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Abstract. In his work about hypocercivity, Villani [20] considers in particular convergence
to equilibrium for the kinetic Langevin process. While his convergence results in L2 are given
in a quite general setting, convergence in entropy requires some boundedness condition on
the Hessian of the Hamiltonian. We will show here how to get rid of this assumption in
the study of the hypocoercive entropic relaxation to equilibrium for the Langevin diffusion.
Our method relies on a generalization to entropy of the multipliers method and an adequate
functional inequality. As a byproduct, we also give tractable conditions for this functional
inequality, which is a particular instance of a weighted logarithmic Sobolev inequality, to
hold.
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1. Settings and main results.

Let U : Rd → R be a smooth (C∞) function such that U ≥ 1, U(x)→ +∞ as |x| → +∞ and∫
e−U(x)dx is finite. U will represent the confinement potential for the Hamiltonian H(x, y) =

U(x)+ 1
2 |y|

2 defined on R2d. The associated Boltzmann-Gibbs (probability) measure is given
by

dµ =
1

Z
e−H(x,y)dxdy

where Z is the normalizing constant
∫
e−H(x,y)dxdy.

The Langevin dynamics associated to this measure is a flow of probability measures dµt =
ft dµ for t ≥ 0, where ft solves (at least in a weak sense) the Langevin equation

∂tft = Lft ,

L being given by

L = −y.∇x + (∇U(x)− y) .∇y + ∆y . (1)

We are thus interested in solutions belonging to L1(µ). Of course, the Hörmander’s sum of
squares hypoelliptic theorem ensures that (t, x, y) 7→ ft(x, y) is smooth on R∗+⊗R2d, whatever
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the regularity of f0. It is then easy to see that mass and positivity are preserved so that if
f0dµ is a probability measure so is ftdµ for any t ≥ 0. We shall discuss below existence and
uniqueness for (1).
The corresponding stochastic process is given by the S.D.E.{

dxt = ytdt

dyt = −ytdt−∇U(xt)dt+
√

2dWt

where (Wt) is an usual d−dimensional Wiener process. The infinitesimal generator of the
process is thus L∗ = y.∇x − (∇U(x) + y) .∇y + ∆y. Since all coefficients are local Lipschitz,
existence and strong uniqueness for the S.D.E. is ensured up to the explosion time τ . But
thanks to our assumptions, H(x, y) → +∞ as |x| + |y| → +∞ and it is easily seen that
L∗H ≤M < +∞ for some constant M . It is then well known that τ is almost surely infinite,
whatever the starting point (x0, y0), i.e. the diffusion process is conservative. According to
what precedes, for any initial distribution, the distribution µt at time t > 0 of (xt, yt) admits
a smooth density w.r.t. Lebesgue measure and since µ is equivalent to Lebesgue measure
with a smooth density too, dµt = ft dµ where ft is smooth (C∞) and solves (1). It is easy
to see that µ is the unique invariant but not reversible probability measure for the process
(steady state).
We denote by Pt = etL the semi-group on L1(µ) with generator (L,D(L)), i.e. ft = Ptf0. It
is easy to see that for any solution gt of (1) belonging to L1(µ), Qtf =

∫
f gt dµ is a Markov

continuous semi-group on L∞(µ) whose generator coincides with L∗ on the set C∞0 of smooth
and compactly supported functions (just using integration by parts). The uniqueness of this
semi-group implies that gt = ft i.e. the uniqueness of the solutions of (1) in L1(µ).

We are interested in the long time behavior of the Langevin diffusion. The usual ergodic

theorem tells us that 1
t

∫ t
0 µs ds weakly converges to µ as t grows to infinity. One can thus

ask for the convergence of ft towards 1 as t goes to infinity.
This question has been investigated by many authors in recent years both in the P.D.E.
community and the probability community. One of the main difference is of course the way
to look at this convergence: total variation distance, L2(µ) norm, H1(µ) semi-norm, relative
entropy, Wasserstein distance. Another associated problem is to get some bounds on the rate
of convergence, once convergence holds true. Let’s review some results in this direction.

More or less at the same time, both probabilists and PDE specialists have considered the
problem of the speed of convergence to equilibrium. Talay [19] and Wu [22] have built Lya-
punov functions and using Meyn-Tweedie’s approach have established (non quantitative)
exponential convergence to equilibrium (see also [3] for this approach for kinetic models) un-
der quite general assumptions. Desvillettes and Villani [12] used an heavy Fourier machinery
to established sub-exponential entropic convergence. Then Hérau and Nier [17] have carried
out the spectral analysis of this equation and thus obtained a L2 exponential decay with quite
sharp constants under general conditions. It has settled the bases for the theory of hypocer-
civity of Villani [20] for the L2 and the entropic convergence to equilibrium, when Hess(U)
is bounded in the entropic case, see also [13] for a version without regularity issues. Let us
also mention [1] where an unified approach dealing with various entropies (as we shall do) is
performed, still for bounded Hessians for which explicit rates are given. Finally, and quite
recently, coupling approaches, using synchronous coupling or coupling by reflection (see [7]
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or [14, 15]) have established exponential convergence to equilibrium in Wasserstein distance
with sharp constants, once again when Hess(U) is bounded.

As we will adopt the terminology and adapt the methodology of hypocoercivity as in Villani
[20], let us describe a little bit further the formalism of this setting. Recall that the variance
of a squared integrable function g with respect to µ is defined by

Varµ(g) :=

∫
g2dµ−

(∫
gdµ

)2

=

∫ (
g −

∫
gdµ

)2

dµ

while the entropy is defined for positive functions by

Entµ(f) :=

∫
f ln fdµ−

∫
fdµ ln

∫
fdµ .

The law µ is said to satisfy a Poincaré inequality if there exists a positive constant CP such
that for all smooth functions g

Varµ(g) ≤ CP
∫
|∇g|2dµ .

