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Abstract. In this paper we study the Poincaré constant for the Gaussian measure re-
stricted to D = Rd −B where B is the disjoint union of bounded open sets. We will mainly
look at the case where the obstacles are Euclidean balls B(xi, ri) with radii ri, or hyper-
cubes with vertices of length 2ri, and d ≥ 2. This will explain the asymptotic behavior of a
d-dimensional Ornstein-Uhlenbeck process in the presence of obstacles with elastic normal
reflections (the Ornstein-Uhlenbeck pinball).
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1. Introduction.

In order to understand the goal of the present paper let us start with a well known question:
how many non overlapping unit discs can be placed in a large square S? This problem of
discs packing has a very long history including the following other question: is it possible
to perform an algorithm yielding to a perfectly random configuration of N such discs at a
sufficiently quick rate (exponential for instance) ? This is one of the origin of the Metropolis
algorithms as refereed in [DLM11].

The meaning of perfectly random is the following: the configuration space for the model is
SN , describing the location of the N centers of the N discs B(xi, 1), but under the constraints
d(xi, ∂S) ≥ 1 and for all i 6= j, |xi − xj | ≥ 2. The remaining domain D is quite complicated,
and randomness is described by the uniform measure on D.

The answer to the second question is positive, essentially thanks to compactness, but the
exponent in the exponential rate of convergence is strongly connected with the Poincaré
constant for the uniform measure on D which is, at the present stage, far to be known (the
only known upper bounds are disastrous).

One can of course ask the same questions replacing the square by the whole euclidean space,
and the uniform measure by some natural probability measure, for instance the gaussian one.
But this time even the finiteness of the Poincaré constant is no more clear. A very partial
study (N = 2, 3) of this problem is done in [CFKR16].
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In all cases, the probability measure under study, and supported by the complicated state
space D is actually an invariant (even reversible) measure for some Markovian dynamics, one
can study by itself, and which furnishes a possible algorithm. The boundary of D becomes
a reflecting boundary for the dynamics.

In this paper we intend to study the asymptotic behavior of a d-dimensional Ornstein-
Uhlenbeck process in the presence of bounded obstacles with elastic normal reflections (look-
ing like a random pinball). The choice of an Ornstein-Uhlenbeck (hence of an invariant
measure of gaussian type) is made for simplicity as it captures already all the new difficulties
of this setting, but a general gradient drift diffusion process (satisfying an ordinary Poincaré
inequality) could be considered.

Of course for the packing problem in the whole space the obstacles are not bounded, but it
seems interesting to look first at the present setting. Our model is also motivated by others
considerations we shall give later.

All over the paper we assume that d ≥ 2. We shall mainly consider the case where the obsta-
cles are non overlapping euclidean balls or smoothed l∞ balls (hence smoothed hypercubes)
of radius ri and centers (xi)1≤i≤N≤+∞, as overlapping obstacles could produce disconnected
domains and thus non uniqueness of invariant measures (as well as no Poincaré inequality).
We shall also look at different forms of obstacles when it can enlighten the discussion.

To be more precise, consider for 1 ≤ N ≤ +∞, X = (xi)1≤i≤N≤+∞ a locally finite collection
of points, and (ri)1≤i≤N≤+∞ a collection of non negative real numbers, satisfying

|xi − xj | > ri + rj for i 6= j . (1.1)

The Ornstein-Uhlenbeck pinball will be given by the following stochastic differential system
with reflection {

dXt = dWt − λXt dt +
∑

i (Xt − xi) dLit ,
Lit =

∫ t
0 1I|Xs−xi|=ri dL

i
s.

(1.2)

Here W is a standard Wiener process and we assume that P(|X0 − xi| ≥ ri for all i) = 1. Li

is the local time description of the elastic and normal reflection of the process when it hits
B(xi, ri).

Existence and non explosion of the process, which is especially relevant for N = +∞, will be
discussed in Appendix A. The process lives in

D̄ = Rd − {x ; |x− xi| < ri for some i} , (1.3)

that is, we have removed a collection of non overlapping balls (or more generally non over-
lapping obstacles).

It is easily seen that the process admits an unique invariant (actually reversible) probability
measure µλ,X , which is simply the Gaussian measure restricted to D, i.e.

µλ,X (dx) = Z−1
λ,X 1ID(x) e−λ |x|

2
dx , (1.4)

where Zλ,X is of course a normalizing constant. Hence the process is positive recurrent.

