypothesis for a path measure Q to be the unique solution of its
martingale problem MP(a, bQ) in the sense of (4.2) is that a = σ σ∗ with σ and bQ locally
Lipschitz in space and time.

In particular, with R satisfying the regularity hypotheses of the main results of [16, 28],
we see that Theorem 1.14 extends the time reversal formula (1.4) to the wider class of all
path measures P such that H(P |R) <∞.

Literature about time reversal of Markov processes. The first investigations in the
theory of time reversal of Markov processes date back to 1936 with a pair of articles [20, 21]
by Kolmogorov providing sufficient conditions for a Markov chain or a diffusion process
to be reversible. Then, in 1958 time reversal of Markov processes was used by Hunt [17]
in his study of potential theory. During the same year, Nelson published an article [30]
entitled “The adjoint Markoff process”. Several papers went on in the direction initiated
by Hunt: [29, 23, 9] (to cite a few of them). All these articles deal with stationary
Markov processes and their results are expressed in terms of transition probabilities,
which is quite natural in the framework of potential theory, rather than semimartingale
characterics. The above mentioned articles [11, 16, 28] and [32] are the first ones where
the expression of semimartingale characteristics of a time reversed process are obtained
rigorously, see (1.4). They are restricted to a diffusion setting. We also mention the
article [19] by Karatzas, Schachermayer and Tschiderer both for its well written appendix
section on time reversal of diffusion processes and its results connecting deterministic
optimal transport and diffusion processes, where time reversal plays a crucial role. The
recent article [18] by Karatzas, Maas and Schachermayer also makes use of time reversal
in the context of Markov chains.

Nelson’s contribution. While investigating large deviations of the empirical measure of
weakly interacting Brownian particles as in [34, 35] or [7], Föllmer established the time
reversal formula (1.6) using entropic arguments, among which the identity (1.1) is de-
cisive. At the same period, Zambrini obtained in [39] a time-symmetric description of
the backward and forward drifts of the solution to the Schrödinger problem consisting
of minimizing H(P |R) subject to prescribed initial and final marginals, i.e. P0 = µ0 and
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PT = µT . These two authors used in a crucial manner the notion of stochastic derivatives
introduced by Nelson in 1967 in [31]. Time reversal is at the core of Nelson’s theory of
Brownian motion. Indeed, his expression of the osmotic velocity (a notion introduced by
him) in terms of the density of the process is nothing but the time reversal formula. He
proves it in an informal manner, i.e. assuming that all the derivatives exist in a classical
sense, using PDEs, namely Fokker-Planck equations in both directions of time, also called
forward and backward Kolmogorov’s equations after [21]. In the present article, stochastic
derivatives also play a major role.

Back to the roots. As a concluding remark about the history of time reversal of Markov
processes, it appears that the very starting point of this adventure is, again, the paper
[34] by Schrödinger. Indeed, in the first paragraph of [20], Kolmogorov refers to [34] as
his main motivation1.

Notation. The set of all probability measures on a measurable set A is denoted by P(A)
and the set of all nonnegative σ-finite measures on A is M(A). The push-forward of a
measure q ∈ M(A) by the measurable map f : A→ B is f#q( r) := q(f ∈ r) ∈ M(B).

Relative entropy. The relative entropy of p ∈ P(A) with respect to the reference measure
r ∈ M(A) is

H(p|r) :=

∫
A

log(dp/dr) dp ∈ (−∞,∞]

if p is absolutely continuous with respect to r (p � r) and
∫
A

log−(dp/dr) dp < ∞, and
H(p|r) = +∞ otherwise. If r ∈ P(A) is a probability measure, then H(p|r) ∈ [0,∞]. See
Section B for details.

Path measures. The configuration space is a Polish space X equipped with its Borel σ-
field. The path space is the set Ω := D([0, T ],X ) of all X -valued càdlàg trajectories on
the time index set [0, T ], and the canonical process (Xt)0≤t≤T is defined by Xt(ω) = ωt
for any 0 ≤ t ≤ T and any path ω = (ωs)0≤s≤T ∈ Ω. It is equipped with the canonical
σ-field σ(X[0,T ]) and the the canonical filtration

(
σ(X[0,t]); 0 ≤ t ≤ T

)
where for any

subset T ⊂ [0, T ], XT := (Xt, t ∈ T ) and σ(XT ) is the σ-field generated by the collection
of maps (Xt, t ∈ T ).
The càdlàg setting is necessary at Section 3 for the abstract IbP formula and Section 7
where random walks are investigated. At Sections 4, 5 and 6, diffusion processes are time-
reversed and the path space is the set Ω = C([0, T ],Rn) of all continuous trajectories.
We call any positive measure Q ∈ M(Ω) on Ω a path measure. For any T ⊂ [0, T ],
we denote QT = (XT )#Q. In particular, for any 0 ≤ r ≤ s ≤ T, X[r,s] = (Xt)r≤t≤s,
Q[r,s] = (X[r,s])#Q, and Qt = (Xt)#Q ∈ M(X ) denotes the law of the position Xt at time
t. If Q ∈ P(Ω) is a probability measure, then Qt ∈ P(X ).
The time-space canonical process is

X t := (t,Xt) ∈ [0, T ]×X ,
and for any function u : [0, T ]×X → R, we denote u(X) : (t, ω) 7→ u(t, ωt). We also
denote

Q(dtdω) := dtQ(dω), dtdω ⊂ [0, T ]× Ω,

q̄(dtdx) := dtQt(dx), dtdx ⊂ [0, T ]×X .
1We thank Jean-Claude Zambrini for having brought this to our attention.
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2. Stochastic derivatives

Let us recall the definitions of Markov measures, extended generators and stochastic
derivatives. The precise definitions of these notions together with some useful related
technical results are recalled at the appendix Section A. Stochastic derivatives were in-
troduced by Nelson in 1967 [31].

Conditionable path measure. A path measure Q such that Qt is σ-finite for all t
is called a conditionable path measure. This notion is necessary to define properly the
conditional expectations EQ( r | Xt), EQ( r | X[0,t]) and EQ( r | X[t,T ]), for any t, see [26]. If
Q has a finite mass, then it is automatically conditionable.

Extended forward generator. Let Q be a conditionable measure. A measurable func-
tion u on [0, T ]×X is said to be in the domain of the extended forward generator of Q
if there exists a real-valued process

−→
LQu(t,X[0,t]) which is adapted with respect to the

forward filtration such that
∫
[0,T ]
|
−→
LQu(t,X[0,t])| dt <∞, Q-a.e. and the process

Mu
t := u(X t)− u(X0)−

∫
[0,t]

−→
LQu(s,X[0,s]) ds, 0 ≤ t ≤ T,

is a local Q-martingale. We say that
−→
LQ is the extended forward generator of Q. Its

domain is denoted by dom
−→
LQ. Otherwise stated, we say that Q solves the martingale

problem

Q ∈ MP(
−→
L ,U) (2.1)

if U ⊂ dom
−→
LQ and for any u ∈ U ,

−→
LQu =

−→
Lu.

Stochastic forward derivative. Nelson’s definition [31] of the stochastic forward deriv-
ative is the following. For any conditionable measure Q and any measurable real function
u on [0, T ]×X such that EQ|u(Xs)| < ∞ for all 0 ≤ s ≤ T, we say that u admits a
stochastic forward derivative under Q at time t ∈ [0, T ) if the following limit

−→
LQu(t,X[0,t]) := lim

h→0+
EQ

(
1

h
[u(X t+h)− u(X t)] | X[0,t]

)
(2.2)

exists in L1(Q). In this case,
−→
LQu(t, r) is called the stochastic forward derivative of u at

time t.

Extended generators and stochastic derivatives are essentially the same. It is
the content of Proposition A.10. If u is in dom

−→
LQ and satisfiesEQ

∫
[0,T ]

∣∣−→LQu(t,X[0,t])
∣∣ dt <

∞, one can compute
−→
LQu using the stochastic derivative:

−→
LQu =

−→
LQu, Q-a.e.

Beware of the notation: calligraphic L refers to the martingale problem MP(L), while the
roman font L refers to the stochastic derivative (2.2) which provides us with a mean of
calculating L via (2.2) using stochastic calculus.
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Reversing time. Let Q ∈ M(Ω) be any path measure. Its time reversal is

Q∗ := (X∗)#Q ∈ M(Ω),

where {
X∗t := limh→0+ XT−t+h, 0 ≤ t < T,
X∗T := X0, t = T,

is the reversed canonical process. We assume that Q is such that

Q(XT− 6= XT ) = 0,

i.e. its sample paths are left-continuous at t = T. This implies that the time reversal
mapping X∗ is (almost surely) one-one on Ω.

As a notation, the σ-field generated by X[t−,T ] is σ(X[t−,T ]) := ∩h>0σ(X[t−h,T ]) =
σ(Xt−) ∨ σ(X[t,T ]), and the predictable backward filtration is defined by: (σ(X[t−,T ]); 0 ≤
t ≤ T ).

We introduce the backward extended generator and the backward stochastic derivative
←−
LQu(t,X[t−,T ]) :=

−→
LQ∗u∗(t∗, X∗[0,t∗]),

←−
LQu(t,X[t−,T ]) :=

−→
LQ∗u∗(t∗, X∗[0,t∗]),

(2.3)

where u∗(t∗, x) := u(t, x), with t∗ := T − t, and
−→
LQ∗ and

−→
LQ∗ stand respectively for

the standard (forward) generator and derivative of Q∗. These definitions match with
Definitions A.6 and A.7. In particular, for any t ∈ (0, T ],

←−
LQu(t,X[t−,T ]) := lim

h→0+
EQ

(
1

h
[u(X t−h)− u(X t)] | X[t−,T ]

)
if this limit exists in L1(Q). Remark that the definition of

←−
LQ is consistent with (2.3).

The linear operators
−→
L ,
−→
L ,
←−
L and

←−
L are defined for any measurable function u :

[0, T ]×X → R such that the above expressions are meaningful where this meaningful
addresses the problem of their domains, see the appendix section A.
As for the forward generator, if u is in dom

←−
LQ and satisfies EQ

∫
[0,T ]

∣∣←−LQu(t,X[t,T ])
∣∣ dt <

∞, then
←−
LQu =

←−
LQu, Q-a.e.

Markov measure. A path measure Q ∈ M(Ω) is said to be Markov if it is conditionable
and for any 0 ≤ t ≤ T, Q(X[t,T ] ∈ r | X[0,t]) = Q(X[t,T ] ∈ r | Xt). It is known that Q∗ is
also Markov and the stochastic derivatives and extended generators at time t only depend
of the present position Xt. Therefore it is possible to consider the sum and difference of
the forward and backward generators: they remain functions of the present position.

Current and osmotic generators. In restriction to dom
−→
LQ ∩ dom

←−
LQ, we define the cur-

rent extended generator of Q by

Lcu,Q := (
−→
LQ −

←−
LQ)/2.

Similarly, the osmotic extended generator of Q is

Los,Q := (
−→
LQ +

←−
LQ)/2.

The osmotic generator plays an important role in this article. This is the reason why our
results about time reversal are restricted to Markov measures.
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3. Integration by parts formula

The main technical result of this paper is the integration by parts formula stated at
Theorem 3.17. This section is dedicated to its proof.

Carré du champ. Let Q be a path measure on Ω. Its forward carré du champ is the
forward-adapted process defined by

−→
Γ Q
t (u, v) :=

−→
LQ
t (uv)− u

−→
LQ
t v − v

−→
LQ
t u, (u, v) ∈ dom

−→
Γ Q
t , 0 ≤ t ≤ T,

where dom
−→
Γ Q
t :=

{
(u, v); u, v, uv ∈ dom

−→
LQ
t

}
.

We introduce a class U of functions on X such that

U ⊂ dom
−→
LQ
t ∩ Cb(X ) (3.1)

for all 0 ≤ t ≤ T and any path measure Q of interest, where Cb(X ) is the space of all
bounded continuous functions on X . We assume that U is an algebra, i.e.

u, v ∈ U =⇒ uv ∈ U . (3.2)

In particular,

u, v ∈ U =⇒ (u, v) ∈ dom
−→
Γ Q
t . (3.3)

We shall mainly consider functions in U and make an intensive use of their carré du
champ. In each setting, this algebra will be chosen rich enough to determine a Markov
dynamics, i.e. to solve in a unique way some relevant martingale problem. For instance,
in the diffusion setting, U = C2

c (Rn) is a good choice.