Similarly, µ satisfies a logarithmic Sobolev (or log-Sobolev in short) inequality if there exists
a constant CLS such that for all smooth functions g,

Entµ(g2) ≤ CLS
∫
|∇g|2dµ .

The natural H1
µ semi-norm is defined as ||g||H1

µ
:= ||∇g||L2

µ
. Exponential convergence of Ptf0

to 1 in H1
µ and variance was proved by Villani [20] under two conditions:

(1-var) |∇2U | ≤ c (1 + |∇U |);
(2-var) e−U(x)dx satisfies a Poincaré inequality.

Remark that (2-var) is equivalent to the fact that µ satisfies a Poincaré inequality, thanks
to the tensorization property of the latter, since the gaussian measure satisfies a Poincaré
inequality.

For convergence in entropy, the assumptions made by Villani are much stronger:

(1-ent) ∇2U is bounded;

(2-ent) e−U(x) dx satisfies a log-Sobolev inequality.

Again, (2-ent) is equivalent to the fact that µ satisfies a log-Sobolev inequality, thanks to a
similar argument of tensorization.
When both these assumptions are satisfied, Villani showed that, for any initial probability
density f0 with finite moments of order 2, the entropy of Ptf0 converges to 0 exponentially
fast (see Villani [20] Theorem 39).

Our main goal in this paper is to get rid of the boundedness assumption (1-ent) for ∇2U ,
replacing it by

Assumption 1. In addition to our assumptions on U , we assume that there exists η ≥ 0
such that U−2η∇2U is bounded.
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A typical situation where Assumption 1 is satisfied is when both U and ∇2U have polynomial
growth at infinity, i.e. U(x) ≥ c1 (1 + |x|)l and |∇2U | ≤ c2 (1 + |x|)j so that we may choose

η ≥ j
2l . In particular if j = l − 2 ≥ 0 as it is the case for true polynomials of degree at least

2, we may choose η = 1
2 −

1
l .

The counterpart is that we have to reinforce (2-ent) replacing it by the stronger

Assumption 2. µ satisfies the following weighted log-Sobolev inequality: there exists ρ > 0
s.t. for all smooth enough g with

∫
g2 dµ = 1:

Entµ(g2) ≤ ρ
∫

(H−2η|∇xg|2 + |∇yg|2)dµ. (2)

Once both Assumptions 1 and 2 are satisfied, we can prove exponential decay in entropy for
the Langevin diffusion. Our approach is based on the multiplier method. More precisely we
will prove the following:

Theorem 1. Under Assumptions 1 and 2, let

λ =
(
‖H−2η∇2U‖∞ + 3

)2
,

κ =
1

16 (d+ 1 + 5η2 + 6η)2 .

Then for all initial probability density f ,

Entµ(Ptf) ≤ exp

(
− κ

1 + 8λρ

∫ t

0
(1− e−s)2ds

)
Entµ(f) .

Section 2 is devoted to the proof of this theorem which contains Villani’s result in the case
η = 0.
Actually as in [1] (also see [8] in the non degenerate case) we shall prove a more general
statement including both the variance and the entropic case. To this end introduce an
admissible function Ψ, that is

Ψ ≥ 0 , Ψ ∈ C4 and
1

Ψ′′
is positive and concave, (3)

as in [18, 1]. Theorem 1 corresponds to

Ψ : R+ → R, u 7→ u lnu+ 1− u ,

while the L2
µ case corresponds to Ψ(u) = (u − 1)2. We also denote ψ = Ψ′′. The general

statement is the following

Theorem 2. Let Ψ be an admissible function. Suppose that Assumption 1 is satisfied. If for
any bounded density of probability f , the following inequality is satisfied∫

Ψ(f) dµ ≤ ρ
∫

ψ(f)
(
H−2η|∇xf |2 + |∇yf |2

)
dµ , (4)

then

Ψ(Ptf) ≤ exp

(
− κ

1 + 8λρ

∫ t

0
(1− e−s)2ds

)
Ψ(f) . (5)
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Remark 3. For (4) to be satisfied it is immediate that Ψ(1) has to be equal to 0.
A natural family of admissible functions, namely Ψp(u) = up − 1 − p(u − 1) defined for

1 < p ≤ 2, is introduced in [1]. Remark that, up to the constants, the change v = cp u
p/2

shows that (4) is satisfied for Ψp as soon as it is satisfied for Ψ2. This can be viewed as some
kind of interpolation result between L1 and L2.
Also notice that, if 1/ψ is concave at infinity (i.e. outside some compact interval) one can

modify it and introduce some ψ̃ which satisfies all the required properties and coincides with
ψ outside some larger compact interval. The corresponding Ψ̃ will behave like Ψ at infinity,
which is the interesting property for controlling the convergence. ♦

The key idea for proving Theorem 2 is to use a twisted gradient depending on time, see
lemma 6. An important aspect of our result is that the bounded Hessian condition in Vil-
lani’s approach is relaxed as Assumption 1. In fact it was a major issue raised by Villani
[20] concerning the entropic convergence. Indeed, his L2 multiplier method, at the basis
of the entropic hypocercivity, does not rely on a Poincaré inequality but on Brascamp-Lieb
inequality. It was thus thought that for the multiplier method to hold for entropy, an en-
tropic Brascamp-Lieb inequality was needed. However Bobkov-Ledoux [6] proved that this
inequality is false in general, and true in very particular setting. Our strategy is then to show
that it is not an entropic Brascamp-Lieb inequality that we need but a particular weighted
logarithmic Sobolev inequality. Note also that a first attempt to skip the boundedness as-
sumption for the Hessian is contained in [3] Theorem 6.10, but the statement therein is much
weaker than the one of the present theorem and most importantly not at all quantitative.
One can also look at [1] for a quantitative result in the bounded Hessian case.