The question is to describe the rate of convergence for the distribution of the process at time
t to its equilibrium measure.
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Figure 1. An Ornstein-Uhlenbeck particle in a billiard

To this end we shall look at the Poincaré constant of µλ,X since it is well known that this
Poincaré constant captures the exponential rate of convergence to equilibrium for symmet-
ric processes (see e.g. [CGZ13] lemma 2.14 and [BCG08] theorem 2.1). Other functional
inequalities (logarithmic Sobolev inequality, transportation inequality, ...) could be equally
considered and the techniques developed here could also prove to be useful in these cases
(for examples Lyapunov techniques have been introduced in the study of Super Poincaré
inequalities in [CGWW09], including logarithmic Sobolev inequalities).

When the number of obstacles N is finite, one can see, using Down, Meyn and Tweedie
results [DMT95] and some regularity results for the process following [Cat86, Cat87], that
the process is exponentially ergodic. It follows from [BCG08] theorem 2.1, that µλ,X satisfies

some Poincaré inequality, i.e. for all smooth f (defined on the whole Rd)

Varµλ,X (f) ≤ CP (λ,X )

∫
|∇f |2 dµλ,X . (1.5)

But the above method furnishes non explicit bounds for the Poincaré constant CP (λ,X ).

Our first goal is thus to obtain reasonable and explicit upper and lower bounds for the
Poincaré constant. Surprisingly enough (or not) the case of one hard obstacle already contains
non trivial features.
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Our second goal is to look at the case of infinitely many obstacles, for which the finiteness
of the Poincaré constant is not even clear.

Part of the title of the paper is taken from a paper by Lieb et altri [LSY03] which is one of
the very few papers dealing with Poincaré inequality in a sub-domain. Of course, one cannot
get any general result due to the fact that one can always remove an, as small as we want,
subset disconnecting the whole space; so that the remaining sub-domain cannot satisfy some
Poincaré inequality. Hence doing this breaks the ergodicity of the process.

The method used in [LSY03] relies on the extension of functions defined in D to the whole
space. But the inequality they obtain, involves the energy of this extension (including the
part inside Dc), so that it is not useful to get a quantitative rate of convergence for our
process.

Our model can be used (or modified) as a model for crowds displacements (involving several
particles in the obstacles environment). In particular the design of small obstacles that should
kill the Poincaré constant is interesting.

Let us now describe the main results and main methods contained in the paper.

First, it is easily seen, thanks to homogeneity, that

CP (λ,X ) =
1

λ
CP (1,

√
λX ) . (1.6)

where
√
λX is the homotetic of X , i.e. the collection of B(

√
λxi,

√
λ ri). Hence we have one

degree of freedom in the use of all parameters. This homogeneity property will be used in
the paper to improve some bounds.

The first section is peculiar. We look at a single spherical obstacle centered at the origin.
We show that the Poincaré constant is given by

CP (λ,B(0, r)) ≈ 1

λ
+
r2

d

i.e. is up to some universal constant the sum of the Poincaré constant of the gaussian
distribution 1/2λ and the one of the uniform measure on the sphere of radius r i.e. r2/d. For
the process this reflects the fact that it hits a neighborhood of the origin with an exponential
rate given by λ but turns around the sphere with an exponential rate given by r2/d. This
is also in accordance with what is expected when λ → +∞ (µλ,X is close to the uniform
measure on the sphere) or r → 0 where the obstacle disappears.

We also look at the usual perturbation method for Poincaré inequalities when the center is
no more located at the origin (see Proposition 2.4 and Proposition 2.5) with results that
are not entirely satisfactory. The result for the obstacle B(0, r) can be used, through the
decomposition of variance method, to obtain results for a general single ball B(y, r). This is
explained in the third Appendix.

The next two sections 3 and 4 are devoted to our main goals in the case of spherical obstacles:
obtain explicit controls for the Poincaré constant in the presence of a single obstacle, extend
it to a finite number of obstacles, prove that it is still finite in the case of an infinite number
of obstacles.
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In section 3 we develop a “local” Lyapunov method (in the spirit of [BBCG08]) around the
obstacle. Under a restriction to small sizes, it is possible to give some explicit Lyapunov
function. As in recent works ([BHW12, AKM12]) the difficulty is then to piece together the
Lyapunov functions we may build near the obstacle and far from the obstacle and the origin.
Let us describe the main results and methods.

First we are able to find explicit Lyapunov functions in the neighborhood of the obstacles
provided

∀i , ri < r
√
λ =

√
(d− 1)/2 − 2−

3
4 .

This implies some limitation for the dimension namely

d ≥ 7 .

If in addition the balls B(xi, ri + b(λ))) are non-overlapping (here b(λ) is some explicit con-
stant), then one obtains an explicit upper bound for the Poincaré constant. This is explained
in subsection 3.2 in particular in Proposition 3.10.
The remaining of section 3 is then dedicated to get rid of the dimension restriction still for
small obstacles i.e. provided

∀i , ri ≤
1

2

√
(d− 1)/2 .