Remark 3.4. The requirement that U is an algebra (it is necessary that uv belongs to
dom

−→
LQ to consider

−→
LQ(uv)), is strong.

Indeed, let us say that a semimartingale is nice if its bounded variation part is absolutely
continuous. The product of two semimartingales is a semimartingale, but the product of
two nice semimartingales might not be nice anymore.
However, this is true for instance when the semimartingales are adapted to a Brownian
filtration because in this case any local martingale is represented as a stochastic integral
with respect to a Brownian motion. In general, a martingale representation theorem is
needed to verify the stability of the product of nice semimartingales.

Similarly the backward carré du champ is the backward-adapted process defined by
←−
Γ Q
t (u, v) :=

←−
LQ
t (uv)− u

←−
LQ
t v − v

←−
LQ
t u,

for any 0 ≤ t ≤ T and (u, v) ∈ dom
←−
Γ Q
t . To emphasize the fact that

−→
Γ Q(u, v) and

←−
Γ Q(u, v) are processes rather than functions, we often write

−→
Γ Q
t (u, v) =

−→
Γ Q
t (u, v)(X[0,t]) =

−→
Γ Q
t (u, v)(X),

←−
Γ Q
t (u, v) =

←−
Γ Q
t (u, v)(X[t,T ]) =

←−
Γ Q
t (u, v)(X).

The quadratic covariation [u(X), v(X)] is aQ-semimartingale. We denote by 〈u(X), v(X)〉Q
its bounded variation part, i.e.

d[u(X), v(X)]t = d〈u(X), v(X)〉Qt + dM
Q,[u,v]
t , Q-a.e. (3.5)

where, here and below,MQ, r stands for any forward localQ-martingale. As next lemma in-
dicates, we are interested in situations where the bounded variation process 〈u(X), v(X)〉Q
is predictable (as a continuous process). Therefore, in the remainder of the article
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〈u(X), v(X)〉Q is the usual sharp bracket (sometimes called conditional quadratic varia-
tion) of stochastic process theory.

Lemma 3.6. Let U satisfy the hypotheses (3.1) and (3.2).
(a) For any u, v ∈ U , the process 〈u(X), v(X)〉Q is absolutely continuous Q-a.e. and

d〈u(X), v(X)〉Qt =
−→
Γ Q
t (u, v)(X[0,t]) dt, Q-a.e.

(b) For any u, v ∈ U , the process 〈u(X), v(X)〉Q∗ is absolutely continuous Q∗-a.e. and

d〈u(X), v(X)〉Q
∗

|T−t(X
∗) =

←−
Γ Q
t (u, v)(X[t,T ]) dt, Q-a.e.

Proof. • Proof of (a). As a definition of the forward generator

du(X)t =
−→
LQ
t u(X) dt+ dMu

t , dv(X)t =
−→
LQ
t v(X) dt+ dM v

t ,

d(uv)(X)t =
−→
LQ
t (uv)(X) dt+ dMuv

t ,

and applying Itô’s formula in the forward sense of time

d(uv)(X)t = u(Xt)dv(X)t + v(Xt)du(X)t + d[u(X), v(X)]t

= u(Xt)dv(X)t + v(Xt)du(X)t + d〈u(X), v(X)〉t + dM
Q,[u,v]
t

= [u(Xt)
−→
LQ
t v(X) + v(Xt)

−→
LQ
t u(X)] dt+ d〈u(X), v(X)〉t

+ u(Xt)dM
v
t + v(Xt)dM

u
t + dM

Q,[u,v]
t .

The Doob-Meyer decomposition theorem allows us to identify the bounded variation and
martingale parts of uv(X), leading us to
−→
LQ
t (uv)(X) dt = [u(Xt)

−→
LQ
t v(X) + v(Xt)

−→
LQ
t u(X)] dt+ d〈u(X), v(X)〉Qt , Q-a.e.

which gives the announced result.

• Proof of (b). Analogous, with Q∗ instead of Q. �

Remark that the main hypothesis of this lemma is (3.2): u, v ∈ U , and its consequence
(3.3).

Let us prepare some notation for next Lemma 3.9 which is the main technical result of
this section. We introduce the class of functions

UQ2 :=
{
u ∈ U ;

−→
LQu(X) ∈ L2(Q),

−→
Γ Q(u)(X) ∈ L1(Q)

}
. (3.7)

If Q is Markov,
−→
Γ Q
t (u, v)(X) =

−→
Γ Q
t (u, v)[Xt] only depends on the current position Xt,

and we denote

(t, x) 7→
−→
Γ Q
t (u, v)[x] := EQ(

−→
Γ Q
t (u, v)(X) | Xt = x).

Consider the following convolution kernels

kh := h−11[−h,0], k−h := h−11[0,h],

with h > 0. Let f : [0, T ] → R be any absolutely continuous function with derivative ḟ .
The following expressions will be used during the proof of next lemma:

h−1[f(t+ h)− f(t)] = h−1
∫
[t,t+h]

ḟ(r) dr = kh ∗ ḟ(t), 0 ≤ t ≤ T − h,

h−1[f(t)− f(t− h)] = h−1
∫
[t−h,t]

ḟ(r) dr = k−h ∗ ḟ(t), h ≤ t ≤ T.

(3.8)
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Lemma 3.9. Let Q be any path measure and take any u, v in the class UQ2 .
(a) The following limit holds

lim
h→0+

EQ

∫ T−h

0

∣∣∣EQ[h−1{u(Xt+h)− u(Xt)}{v(Xt+h)− v(Xt)} | X[0,t]

]
−
−→
Γ Q
t (u, v)(X)

∣∣∣ dt = 0.

(b) If in addition Q is Markov and (t, x) 7→
−→
Γ Q
t (u, v)[x] is continuous, then

lim
h→0+

EQ

∫ T

h

∣∣∣EQ[h−1{u(Xt)− u(Xt−h)}{v(Xt)− v(Xt−h)} | Xt−h
]

−
−→
Γ Q
t (u, v)[Xt]

∣∣∣ dt = 0.

(3.10)

Proof. • Proof of (a). Let us start with a remark about our assumptions. The (a priori
local) martingale Mu

t = u(Xt)−u(X0)−
∫ t
0

−→
LQ
s u(X) ds, is a square integrable martingale

because

EQ sup
0≤t≤T

|Mu
t |2 ≤ C2EQ[u(X)]QT = C2EQ〈u(X)〉QT = C2EQ

−→
Γ Q
T (u)(X) <∞, (3.11)

where the first inequality is Doob’s maximal inequality with C2 = 4, and the rest follows
from the assumptions

−→
Γ Q(u)(X) ∈ L1(Q) and Lemma 3.6. For each 0 ≤ t ≤ T − h with

0 < h ≤ T,

[u(Xt+h)− u(Xt)][v(Xt+h)− v(Xt)]

=
[ ∫ t+h

t

dMu
s +

∫ t+h

t

−→
LQ
s u(X) ds

][ ∫ t+h

t

dM v
s +

∫ t+h

t

−→
LQ
s v(X) ds

]
=Aht +Bh

t + Ch
t +Dh

t , Q-a.e.,

where

Aht =

∫ t+h

t

dMu
s

∫ t+h

t

dM v
s , Bh

t =

∫ t+h

t

−→
LQ
s u(X) ds

∫ t+h

t

dM v
s ,

Ch
t =

∫ t+h

t

−→
LQ
s v(X) ds

∫ t+h

t

dMu
s , Dh

t =

∫ t+h

t

−→
LQ
s u(X) ds

∫ t+h

t

−→
LQ
s v(X) ds.

Let us control Aht . Denoting Nu
t,s := Mu

s −Mu
t and N v

t,s := M v
s −M v

t ,

Aht =

∫ t+h

t

d(Nu
t,sN

v
t,s)

=

∫ t+h

t

Nu
t,sdM

v
s +

∫ t+h

t

N v
t,sdM

u
s +

∫ t+h

t

dMQ,[u,v]
s +

∫ t+h

t

d〈Mu,M v〉Qs ,

where MQ,[u,v] is the martingale part of the semimartingale [u(X), v(X)], see (3.5). With
Lemma 3.6, we obtain

h−1EQ(Aht | X[0,t]) = h−1
∫ t+h

t

EQ[
−→
Γ Q
s (u, v)(X[0,s]) | X[0,t]] ds. (3.12)

Remark that under our integrability assumptions, the stochastic integrals
∫ t+h
t

dMu
s ,∫ t+h

t
dM v

s ,
∫ t+h
t

Nu
t,sdM

v
s and

∫ t+h
t

N v
t,sdM

u
s are integrable Q-martingales. The first ones
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because of (3.11), and the last ones by Burkholder-Davis-Gundy inequality:

EQ sup
0≤t≤T

∣∣∣ ∫ t

0

Mu
s dM

v
s

∣∣∣ ≤ C1EQ

[(∫ T

0

|Mu
t |2d[M v]t

)1/2
]
≤ C1EQ

(
sup

0≤t≤T
|Mu

t |[M v]
1/2
T

)
≤ C1

√
EQ sup

0≤t≤T
|Mu

t |2
√

EQ[M v]T ≤ C1C
1/2
2

√
EQ〈u(X)〉T

√
EQ〈v(X)〉T <∞,

with C1 a universal constant and where we used (3.11) when C2 appears. By Burkholder-
Davis-Gundy inequality again, we also haveMQ,[u,v] ∈ L1(Q). These considerations justify
the cancellation of the expectations of the martingale terms.

The remaining terms Bh, Ch and Dh are controlled using our integrability assumptions
and Cauchy-Schwarz inequality. Let us start with Bh:(

EQ

∫ T−h

0

|Bh
t | dt

)2
≤ EQ

∫ T−h

0

( ∫ t+h

t

−→
LQ
s u(X) ds

)2
dt EQ

∫ T−h

0

( ∫ t+h

t

dM v
s

)2
dt

≤ EQ

∫ T−h

0

( ∫ t+h

t

−→
LQ
s u(X) ds

)2
dt EQ

∫ T−h

0

∫ t+h

t

−→
Γ Q
s (v)(X) dsdt

≤ o(h2) EQ

∫ T−h

0

kh ∗ (
−→
LQu)2(t,X[0,t]) dt

= o(h2)
(
EQ

∫ T

0

(
−→
LQ
t u)2(X) dt+ oh→0+(1)

)
,

where the third inequality follows from Lebesgue’s dominated convergence theorem un-
der the assumption that

−→
Γ Q(v)(X) ∈ L1(Q), and use we took kh := h−11[−h,0] as our

convolution kernel, see (3.8). The last identity is a consequence of Lemma A.8 under the
assumption

−→
LQu(X) ∈ L2(Q). This gives

EQ

∫ T−h

0

h−1|Bh
t | dt ≤ oh→0+(1)‖

−→
LQu(X)‖L2(Q) + oh→0+(1)

and similarly

EQ

∫ T−h

0

h−1|Ch
t | dt ≤ oh→0+(1)‖

−→
LQv(X)‖L2(Q) + oh→0+(1).

The control of Dh is analogous:(
EQ

∫ T−h

0

|Dh
t | dt

)2
≤ EQ

∫ T−h

0

( ∫ t+h

t

−→
LQ
s u(X) ds

)2
dt EQ

∫ T−h

0

( ∫ t+h

t

−→
LQ
s v(X) ds

)2
dt

≤ h4EQ

∫ T−h

0

kh ∗ (
−→
LQu)2(t,X[0,t]) dt EQ

∫ T−h

0

kh ∗ (
−→
LQ
v )2(t,X[0,t]) dt

= h4
(
EQ

∫ T

0

(
−→
LQ
t u)2(X) dt+ oh→0+(h)

) (
EQ

∫ T

0

(
−→
LQ
t v)2(X) dt+ oh→0+(h)

)
,
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leading to

EQ

∫ T−h

0

h−1|Dh
t | dt ≤ h‖

−→
LQu(X)‖L2(Q) ‖

−→
LQv(X)‖L2(Q) + oh→0+(h).

Putting everything together, we obtain

lim
h→0+

EQ

∫ T−h

0

∣∣∣EQ[h−1{u(Xt+h)− u(Xt)}{v(Xt+h)− v(Xt)} | X[0,t]

]
− h−1

∫ t+h

t

EQ[
−→
Γ Q
s (u, v)(X[0,s]) | X[0,t]] ds

∣∣∣ dt = 0.