Next we shall show that, similarly to the non weighted case studied in [9] (see also [2, 10]),
the weighted log Sobolev inequality in Assumption 2 is equivalent to some Lyapunov type
condition.
To this end we introduce the natural second order operator

Lη := H−2η∆x + ∆y −H−2η

(
2η
∇xH
H

+∇xH
)
.∇x −∇yH.∇y ,

which is symmetric in L2
µ and satisfies∫
f Lηg dµ = −

∫
(H−2η∇xf.∇xg +∇yf.∇yg) dµ . (6)

Theorem 4. Recall that U goes to infinity at infinity. Assume that |∇H| ≥ h > 0 outside
some large ball. Denote Ar := {(x, y) : H(x, y) ≤ r}, and

θ(r) = sup
z∈∂Ar

max
i,j=1,...,2d

| ∂
2H

∂zi∂zj
|

Assume that θ(r) ≤ ceC0r with some positive constants C0 and c for r sufficiently large.
Assume that there exists a Lyapunov function W with W (x) ≥ w > 0 for all (x, y) and some
λ, b > 0 satisfying

LηW (x, y) ≤ −λH(x, y)W (x, y) + b .

Then µ verifies a weighted logarithmic Sobolev inequality (2).
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Remark that the condition θ(r) ≤ ceC0r is trivially verified when both U and Hess(U) have
a polynomial growth. Also, a Lyapunov function exists if U satisfies the conditions in the
following corollary:

Corollary 5. Assume that the following conditions hold outside a compact domain:

(1) ∆xU ≤ κ|∇xU |2 for some κ ∈ (0, 1);
(2) a growth condition: |∇xU |2 ≥ cU2η+1 for some positive constant c.

Then dµ = 1
Z e
−H(x,y)dxdy satisfies a weighted logarithmic Sobolev inequality.

Moreover, if we assume that U−2η∇2U is bounded, then we may apply Theorem 1.

The next section will present the proof of Theorem 2, where the entropic multipliers method
is presented. In Section 3, the treatment via Lyapunov condition of weigthed log-Sobolev
inequality, i.e. Theorem 2 and Corollary 3, is done.
The final section discusses some additional points on weighted inequalities. Indeed, the proof
of weighted Poincaré inequality used by Villani relies solely on some Poincaré inequality for
each measure and adapt the usual argument of tensorization, using heavily the orthogonality
inherited from the L2

µ structure. However, in the entropic case, starting with a log-Sobolev
for each marginal, we are only able to recover a weaker (but interesting) inequality for the
product measure.

2. Proof of Theorem 2.

This section is devoted to the proof of Theorem 2.
We only consider the case where f0 is bounded away from zero. Indeed, if it is not the case,
writing g0 = (1−δ)f0 +δ for some δ > 0, then we may prove the theorem for gt = (1−δ)ft+δ
and let δ go to zero to recover the result for ft.

The key point of the proof is to introduce a time and space-dependent twisted gradient.
Consider r ∈ N and for 0 ≤ i ≤ r, x 7→ bi(x) ∈ Rd a smooth vector field, Ci = bi.∇,

Cf = (C0f, . . . , Crf), t, x 7→ Mt(x) a smooth function from R+ × Rd to Msym+
r×r (R) the set

of positive semi-definite symmetric real matrices of size r, and

F (t) =

∫
ψ(Ptf) (CPtf)T MtCPtfdµ,

where AT stands for the transpose of the matrix A and vectors are seen as 1-column matrices.
The coefficients of Mt are the so-called multipliers in the eponymous method introduced in
[20, Section I.8].

The following results holds for any diffusion operator:

Lemma 6. Let L = Ls + La, where Ls = 1
2(L + L∗) and La = 1

2(L − L∗) stand for the

symmetric and antisymmetric part of L in L2
µ. Then

F ′(t) ≤
∫
ψ(Ptf) (CPtf)T

(
2Mt [C,L] + ((2Ls − L)Mt + ∂tMt)C

)
Ptfdµ,

where [Ci, L] = CiL − LCi is the (generalized) Lie bracket of Ci and L and [C,L] =
([C0, L] , . . . , [Cr, L]).
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Proof. In the following we write f for Ptf and Mt(x) = (mi,j(t, x))0≤i,j≤r. First it holds

∂t

(∫
ψ(f)mi,jCifCjfdµ

)
=

∫
ψ(f)∂t(mi,j)CifCjf +mi,j∂t (ψ(f)CifCjf) dµ.

This derivation is justified by the fact that f0 is uniformly strictly positive and so is ft, by
hypoellipticity and the control of the growth of the derivative of ft, using Villani [20, Sect.
A.21] or [16]. Denote as usual the Carré-du-Champ operator 2 Γ(g, h) = L(gh)− gLh−hLg.
Next, µ being invariant for L, and using the diffusion property, i.e. that the chain rule

property LΨ(f1, ..., fd) =
∑d

1 ∂iΨ(f)Lfi +
∑

i,j ∂i,jΨ(f)Γ(fi, fj) holds for all nice Ψ and f ,

0 =

∫
L (mi,jψ(f)CifCjf) dµ

=

∫
L (mi,j)ψ(f)CifCjfdµ+

∫
mi,jL (ψ(f)CifCjf) dµ

+2

∫
Γ (mi,j , ψ(f)CifCjf) dµ

=

∫
(L− 2Ls) (mi,j)ψ(f)CifCjfdµ+

∫
mi,jL (ψ(f)CifCjf) dµ .

The case where M is constant (and symmetric semi-definite positive) is already treated in
[18, Lemma 8] where it is shown that∑

i,j

mi,j

(
L (ψ(f)CifCjf)− ∂t (ψ(f)CifCjf)

)
≥ 2ψ(f)

∑
i,j

mi,j (Cif) [L,Cj ] f .