In subsections 3.3 and 3.4 we show how to control the variance of functions compactly sup-
ported in the exterior of a large ball containing the origin. As a consequence we get in
subsections 3.5 and 3.6 a general result for the Poincaré constant when there is only one
obstacle, gathering all what was done in these subsections and the previous section.
Finally we prove the finiteness of the Poincaré constant for an infinite number of small ob-
stacles uniformly disconnected, that is such the distance between two distinct obstacles is
uniformly larger than some ε > 0 in Corollary 3.20. If we are not able to give a precise
description of the Poincaré constant in general, we can give some provided all obstacles are
far enough from the origin i.e. if

∀i , |xi|
√
λ > c

√
d

for some constant c (see proposition 3.16 and the explanations at the beginning of subsection
3.7.)
We close section 3 by a subsection explaining what happens if we replace euclidean balls by
hypercubes.

In section 4 we use the results in [CGZ13] in order to build new Lyapunov functions near the
obstacles, this time without restriction on the radius. To this end, we study in details how
the process avoids a spherical obstacle, using stochastic calculus. This allows us to build a
new Lyapunov function near the obstacle, which is given by some exponential moment of the
time needed to go around the obstacle. Useful results on the Laplace transform of exit times
for some linear processes are recalled in the second Appendix. This new Lyapunov function
is then used in subsection 4.2 to obtain an upper estimate for the Poincaré constant in a shell
around a spherical obstacle. Together with the method in section 3, we can then show (see
proposition 4.12) that provided

∀i , |xi| > ri +m and ri >
1

2
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for some large enough m the Poincaré constant is finite and obtain an upper bound for it.
Finally we can extend the result in the case of infinitely many large obstacles. Hence sections
4 and 3 are complementary.

Gathering all this, we have the following key result: for a spherical obstacle located far
from the origin, the Poincaré constant does not depend on the radius (contrary to what we
conjectured in a previous version of this work). This result allows us to show the following
general result in the case of an infinite number of spherical obstacles

Theorem 1.7. Let X = (xi)1≤i<+∞ a locally finite collection of distinct points, ordered such
that |xi| ≤ |xi+1| for all i, and R = (ri)1≤i<+∞ a collection of non-negative numbers. Assume
that there exists ε > 0 with |xi − xj | > ri + rj + ε for all i 6= j.

Then for any λ > 0, the measure µλ,X defined in (1.4) has a finite Poincaré constant and
the reflected Ornstein-Uhlenbeck process in D (defined in (1.3)) is exponentially ergodic.

Section 5 is devoted to obtain lower bounds. We show in particular that if we replace euclidean
balls by hypercubes, the situation is drastically changed since each obstacle (in a particular

configuration) gives some contribution ecr
2

where r denotes the length of an edge of the
hypercube. In particular large obstacles far from the origin can make the Poincaré constant
go to ∞. We give two approaches of this result: one using exit times for the stochastic
process, the second one using isoperimetric ideas. The same isoperimetric ideas are used to
give a lower bound for the Poincaré constant in the case of spherical obstacles. To conclude
the section we show that replacing balls by some non convex small and far obstacles can kill
the exponential ergodicity. This situation is analogous to the one obtained with “touching”
spherical obstacles.

The conclusion is that, presumably for uniformly convex obstacles (with an uniform curvature
bounded from below uniformly in the location of the obstacles too) a similar result as for
spherical obstacles holds true and our method can be used. The only difficulty is to find the
good Lyapunov functions. A lack of uniform convexity has some disastrous consequences on
the Poincaré constant, even for small and far obstacles.

Dedication During the revision of the paper, we learned about the death of Marc Yor.
Everybody knows what a tragedy it is for Probability theory. It turns out that some beautiful
results of Marc Yor on exit times for general squared radial Ornstein-Uhlenbeck processes
recalled in an Appendix, are crucial in the present paper.

2. Some results when N = 1.

2.1. The case of one centered ball, i.e. y = 0. Assume N = 1 and the obstacle is the
euclidean ball B(y, r) with y = 0. In this case µλ,X = ν0

λ,r is the standard gaussian measure

with variance 1
2λ restricted to D = Rd −B(0, r). More generally we will denote by νyλ,r the

gaussian measure with mean y and variance 1
2λ restricted to Rd −B(0, r).

µλ,X is spherically symmetric. Though it is not log-concave, its radial part, proportional to

1Iρ>r ρ
d−1 e−λ ρ

2

is log concave in ρ so that we may use the results in [Bob03], yielding
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Proposition 2.1. When X = B(0, r), the measure µλ,X satisfies a Poincaré inequality (1.5)
with

1

2

(
1

2λ
+
r2

d

)
≤ max

(
1

2λ
,
r2

d

)
≤ CP (λ,B(0, r)) ≤ 1

λ
+
r2

d
.

