
Complement

Several statements concerned with the logarithmic Sobolev inequality have to be completed.
Namely, we have to complete Assumption 2’) in Theorem 1.2 by adding the following as-
sumption :

Assumption Add θ(r) = sup{x;V (x)≤r}maxi,j

∣∣∣∂2i,jV (x)
∣∣∣ satisfies θ(r) ≤ meDr for positive

m and D, and all r large enough.

Proposition 3.5 and its proof have to be modified in the following way

Proposition 0.1. Assume that µ is symmetric and that σ.σ∗ ≥ α Id for some α > 0 (i.e. is
uniformly elliptic). Assume in addition that

(1) V goes to infinity at infinity,
(2) |∇V (x)| ≥ v > 0 for |x| large enough,
(3) eaV ∈ L1(µ) for some a > 0,
(4) θ(r) defined by

θ(r) = sup
{x;V (x)≤r}

max
i,j

∣∣∂2i,jV (x)
∣∣

satisfies θ(r) ≤ meDr for positive m and D, and all r large enough.

If there exists a Lyapunov function W with W (x) ≥ w > 0 for all x ∈ D, ∂W
∂n = 0 on ∂D

and satisfying

LW (x) ≤ −λV (x)W (x) + b ,

for some λ and b strictly positive, then µ satisfies a logarithmic-Sobolev inequality.

Proof. We follow the method in [2] Theorem 2.1 (itself inspired by [1]). Let Ar = {V ≤ r}.
For r0 large enough and some λ′ < λ we have

LW (x) ≤ −λ′ V (x)W (x) + b1Ar0
,

so that we may assume that

LW

W
(x) ≤ −λV (x) for x ∈ Acr and all r large enough.

Denote by M = sup(−V ). We have for s ≤ s0 and r > r0,∫
f2 dµ =

∫
Ar

f2 dµ +

∫
Ac

r

f2 dµ

≤ eM
∫
Ar

f2 dx +
1

λr

∫
λV (x) f2dµ,

≤ eM
(

1 +
b

λr0

) ∫
Ar

f2 dx +
1

λ r

∫
f2
(
−LW
W

)
dµ

≤ eM
(

1 +
b

λr0

) (
s

∫
Ar

|∇f |2 dx + Cd θ
d(r)(1 + s−d/2)

(∫
Ar

|f | dx
)2
)

+

+
1

λ r

∫
|σ.∇f |2 dµ .

1



2

The first part of the last bound is obtained by using (3.1.4) in [2] (it is here that we are using
the assumption on |∇V |), while the second bound is obtained using integration by parts or
the Green-Rieman formula (see [2] (2.2)). Using uniform ellipticity we thus obtain, denoting

c = eM
(

1 + b
λr0

)
µ(f2) ≤

(
s c er

α
+

1

λ r

) ∫
|σ.∇f |2 dµ + Cd cm

d (1 + s−d/2) e2r+dDr
(∫

|f | dµ
)2

. (0.2)

Denote u = scer/α. We thus have for all 0 < u < Cte er:

µ(f2) ≤
(
u +

1

λ r

) ∫
|σ.∇f |2 dµ + C ′d (1 + u−d/2) e(2+dD+(d/2))r

(∫
|f | dµ

)2

. (0.3)

Hence choosing r = c′/u, which implies u small enough for u < Cte ec
′/u, we get the following

super-Poincaré inequality for small s,

µ(f2) ≤ s

∫
|σ.∇f |2 dµ + C ′ ec̃/s

(∫
|f | dµ

)2

,

which is known to be equivalent to a defective logarithmic Sobolev inequality (see the in-
troduction of [2]). But the Lyapunov condition being stronger than (HP1), we know that
µ satisfies a Poincaré inequality, hence using Rothaus lemma, that it satisfies a (tight) log-
Sobolev inequality.
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