On the other hand, by Corollary A.9 applied with the convolution kernel kh = 1
h
1[−h,0]

and At = σ(X[0,t]), under the assumptions
−→
Γ Q(u)(X),

−→
Γ Q(v)(X) ∈ L1(Q), we obtain

lim
h→0+

EQ

∫ T−h

0

∣∣∣h−1 ∫ t+h

t

EQ[
−→
Γ Q
s (u, v)(X[0,s]) | X[0,t]] ds−

−→
Γ Q
t (u, v)(X[0,t])

∣∣∣ dt = 0.

The conclusion of the proof of (a) follows from these last two limits.

• Proof of (b). Changing a little bit the previous arguments, in particular using the
assumed Markov property of Q, the convolution kernel k−h := 1

h
1[0,h] instead of kh, and

applying Corollary A.9 with At = σ(Xt), we obtain similarly

lim
h→0+

EQ

∫ T

h

∣∣∣EQ[h−1{u(Xt−h)− u(Xt)}{v(Xt−h)− v(Xt)} | Xt−h
]

− h−1
∫ t

t−h
EQ[
−→
Γ Q
s (u, v)[Xs] | Xt−h] ds

∣∣∣ dt = 0.

On the other hand, as in the proof Corollary A.9 we obtain

EQ

∫ T

h

∣∣∣h−1 ∫ t

t−h
EQ[
−→
Γ Q
s (u, v)[Xs] | Xt−h] ds−

−→
Γ Q
t−h(u, v)[Xt−h]

∣∣∣ dt
≤ EQ

∫ T

h

∣∣∣h−1 ∫ t

t−h

−→
Γ Q
s (u, v)[Xs] ds−

−→
Γ Q
t−h(u, v)[Xt−h]

∣∣∣ dt
= EQ

∫ T

h

∣∣∣k−h ∗ −→Γ Q
t (u, v)[Xt]−

−→
Γ Q
t−h(u, v)[Xt−h]

∣∣∣ dt
≤ EQ

∫ T

h

∣∣∣k−h ∗ −→Γ Q
t (u, v)[Xt]−

−→
Γ Q
t (u, v)[Xt]

∣∣∣ dt
+ EQ

∫ T

h

∣∣∣−→Γ Q
t (u, v)[Xt]−

−→
Γ Q
t−h(u, v)[Xt−h]

∣∣∣ dt.
We know by Lemma A.8 that limh→0+ EQ

∫ T
h

∣∣∣k−h ∗ −→Γ Q
t (u, v)[Xt]−

−→
Γ Q
t (u, v)[Xt]

∣∣∣ dt = 0.

With the additional hypothesis that (t, x) 7→
−→
Γ Q
t (u, v)[x] is continuous, and because

−→
Γ Q(u, v) is integrable, we see that limh→0+ EQ

∫ T
h

∣∣∣−→Γ Q
t−h(u, v)[Xt−h]−

−→
Γ Q
t (u, v)[Xt]

∣∣∣ dt =

0. Putting everything together we arrive at (3.10). �

Corollary 3.13. Let Q be any path measure and take any u, v in the class UQ2 .
Then, for almost all t,

lim
h→0+

EQ
[
h−1{u(Xt+h)− u(Xt)}{v(Xt+h)− v(Xt)}

]
= EQ

−→
Γ Q
t (u, v)(X).
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If in addition, U ⊂ dom
←−
LQ,

←−
LQu(X),

←−
LQv(X) ∈ L2(Q), (u, u), (v, v) ∈ dom

←−
Γ Q and

←−
Γ Q(u)(X),

←−
Γ Q(v)(X) ∈ L1(Q), and the hypotheses of Lemma 3.9-(b) are satisfied, then

for almost all t,

lim
h→0+

EQ
[
h−1{u(Xt−h)− u(Xt)}{v(Xt−h)− v(Xt)}

]
= EQ

−→
Γ Q
t (u, v)(X) = EQ

←−
Γ Q
t (u, v)(X).

(3.14)

Proof. The first statement follows directly from statement (a) of Lemma 3.9 with Fubini
and Jensen. Our additional hypotheses on U , u and v mean that u and v belong to UQ

∗

2 .
Applying (a) to Q∗ instead of Q, we have

lim
h→0+

EQ

∫ T

h

∣∣∣EQ[h−1{u(Xt−h)− u(Xt)}{v(Xt−h)− v(Xt)} | X[t,T ]

]
−
←−
Γ Q
t (u, v)(X)

∣∣∣ dt = 0.

With Fubini and Jensen again, we see that (b) of Lemma 3.9, and this identity imply
(3.14). �

Integration by parts formula. The following easy result is pointed out because it is a
technical argument of the proof of next Theorem 3.17.

Lemma 3.15. For any measurable bounded function u ∈ dom
−→
LQ such that

−→
LQu[X] ∈

L1(Q), and all 0 ≤ s ≤ t ≤ T,

EQ[u(X t)− u(Xs) | Xs] = EQ

[∫ t

s

−→
LQu(Xr) dr | Xs

]
.

For any measurable bounded function u ∈ dom
←−
LQ such that

←−
LQu[X] ∈ L1(Q), and all

0 ≤ s ≤ t ≤ T,

EQ[u(X t)− u(Xs) | Xt] = −EQ
[∫ t

s

←−
LQu(Xr) dr | Xt

]
.

Proof. The first equality is obvious. Let us look at the second one:

EQ[u(X t)− u(Xs) | Xt] = EQ∗ [u
∗(T − t,XT−t)− u∗(T − s,XT−s) | XT−t]

= −EQ∗
[∫ T−s

T−t

−→
LQ∗u∗(r,Xr) dr | XT−t

]
= −EQ∗

[∫ t

s

−→
LQ∗u∗(T − r,XT−r) dr | XT−t

]
= −EQ∗

[∫ t

s

←−
LQu(r,XT−r) dr | XT−t

]
= −EQ

[∫ t

s

←−
LQu(r,Xr) dr | Xt

]
,

as announced. �

Next Theorem 3.17 is the cornerstone of the proofs of time reversal formulas. Before
stating it, let us introduce some notation. For any path measure Q, we define
−→
LQ
t u[Xt] := EQ

(−→
LQ
t (X[0,t]) | Xt

)
,

−→
Γ Q
t (u, v)[Xt] := EQ

(−→
Γ Q
t (u, v)(X[0,t]) | Xt

)
,

←−
LQ
t u[Xt] := EQ

(←−
LQ
t (X[t,T ]) | Xt

)
,

←−
Γ Q
t (u, v)[Xt] := EQ

(←−
Γ Q
t (u, v)(X[t,T ]) | Xt

)
,
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where we use square brackets [Xt] to specify the conditional expectation knowing Xt,
provided it is well defined. Of course, if Q is Markov, then

−→
LQ
t u[Xt] =

−→
LQ
t u(Xt), and so

on. We introduce the class of functions

UQ :=
{
u ∈ U ;

−→
LQu[ r] ∈ L1(q̄),

−→
Γ Q(u)[ r] ∈ L1(q̄)

}
. (3.16)

Comparing with (3.7), we see that the differences with UQ2 are the conditional expectations
with respect to Xt and that

−→
LQu[ r] stands in L1(q̄) instead of L2(q̄). The integrability

improvement is useful at Section 7 and in the companion paper [5] when establishing time
reversal formulas for jump processes under a finite entropy hypothesis.

Theorem 3.17 (IbP of the carré du champ). Let P ∈ M(Ω) be any path measure. Take
two functions u, v in UP .
(a) If

u ∈ dom
←−
L P and

←−
L Pu(X) ∈ L1(P ), (3.18)

then for almost every t

EP

(
(
−→
L P
t u+

←−
L P
t u)[Xt]v(Xt) +

−→
Γ P
t (u, v)[Xt]

)
= 0. (3.19)

(b) Suppose that P is Markov,

(t, x) 7→
−→
Γ P
t (u, v)(x) is continuous, (3.20)

the class of functions UP determines the weak convergence of Borel measures on X ,
and the linear form

w ∈ UP 7→ EP

∫
[0,T ]

−→
Γ P
t (u,wt)(Xt) dt (3.21)

on UP :=
{
w ∈ Cb([0, T ]×X ); w(t, r) ∈ UP , ∀0 ≤ t ≤ T

}
defines a finite measure on

[0, T ]×X .
Then, (3.18) holds and therefore (3.19) is satisfied.

Remarks 3.22.
(a) The assumption (3.21) is an integration by parts formula.
(b) Statement (a) is really significant when P is a Markov measure because in this case
−→
L P [X] =

−→
L P (X),

←−
L P [X] =

←−
L P (X) and

−→
Γ P [X] =

−→
Γ P (X): we do not loose any in-

formation and this carries all the necessary material to derive a time reversal formula.
We state it in the general form to stress that the Markov property does not play any
role in the proof of statement (a).

(c) Using the notion of osmotic extended generator

Los,P
t u(x) := (

−→
L P
t +
←−
L P
t )u[x]/2,

the IbP formula writes as∫
X
vLos,P

t u dPt = −1

2

∫
X

−→
Γ P
t (u, v)[x]Pt(dx) = −1

2

∫
X

←−
Γ P
t (u, v)[x]Pt(dx),

where last equality is Corollary 3.13, provided that the extra hypotheses of this corol-
lary are satisfied. We see that it extends the usual integration by parts formula stated
at Proposition 3.36 below, which is only valid for stationary Markov measures.
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(d) The symmetry of the carré du champ implies∫
X
vLos,P

t u dPt =

∫
X
uLos,P

t v dPt.

(e) By Proposition A.10 we know that for any u ∈ domLos,P := dom
−→
L P ∩ dom

←−
L P such

that EP
∫
[0,T ]

(|
−→
L P
t u|+ |

←−
L P
t u|)(X) dt <∞, the limit

Los,P
t u(Xt) = lim

h→0+

1

h
EP

(u(Xt+h) + u(Xt−h)

2
− u(Xt) | Xt

)
takes place in L1(P ).

Proof of Theorem 3.17. We start proving the IbP formula (3.19) assuming that u and v
belong to UP2 , and using both hypotheses (3.18) and (3.20). Once this is done, we extend
the result to the case where u and v are in UP . Finally, we shall see at the end of the
proof that it is a simple matter to remove one assumption among (3.18) and (3.20).

• Proof of (3.19) under the hypotheses: u, v ∈ UP2 , (3.18) and (3.20). It is based on the
elementary identity

[(ut+h − ut)+(ut−h − ut)]vt
= −(ut−h − ut)(vt−h − vt) + vt(ut+h − ut)− vt−h(ut − ut−h),

(3.23)

which implies

EP

({
EP [u(Xt+h)− u(Xt) | Xt] + EP [u(Xt−h)− u(Xt) | Xt]

}
v(Xt)

)
= −EP

(
{u(Xt−h)− u(Xt)}{v(Xt−h)− v(Xt)}

)
+ EP

(
v(Xt)EP [u(Xt+h)− u(Xt) | Xt]

)
− EP

(
v(Xt−h)EP [u(Xt)− u(Xt−h) | Xt−h]

)
.

Dividing both sides by h > 0, letting h→ 0+,

EP [(
−→
L tu+

←−
L tu)[Xt] v(Xt)]

= −EP
−→
Γ P
t (u, v)[Xt] + lim

h→0+
EP

(
v(Xt)EP [u(Xt+h)− u(Xt) | Xt]

)
− lim

h→0+
EP

(
v(Xt−h)EP [u(Xt)− u(Xt−h) | Xt−h]

)
,

(3.24)

and the proof will be complete once we show that the last two terms cancel each other.
Let us present some justifications for (3.24). We denote for any 0 < h ≤ T,

X
h

t := X t+h = (t+ h,Xt+h), 0 ≤ t ≤ T − h,

X
−h
t := X t−h = (t− h,Xt−h), h ≤ t ≤ T.

Because u is taken in UP2 , by the first part of Proposition A.10 (and Jensen’s inequality),
we have limh→0+ h

−1EP [u(X
h
)− u(X) | X] =

−→
L Pu[X] in L2(P ), and a fortiori in L1(P ).

But v(X) is a bounded function. Hence,

lim
h→0+

EP

(
v(X)h−1[u(X

h
)− u(X)] | X

)
= v(X)

−→
L Pu[X] in L1(P ).

Similarly, with the second part of Proposition A.10, under the assumption (3.18)

lim
h→0+

EP

(
v(X)h−1[u(X

−h
)− u(X)] | X

)
= v(X)

←−
L Pu[X] in L1(P ). (3.25)
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With Fubini and Jensen, this proves

lim
h→0+

∫ T−h

h

∣∣∣h−1EP([{u(Xt+h)−u(Xt)}+ {u(Xt−h)− u(Xt)}] v(Xt)
)

− EP
(

(
−→
L P
t u+

←−
L P
t u)[Xt] v(Xt)

)∣∣∣ dt = 0.