Proof. For the upper bound, the only thing to do in view of [Bob03] is to estimate E(ξ2)
where ξ is a random variable on R+ with density

ρ 7→ A−1
λ 1Iρ>r ρ

d−1 e−λ ρ
2
. (2.2)

But

Aλ =

∫ +∞

r
ρd−1 e−λ ρ

2
dρ ≥ rd−2

∫ +∞

r
ρ e−λ ρ

2
dρ =

rd−2 e−λ r
2

2λ
.

A simple integration by parts yields

E(ξ2) =
d

2λ
+
rd e−λ r

2

2λAλ
≤ d

2λ
+ r2 .

The main result in [Bob03] says that

CP (λ,B(0, r)) ≤ 13

d
E(ξ2) ,

hence the result with a constant 13.

Instead of directly using Bobkov’s result, one can look more carefully at its proof. The first
part of this proof consists in establishing a bound for the Poincaré constant of the law given
by (2.2). Here, again, we may apply Bakry-Emery criterion (which holds true on an interval),
which furnishes 1/(2λ). The second step uses the Poincaré constant of the uniform measure
on the unit sphere, i.e. 1/d, times the previous bound for E(ξ2). Finally these two bounds
have to be summed up, yielding the result.

For the lower bound it is enough to consider the function f(z) =
∑d

j=1 zj . Indeed, the energy
of f is equal to d. Furthermore on one hand

Varµλ,X (f) =

∫ +∞
r ρd+1 e−λ ρ

2
dρ∫ +∞

r ρd−1 e−λ ρ2 dρ
≥ r2 ,

while on the other hand, an integration by parts shows that

Varµλ,X (f) =
d

2λ
+

rd e−λr
2

2λ
∫ +∞
r ρd−1 e−λ ρ2 dρ

≥ d

2λ

yielding the lower bound since the maximum is larger than the half sum. �

This result is satisfactory since we obtain the good order. Notice that when r goes to 0 we
recover (up to some universal constant) the gaussian Poincaré constant, and when λ goes to
+∞ we recover (up to some universal constant) the Poincaré constant of the uniform measure
on the sphere rSd−1 which is the limiting measure of µλ,X . Also notice that the obstacle is
really an obstacle since the Poincaré constant is larger than the gaussian one.

Remark 2.3. It is immediate that the same upper bound is true (with the same proof) for

ν0
λ,r,R(dx) = Z−1

λ,r,R 1IR>|x|>r e
−λ |x|2 i.e. the gaussian measure restricted to a spherical shell

{R > |x| > r}. For the lower bound some extra work is necessary. ♦
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2.2. A first estimate for a general y using perturbation. An intuitive idea to get
estimates on the Poincaré constant relies on the Lyapunov function method developed in
[BBCG08] which requires a local Poincaré inequality usually derived from Holley-Stroock
perturbation’s argument. To be more precise, let us introduce νyλ,r which is the gaussian

measure with mean y ∈ Rd restricted to Rd −B(0, r), and its natural generator

Ly =
1

2
∆− λ 〈x+ y,∇〉 .

If we consider the function x 7→ h(x) = |y + x|2 we see that

Lyh(x) = d− 2λ|x+ y|2 ≤ −λh(x) if |x| ≥ |y|+ (d/λ)1/2 .

So we can use the method in [BBCG08]. Consider, for ε > 0, the ball

U = B
(

0,
(
|y|+ (d/λ)1/2

)
∨ (r + ε)

)
.

h is a Lyapunov function satisfying

Lyh ≤ −λh+ d 1IU .

Since U c does not intersect the obstacle B(0, r), we may follow [CGZ13] and obtain that

CP (νyλ,r) ≤
4

λ
+

(
4

λ
+ 2

)
CP (νλ,r, U + 1) ,

where CP (νλ,r, U + 1) is the Poincaré constant of the measure νyλ,r restricted to the shell

S =
{
r < |x| < 1 +

((
|y|+ (d/λ)1/2

)
∨ (r + ε)

)}
.

Actually since h may vanish, we first have to work with h + η for some small η (and small
changes in the constants) and then let η go to 0 for the dust to settle.

Now we apply Holley-Stroock perturbation argument. Indeed

νyλ,r(dx) = C(y, λ) e−2λ 〈x,y〉 ν0
λ,r(dx)

for some constant C(y, λ). In restriction to the shell S, it is thus a logarithmically bounded
perturbation of ν0

λ,r with a logarithmic oscillation less than

4λ |y|
(

1 +
((
|y|+ (d/λ)1/2

)
∨ (r + ε)

))
so that we have obtained

CP (λ,B(y, r)) ≤ 4

λ
+

(
2 +

4

λ

) (
1

λ
+
r2

d

)
e4λ |y| (1+((|y|+(d/λ)1/2)∨(r+ε))) .