The proof follows by taking the integral of both sides. �

Proof of Theorem 2. Now consider the case of the Langevin diffusion, namely L is given by
(1). Note that

[L,∇y] = ∇x +∇y [L,∇x] = −∇2U(x).∇y.
The operator L is decomposed as L = Ls + La where

Ls = −y.∇y + ∆y La = −y.∇x +∇U(x).∇y.
Recalling H(x, y) = U(x) + 1

2 |y|
2, then LaH = 0 and more generally La(g ◦H) = 0 for any

smooth g : R→ R. In particular for η > 0,∣∣(2Ls − L)
(
H−η

)∣∣ =
∣∣Ls (H−η)∣∣

=
∣∣η(|y|2 − d)H−η−1 + η(η + 1)|y|2H−η−2

∣∣
≤ (d+ η2 + 2η)H−η.

Let a, b, c depend on t and H(x, y), and let M =

(
a b
b c

)
and C = ∇, so that Lemma 6 reads

F ′(t) ≤ −2

∫
ψ(Ptf) (∇Ptf)T N∇Ptfdµ

with

N =

b− 1
2(Ls + ∂t)a −a∇2U + b− 1

2(Ls + ∂t)b

c− 1
2(Ls + ∂t)b −b∇2U + c− 1

2(Ls + ∂t)c

 .
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In the top left corner b is good news since it gives some coercivity in the x variable. Nev-
ertheless as soon as b 6= 0, b∇2U in the bottom right corner is an annoying term that can
only be controlled by the entropy production if it is bounded (which is where, in the previous
studies, the assumption that ∇2U is bounded barged in).

Writing α(t) = (1− e−t), set

c = 2εαH−η b = ε2α2H−2η a = ε3α3H−3η

for some ε ∈ (0, 1). In other words,

(∇f)TM∇f = εαH−η|∇yf |2 + εαH−η|∇yf + εαH−η∇xf |2,

so that, in particular, M is positive definite. In that case we bound

b− 1

2
(Ls + ∂t)a ≥ ε2α2H−2η − 1

2
(d+ 9η2 + 6η)ε3α3H−3η − 3

2
ε3α2e−tH−3η

≥ ε2α2H−2η
(
1− (d+ 1 + 5η2 + 6η)ε

)
,

−b∇2U + c− 1

2
(Ls + ∂t)c ≥ −ε2α2‖H−2η∇2U‖∞ +

(
2α− 1

2
(d+ η2 + 2η)α− e−t

)
εH−η

≥ −ε2‖H−2η∇2U‖∞ − ε
(
d+ η2 + η

)
,

|b+ c− a∇2U − (Ls + ∂t)b| ≤ |ε2α2H−2η + 2εαH−η − 2e−tε2αH−2η|
+ |ε3α3H−3η∇2U |+ (d+ 4η2 + 4η)ε2α2H−2η

≤ εαH−η
(
ε2‖H−2η∇2U‖∞ + 2 + ε(d+ 4η2 + 4η)

)
,

which implies for ε = (d+ 1 + 5η2 + 6η)−1/4 that

(∇f)TN∇f ≥ 1

4
ε2α2H−2η|∇xf |2 −A|∇yf |2

with

A =
(
ε2‖H−2η∇2U‖∞ + 2 + ε(d+ 4η2 + 4η)

)2
+ ε2‖H−2η∇2U‖∞ + ε

(
d+ η2 + η

)
≤ 1

2

(
‖H−2η∇2U‖∞ + 3

)2
:=

1

2
λ.

Writing

G(t) =
1

2λ
F (t) +

∫
Ψ(Ptf)dµ,

we have obtained

G′(t) ≤ −
∫
ψ(Ptf)

(
α2ε2

4λ
H−2η|∇xPtf |2 +

(
1− A

λ

)
|∇yPtf |2

)
dµ

≤ −α
2ε2

4λ

∫
ψ(Ptf)

(
H−2η|∇xPtf |2 + |∇yPtf |2

)
dµ.

On the one hand,

F (t) ≤ 3εα

∫
ψ(Ptf)

(
H−2η|∇xPtf |2 + |∇yPtf |2

)
dµ,
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and on the other hand, using the inequality (4),∫
Ψ(Ptf)dµ ≤ ρ

∫
ψ(Ptf)

(
H−2η|∇xPtf |2 + |∇yPtf |2

)
dµ,

which implies

G′(t) ≤ − α2ε2

1 + 4λρ
G(t),

where we have used that 6εα ≤ 1 for simplicity. Hence,

Ψ(Ptf) ≤ G(t) ≤ G(0) exp

(
− ε2

1 + 4λρ

∫ t

0
α2(s)ds

)
,

and G(0) = Ψ(f). The proof is complete. �

3. Weighted Functional Inequalities with η ≥ 0.

We turn to the study of the functional inequality (4). For simplicity we shall only consider
the cases Ψ(u) = (u− 1)2 (Variance) and Ψ(u) = u lnu− u+ 1 (Entropy).
Recall the definition of Lη,

Lη := H−2η∆x + ∆y −H−2η

(
2η
∇xH
H

+∇xH
)
.∇x −∇yH.∇y ,

which satisfies

−
∫

f Lηf dµ =

∫
(H−2η |∇xf |2 + |∇yf |2) dµ := Eη(f). (7)

Let us state our first main results

Theorem 7. The weighted Poincaré inequality

Varµ(g) ≤ ρ
∫ (

H−2η|∇xg|2 + |∇yg|2
)

dµ

is satisfied if and only if there exists a Lyapunov function, i.e. a smooth function W such
that W (x, y) ≥ w > 0 for all (x, y), a constant λ > 0 and a bounded open set A such that

LηW ≤ −λW + 1Ā .

We provide then the equivalent result for the logarithmic Sobolev inequality.

Theorem 8. Assume that H goes to infinity at infinity and that there exists a > 0 such that
eaH ∈ L1(µ).

(1) If µ satisfies the weighted log-Sobolev inequality (2), then, there exists a Lyapunov
function, i.e. a smooth function W such that W (x, y) ≥ w > 0 for all (x, y), two
positive constants λ and b such that

LηW ≤ −λH W + b . (8)
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(2) Conversely, assume that there exists a Lyapunov function satisfying (8) and that
|∇H|(x, y) ≥ c > 0 for |(x, y)| large enough. Define

θ(r) = sup
z∈∂Ar

max
i,j=1,...,2d

| ∂
2H

∂zi∂zj
|

and assume that θ(r) ≤ ceC0r with some positive constants C0 and c for r sufficiently
large. Then µ satisfies the weighted log-Sobolev inequality (2).