(3.26)

Under the assumption (3.20) and because u and v are assumed to belong to UP2 , by Lemma
3.9-(b) we have also

lim
h→0+

∫ T

h

∣∣∣EP(h−1{u(Xt)− u(Xt−h)}{v(Xt)− v(Xt−h)}
)

− EP
−→
Γ P
t (u, v)[Xt]

∣∣∣ dt = 0.

(3.27)

It remains to prove that the last terms of (3.24) cancel each other by showing that

lim
h→0+

∫ T−h

0

∣∣∣EP(v(Xt)h
−1[u(Xt+h)− u(Xt)]

)
− EP (v(X t)

−→
Lu[X t])

∣∣∣ dt = 0, (3.28)

lim
h→0+

∫ T

h

∣∣∣EP(v(Xt−h)h
−1[u(Xt)− u(Xt−h)]

)
− EP

(
v(X t)

−→
Lu[X t])

∣∣∣ dt = 0. (3.29)

The leftmost integrand of (3.28) is EP (v(Xt){kh ∗
−→
Lu[X]}t), so that the identity follows

because v(X t) is in L∞(P ) and limh→0+{kh ∗
−→
Lu[X]} =

−→
Lu[X] in L1(P ) by Lemma A.8.

On the other hand, (3.29) is true because

(i) EP
(
v(Xt−h)h

−1[u(Xt)− u(Xt−h)]
)

= EP

(
v(Xt−h){k−h ∗

−→
Lu[X]}t

)
;

(ii) limh→0+{k−h ∗
−→
Lu[X]} =

−→
Lu[X] in L1(P );

(iii) limh→0+ v(Xt−h) = v(Xt−) = v(Xt), P -a.e.
Item (i) follows from Lemma 3.15 and (3.8), (ii) is a direct consequence of Lemma A.8, and
(iii) follows because the sample paths are left-limited, it is assumed that v is continuous
and bounded, and Xt = Xt− for almost every t, P -a.e. because the sample paths are
càdlàg.
We have proved

EP

∫
[0,T ]

∣∣∣(−→L P
t u+

←−
L P
t u)[Xt]v(Xt) +

−→
Γ P
t (u, v)[Xt]

∣∣∣ dt = 0, (3.30)

and therefore (3.19), under the hypotheses: u, v ∈ UP2 , (3.18) and (3.20). Let us relax
this hypothesis by considering functions u and v in UP instead of UP2 .

• Proof of (3.19) under the hypotheses: u, v ∈ UP , (3.18) and (3.20). The proof of this
extension relies on a localization argument. For any u, v ∈ UP and any k ≥ 1, we define
the stopping time

τ k := inf
{
t ∈ [0, T ];

∫ t

0

|
−→
L P
s u(X[0,s])| ds+

∫ t

0

|
−→
L P
s v(X[0,s])| ds ≥ k

}
and consider the sequence of stopped path measures P k := (Xτk)#P, k ≥ 1. Clearly

lim
k→∞

τ k =∞, P -a.e.
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because u and v belong to dom
−→
L P . For any k ≥ 1, the functions u and v are in UPk2 ,

therefore we have just proved that P k verifies (3.30):

EPk

∫
[0,T ]

∣∣∣(−→L Pk

t u+
←−
L Pk

t u)[Xt]v(Xt) +
−→
Γ Pk

t (u, v)[Xt]
∣∣∣ dt = 0.

On the other hand,
−→
L Pk

t u[x] = EP [1{t<τk}
−→
L P
t u(X) | Xt = x],

←−
L Pk

t u[x] = EP1{t≤τk}
←−
L P
t u,

and
−→
Γ Pk

t (u, v) = 1{t<τk}
−→
Γ P
t (u, v). Hence

0 = EPk

∫
[0,T ]

∣∣∣(1{t<τk}−→L P
t u+ 1{t≤τk}

←−
L P
t u)[Xt]v(Xt) + 1{t<τk}

−→
Γ P
t (u, v)[Xt]

∣∣∣ dt
= EP

∫
[0,T ]

∣∣∣(1{t<τk}−→L P
t u+ 1{t≤τk}

←−
L P
t u)[Xt]v(Xt) + 1{t<τk}

−→
Γ P
t (u, v)[Xt]

∣∣∣ dt
= EP

∫
[0,T ]

∣∣∣(−→L P
t u+

←−
L P
t u)[Xt]v(Xt) +

−→
Γ P
t (u, v)[Xt]

∣∣∣ dt.
The second equality holds because P and P k match on

{
t ≤ τ k

}
, and last equality follows

letting k tend to infinity by dominated convergence under our integrability assumptions.
We have proved (3.19) under the hypotheses: u, v ∈ UP , (3.18) and (3.20).

This proof was based on the convergence of the identity (3.23) as h tends to zero. But
for this convergence to hold, it is sufficient that only three of its four terms converge. We
take advantage of this remark to complete the proof.

• Proof of (a). Let us remove (3.20). This assumption was used to obtain (3.27) and was
not used anywhere else. Hence, the limits of the other three terms of (3.23) are valid even
in absence of (3.20), showing in return that in addition to (3.19), (3.27) holds true.

• Proof of (b). Let us remove (3.18). This assumption was used to obtain (3.25) and
was not used anywhere else. Hence, the limits of the other three terms of (3.23) are valid
even in absence of (3.18), showing in return that in addition to (3.19), the expectation of
(3.25) holds true: the limit

lim
h→0+

EP

∫
[h,T ]

wt(Xt)h
−1 {u(Xt−h)− u(Xt)} dt =:

←−
` Pu (w) (3.31)

exists for all w ∈ UP (passing from UP to UP is obvious), and we have

←−
` Pu (w) = EP

∫
[0,T ]

(
−
−→
L P
t u[Xt]wt(Xt)−

−→
Γ P
t (u,w)[Xt]

)
dt, w ∈ UP . (3.32)

As we assume that UP is separating and w 7→ EP
∫
[0,T ]

−→
Γ P
t (u,w)[Xt] dt defines a finite mea-

sure,
←−
` Pu is also a finite measure on [0, T ]×X because

−→
L Pu ∈ L1(P ). It is absolutely con-

tinuous with respect to p̄ because
∫
[0,T ]×X |w| dp̄ = 0 implies

∫
[0,T ]×X

−→
Γ P
t (u,wt)[x] p̄(dtdx) =

0. Moreover, since UP is convergence-determining, so is UP , and with (3.31) and Propo-
sition A.11 we see that

←−
L Pu = d

←−
` Pu /dp̄. We conclude with (3.32) that the IbP formula

(3.19) is satisfied. �

Remark 3.33. Another very similar proof is based on the elementary identity

[(ut+h − ut)+(ut−h − ut)]vt
= −(ut+h − ut)(vt+h − vt) + vt(ut−h − ut)− vt+h(ut − ut+h).
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Doing this, one sees that (a) is still valid. But (b) does not follow so easily because one
cannot drop (3.18).

Corollary 3.34. Let u be in UP and suppose that (3.18) is fulfilled. Then, u ∈ domLos,P

and for almost every t ∫
X
Los,P
t u dPt = 0.

Proof. Apply Theorem 3.17 with v = 1. �

Stationary Markov measure. To make the point of Remark 3.22-(c) precise, let us
recall what time reversal does with stationary Markov measures.

We consider a stationary Markov measure P ∈ M(Ω) with equilibrium m. Stationary
means that for any real numbers t1, . . . , tk and h, the laws of (Xt1+h, . . . , Xtk+h) and
(Xt1 , . . . , Xtk) under P are the same. As P is Markov, it is sufficient that this property
holds for k = 2. We restrict the time interval to [0, T ]. The equilibrium measure is the
constant law Pt = m, for all t ∈ [0, T ].

Define the class of functions

V :=
{
v ∈ dom

−→
L P ∩ L2(m);

−→
L Pv ∈ L1(m) ∩ L2(m)

}
.

The adjoint (
−→
L P
|V)∗ in L2(m) of the restriction

−→
L P
|V to V of the forward generator

−→
L P of

P is defined by:
∫
X v(
−→
L P
|V)∗u dm =

∫
X u
−→
L Pv dm, for any u, v ∈ V .

Lemma 3.35. Suppose that P is Markov and stationary, then:
←−
L P
|V = (

−→
L P
|V)∗.

Proof. Fix t, h such that 0 ≤ t ≤ t+ h ≤ T and take u, v ∈ V . By stationarity

EP [u(Xt){v(Xt+h)− v(Xt)}]
= EP [{u(Xt−h)− u(Xt)}v(Xt)] + EP [u(Xt)v(Xt+h)− u(Xt−h)v(Xt)]

= EP [{u(Xt−h)− u(Xt)}v(Xt)].

Dividing by h > 0 and letting it tend to zero, we conclude with Proposition A.10. �

This is a well-known result. One of its versions in the framework of discrete time was
published by Nelson in 1958 [30]. We find it pleasant to provide an elementary proof in
the continuous-time setting, based on stochastic derivatives: a tool developed by Nelson
himself a decade later.

Proposition 3.36 (Integration by parts). Suppose that P ∈ M(Ω) is Markov and sta-
tionary, then for any u, v ∈ V , such that uv ∈ V ,∫

X
uLsym,Pv dm = −1

2

∫
X

−→
Γ P (u, v) dm,

where

Lsym,P := (
−→
L P + (

−→
L P )∗)/2 = (

−→
L P +

←−
L P )/2 = Los,P (3.37)

is the algebraic symmetrization of
−→
L P .
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Proof. Let us denote for simplicityA :=
−→
L P
|V .Of course,

∫
X Audm = 0 because

∫
X Audm =∫

X 1Audm =
∫
X uA

∗1 dm and the stationarity implies that A∗1 = 0. Therefore,∫
X

−→
Γ P (u, v) dm =

∫
X
{A(uv)− uAv − vAu} dm

= −
∫
X
{uAv + vAu} dm = −

∫
X
{uA∗v + vA∗u} dm

= −2

∫
X
uĀv dm

with Ā := (A+ A∗)/2. We conclude with Lemma 3.35. �

Finite entropy. Up to now the entropy did not play any role. Let us write some words
about it in preparation to forthcoming time reversal formulas.
Comparing statements (a) and (b) of Theorem 3.17, we see that (b) is easier to verify than
(a), because (a) requires that u is in the domain of the backward generator: a property
which is not known a priori. On the other hand, the assumption (3.20) in (b) is too
much demanding for some applications we have in mind, where a finite entropy condition
destroys this regularity in presence of jumps, see [5].

We are going to investigate time reversal of Markov measures P verifying the finite
entropy condition (1.5): H(P |R) <∞, where the time reversal R∗ of a reference Markov
measure R is accessible via Theorem 3.17-(b). Then, taking advantage of the elementary
identityH(P ∗|R∗) = H(P |R) <∞, a deep insight of Föllmer already encountered at (1.1),
we shall be in position to build a large enough class UP and to verify the assumptions of
Theorem 3.17-(a) for P .

4. Time reversal of a diffusion process in Rn

In this section, the IbP formula of Theorem 3.17 is used to obtain at Theorem 4.9 a
time reversal formula for diffusion measures.

Reference diffusion measure. The path space is the set Ω = C([0, T ],Rn) of all con-
tinuous trajectories from [0, T ] to Rn. The main reference measure we have in mind is the
reversible Kolmogorov diffusion R defined at (1.9).

Finite entropy in a diffusion setting. Take Q ∈ P(Ω) such that

H(Q|R) <∞. (4.1)

We know by the Girsanov theory under a finite entropy condition [25], that when R fulfils
the uniqueness condition:

∀R′ ∈ M(Ω), [R′ ∈ MP(R0, a, b
R) and R′ � R] =⇒ R′ = R, (4.2)

there exists some Rn-valued predictable process βQ|R which is defined Q-a.e. such that Q
solves the martingale problem

Q ∈ MP(Q0, v
a,m + aβQ|R, a). (4.3)
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Recall Remark 1.16 for a setting where the uniqueness condition (4.2) is satisfied.
Furthermore, because of the uniqueness of the solution to MP(m, va,m, a), we know that

dQ

dR
= 1{dP/dR>0}

dQ0

dR0

(X0) exp

(∫
[0,T ]

β
Q|R
t ·dMR

t −
∫
[0,T ]

|βQ|Rt |2a(Xt)/2 dt
)

= 1{dP/dR>0}
dQ0

dR0

(X0) exp

(∫
[0,T ]

β
Q|R
t ·dMP

t +

∫
[0,T ]

|βQ|Rt |2a(Xt)/2 dt
)
,

where

dMR
t = dXt − va,m(Xt) dt and dMP = dXt − (va,m(Xt) + a(Xt)β

Q|R
t ) dt,

and we denote
|β|2a := β ·aβ.