The previous bound is bad for small λ′s but one can use the homogeneity property (1.6),
and finally, letting ε go to 0

Proposition 2.4. For a general y, the measure µλ,B(y,r) satisfies a Poincaré inequality (1.5)
with

CP (λ,B(y, r)) ≤ 2

λ

(
2 + 3

(
1 +

r2 λ

d

)
e4
√
λ |y| (1+(|y|

√
λ+d1/2)∨r

√
λ)
)
.
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The previous result is not satisfactory for large values of |y|, r or λ. In addition it is not
possible to extend the method to more than one obstacle. Finally we have some extra
dimension dependence when y = 0 due to the exponential term. Our aim will now be to
improve this estimate.

Another possible way, in order to evaluate the Poincaré constant, is to write, for

g = f −
∫
f(x) e−λ〈x,y〉 ν0

λ,r(dx)∫
e−λ〈x,y〉 ν0

λ,r(dx)
, so that

∫
g(x) e−λ〈x,y〉 ν0

λ,r(dx) = 0

Varνyλ,r
(f) ≤

∫
g2 dνyλ,r = C(λ, y, r)

∫ (
g e−λ〈x,y〉

)2
dν0
λ,r

≤ C(λ, y, r)CP (λ,B(0, r))

∫ ∣∣∣∇(g e−λ〈x,y〉)∣∣∣2 dν0
λ,r

≤ 2CP (λ,B(0, r))

(∫
|∇g|2 dνyλ,r + λ2 |y|2

∫
g2 dνyλ,r

)
.

It follows first that, provided 2CP (λ,B(0, r))λ2 |y|2 ≤ 1
2 ,∫

g2 dνyλ,r ≤ 4CP (λ,B(0, r))

∫
|∇g|2 dνyλ,r ,

and finally

Proposition 2.5. If 4λ |y|2
(

1 + r2 λ
d

)
≤ 1, the measure µλ,X where X = B(y, r) satisfies

a Poincaré inequality (1.5) with

CP (λ,B(y, r)) ≤ 4

(
1

λ
+
r2

d

)
.

One can note that under the condition 4λ |y|2
(

1 + r2 λ
d

)
≤ 1, Proposition 2.4 and Proposi-

tion 2.5 yield, up to some dimension dependent constant, similar bounds. Of course the first
proposition is more general.

3. Using Lyapunov functions.

In what we did previously we have used Lyapunov functions vanishing in a neighborhood
of the obstacle(s). Indeed a Lyapunov function (generally) has to belong to the domain of
the generator, in particular its normal derivative (generally) has to vanish on the boundary
of the obstacle. Since it seems that a squared distance is a good candidate it is natural to
look at the geodesic distance in the punctured domain D (see [ABB87] and also [Har94] for
small time estimates of the density in this situation). Unless differentiability problems (the
distance is not everywhere C2) it seems that this distance does not yield the appropriate
estimate (calculations being tedious).

Instead of trying to get a “global” Lyapunov function, we shall build “locally” such functions.

In this section we consider the case 1 ≤ N ≤ +∞ i.e. we may consider as well an infinite
number of obstacles.
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To be more precise, consider an open neighborhood (in D) U of the obstacles and some
smooth function χ supported in D such that 1IUc ≤ χ ≤ 1 (in particular χ vanishes on the
boundary of the obstacles). Let f be a smooth (compactly supported) function and m be
such that

∫
χ (f −m) dµλ,X = 0. Then

Varµλ,X (f) ≤
∫
D

(f −m)2dµλ,X =

∫
U

(f −m)2dµλ,X +

∫
Uc

(f −m)2dµλ,X

≤
∫
U

(f −m)2dµλ,X +

∫
Rd

χ2 (f −m)2dµλ,X

≤
∫
U

(f −m)2 dµλ,X +
1

2λ

∫
Rd
|∇(χ (f −m))|2 dµλ,X

≤
∫
U

(f −m)2 dµλ,X +
1

λ

∫
D

(
|∇χ|2 (f −m)2 + χ2 |∇f |2

)
dµλ,X ,

where we have used that µλ,X is simply the gaussian measure on the support of χ, introducing
the Poincaré constant of the gaussian 1/2λ. It follows

Varµλ,X (f) ≤
∫
D

(f −m)2dµλ,X

≤
(

1 +
‖ ∇χ ‖2∞

λ

) ∫
U

(f −m)2 dµλ,X +
1

λ

∫
D
|∇f |2 dµλ,X . (3.1)

We thus see that what we have to do is to get some bound for
∫
U (f −m)2 dµλ,X in terms

of the energy
∫
D |∇f |

2 dµλ,X for any smooth f which is exactly what is done by finding a
“local” Lyapunov function.