These theorems are the analogues, in the weighted situation we are looking at, of (part of)
Theorem 1.1 and Theorem 1.2 in [9]. Their proofs are very similar concerning the part 1) of
the previous theorem and we shall only give some details in the entropic case. Let us begin
by a simple and crucial Lemma, at the basis of the use of Lyapunov type condition. Note
that it can also be proved via large deviations argument.

Lemma 9. For every continuous function W ≥ 1 in the domain of Lη such that −LηW/W
is µ-a.e. lower bounded, for all g in the domain of Lη,∫

−LηW
W

g2 dµ ≤
∫ (

H−2η|∇xg|2 + |∇yg|2
)

dµ. (9)

Proof. This follows from integration by parts and Cauchy-Schwarz inequality. Indeed,∫
−LηW

W
g2 dµ =

∫
H−2η〈∇xW,∇x

g2

W
〉+ 〈∇yW,∇y

g2

W
〉dµ

=

∫
H−2η

(
− g2

W 2
|∇xW |2 + 2

g

W
〈∇xW,∇xg〉

)
+

(
− g2

W 2
|∇yW |2 + 2

g

W
〈∇yW,∇yg〉

)
dµ

≤
∫ (

H−2η|∇xg|2 + |∇yg|2
)

dµ.

�

Let us now prove Theorem 8.

Proof. For a given function φ, introduce the operator Gη via Gηh = −Lηh + φh. For any
h in the domain of Lη,

∫
hGηhdµ = Eη(h) +

∫
h2 φ dµ. Choosing φ = −c + 1A, for some

set A to be defined, in the variance case and φ = ρ(b−H) in the entropic case, one deduces
that Gη is continuous for the norms whose square are respectively Eη(h) +

∫
A h

2 dµ and

Eη(h) +
∫
h2 dµ. If a weighted Poincaré inequality (resp. weighted log-Sobolev inequality)

is satisfied, following the proof of Theorem 2.1 (resp. Proposition 3.1) in [9], we get that
the form

∫
hGηhdµ is also coercive so that the Lax-Milgram theorem gives a solution to

Gηh = 1, which furnishes the desired Lyapunov function (see [9] for the details).

For the converse, we revisit the proof of [9] Proposition 3.5 in order to adapt it to our case. As
usual, we will rather prove the (weighted) log-Sobolev inequality in its equivalent (weighted)
Super Poincaré inequality form, i.e. there exist c, β > 0 such that for all smooth f and s > 0,∫

f2dµ ≤ s
∫

(H−2η|∇xf |2 + |∇yf |2)dµ+ c eβ/s
(∫
|f |dµ

)2

.
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Indeed, the latter implies a defective (weighted) log-Sobolev inequality and a weighted

Poincaré inequality (choosing s such that ceβ/s = 1) and we obtain a tight (weighted) log-
Sobolev inequality by using Rothaus lemma (see [4] p.239), which states that

Entµ(f2) ≤ Entµ(f̃2) + 2Varµ(f) , (10)

where f̃ = f −
∫
f dµ. For all this we refer to [10, 11, 21].

Recall Ar = {H ≤ r}. For r0 large enough and some λ′ < λ we have

LηW ≤ −λ′HW + b1Ar0 ,

so that we may assume that

LηW

W
(x, y) ≤ −λH(x, y) +

b

w
1Ar0 .

For r > r0,∫
f2 dµ ≤

∫
Ar

f2 dµ +

∫
Acr

λH

λr
f2 dµ

≤
∫
Ar

f2 dµ +

∫
λH

λr
f2 dµ

≤
∫
Ar

f2 dµ +
1

λ r

∫ (−LηW
W

+
b1Ar0
w

)
f2 dµ

≤
(

1 +
b

λrw

) ∫
Ar

f2 dµ +
1

λ r

∫ (
H−2η|∇xf |2 + |∇yf |2

)
dµ .

It remains to control the integral in Ar. It is in fact a simple consequence of Nash inequalities
for the Lebesgue measure rewritten in its Super Poincaré form (c.f. [10, Prop 3.8]): there
exists cd such that for all r large enough, all smooth f and s > 0∫

Ar

f2dxdy ≤ s

∫
Ar

|∇f |2dxdy + cdθ
d(r)(1 + s−2d)

(∫
|f |dxdy

)2

≤ s

∫
Ar

|∇f |2dxdy + cdce
2dC0r(1 + s−2d)

(∫
|f |dxdy

)2

.

Recall that H ≥ 1. We thus have∫
Ar

f2 dµ ≤ 1

eZ

∫
Ar

f2dxdy

≤ r2η er

e
s

∫ (
H−2η|∇xf |2 + |∇yf |2

)
dµ + Zcdce

2dC0r(1 + s−2d)e2r

(∫
Ar

|f |dµ
)2

.

Letting u = ser−1 r2η and C ′ = Zccd, and considering integral on the whole space in the
right hand side, we have thus obtained (for r large enough)∫
Ar

f2 dµ ≤ u

∫ (
H−2η|∇xf |2 + |∇yf |2

)
dµ + C ′ r4dη (1 + u−2d)e2(1+dC0+d)r

(∫
|f |dµ

)2

.
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Denoting c = 1 + b
λr0w

, and βd = 2 +d+ 2dC0, we thus have, for all u > 0 and r large enough
,∫
f2dµ ≤

(
u c +

1

λ r

) ∫ (
H−2η|∇xf |2 + |∇yf |2

)
dµ+C ′ (1+u−2d) r2dη c eβdr

(∫
|f | dµ

)2

.