Moreover,

H(Q|R) = H(Q0|R0) + EQ

∫
[0,T ]

|βQ|Rt |2a(Xt)/2 dt. (4.4)

Of course, in view of this identity, H(Q|R) < ∞ implies that EQ
∫
[0,T ]
|βQ|Rt |2a(Xt) dt is

finite.

Claim 4.5. If in addition Q is Markov, then the process βQ|R turns out to be a vector
field:

β
Q|R
t = βQ|R(X t), Q-a.e.

Proof. Indeed, we see with (4.3) that

[va,m(Xt) + a(Xt)β
Q|R
t ] dt = EQ(dXt | X[0,t]) = EQ(dXt | Xt)

= va,m(Xt) + a(Xt)EQ(β
Q|R
t | Xt)] dt, Q-a.e.

Remark that all the above conditional expectations are well-defined; in particularEQ(β
Q|R
t |

Xt) is meaningful because of (4.4) and the finite entropy assumption (4.1). It follows that
for all 0 ≤ t ≤ T, a(Xt)β

Q|R
t = a(Xt)EQ(β

Q|R
t | Xt), Q-a.e. �

Moreover, we observe that

H(Q|R)−H(Q0|R0) = H(Q|RQ0) = EQ

∫
[0,T ]

1

2
|−→v Q|R|2g(X t) dt

is an average kinetic action, where −→v Q|R := aβQ|R and

g = a−1.

Nelson’s velocities. The forward stochastic velocity −→v Q is

−→v Q(t, x) :=
−→
LQ
t [Id](x) = lim

h→0+
EQ

(Xt+h −Xt

h
| Xt = x

)
,

and similarly, we define the backward velocity

←−v Q(t, x) :=
←−
LQ
t [Id](x) = lim

h→0+
EQ

(Xt−h −Xt

h
| Xt = x

)
,

whenever these expressions are meaningful. These velocities might not be well defined
because of a lack of integrability. However, under a finite entropy condition, Proposition
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4.6 below tells us that they are well defined in the setting we are interested in.
The current velocity is

vcu,Q := (−→v Q −←−v Q)/2

and the osmotic velocity is

vos,Q := (−→v Q +←−v Q)/2.

We immediately observe that{ −→v = vcu + vos,
←−v = −vcu + vos

and
{

vcu,Q
∗

t = −vcu,QT−t ,

vos,Q
∗

t = vos,QT−t .

Entropy under time reversal. Next result is a central observation in Föllmer’s ap-
proach to time reversal.

Proposition 4.6. Under the Hypotheses 1.8, let P be a Markov probability measure such
that H(P |R) <∞.
Then, there exist two measurable vector fields

−→
β P |R and

←−
β P |R such that

−→
L P = ∂t +−→v P ·∇+ ∆a/2, where −→v P = va,m + a

−→
β P |R

←−
L P = −∂t +←−v P ·∇+ ∆a/2, where ←−v P = va,m + a

←−
β P |R

with

EP

∫
[0,T ]

(|
−→
β P |R|2a + |

←−
β P |R|2a)(X t) dt <∞,

and

H(P |R) = H(P0|R0) + EP

∫
[0,T ]

1

2
|
−→
β P |R|2a(Xt) dt

= EP

∫
[0,T ]

1

2
|
←−
β P |R|2a(Xt) dt+H(PT |RT ).

Proof. Since P is Markov, so is P ∗ := (X∗)#P . As the time reversal mapping X∗ is
one-one, we have H(P |R) = H(P ∗|R∗). Hence,

H(P |R) = H(P ∗|R∗) = H(P ∗|R) <∞,

where last equality comes from the reversibility of R which implies R∗ = R. Again, by Gir-
sanov theory we know that there is some previsible vector field

−→
β P ∗|R such that P ∗ solves

the martingale problem MP(PT , v
a,m+a

−→
β P ∗|R, a). Denoting

←−
β P |R(t, z) :=

−→
β P ∗|R(T−t, z),

we see that

H(P ∗|R) = H(P ∗0 |R0) + EP ∗

∫
[0,T ]

1

2
|
−→
β P ∗|R|2a(X t) dt

= H(PT |RT ) + EP

∫
[0,T ]

1

2
|
←−
β P |R|2a(X t) dt,

as announced. �
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Continuity equation. Proposition 4.8 below, which is the object of this subsection is
not directly linked to time reversal (it is rather complementary). Nevertheless, we present
its easy short proof because all the preliminary notions which are needed to its statement
and proof appear in the last previous pages.

Lemma 4.7. Under the Hypotheses 1.8, let P ∈ P(Ω) be Markov and such that H(P |R) <
∞. Then, any compactly supported function u ∈ C1,2

c ([0, T ] × Rn) stands in the domain
of both

−→
L P and

←−
L P , and EP |

−→
L Pu(X)|2 <∞, EP |

←−
L Pu(X)|2 <∞.

Moreover u(X t) − u(X0) −
∫ t
0

−→
L P
s u[Xs] ds and u(X t) − u(XT ) −

∫ T
t

←−
L P
s u[Xs] ds are re-

spectively genuine (rather than local) forward and backward P -martingales.

Proof. The proofs of the statements concerning
−→
L P and

←−
L P being similar, we focus on−→

L P . Take u in C1,2
c ([0, T ]× Rn). All we have to show is

EP |
−→
L Pu(X)|2 <∞.

By Proposition 4.6,
−→
L Pu = ∂tu+ va,m ·∇u+

1

2
∆au+ a

−→
β P |R ·∇u

and EP
(
|
−→
β P |R|2a(X)

)
<∞. Since a and va,m are locally bounded,

−→
LRu = ∂tu+ va,m·∇u+

1
2
∆au is bounded. The last term is controlled by

EP
(
|a
−→
β P |R ·∇u(X)|2

)
≤ EP

(
|
−→
β P |R|2a(X) |∇u|2a(X)

)
≤ sup |∇u|2aEP

(
|
−→
β P |R|2a(X)

)
<∞.

�

For any measure m and vector field w on Rn, we define divm(w) by:∫
Rn
u divm(w) dm := −

∫
Rn
∇u·w dm, u ∈ C1

c (Rn),

whenever the second integral is meaningful.
As a consequence of Proposition 4.6, we obtain

Proposition 4.8 (Continuity equation). Under the Hypotheses 1.8, let P ∈ P(Ω) be
Markov and such that H(P |R) <∞. Then for any t, Pt � m and

ρt :=
dPt
dm

solves, in the sense of distributions, the continuity equation

∂tρ+ divm(ρvcu,P ) = 0.

Similarly the density

µt :=
dPt
dLeb

solves, in the sense of distributions, the continuity equation

∂tµ+ div(µvcu,P ) = 0.

Proof. By Lemma 4.7, for any 0 ≤ s ≤ t, and any u ∈ C1,2
c ((0, T )× Rn), we have

EP [u(X t)− u(Xs)] =

∫ t

s

EP
−→
L Pu(Xr) dr,
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and similarly, with the definition (2.3) of
←−
L P

EP [u(X t)− u(Xs)] = EP ∗ [u
∗(XT−t)− u∗(XT−s)]

= EP ∗

∫ T−t

T−s

−→
L P ∗u∗(Xr) dr = EP

∫ t

s

←−
L Pu(Xr) dr.

With the expressions of
−→
L P and

←−
L P stated at Proposition 4.6, this leads us to

0 = EP

∫ t

s

1

2
[
−→
L P −

←−
L P ]u(Xr) dr = EP

∫ t

s

[∂r + vcu,P ·∇]u(Xr) dr

=

∫
[s,t]×Rn

[∂ru+ vcu,P ·∇u](r, x) ρr(x) m(dx)dr

which is the first announced continuity equation. The second one follows replacing
ρr(x)m(dx) by µr(x)dx. �

Time reversal formula. The main result of this section is the following

Theorem 4.9 (Time reversal formula). Under the Hypotheses 1.8 on R given at (1.9),
let P ∈ P(Ω) be Markov and such that H(P |R) <∞.
Then, the time reversal P ∗ of P is a solution of the martingale problem

P ∗ ∈ MP(−→v P ∗ , a)

with
−→v P ∗

t =←−v P
T−t(x) = −−→v P

T−t(x) +∇·(µT−ta)(x)/µT−t(x), dtPt(dx)-a.e. (4.10)

where the divergence is in the sense of distributions, µt := dPt/dLeb and ←−v P
t is defined

at almost all t.
Furthermore, P ∗ is the unique solution of MP (−→v P ∗ , a) among the set of all Q ∈ P(Ω)
such that H(Q|R) <∞.
Denoting ρt := dPt/dm and βos,P |R := βos,P − βos,R, (4.10) is equivalent to

β
os,P |R
t (x) = ∇ log

√
ρt(x), dtPt(dx)-a.e. (4.11)

where the derivative is distributional and∫
[0,T ]×Rn

|∇ log ρ|2a dPtdt <∞. (4.12)

Remarks 4.13 (about Theorem 4.9).
(a) As H(P |R) <∞, Pt � m� Leb for all t. Hence µ and ρ are well defined.
(b) With vos,P |R := vos,P − vos,R, this immediately implies that Pt-a.e., for almost all t,

v
os,P |R
t = a∇ log

√
ρt, (4.14)

µt v
os,P
t = ∇·(µta)/2, (4.15)

ρtv
os,P |R
t = a∇ρt/2, (4.16)

in the sense of distributions.
(c) Of course, (4.10) or (4.15) are equivalent to

←−v P
t = −−→v P

t +∇·a + a∇ log µt, Pt-a.e. (4.17)

or

vos,Pt = ∇·a/2 + a∇ log
√
µt, Pt-a.e., (4.18)
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(d) The restriction “Pt-a.e.” in (4.10), (4.14), (4.17) and (4.18) prevents ρt and µt from
vanishing, so that the log is well defined.

(e) The reference measure
Ro ∈ MP(Leb,∇·a/2, a)

is the law of a stationary diffusion process with Lebesgue measure as stationary mea-
sure (U = 0). Its forward generator is

∂tu+ (∇·a)·∇u/2 + ∆au/2 = ∂tu+∇·(a∇u)/2, u ∈ C1,2([0, T ]× Rn).

Choosing this reference measure, we see that (4.18) writes as vos,P = −→v Ro + vos,P |R
o

with −→v Ro = ∇·a/2, and vos,P |R
o

= a∇ log
√
µ which is (4.14) with ρ = µ since

mo = Leb for each t.

Proof of Theorem 4.9. Again, remark that the class of functions U = C1,2
c ([0, T ] × Rn)

for which Itô’s formula is valid is an algebra, as required by the hypotheses of the IbP
formula (Theorem 3.17).
By Proposition 4.6, we know that there exist two vector fields

−→
β P |R,

←−
β P |R such that−→

L P = ∂t + (va,m + a
−→
β P |R)·∇+ ∆a/2 and

←−
L P = −∂t + (va,m + a

←−
β P |R)·∇+ ∆a/2 with

EP

∫
[0,T ]

|βos,P |R|2a(Xt) dt <∞, (4.19)

where
βos := (

−→
β +

←−
β )/2.

Then, for any test function w ∈ C2
c (Rn) and almost all t, we have

EP

(
w(Xt)v

os,P
i (X t) + ai(X t)·∇w(Xt)/2

)
= 0, 1 ≤ i ≤ n, (4.20)

where vos,Pi is the i-th component of vos,P , and ai is the i-th column of a. This follows
from an application of Theorem 3.17 with u(t, x) = proji(x)χ(x), 1 ≤ i ≤ n, (where
proji(x) := xi and χ ∈ C2

c (Rn) has a compact support and is equal to 1 on suppw) and
is allowed by Lemma 4.7 which ensures that −→v P

i :=
−→
L P (proji) = (va,m + a

−→
β P |R)i is in

L2
loc(p̄). Similar estimates hold for ←−v P .