3.1. Two useful lemmas on Lyapunov function method.

We may now present two particularly useful lemmas concerning Lyapunov function method
and localization. Let us begin by the following remark: in the previous derivation assume
that for some p > 1 and some constant C,∫

U
(f −m)2dµλ,X ≤

λ

p ‖ ∇χ ‖2∞

∫
Rd

χ2 (f −m)2dµλ,X + C

∫
D
|∇f |2 dµλ,X . (3.2)

Then, using the Poincaré inequality for the gaussian measure, we have∫
Rd

χ2 (f −m)2dµλ,X ≤ 1

λ

∫
Rd

(
|∇χ|2 (f −m)2 + χ2 |∇f |2

)
dµλ,X

≤ ‖ ∇χ ‖2∞
λ

∫
U

(f −m)2 dµλ,X +
1

λ

∫
D
|∇f |2 dµλ,X

≤ 1

p

∫
Rd

χ2 (f −m)2dµλ,X +
1

λ
(1 + C ‖ ∇χ ‖2∞)

∫
D
|∇f |2 dµλ,X

so that ∫
Rd

χ2 (f −m)2dµλ,X ≤
p

(p− 1)λ
(1 + C ‖ ∇χ ‖2∞)

∫
D
|∇f |2 dµλ,X

and using (3.2)∫
U

(f −m)2dµλ,X ≤
(
C +

1

(p− 1) ‖ ∇χ ‖2∞
(1 + C ‖ ∇χ ‖2∞)

) ∫
D
|∇f |2 dµλ,X
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and finally

Lemma 3.3. If (3.2) holds for some smooth χ supported in D and such that 1IUc ≤ χ ≤ 1,
then

Varµλ,X (f) ≤ 1

p− 1

(
Cp+

1

‖ ∇χ ‖2∞
+
p(1 + C ‖ ∇χ ‖2∞)

λ

) ∫
D
|∇f |2 dµλ,X .

From now on we assume that ∂D is smooth enough and we denote by n the normalized
inward (pointing into D) normal vector field on ∂D.

Now recall the basic lemma used in [BBCG08, CGZ13] we state here in a slightly more general
context (actually this lemma is more or less contained in [CGZ13] Remark 3.3)

Lemma 3.4. Let f be a smooth function with compact support in D̄ and W a positive smooth
function. Denote by µSλ,X the trace (surface measure) on ∂D of µλ,X . Then the following
holds ∫

D

−LW
W

f2 dµλ,X ≤
1

2

∫
D
|∇f |2 dµλ,X +

1

2

∫
∂D

∂W

∂n

f2

W
dµSλ,X .

Proof. We recall the proof for the sake of completeness. Using the first Green formula we
have (recall that n is pointing inward)∫
D

−2LW

W
f2 dµλ,X =

∫
D

〈
∇
(
f2

W

)
, ∇W

〉
dµλ,X +

∫
∂D

∂W

∂n

f2

W
dµSλ,X

= 2

∫
D

f

W
〈∇f,∇W 〉 dµλ,X −

∫
D

f2

W 2
|∇W |2 dµλ,X +

∫
∂D

∂W

∂n

f2

W
dµSλ,X

= −
∫
D

∣∣∣∣ fW ∇W −∇f
∣∣∣∣2 dµλ,/XX +

∫
D
|∇f |2 dµλ,r +

∫
∂D

∂W

∂n

f2

W
dµSλ,X .

�

3.2. Localizing around the obstacles.

From now on for simplicity we will assume that Dc = ∪iB(xi, ri) where the B’s are non
overlapping euclidean balls. We shall indicate at the end how the results extend to others
situations, in particular to smoothed hypercubes.

We will construct first Lyapunov functions near the obstacles. Hence we will build open
neighborhoods Ui for each ball, and will assume that the Ui’s are non overlapping sets too.

Not to introduce immediately too much notations, we shall write things for one ball denoted
by B(y, r). Let h > 0 and assume that one can find a Lyapunov function W such that
LW ≤ −θW for |x − y| ≤ r + 2h and ∂W/∂n ≤ 0 on |x − y| = r. Choose some smooth
function ψ such that 1I{|x−y|≤r+2h} ≥ ψ ≥ 1I{|x−y|≤r+h} and, for some ε > 0,

‖ ∇ψ ‖∞≤ (1 + ε)/h .
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Applying Lemma 3.4 to ψ f we obtain thanks to (3.8)∫
r<|x−y|<r+h

f2 dµλ,X ≤
∫
r<|x−y|<r+2h

(ψ f)2 dµλ,X

≤ 1

θ

∫
r<|x−y|<r+2h

−LW
W

(ψ f)2 dµλ,X

≤ 1

θ

∫
r<|x−y|<r+2h

|∇f |2 dµλ,X

+
1

θ

(
1 + ε

h

)2 ∫
r+h<|x−y|<r+2h

f2 dµλ,X .