(11)
Choosing rλ = (uc)−1 and s = 2uc, we have thus proved the existence of some β′d such that∫

f2dµ ≤ s

∫ (
H−2η|∇xf |2 + |∇yf |2

)
dµ + C ′′ eβ

′
d/s

(∫
|f | dµ

)2

,

and the proof is complete. �

Remark 10. For a general weighted logarithmic Sobolev inequality with the weighted energy∫ (
w1|∇xf |2 + w2|∇yf |2

)
dµ,

we can introduce the symmetric generator

Lw1,w2 := w1∆x + w2∆y − w1

(
−∇xw1

w1
+∇xH

)
.∇x − w2

(
−∇yw2

w2
+∇yH

)
.∇y.

If a Lyapunov function (as in Theorem 4 but for Lw1,w2) exists, then following the same
line, we can obtain (with the required additional assumptions on the weights) a weighted
logarithmic Sobolev inequality. ♦

We now proceed to the

Proof of Corollary 5. Consider a smooth function W (x, y) = eαU(x)+β
2
|y|2 with two constants

α, β ∈ (0, 1) to be determined. Then for |(x, y)| ≥ R,

LηW

W
= αH−2η

[
∆xU +

(
α− 2η

H
− 1

)
|∇xU |2

]
+ β(d− (1− β)|y|2)

≤ βd− α (1− α− κ) |∇xU |2H−2η − β(1− β)|y|2 ,

where we used the first condition in the assumption of the corollary.

To bound the last term by some C − λH, we consider α ∈ (0, 1− κ), β ∈ (0, 1), and divide it

into two cases. If |y|
2

2 ≥
H
2 , then

−α (1− α− κ) |∇xU |2H−2η − β(1− β)|y|2 ≤ −β(1− β)H

Otherwise,we have U ≥ H
2 . Combined with the second condition, it follows

−|∇xU |
2

H2η
≤ −cU

2η+1

22ηU2η
≤ − c

22η+1
H ,

which completes the proof of the Lyapunov condition. Since the second condition implies
that U goes to infinity at infinity and |∇xU | ≥ u ≥ 0, we get a weighted logarithmic Sobolev
inequality for µ by the previous theorem. �

The next example, which is the simple polynomial case, will show the adequacy of our
conditions on weighted log-Sobolev inequality with the Assumption 1.
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Example 1. Let us consider the example where U(x) = |x|l with l > 2 for |x| large enough,

that is, H(x, y) = |x|l + |y|2
2 . Then ∆xU = (dl + l2 − 2l))|x|l−2 and |∇xU |2 = l2|x|2l−2. The

first condition is satisfied since l > 2, while the second condition requires

η ≤ 1

2
− 1

l
.

Note that ||U−2η∇2U ||∞ ∼ |x|l−2−2lη so that, to ensure that U−2η∇2U is bounded, we have
to choose η = 1

2 −
1
l . With the case l = 2 we recover Villani’s result.

Let us give another example which will show that our limit growth for the potential U is
below the exponential growth

Example 2. Choose now U(x) = ea|x|
b

for a, b > 0 for |x| large enough. Then ∆xU ∼
a2b2|x|2(b−1)ea|x|

b
and |∇xU |2 ∼ a2b2e2a|x|b . The first condition is thus satisfied , while the

second one imposes once again that 2η + 1 ≤ 2. Now, Assumption 1 imposes that 2η > 1
if b ≥ 1, leading to an impossible adequacy of the two sets of conditions, and to 2η ≥ 1 if
b < 1, in which case the choice of η = 1/2 is admissible.

Let us end this section by a remark

Remark 11. For the multipliers method in the variance case, Villani does not use H−2η

in the energy to get his inequality but, as will be seen in the next section, proves a rather
stronger inequality with weight U(x)−2η(1 + |y|2)−2η in the derivative in x. The fact that
he deals with the variance helps him enough to prove such a weighted Poincaré inequality.
We may also consider a weighted logarithmic Sobolev inequality with such a weight. How-
ever, via the Lyapunov condition approach, the condition on η is then too strong to match
with Assumption 1. It is thus crucial to have a weighted inequality with weight H−2η for
Theorem 1. ♦

The next section presents an alternative approach, trying to provide an answer to the problem
alluded in the previous remark. Is it possible to provide a ‘tensorization-like” approach
to provide a weighted logarithmic Sobolev inequality as in Villani’s paper, thus giving an
alternative to Lyapunov conditions?

4. Some further remarks on weighted inequalities.

In this final section we shall try to understand whether it is possible to impose conditions
on U solely in order to get weighted inequalities. We shall use several times the following
elementary inequalities, true for all η ≥ 0, all x and y (recall that U ≥ 1)

U−η(x)

(
1 +

1

2
|y|2
)−η

≤ H−η(x, y) ≤ min

(
U−η(x) ,

(
1 +

1

2
|y|2
)−η)

. (12)

We shall use in the sequel the notations U−2η(x) = φ1(x) and
(
1 + 1

2 |y|
2
)−2η

= φ2(y).
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4.1. The case of weighted Poincaré inequalities.

Assume that µ satisfies a weighted Poincaré inequality. If we choose an f that only de-
pends on x and use that H−2η(x, y) ≤ U−2η(x) for all y, we immediately see that the first

marginal of µ, i.e. dµ1(x) := 1
Z1
e−U(x)dx also satisfies the weighted Poincaré inequality

Varµ1(f) ≤ C
∫
U−2η|∇f |2dµ1 . (13)

Conversely we have,

Theorem 12. Write µ(dx, dy) = µ1(dx) ⊗ µ2(dy). If µ1(dx) = 1
Z1
e−U(x)dx satisfies the

weighted Poincaré inequality (13) with constant C1, then µ satisfies the following weighted
Poincaré inequality

Varµ(h) ≤ C ′
∫

(H−2η|∇xh|2 + |∇yh|2)dµ

with

C ′ ≤ max

((
2 +

4

M2

)
,
4C1

M2

)
where M2 =

∫ (
1 +

1

2
|y|2
)−2η

µ2(dy) .