Integrating by parts in (4.20), we see that for any compactly supported test function w
on Rn and almost every t,

0 =

∫
Rn
w vos,Pi µ dLeb +

1

2

∫
Rn

ai ·∇w µdLeb =

∫
Rn
w vos,Pi µ dLeb− 1

2

∫
Rn
w∇·(µai) dLeb,

where we drop the time dependence. This proves (4.15).
Let us look at (4.16). Apply (4.15) to P = R to obtain

m vos,R = ∇·(ma)/2, (4.21)

where m := dm/dLeb = e−U . Although R, unlike P , might not be a probability measure,
it is easy to see that the proof of (4.15) directly works with R instead of P (in particular
βR|R = 0). Because µ = ρm, we obtain ∇· (µa) = ∇· (ρma) = ma∇ρ + ρ∇· (ma).
It is important to note that both ∇·(µa) and ∇·(ma) are well defined in the sense of
distributions (as divergence terms) and are functions by (4.15) and (4.21) (the existence
of vos,P is a direct consequence of the assumption that H(P |R) <∞). It follows that

ma∇ρ = ∇·(µa)− ρ∇·(ma)
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is also well defined in the sense of distributions and a function. Putting everything
together,

ρ(vos,P − vos,R) = m−1(µvos,P − ρmvos,R) = m−1(∇·(µa)− ρ∇·(ma))/2 = a∇ρ/2,
which is (4.16), and implies (4.11).
Finally, the estimate (4.12) is a rewriting of (4.19), and (4.10) follows directly from (4.11).

�

5. Time reversal of a diffusion process. Abstract setting

We use the IbP formula (Theorem 3.17) again, to extend at Theorem 5.7 the time
reversal formula of Theorem 4.9 to an abstract diffusion setting where the configuration
space X is a non-specified Polish space. To our opinion, the main interest of this result
is not the extension to an abstract space, but its set of assumptions which sheds light on
the close to minimal hypotheses that are necessary for the time reversal formula to hold
in a diffusion setting.

Stationary diffusion reference measure. Assume that the Markov measure R ∈
M(Ω) is stationary (see page 21) and in addition that is a diffusion path measure with
a Polish space X as its configuration space. In this abstract setting, being a diffusion
means that the derivation identity

Γ(u, vw) = vΓ(u,w) + wΓ(u, v) (5.1)

is valid, and that for any P ∈ P(Ω) such that P � R, we have
−→
Γ P =

←−
Γ P =

−→
Γ R =

←−
Γ R =: Γ. (5.2)

These identities fail in presence of jumps.

Lemma 5.3. Let R ∈ M(Ω) be an m-stationary diffusion path measure with osmotic
generator Los,R. For any functions ρ, u, v ∈ V such that ρu, uv ∈ V , we have∫

X
Γ(ρ, u)v dm = −

∫
X

{
Γ(u, v) + 2vLos,Ru

}
ρ dm. (5.4)

Proof. The integration by parts formula is
∫
X Γ(u, v) dm = −2

∫
X vL

os,Ru dm.With Γ(u, v)+
2vLos,Ru = Los,R(uv)−uLos,Rv− vLos,Ru+ 2vLos,Ru = Los,R(uv)−uLos,Rv+ vLos,Ru, and
the derivation identity (5.1), we obtain

−
∫
X
{Γ(u, v) + 2vLos,Ru} ρ dm =

∫
X

{
−ρLos,R(uv) + uρLos,Rv − vρLos,Ru

}
dm

=
1

2

∫
X
{Γ(ρ, uv)− Γ(uρ, v) + Γ(vρ, u)} dm =

∫
X

Γ(ρ, u)v dm,

as announced. �

Time reversal formula. The left hand side of (5.4) requires that for any u ∈ V , the
couple (ρ, u) stands in the domain of definition of Γ, while no regularity of ρ is needed for
having a meaningful right hand side. This suggests the following notion, in the spirit of
the definition of a distribution.

Hypothesis 5.5. We assume that there exists some algebra U ⊂ V which is total in
L2(m). This means that for all u, v ∈ U we have uv ∈ U and that for any w ∈ L2(m),∫
X uw dm = 0, ∀u ∈ U implies that w = 0.
In addition we suppose that for any u, v ∈ V , Γ(u, v)m and uLos,Rvm are bounded mea-
sures.
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Recall Remark 3.4 for the relevance of this hypothesis.

Definition 5.6. Let U be as in Assumption 5.5 and let ρ be a nonnegative measurable
function which is defined m-a.e. We define the linear operator Γ(ρ, r) on U in the weak
sense, by the identity (5.4), seeing (u, v) 7→

∫
X Γ(ρ, u)v dm as a bilinear form.

Theorem 5.7. Let R ∈ M(Ω) be an m-stationary diffusion measure: i.e. (5.1) and (5.2)
hold, such that the Hypothesis 5.5 is satisfied, and for any u, v ∈ U , Γ(u, v) is bounded.
Let P ∈ P(Ω) be a Markov measure such that P � R, U ⊂ dom

−→
L P ∩ dom

←−
L P , and for

any u ∈ U ,
−→
L Pu,

←−
L Pu ∈ L2(P ). Then, for any u ∈ U ,

Los,Pu = Los,Ru+
Γ(ρ, u)

2ρ
= Los,Ru+

Γ(
√
ρ, u)
√
ρ

, dtdPt-a.e.,

where ρt := dPt/dm, the linear operators Γ(ρ, r) and Γ(
√
ρ, r) are defined in the weak

sense of Definition 5.6, and

Los,R = LR,sym := (
−→
LR +

−→
LR,∗)/2,

is the symmetrized extended generator of
−→
LR, see (3.37). In other words,

P ∗ ∈ MP(
−→
L P ∗ ,U)

where for any u ∈ U ,
−→
L P ∗

t u = LR,symT−t u+
Γ(
√
ρT−t, u)
√
ρT−t

, dtdPt-a.e.

Proof. The hypotheses of the IbP formula: Theorem 3.17, are fulfilled, allowing us to
write for all u, v ∈ U and almost all t∫

X
vtLos,P

t ut ρt dm = −1

2

∫
Rn

Γ(ut, vt) ρt dm

=

∫
X

[vtLos,Rut ρt + Γ(ρt, ut)vt/2] dm

where last equality is (5.4). The second equality in the first displayed formula follows
with (5.1) which implies that Γ(ρ, u) = 2

√
ρΓ(
√
ρ, u). The identification of the osmotic

and symmetrized generators of a stationary path measure is (3.37). �

As a direct corollary of this result, we see that any path measure P ∈ P(Ω) verifying
the hypotheses of Theorem 5.7 and such that Pt = m for all 0 ≤ t ≤ T (it might not
be stationary), shares its osmotic generator with the m-stationary path measure R :
Los,P = Los,R in restriction to U , because ρ = 1.

6. Current-osmosis decomposition

This section presents an application of the time reversal formula for a diffusion to
entropic optimal transport. The motivation for a decomposition of the relative entropy
into the sum of current and osmotic terms was put forward in the introduction of the
paper, see (1.2) and (1.3). This result is Proposition 6.2 below.

We go back to the setting of Section 4 and take the same reference path measure R
satisfying the Hypotheses 1.8. For any µ0 ∈ P(Rn) such that µ0 � Leb, we denote

Rµ0( r) :=

∫
Rn
R( r | X0 = xo)µ(dxo),
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the Markov measure with the same forward dynamics as R, i.e.
−→
LRµ0 =

−→
LR, but with µ0

as its the initial marginal.

Definitions 6.1.
(1) (Free energy). The free energy is defined by

F(µ) := H(µ|m)/2, µ ∈ P(Rn).

(2) (Fisher information). It is defined by

Ia(µ|m) :=

∫
Rn
|∇ log

√
dµ/dm|2a/2 dµ ∈ [0,∞],

for any µ ∈ P(Rn) such that ∇ log dµ/dm is well defined in the sense of distributions,
and +∞ otherwise.

Proposition 6.2. Under the hypotheses of Theorem 4.9, for any 0 ≤ t ≤ T,

H(P[0,t]|RP0

[0,t]) = F(Pt)−F(P0) +

∫
[0,t]

{〈
|vcu,P |R|2g/2, Ps

〉
+ Ia(Ps|m)

}
ds.

Proof. Applying Proposition 4.6, we see that

H(P |R) = H(P0|m) + EP

∫
[0,T ]

|
−→
β P |R|2a(Xt)/2 dt = EP

∫
[0,T ]

|
←−
β P |R|2a(Xt)/2 dt+H(PT |m)

=
1

2

(
H(P0|m) +H(PT |m)

)
+

1

2
EP

∫
[0,T ]

(
|
−→
β P |R|2a +

←−
β P |R|2a

)
(X t)/2 dt.

On the other hand, with the additive decomposition of the relative entropy

H(P |R) = H(P0|R0) +

∫
Rn
H
(
P ( r|X0 = x)

∣∣R( r|X0 = x)
)
P0(dx),

we obtain

H(P |RP0) = H(P0|P0) +

∫
Rn
H
(
P ( r|X0 = x)

∣∣R( r|X0 = x)
)
P0(dx)

=

∫
Rn
H
(
P ( r|X0 = x)

∣∣R( r|X0 = x)
)
P0(dx).

Putting everything together, since H(P0|m) ≤ H(P |R) is finite,

H(P |RP0) = H(P |R)−H(P0|m)

=
1

2

(
H(PT |m)−H(P0|m)

)
+

1

2
EP

∫
[0,T ]

(
|
−→
β P |R|2a + |

←−
β P |R|2a

)
(X t)/2 dt.

(6.3)

From

{
βcu := (

−→
β −

←−
β )/2

βos := (
−→
β +

←−
β )/2

, we derive the parallelogram identity

|
−→
β |2a/2 + |

←−
β |2a/2 = |βcu|2a + |βos|2a,

leading to

H(P |RP0) = F(PT )−F(P0) + EP

∫
[0,T ]

(
|βcu,P |R|2a + |βos,P |R|2a

)
(X t)/2 dt.

We conclude with Theorem 4.9 and H(P[0,t]|RP0

[0,t]) ≤ H(P |RP0) < ∞, for all 0 ≤ t ≤
T. �
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Heat flow. In this subsection, the reference measure R is defined with T = ∞, that is
on Ω = C([0,∞),Rn).

Definition 6.4. The time marginal flow µt := Rµ0
t , t ≥ 0, of Rµ0 is called the heat flow

issued from µ0.

Next result is a direct consequence of Proposition 6.2 which tells us that the Fisher
information is proportional to the rate of consumption of free energy along the heat flow.

Corollary 6.5. If H(µ0|m) <∞, the heat flow (µt)t≥0 satisfies

F(µt)−F(µ0) = −2

∫
[0,t]

Ia(µs|m) ds, ∀t ≥ 0,

where all these quantities are finite.

Proof. We have 0 ≤ H(µt|m) = H(Rµ0
t |Rt) ≤ H(Rµ0|R) = H(µ0|m) <∞. Applying (6.3)

with P = RP0=µ0 leads to

0 = H(RP0

[0,t]|R
P0

[0,t]) = F(µt)−F(µ0) + ERP0

∫
[0,T ]

(
|
−→
β RP0 |R|2a + |

←−
β RP0 |R|2a

)
(X t)/4 dt

= F(µt)−F(µ0) +

∫
[0,t]×Rn

|∇ log
√
dµs/dm|2a dsdµs,

because
−→
β RP0 |R = 0 implies that

←−
β RP0 |R = 2βos,RP0 |R = ∇ log dµs/dm. �

7. Random walks

In this section, the IbP formula is used to obtain at Theorem 7.11 a time reversal
formula for a random walk on a graph under a finite entropy condition. This simple
setting permits us to introduce Föllmer’s guideline to derive time reversal formulas, with
minimal technicalities.

Graph. We consider continuous-time random walks on a countable graph (X ,∼) where
X is the set of all vertices and the symmetric binary relation x ∼ y, x, y ∈ X states that
{x, y} is a non-oriented edge of the graph. We assume without loss of generality that
the graph is irreducible: X is the unique class of communication, and that it contains no
elementary loop: x ∼ x is forbidden. We also assume that (X ,∼) is a locally finite graph
meaning that each vertex x ∈ X admits finitely many neighbours. That is

nx := # {y ∈ X ; y ∼ x} <∞, ∀x ∈ X . (7.1)

The countable set X is equipped with its discrete topology.