Me may of course let ε go to 0.

Next choose U = ∪iB(xi, ri+hi), 1ID ≥ χ ≥ 1IUc and assume that the balls B(xi, ri+2hi) are
non overlapping. Assume that one can find Lyapunov functions Wi such that LWi ≤ −θiWi

for |x− xi| ≤ ri + 2hi and ∂Wi/∂n ≤ 0 on |x− xi| = ri. Let h = minhi, θ = min θi. Using a
similar argument as before we may assume that actually ‖ ∇χ ‖∞= 1

h .

The previous inequality applied to f −m in each ball yields∫
U

(f −m)2 dµλ,X ≤
1

θ

∫
D
|∇f |2 dµλ,X +

1

θ h2

∫
Rd
χ (f −m)2 dµλ,X (3.5)

i.e. (3.2) is satisfied with

C =
1

θ
and p = λ θ h4 , (3.6)

provided the latter is larger than 1.

We may thus apply lemma 3.3 and obtain

Lemma 3.7. Let h > 0 and θ > 0. Assume that for hi ≥ h the balls B(xi, ri + 2hi) are
non overlapping. Assume in addition that one can find Lyapunov functions Wi such that
LWi ≤ −θiWi for |x− xi| ≤ ri + 2hi, ∂Wi/∂n ≤ 0 on |x− xi| = ri, θi ≥ θ.

Then, provided λ θ h4 > 1,

Varµλ,X (f) ≤ h2 (2 + (θ + λ)h2)

λ θ h4 − 1

∫
D
|∇f |2 dµλ,X .

Hence all we have to do is to find a “good” Lyapunov function.

For the moment, U will be an open ball centered at y. Without loss of generality (if necessary)
we may assume that y = (a, 0) for some a ∈ R+, 0 being the null vector of Rd−1. The
(non normalized) normal vector field at the boundary of B(y, r), pointing inward D, is thus
x− y = (x1 − a, x̄) ∈ R× Rd−1.

We shall exhibit some Lyapunov function Wy near the obstacle. For |x̄| ≤ r + 2h define

Wy(x
1, x̄) = (r + 2h+ ε)2 − |x̄|2 .

Then ∇Wy(x
1, x̄) = (0,−2x̄) and

∂Wy

∂n
(x1, x̄) = − 2|x̄|2

|x− y|
≤ 0 . (3.8)
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Now LWy = −(d− 1) + 2λ |x̄|2 so that LWy ≤ − 2λWy provided

d− 1 ≥ 2λ (r + 2h+ ε)2 . (3.9)

As before we may let ε go to 0 so that we obtain (3.5) with θ = 2λ and p = 2λ2 h4 > 1.

Choosing h = b/
√
λ, with p = 2b4 > 1, we see that we must have d ≥ 7 and r

√
λ ≤√

(d− 1)/2− 2b. Finally we have shown

Proposition 3.10. Let b > 0 and r > 0 be such that 2b4 > 1 and r
√
λ ≤

√
(d− 1)/2 − 2b,

so that d ≥ 7.

Let Dc = ∪iB(xi, ri) where ri ≤ r for all i. Assume that the balls B(xi, ri + 2b/
√
λ) are non

overlapping.

Then the measure µλ,X satisfies a Poincaré inequality (1.5) with

CP (λ,X ) ≤ 1

λ

b2(3b2 + 2)

2b4 − 1
.

The dimension dependence clearly indicates that, even for small r’s, we presumably did not
find the good Lyapunov function. However for large dimensions we see that small enough
obstacles do not alterate the finiteness of the Poincaré constant.

Also notice that if we define β = 2b
√

2√
d−1

the condition on r reads

r
√
λ ≤ (1− β)

√
(d− 1)/2 for some β such that 1 > β >

25/4

√
d− 1

. (3.11)

In the next three subsections we shall adapt the previous method in order to cover all di-
mensions but for far enough obstacles.

3.3. Localizing away from the obstacles and the origin.

Consider now W (x) = |x|2 so that for 1 > η > 0,

LW (x) = d− 2λW (x) ≤ − 2λ (1− η)W (x) for |x| ≥

√
d

2λη
.

We will obtain some Dirichlet-Poincaré bound, i.e. we look at functions g which are smooth

and compactly supported in |x| ≥
√

d
2λη (hence vanish on the boundary of this large ball).

But we also have to assume that no obstacle intersects the boundary of this region of the
space. Hence we have to replace the sphere {|x| =

√
d/2λ η} by some smooth hypersurface

S such that S ⊂ D and
√
d/2λ η ≤ d(0, S) ≤ c

√
d/2λ η for some c > 1 and for all xi ∈ X ,

B(xi, ri + 3hi) ∩ S = ∅. We also assume that the balls B(xi, ri + 3hi) are non overlapping.