Proof. A proof is given in Villani [20] Theorem A.3. It uses extensively the spectral theory
of the sum of operators. We shall give a more pedestrian (similar) proof.

The first point is that, since we assumed that U ≥ 1,

H−2η(x, y) ≥ φ1(x)φ2(y) := U−2η(x)

(
1 +

1

2
|y|2
)−2η

. (14)

Thus, if we decompose µ(dx, dy) = µ1(dx)⊗ µ2(dy) we have∫
H−2η |∇xh|2 µ(dx, dy) ≥

∫
φ1(x)φ2(y) |∇xh|2 µ1(dx)⊗ µ2(dy)

≥ 1

C1

∫
φ2(y)

(
h(x, y)−

∫
h(u, y)µ1(du)

)2

µ(dx, dy) .

Now, write

h(x, y)−
∫
h(u, y)µ1(du) =

(
h(x, y)−

∫
h(u, y)µ1(du)−

∫
h(x, v)µ2(dv) +

∫ ∫
hdµ1dµ2

)
+

(∫
h(x, v)µ2(dv)−

∫ ∫
hdµ1dµ2

)
= g1(x, y) + g2(x)

and use

(a+ b)2 ≥ 1

2
b2 − a2 .

This yields, since φ2(y) ≤ 1,∫
H−2η |∇xh|2 µ(dx, dy) ≥ 1

2C1

(∫
φ2 dµ2

)(∫
g2

2(x)µ1(dx)

)
− 1

C1

∫ ∫
g2

1(x, y)µ1(dx)µ2(dy) .
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Notice that for all y,∫
g2

1(x, y)µ1(dx) = Varµ1

(
h(·, y)−

∫
h(·, v)µ2(dv)

)
,

so that ∫
g2

1(x, y)µ1(dx) ≤
∫ (

h(x, y)−
∫
h(x, v)µ2(dv)

)2

µ1(dx) .

We can thus integrate this inequality w.r.t. µ2, use Fubini’s theorem, then for each fixed x
use the usual Poincaré inequality for the standard gaussian measure µ2 and finally integrate
with respect to µ1. This yields∫ ∫

g2
1(x, y)µ1(dx)µ2(dy) ≤

∫ ∫ (
h(x, y)−

∫
h(x, v)µ2(dv)

)2

µ(dx, dy)

≤
∫ ∫

|∇yh|2(x, y)µ(dx, dy) .

Gathering all this we have obtained∫
g2

2(x)µ1(dx) ≤ 2C1

M2

∫
H−2η|∇xh|2 dµ+

2

M2

∫
|∇yh|2 dµ . (15)

Finally,

Varµ(h) =

∫ (
h(x, y)−

∫
h(x, v)µ2(dv) +

∫
h(x, v)µ2(dv)−

∫ ∫
hdµ

)2

µ(dx, dy)

≤ 2

∫ ∫ (
h(x, y)−

∫
h(x, v)µ2(dv)

)2

µ(dx, dy) + 2

∫
g2

2(x)µ1(dx)

≤ 2

∫ ∫
|∇yh|2(x, y)µ(dx, dy) + 2

∫
g2

2(x)µ1(dx) ,

and the result follows from (15). �

As a conclusion the weighted Poincaré inequality on R2d reduces to a weighted Poincaré
inequality on Rd (up to some constant). One should think that the previous result is a kind
of weighted tensorization property. This is not the case due to the fact that the weight in
front of ∇x depends on both variables x and y.
There are many ways to obtain such an inequality. Of course since it is stronger than the
usual Poincaré inequality, our result is weaker than the one of Villani (but with a simpler
proof and explicit bounds for the constants), and we will only describe a typical situation
where this equality can be obtained.
As we have seen in the previous section, this weighted Poincaré inequality is equivalent to
the existence of some Lyapunov function for L1,η which is built similarly to Lη replacing H
by U . We can also obtain a slightly different condition. Introduce the probability measure

µφ1 (dy) = φ1(y)
M1

µ1(dy) and the µφ1 symmetric operator

Gφ1 = ∆x −
(

1 +
2η

U

)
∇U.∇ .
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Assume that we can find a Lyapunov function W ≥ 1 such that

Gφ1W (x)

W (x)
≤ −aU2η(x)

for |x| larger than some R > 0. If h is compactly supported in |x| > R, we may write∫
h2 dµ1 ≤ −

M1

a

∫
Gφ1W

W
h2 dµφ1 ≤

M1

a

∫
|∇h|2 dµφ1 =

M1

a

∫
|∇h|2 U−2η dµ1

according to the computations in [2] p.64. Following the method introduced in [2] we then
obtain that µ1 satisfies the desired weighted Poincaré inequality. According to [9] Theorem
4.4, the existence of such a Lyapunov function is linked to the fact that µ1 satisfies some
F -Sobolev inequality, with F = ln2η

+ . This is for instance the case when U(x) = 1 + |x|α and

η = 1− α−1.

4.2. The case of weighted log-Sobolev inequalities.

We look now at the similar weighted logarithmic Sobolev inequality, namely,

Entµ(f2) ≤ ρ
∫

(H−2η|∇xf |2 + |∇yf |2)dµ.

As in the L2 setting, it implies a weighted log Sobolev inequality for µ1 on Rd i.e.

Entµ1(f2) ≤ C
∫
U−2η|∇xf |2dµ1 . (16)

Since the standard gaussian measure µ2 satisfies a log-Sobolev inequality too (with optimal
constant 2), one should expect to obtain the analogue of theorem 12. This is not so easy
(actually we did not succeed in proving such a result and believe that it is wrong) and
certainly explains the limitation of Villani’s approach, since this property reduces to the well
known tensorization property of the logarithmic Sobolev inequality only in the case η = 0.
The best we are able to do is to prove that, in this situation

Theorem 13. Write µ(dx, dy) = µ1(dx) ⊗ µ2(dy). If µ1(dx) = 1
Z1
e−U(x)dx satisfies the

weighted log-Sobolev inequality (16), then µ satisfies (4) with an admissible function u 7→ Ψ(u)

behaving like u ln
1+4η
1+2η (u) at infinity.