Random walk. A random walk on the graph (X ,∼) is a time-continuous Markov mea-
sure Q ∈ M(Ω) which is specified by its initial distribution Q0 ∈ M(X ) and its forward
generator acting on any real function in the class

U := {u : X → R; # supp(u) <∞}

of all real functions with a finite support via the formula
−→
LQ
t u(x) =

∑
y:y∼x

[u(y)− u(x)]
−→
j (t, x; y), x ∈ X , t ∈ [0, T ], u ∈ U , (7.2)
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where for any adjacent neighbours x ∼ y,
−→
j (t, x; y) ≥ 0 is the average frequency of jumps

from x to y at time t. The jump kernel associated with this generator is∑
y:y∼x

−→
j (t, x; y)δy ∈ M(X ), x ∈ X , t ∈ [0, T ]

where δy stands for the Dirac measure at y. For any pair of functions u, v in U , the carré
du champ is

−→
Γ Q
t (u, v)(x) =

∑
y:y∼x

[u(y)− u(x)][v(y)− v(x)]
−→
j (t, x; y).

Note that the class of functions U is an algebra. See Remark 3.4 for the significance of
this property.

A first time reversal formula. We start by applying part (b) of Theorem 3.17 as a
first step of a more general result.

Proposition 7.3. If for any x ∼ y the function t 7→ −→
j (t, x; y) is continuous, then

U ⊂ dom
−→
LQ ∩ dom

←−
LQ, the backward generator is

←−
LQ
t u(x) =

∑
y:y∼x

[u(y)− u(x)]
←−
j (t, x; y), x ∈ X , t ∈ [0, T ], u ∈ U ,

where for all t ∈ [0, T ] and all x, y ∈ X , x 6= y,

qt(x)
←−
j (t, x; y) = qt(y)

−→
j (t, y;x).

Proof. Let us apply Theorem 3.17-(b). Under the assumptions (7.1) and∫
[0,T ]

−→
j (t, x; y) dt <∞, ∀x, y : x ∼ y,

the processes
−→
LQu(X) and

−→
Γ Qu(X) are in L1(Q), and

M
Q,[u,v]
t =

∑
0≤s≤t

[u(Xs)− u(Xs−)][v(Xs)− v(Xs−)]−
∫
[0,t]

−→
Γ Q
s (u, v)(Xs) ds.

With our notation, this means that: UQ = U .
The class UQ = U determines the weak convergence of measures and our assumption
about the continuity of

−→
j implies (3.20). Denoting

−→
qj(t, x; y) := qt(x)

−→
j (t, x; y), we see

that for any w ∈ UQ,∫
[0,T ]×X

−→
Γ Q
t (u,wt)[x] qt(dx)dt =

∫
[0,T ]

dt
∑

(x,y):x∼y

[u(y)− u(x)][wt(y)− wt(x)]
−→
qj(t, x; y)

= −
∫
[0,T ]

dt
∑

(x,y):x∼y

wt(x)[u(y)− u(x)]
(−→
qj(t, x; y) +

−→
qj(t, y;x)

)
.

This proves that
∫
[0,T ]×X

−→
Γ Q(u, r) dq̄ is a finite measure, showing that the hypotheses of

Theorem 3.17-(b) are satisfied. Hence, u ∈ dom
←−
LQ,

←−
LQu is integrable and for almost



33

every t the IbP formula (3.19) holds, that is∑
x∈X

v(x)
←−
LQ
t u(x) qt(x)

= −
∑

(x,y):x∼y

{u(y)− u(x)}v(x)
−→
qj(t, x; y)−

∑
(x,y):x∼y

{u(y)− u(x)}{v(y)− v(x)}−→qj(t, x; y)

= −
∑

(x,y):x∼y

{u(y)− u(x)}v(y)
−→
qj(t, x; y) =

∑
(x,y):x∼y

{u(y)− u(x)}v(x)
−→
qj(t, y;x),

for any u, v ∈ U .
On the other hand, with [24, Proposition 3.4] we know that for almost all t and for every
x,

←−
LQ
t u(x) = lim

h→0+
h−1EQ [u(Xt−h)− u(Xt) | Xt = x]

=
∑
y∈X

{u(y)− u(x)} lim
h→0+

h−1Q(Xt−h = y | Xt = x),
(7.4)

proving that the backward generator writes as
←−
LQ
t u(x) =

∑
y∈X{u(y) − u(x)}←−j (t, x; y)

for some function
←−
j . Plugging this into the expression

∑
x∈X v(x)

←−
LQ
t u(x) qt(x), we arrive

at ∑
(x,y):x∼y

{u(y)− u(x)}v(x)qt(x)
←−
j (t, x; y) =

∑
(x,y):x∼y

{u(y)− u(x)}v(x)
−→
qj(t, y;x),

and conclude remarking that the family of functions (x, y) 7→ {u(y)− u(x)}v(x) when u
and v describe U is measure-determining off the diagonal of X 2. �

Reversible random walk. Saying that Q ∈ M(Ω) is reversible means that there is a (possi-
bly unbounded) positive measure m ∈ M(X ) on X such that, not only Q is m-stationary
i.e. qt = m, ∀0 ≤ t ≤ T, but also that Q is invariant with respect to time reversal i.e.: for
any subinterval [r, t] ∈ [0, T ],

(X(r+t−s)− ; r ≤ s ≤ t)#Q = (Xs; r ≤ s ≤ t)#Q.

This implies that the forward and backward transition mechanisms do not depend on the
time variable t and are the same:

−→
j =

←−
j =: j. In view of Proposition 7.3, we obtain the

detailed balance condition

m(x)jx(y) = m(y)jy(x), ∀x, y ∈ X : x ∼ y. (7.5)

Without loss of generality, we assume that x ∼ y ⇐⇒ jx(y), jy(x) > 0 and that the
graph is irreducible. It follows that m(x) > 0 for all x ∈ X . The general solution of (7.5)
is

jx(y) = s(x, y)
√

m(y)/m(x)

where s is any symmetric function such that x ∼ y ⇐⇒ s(x, y) > 0.

Counting random walk. If the waiting time at x is an exponential random variable E(nx)
and the jump occurs uniformly onto each neighbour, we obtain the jump kernel

Jox :=
∑
y:y∼x

δy, x ∈ X , (7.6)
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which admits the counting measure

mo =
∑
x∈X

δx ∈ M(X ) (7.7)

as a reversing measure. We denote R ∈ M(Ω) this reversible random walk with R0 = mo

and call it the counting random walk. It will be the reference path measure for the rest
of this section.

The remainder of this section is devoted to the proof of an extension of Proposition
7.3, stated at Theorem 7.11, where the hypothesis on the continuity of

−→
j is removed and

replaced by a finite entropy assumption.

Finite entropy assumption. Let P ∈ P(Ω) be a Markov probability measure such that

H(P |R) <∞,

with R ∈ M(Ω) the counting random walk. This finite entropy property implies (Gir-
sanov’s theory) that there exists some measurable function

−→
j P : [0, T ]×X 2 → [0,∞)

which is defined dtPt(dx)Jox(dy)-almost everywhere such that P is the unique solution of
the martingale problem MP(P0,

−→
J P ) associated to the initial marginal P0 and the jump

kernel
−→
J P =

−→
j PJo, that is

−→
J P
t,x =

∑
y:y∼x

−→
j Pt,x(y) δy, (t, x) ∈ [0, T ]×X .

Moreover,

H(P |R) = H(P0|mo) +

∫
[0,T ]×X 2

h
(−→
j Pt,x(y)

)
dtpt(dx)Jox(dy) <∞, (7.8)

where

h(a) :=

 a log a− a+ 1, if a > 0,
1, if a = 0,
∞, if a < 0.

Lemma 7.9. Let u be any function in U and P ∈ P(Ω) satisfy H(P |R) <∞.

(a) The function u stands in dom
−→
L P ,

−→
L Pu(X) ∈ L logL(P ) and

−→
L P
t u(x) =

∑
y:y∼x

[u(y)− u(x)]
−→
j Pt,x(y).

(b) There exists some measurable function
←−
j P : [0, T ]×X 2 → [0,∞) which is defined

dtpt(dx)Jox(dy)-almost everywhere such that u stands in dom
←−
L P , with

←−
L Pu(X) ∈

L logL(P ) and
←−
L P
t u(x) =

∑
y:y∼x

[u(y)− u(x)]
←−
j Pt,x(y). (7.10)

Moreover

H(P |R) = H(PT |mo) +

∫
[0,T ]×X 2

h
(←−
j Pt,x(y)

)
dtpt(dx)Jox(dy) <∞.
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Proof. • Proof of (a). Let us denote the right hand side of the desired identity by:
A(t, x) :=

∑
y:y∼x[u(y)−u(x)]

−→
j Pt,x(y). With (7.8), our assumption (7.1), the finiteness of

the support of u, and

|A(t, x)| ≤ 2 sup |u|1{x∈supp(u)}
∑
y:y∼x

−→
j Pt,x(y),

we see that A(X) is in L logL(P ). This implies that
∫
[0,T ]
|A(X t)| dt is finite P -a.e., so

that A(t, x) =
−→
L Put(x), p̄(dtdx)-a.e. and

−→
L Pu(X) ∈ L logL(P ).

• Proof of (b). Time reversal being a bijective mapping: H(P ∗|R∗) = H(P |R), see
Proposition B.2. Since R is chosen to be reversible, we also have R∗ = R, leading to:

H(P ∗|R) = H(P |R) <∞.

Hence we are allowed to apply (a) which tells us that u ∈ dom
−→
L P ∗ ,

−→
L P ∗u(X) ∈

L logL(P ∗), and there is some measurable function
−→
j P

∗ such that
−→
L P ∗
t u(x) =

∑
y:y∼x[u(y)−

u(x)]
−→
j P

∗
t,x(y). We conclude taking

←−
j Pt,x(y) :=

−→
j P

∗
T−t,x(y). �

Time reversal formula. The main theorem of this section is

Theorem 7.11. Let P ∈ P(Ω) be a Markov random walk with forward generator
−→
L P
t u(x) =

∑
y:y∼x

[u(y)− u(x)]
−→
j Pt,x(y), x ∈ X , u ∈ U ,

where the forward intensity of jump
−→
j P is measurable. If H(P |R) <∞, i.e.

H(p0|mo) +

∫
[0,T ]

dt
∑

(x,y):x∼y

h
(−→
j Pt,x(y)

)
pt(x) <∞,

then, U ⊂ dom
←−
L P and
←−
L P
t u(x) =

∑
y:y∼x

[u(y)− u(x)]
←−
j Pt,x(y), x ∈ X , u ∈ U ,

where the backward intensity of jump
←−
j P verifies for almost all 0 ≤ t ≤ T,

pt(x)
−→
j Pt,x(y) = pt(y)

←−
j Pt,y(x), ∀x, y ∼ x ∈ X . (7.12)

Proof. With (7.8) we see that H(P |R) <∞, i.e. the hypothesis of Lemma 7.9 is satisfied.
This lemma tells us that the assumptions of Theorem 3.17-(a) are satisfied. Therefore,
for almost all t ∈ [0, T ], and any u, v ∈ U , the IbP formula (3.19) holds, i.e.

0 =

∫
X 2

[u(y)− u(x)]v(x)(
−→
j P +

←−
j P )t,x(y) pt(dx)Jox(dy)

+

∫
X 2

[u(y)− u(x)][v(y)− v(x)]
−→
j Pt,x(y) pt(dx)Jox(dy)

=

∫
X 2

[u(y)− u(x)][v(x)
←−
j Pt,x(y) + v(y)

−→
j Pt,x(y)]pt(x)mo(dx)Jox(dy).

As the counting random walk is mo-reversible, by (7.5) mo(dx)Jox(dy) is a symmetric
measure on X 2 (obvious by direct inspection). It follows that

0 =

∫
X 2

[u(y)− u(x)]v(y)[pt(x)
−→
j Pt,x(y)− pt(y)

←−
j Pt,y(x)]mo(dx)Jox(dy),

from which the result follows. �
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Appendix A. Stochastic derivatives and extended generators

After recalling the definitions of Markov measures, extended generators and stochastic
derivatives, we state a couple of technical results obtained in [24].

Definition A.1 (Markov measure). A path measure Q such that Qt is σ-finite for all t
is called a conditionable path measure. A path measure Q ∈ M(Ω) is said to be Markov if
it is conditionable and for any 0 ≤ t ≤ T, Q(X[t,T ] ∈ r | X[0,t]) = Q(X[t,T ] ∈ r | Xt).

The reason for requiring Q to be conditionable is that it allows for defining the con-
ditional expectations EQ( r | XT ) for any T ⊂ [0, T ] even in the case where Q is an
unbounded measure, see [26, Def. 1.10].

The notion of extended generator was introduced by H. Kunita [22] and extensively
used by P.A.Meyer and his collaborators, see [8]. Here is a variant of this definition.

