Complement

Several statements concerned with the logarithmic Sobolev inequality have to be completed. Namely, we have to complete Assumption 2') in Theorem 1.2 by adding the following assumption :
Assumption Add $\quad \theta(r)=\sup _{\{x ; V(x) \leq r\}} \max _{i, j}\left|\partial_{i, j}^{2} V(x)\right|$ satisfies $\theta(r) \leq m e^{D r}$ for positive m and D, and all r large enough.

Proposition 3.5 and its proof have to be modified in the following way
Proposition 0.1. Assume that μ is symmetric and that $\sigma . \sigma^{*} \geq \alpha$ Id for some $\alpha>0$ (i.e. is uniformly elliptic). Assume in addition that
(1) V goes to infinity at infinity,
(2) $|\nabla V(x)| \geq v>0$ for $|x|$ large enough,
(3) $e^{a V} \in \mathbb{L}^{1}(\mu)$ for some $a>0$,
(4) $\theta(r)$ defined by

$$
\theta(r)=\sup _{\{x ; V(x) \leq r\}} \max _{i, j}\left|\partial_{i, j}^{2} V(x)\right|
$$

satisfies $\theta(r) \leq m e^{D r}$ for positive m and D, and all r large enough.
If there exists a Lyapunov function W with $W(x) \geq w>0$ for all $x \in D, \frac{\partial W}{\partial n}=0$ on ∂D and satisfying

$$
L W(x) \leq-\lambda V(x) W(x)+b,
$$

for some λ and b strictly positive, then μ satisfies a logarithmic-Sobolev inequality.
Proof. We follow the method in [2] Theorem 2.1 (itself inspired by [1]). Let $A_{r}=\{V \leq r\}$. For r_{0} large enough and some $\lambda^{\prime}<\lambda$ we have

$$
L W(x) \leq-\lambda^{\prime} V(x) W(x)+b \mathbf{1}_{A_{r_{0}}},
$$

so that we may assume that

$$
\frac{L W}{W}(x) \leq-\lambda V(x) \quad \text { for } x \in A_{r}^{c} \text { and all } r \text { large enough. }
$$

Denote by $M=\sup (-V)$. We have for $s \leq s_{0}$ and $r>r_{0}$,

$$
\begin{aligned}
\int f^{2} d \mu= & \int_{A_{r}} f^{2} d \mu+\int_{A_{r}^{c}} f^{2} d \mu \\
\leq & e^{M} \int_{A_{r}} f^{2} d x+\frac{1}{\lambda r} \int \lambda V(x) f^{2} d \mu \\
\leq & e^{M}\left(1+\frac{b}{\lambda r_{0}}\right) \int_{A_{r}} f^{2} d x+\frac{1}{\lambda r} \int f^{2}\left(\frac{-L W}{W}\right) d \mu \\
\leq & e^{M}\left(1+\frac{b}{\lambda r_{0}}\right)\left(s \int_{A_{r}}|\nabla f|^{2} d x+C_{d} \theta^{d}(r)\left(1+s^{-d / 2}\right)\left(\int_{A_{r}}|f| d x\right)^{2}\right)+ \\
& \quad+\frac{1}{\lambda r} \int|\sigma . \nabla f|^{2} d \mu .
\end{aligned}
$$

The first part of the last bound is obtained by using (3.1.4) in [2] (it is here that we are using the assumption on $|\nabla V|$), while the second bound is obtained using integration by parts or the Green-Rieman formula (see [2] (2.2)). Using uniform ellipticity we thus obtain, denoting $c=e^{M}\left(1+\frac{b}{\lambda r_{0}}\right)$

$$
\begin{equation*}
\mu\left(f^{2}\right) \leq\left(\frac{s c e^{r}}{\alpha}+\frac{1}{\lambda r}\right) \int|\sigma . \nabla f|^{2} d \mu+C_{d} c m^{d}\left(1+s^{-d / 2}\right) e^{2 r+d D r}\left(\int|f| d \mu\right)^{2} . \tag{0.2}
\end{equation*}
$$

Denote $u=s c e^{r} / \alpha$. We thus have for all $0<u<$ Cte r :

$$
\begin{equation*}
\mu\left(f^{2}\right) \leq\left(u+\frac{1}{\lambda r}\right) \int|\sigma . \nabla f|^{2} d \mu+C_{d}^{\prime}\left(1+u^{-d / 2}\right) e^{(2+d D+(d / 2)) r}\left(\int|f| d \mu\right)^{2} \tag{0.3}
\end{equation*}
$$

Hence choosing $r=c^{\prime} / u$, which implies u small enough for $u<C t e e^{c^{\prime} / u}$, we get the following super-Poincaré inequality for small s,

$$
\mu\left(f^{2}\right) \leq s \int|\sigma . \nabla f|^{2} d \mu+C^{\prime} e^{\tilde{c} / s}\left(\int|f| d \mu\right)^{2}
$$

which is known to be equivalent to a defective logarithmic Sobolev inequality (see the introduction of $[2]$). But the Lyapunov condition being stronger than (HP1), we know that μ satisfies a Poincaré inequality, hence using Rothaus lemma, that it satisfies a (tight) logSobolev inequality.

References

[1] D. Bakry, F. Barthe, P. Cattiaux, and A. Guillin. A simple proof of the Poincaré inequality for a large class of probability measures. Elec. Comm. in Prob., 13:60-66, 2008.
[2] P. Cattiaux, A. Guillin, F. Y. Wang and L. Wu. Lyapunov conditions for super Poincaré inequalities. J. Funct. Anal., 256(6):1821-1841, 2009.