Combined with theorem 2 which deals with a decay for more general functionals than the
variance or entropy, we are thus able to prove under such conditions an exponential decay

for Ψ behaving like u ln
1+4η
1+2η (u) at infinity.

Notice that for a bounded Hessian we recover the weighted log-Sobolev inequality, i.e. we
recover Villani’s result.

Proof. The first step of the proof is the following

Lemma 14. Define the probability measure µφ2 (dy) = φ2(y)
M2

µ2(dy). Then µφ2 satisfies a log-
Sobolev inequality.
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An immediate consequence is the following inequality for µφ(dx, dy) = µ1(dx)⊗ µφ2 (dy),

Entµφ(h2) ≤ C
∫

(φ1 |∇xh|2 + |∇yh|2)dµφ , (17)

which follows from the tensorization property of the log-Sobolev inequality.

Proof of Lemma 14. Write

µφ2 (dy) = Zφ e
−

(
|y|2
2

+2η ln(1+|y|2/2)

)
dy = Zφ e−V2(y)dy .

A simple calculation shows that

HessV2(y) =

(
1 +

2η

1 + |y|2/2

)
Id − 2η

(1 + |y|2/2)2
M(y)

where Mi,j(y) = yiyj . Hence,

HessV2(y) ≥
(

1 +
2η

1 + |y|2/2
− 2ηd |y|2

(1 + |y|2/2)2

)
Id

in the sense of quadratic forms. Hence for |y| large enough (of order c
√
d), the potential

V2(y) is uniformly convex, uniformly in y. This proves (combining Bakry-Emery criterion
and Holley-Stroock perturbation argument) the Lemma. �

As we recalled, the weighted log-Sobolev inequality is equivalent to a (weighted) super
Poincaré inequality, for all smooth h and all s > 0,∫

h2dµφ ≤ s

∫
(φ1 |∇xh|2 + |∇yh|2)dµφ + c eβ/s

(∫
|h| dµφ

)2

. (18)

Since φ2 ≤ 1, it follows∫
h2dµφ ≤ s

M2

∫
(H−2η |∇xh|2 + |∇yh|2)dµ +

c

M2
eβ/s

(∫
|h|dµ

)2

. (19)

For R > 1, introduce the 1-Lipschitz function

ϕ(r) = (r −R) 1R<r<R+1 + 1R+1≤r .

One can write ∫
h2dµ ≤

∫
|y|≤R+1

h2 dµ+

∫
h2 ϕ2(|y|) dµ

≤ M2

φ2(R+ 1)

∫
|y|≤R+1

h2dµφ +

∫
h2 ϕ2(|y|) dµ

≤ M2

φ2(R+ 1)

∫
h2dµφ +

∫
h2 ϕ2(|y|) dµ .

The first term in the sum will be controlled thanks to (19). In order to control the second
term, we introduce,once again, some Lyapunov function.

Denote by G the Ornstein-Uhlenbeck operator G = ∆y − y.∇y and consider W (y) = e|y|
2/4.

A simple calculation shows that

GW

W
≤ 1

4
(2d− |y|2)
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for |y| >
√

2d. Hence if R >
√

2d, we get for |y| > R,

1 ≤ 4

(
−GW
W

)
1

|y|2 − 2d
≤ 4

(
−GW
W

)
1

R2 − 2d

and finally ∫
h2 ϕ2(|y|) dµ ≤ 4

R2 − 2d

∫ (
−GW
W

)
h2 ϕ2(|y|) dµ . (20)

Integrating by parts, and after some easy manipulations (see [2] for the details), we will thus
obtain for well chosen constants C,C ′ all s > 0 and large enough R (only depending on d),∫

h2dµ ≤ C (sR4η +R−2)

∫
(φ1 |∇xh|2 + |∇yh|2)dµφ + C ′R4η eβ/s

(∫
|h|dµ

)2

. (21)

Choosing u = s
1

1+2η = R−2, we obtain a super Poincaré inequality∫
h2dµ ≤ C u

∫
(φ1 |∇xh|2 + |∇yh|2)dµφ + C ′ eβ

′/u1+2η

(∫
|h|dµ

)2

. (22)

which furnishes a F = ln
1

1+2η

+ -Sobolev inequality, i.e. if
∫
h2 dµ = 1,∫

h2 ln
1

1+2η

+ h2 dµ ≤ C
∫

(φ1 |∇xh|2 + |∇yh|2)dµφ .

Notice that, since φ2 ≤ 1, the previous inequality is stronger than∫
h2 ln

1
1+2η

+ h2 dµ ≤ C
∫

(H−2η |∇xh|2 + |∇yh|2)dµ . (23)

It remains to link (23) to (4). Actually, as explained in [5] section 7, one can replace ln+ by
smooth functions F with a similar behaviour at infinity (and satisfying F (1) = 0).
Let

ψ(u) =
ln

2η
1+2η (1 + u)

1 + u

defined for u ≥ e. It is easily seen that 1/ψ is concave at infinity. Hence as explained in
Remark 3, we may modify ψ and consider some admissible Ψ such that Ψ(u) behaves like

(1 + u) ln
1+4η
1+2η (1 + u) at infinity. If we define h2 = f ln

2η
1+2η (1 + f), we get from (23) that µ

satisfies (4) with this Ψ and some ρ, completing the proof. �

For a discussion about the connections between F -Sobolev inequalities and the Ψ entropic
inequalities one can look at [8] subsection 3.2.
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Clermont-Auvergne, avenue des Landais, F-63177 Aubière.

Email address: arnaud.guillin@uca.fr

Pierre MONMARCHE, Sorbonne Universitaboratoire Jacques-Louis Lions, LJLL, 5 place Jussieu,
F-75005 Paris.

Email address: pierre.monmarche@ens-cachan.org
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