Definition A.2 (Extended forward generator of a Markov measure). Let Q be a Markov
measure. A measurable function u on [0, T ]×X is said to be in the domain of the extended
forward generator of Q if there exists a measurable function v on [0, T ]×X such that∫
[0,T ]
|v(X t)| dt <∞, Q-a.e. and the process

Mu
t := u(X t)− u(X0)−

∫
[0,t]

v(Xs) ds, 0 ≤ t ≤ T,

is a local Q-martingale. We denote
−→
LQu(t, x) := v(t, x)

and call
−→
LQ the extended forward generator of Q. Its domain is denoted by dom

−→
LQ.

Remarks A.3.
(a) In the case where Q is the law of a Markov process associated with some semigroup

with generator G and u : [0, T ]×X → R is a t-differentiable function such that for
each t, u(t, r) belongs to the domain of G, then u belongs to dom

−→
LQ and

−→
LQu = (∂t + G)u.

(b) The notation v = Lu almost rightly suggests that v is a function of u. Indeed, when u
is in dom

−→
LQ, the Doob-Meyer decomposition of the special semimartingale u(X t) into

its predictable bounded variation part
∫
vs ds and its local martingale part is unique.

But one can modify v =
−→
LQu on a small (zero-potential) set without breaking the

martingale property. As a consequence, u 7→
−→
LQu is a multivalued operator and

u 7→
−→
LQu is an almost linear operation.

Extended generators are connected with martingale problems which were introduced
by Stroock and Varadhan [36].

Definition A.4 (Martingale problem). Let C be a class of measurable real functions u
on [0, T ]×X and for each u ∈ C, let Lu : [0, T ]×X → R be a measurable function
such that

∫
[0,T ]
|Lu(t, ωt)| dt < ∞ for all ω ∈ Ω. Take also a positive σ-finite measure

µ0 ∈ M(X ). One says that Q ∈ M(Ω) is a solution to the martingale problem MP(L, C;µ0)
if Q0 = µ0 ∈ M(X ) and for all u ∈ C, the process u(X t) − u(X0) −

∫
[0,t]
Lsu[Xs] ds is a

local Q-martingale.

Proposition A.10 below states that the extended generator can be computed by means of
a stochastic derivative. Nelson’s definition [31] of the stochastic derivative is the following.
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Definition A.5 (Stochastic forward derivative of a Markov measure). Let Q be a Markov
measure and u be a measurable real function on [0, T ]×X such that EQ|u(Xs)| < ∞ for
all 0 ≤ s ≤ T.

(1) We say that u admits a stochastic forward derivative under Q at time t ∈ [0, T ) if
the following limit

−→
LQu(t, x) := lim

h→0+
EQ

(
1

h
[u(X t+h)− u(t, x)] | Xt = x

)
exists in L1(Rn, Qt).

In this case,
−→
LQu(t, r) is called the stochastic forward derivative of u at time t.

(2) If u admits a stochastic forward derivative for almost all t, we say that u belongs
to the domain dom

−→
LQ of the stochastic forward derivative

−→
LQ of Q.

(3) If u does not depend on the time variable t, we denote
−→
LQ
t u(x) :=

−→
LQu(t, x).

Reversing time. If Q ∈ M(Ω) is Markov, so is its time reversal Q∗, and one can consider
the extended generators and stochastic derivatives of both Q and Q∗. More generally, we
introduce the following notions.

As a notation, the σ-field generated by X[t−,T ] is σ(X[t−,T ]) := ∩h>0σ(X[t−h,T ]) =
σ(Xt−) ∨ σ(X[t,T ]).

Definition A.6 (Extended backward generator). Let Q be a conditionable path measure.
A process u adapted to the predictable backward filtration (σ(X[t−,T ]); 0 ≤ t ≤ T ) is said to
be in the domain of the extended backward generator of Q if there exists a process v also
adapted to the predictable backward filtration such that

∫
[0,T ]
|v(t,X[t−,T ])| dt < ∞, Q-a.e.

and the process

u(t,X[t−,T ])− u(T,XT )−
∫
[t,T ]

v(s,X[s−,T ]) ds, 0 ≤ t ≤ T,

is a local backward Q-martingale. We denote
←−
LQ
t u := vt

and call
←−
LQ the extended backward generator of Q. Its domain is denoted by dom

←−
LQ.

Definition A.7 (Stochastic backward derivative). Let Q be a conditionable path measure
and a measurable function u on [0, T ]×X such that EQ|u(s,Xs)| <∞ for all 0 ≤ s ≤ T.

(1) We say that u admits a stochastic backward derivative under Q at time t ∈ (0, T ]
if the following limit

←−
LQu(t,X[t−,T ]) := lim

h→0+
EQ

(
1

h
[u(X t−h)− u(X t)] | X[t−,T ]

)
if this limit exists in L1(Q).

In this case,
←−
LQu(t, r) is called the stochastic backward derivative of u at time t.

(2) If u admits a stochastic backward derivative for almost all t, we say that u belongs
to the domain dom

←−
LQ of the stochastic backward derivative

←−
LQ of Q.

Convergence results. A useful technical result for our purpose is the following convo-
lution result.

Lemma A.8. For all h > 0, let kh be a measurable nonnegative convolution kernel such
that supp kh ⊂ [−h, h] and

∫
R k

h(s) ds = 1. Let Q be a σ-finite positive measure on Ω and
v be a process in Lp(Q) with 1 ≤ p <∞.
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Define for all h > 0, t ∈ [0, T ] and ω ∈ Ω, kh ∗ v(t, ω) :=
∫
[0,T ]

kh(t− s)vs(ω) ds.
Then, kh ∗ v is in Lp(Q) and limh→0+ k

h ∗ v = v in Lp(Q).

We see that kh(s) ds is a probability measure on R which converges narrowly to the
Dirac measure δ0 as h tends down to zero. We shall invoke this lemma with p = 1 or 2.

Corollary A.9. Assume that in addition to the hypotheses of Lemma A.8, for any 0 ≤
t ≤ T, the random variable v(t, r) is At-measurable where At is some sub-σ-field. Then,
the process vh defined by vht := EQ[kh ∗ v(t) | At], is in Lp(Q) and limh→0+ v

h = v in
Lp(Q).

Proof. By Jensen’s inequality

‖vh − v‖p
p,Q

=

∫
X
|EQ[kh ∗ v(t) | At]− v(t)|p dQ =

∫
X
|EQ[kh ∗ v(t)− v(t) | At]|p dQ

≤
∫
X
EQ[|kh ∗ v(t)− v(t)|p | At] dQ =

∫
X
EQ|kh ∗ v(t)− v(t)|p dQ

= ‖kh ∗ v − v‖p
p,Q
−→
h→0+

0,

where the vanishing limit is the content of Lemma A.8. �

Next proposition states that extended generators and stochastic derivatives are essen-
tially the same.

Proposition A.10. Let Q be a conditionable measure.
(a) If u is in dom

−→
LQ and satisfies EQ

∫
[0,T ]

∣∣−→LQu(t,X[0,t])
∣∣p dt <∞ for some p ≥ 1, then

lim
h→0+

EQ

∫
[0,T−h]

∣∣∣∣1hEQ[u(X t+h)− u(X t) | X[0,t]

]
−
−→
LQu(t,X[0,t])

∣∣∣∣p dt = 0.

In particular, this implies that u ∈ dom
−→
LQ, and the limit

−→
LQu( r, X[0, r]) =

−→
LQu( r, X[0, r]) := lim

h→0+

1

h
EQ

[
u(X r+h)− u(X r) | X[0, r]]

takes place in Lp(Q).

(b) If u is in dom
←−
LQ is such that EQ

∫
[0,T ]

∣∣←−LQu(t,X[t,T ])
∣∣p dt <∞ for some p ≥ 1, then

lim
h→0+

EQ

∫
[h,T ]

∣∣∣∣1hEQ[u(X t−h)− u(X t) | X[t−,T ]

]
−
←−
LQu(t,X[t−,T ])

∣∣∣∣p dt = 0.

In particular, this implies that u ∈ dom
←−
LQ, and the limit

←−
LQu( r, X[ r,T ]) =

←−
LQu( r, X[ r,T ]) := lim

h→0+

1

h
EQ

[
u(X r−h)− u(X r) | X[ r,T ]]

takes place in Lp(Q).

Proposition A.11.
(a) Let u be a measurable real function on X , and v be a forward-adapted process such

that u(X) and v are Q-integrable, t 7→ u(X t) is right continuous (for instance u might
be continuous) and

lim
h→0+

EQ

∫
[0,T−h]

∣∣∣∣1hEQ[u(X t+h)− u(X t) | X[0,t]]− vt
∣∣∣∣ dt = 0. (A.12)

Then, u belongs to dom
−→
LQ and domLQ, and

−→
LQu = LQu = v, Q-a.e.
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(b) Let u be a measurable real function on X and v a backward-predictable process, such
that u(X), v are Q-integrable, t 7→ u(X

∗
t ) is right continuous (for instance u might be

continuous) and

lim
h→0+

EQ

∫
[h,T ]

∣∣∣∣1hEQ[u(X t−h)− u(X t) | X[t−,T ]]− v(t,X[t−,T ])

∣∣∣∣ dt = 0.

Then, u belongs to dom
←−
LQ and dom

←−
LQ, and

←−
LQu =

←−
LQu = v, Q-a.e.

Appendix B. Relative entropy with respect to an unbounded measure

Let r be some σ-finite positive measure on some measurable space Y . The relative
entropy of the probability measure p with respect to r is loosely defined by

H(p|r) :=

∫
Y

log(dp/dr) dp ∈ (−∞,∞], p ∈ P(Y )

if p� r and H(p|r) =∞ otherwise. More precisely, when r is a probability measure, we
have H(p|r) =

∫
Y
h(dp/dr) dr ∈ [0,∞] with h(a) = a log a− a+ 1 ≥ 0 for all a ≥ 0, (take

h(0) = 1). Hence this definition is meaningful and it follows from the strict convexity of
h that H( r|r) is also strictly convex.
If r is unbounded, one must restrict the definition of H( r|r) to some subset of P(Y ) as
follows. As r is assumed to be σ-finite, there exist measurable functions W : Y → [0,∞)
such that

zW :=

∫
Y

e−W dr <∞. (B.1)

Define the probability measure rW := z−1W e−W r so that log(dp/dr) = log(dp/drW )−W −
log zW . It follows that for any p ∈ P(Y ) satisfying

∫
Y
W dp <∞, the formula

H(p|r) := H(p|rW )−
∫
Y

W dp− log zW ∈ (−∞,∞]

is a meaningful definition of the relative entropy which is coherent in the following sense.
If
∫
Y
W ′ dp < ∞ for another measurable function W ′ : Y → [0,∞) such that zW ′ < ∞,

then H(p|rW )−
∫
Y
W dp− log zW = H(p|rW ′)−

∫
Y
W ′ dp− log zW ′ ∈ (−∞,∞].

Therefore, H(p|r) is well-defined for any p ∈ P(Y ) such that
∫
Y
W dp < ∞ for some

measurable non-negative function W verifying (B.1).
It is well known that the relative entropy with respect to a probability measure r is

invariant with respect to the push-forward by an injective mapping. This is still true if r
is unbounded.

Proposition B.2. Let r and H( r|r) be as above, and let f : Y → Z be a measurable
mapping. For any p ∈ P(Y ) satisfying

∫
Y
W dp <∞, we have: H(f#p|f#r) ≤ H(p|r).

If in addition f is injective, then H(f#p|f#r) = H(p|r).

Proof. It is a direct consequence of the variational formula

H(p|r) = sup
u∈BW (Y )

{∫
Y

u dp−
∫
Y

eu−1 dr

}
,
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where BW (Y ) := {u : Y → R, supY |u|/(1 +W ) <∞} . Indeed

H(f#p|f#r) = sup
v∈BW◦f−1 (f(Y ))

{∫
f(Y )

v d(f#p)−
∫
f(Y )

ev−1 d(f#r)

}
= sup

v∈BW◦f−1 (f(Y ))

{∫
Y

v ◦ f dp−
∫
Y

ev◦f−1 dr

}
≤ sup

u∈BW (Y )

{∫
Y

u dp−
∫
Y

eu−1 dr

}
= H(p|r),

because {v ◦ f ; v ∈ BW◦f−1(f(Y ))} ⊂ BW (Y ).
If f is injective, u = v ◦ f describes BW (Y ) when v describes BW◦f−1(f(Y )), leading to
an equality. �
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