It will be clear in what follows that such an S does exist, but for the moment the existence
of S is an assumption. The whole space D in thus divided in two connected components D0

containing 0 and D∞ such that S is the boundary of both.

We consider now the xi ∈ X such that B(xi, ri+3hi) ⊂ D∞, in particular |xi| is large enough.
We denote by X∞ this set.

Let g be compactly supported in D∞. For all 1 ≤ ε ≤ 2 we apply lemma 3.4 in

Dε = D∞ ∩xi∈X∞ {|x− xi| ≥ ri + εhi} ,
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i.e. ∫
Dε

−LW
W

g2 dµλ,X ≤
1

2

∫
Dε

|∇g|2 dµλ,X +
1

2

∫
∂Dε

∂W

∂n

g2

W
dµελ,X ,

where µελ,X denotes the trace of µλ,X on the boundary ∂Dε.

It yields for all ε as before∫
Dε

g2 dµλ,X ≤
∫
Dε

g2 dµλ,X

≤ 1

2λ (1− η)

∫
Dε

−LW
W

g2 dµλ,X

≤ 1

4λ (1− η)

∫
D1

|∇g|2 dµλ,X +

+
1

4λ (1− η)

∫
∂Dε

∂W

∂n

g2

W
dµελ,X .

Remark that (1/W ) |∂W∂n |(x) ≤ 2/|x| so that we obtain∫
D2

g2 dµλ,X ≤

≤ 1

4λ (1− η)

∫
D1

|∇g|2 dµλ,X +
∑

xi∈X∞

2

(|xi| − ri − 2hi)

∫
|x−xi|=ri+εhi

g2 dµελ,X

 .

Integrating the previous inequality with respect to ε for 1 ≤ ε ≤ 2 we obtain

Lemma 3.12. With the notations of this subsection, let g be a smooth function compactly
supported in D∞, then ∫

D
g2 dµλ,X ≤

≤ 1

4λ (1− η)

∫
D1

|∇g|2 dµλ,X +
∑

xi∈X∞

2

hi (|xi| − ri − 2hi)

∫
ri+hi≤|x−xi|≤ri+2hi

g2 dµλ,X

 .

3.4. Localizing away from the origin for the far enough obstacles.

Now we shall put together the previous two localization procedures.

Remark that, during the proof of lemma 3.7 (more precisely with an immediate modification),
we have shown the following : provided we can find a Lyapunov function in the neighborhood
|x− y| ≤ r + 3h of the obstacle |x− y| ≥ r,∫

r<|x−y|<r+2h
f2 dµλ,X ≤

1

θ

∫
r<|x−y|<r+3h

|∇f |2 dµλ,X +
1

θ h2

∫
r+2h<|x−y|<r+3h

f2 dµλ,X ,

so that using the Lyapunov function Wy in subsection 3.2 (yielding θ = 2λ) we have, provided
d− 1 ≥ 2λ (r + 3h)2,∫
r<|x−y|<r+2h

f2 dµλ,X ≤
1

2λ

∫
r<|x−y|<r+3h

|∇f |2 dµλ,X +
1

2λh2

∫
r+2h<|x−y|<r+3h

f2 dµλ,X .

(3.13)
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Hence we have to assume that, at least for the far enough obstacles, d − 1 ≥ 2λ (ri + 3hi)
2.

At the same time, lemma 3.12 shows that we have to choose hi as large as possible. So in
the sequel we choose

λ = 1 , b < 1 , hi = h =
b

3

√
(d− 1)/2 , η =

1

2
.

In order to fulfill the conditions in the previous subsection, we have to assume that for all
far enough xi, (i.e. all xi such that |xi| > c(

√
d+

√
(d− 1)/2) for some c ≥ 1)

ri ≤ (1− b)
√

(d− 1)/2 .

We thus make the following assumption

Assumption 3.14. Ordering the xi’s such that |xi| ≤ |xi+1| for all i, we assume that there

exists some 0 ≤ n < +∞ such that ri ≤ (1− b)
√

(d− 1)/2 for some b < 1 and all i ≥ n. In
addition we assume that for i ≥ n the balls B(xi, ri + 3h) are non overlapping.

Consider now the smallest c ≥ 1
h3
√
d

(this value will be explained below) such that the open

ball Bd = B(0, c
√
d) contains all the B(xi, ri + 1) for i < n. Bd can contain or intersect only

a finite number of balls B(xi, ri+h) for i ≥ n. If such a ball is included in Bd there is nothing
to do. If such a ball intersects Bd but is not contained in Bd we may smoothly deform the
boundary of Bd in order to push B(xi, ri + h) in the interior of the modified domain. We
can do so for all balls intersecting the boundary and in addition in a such a way that all
others B(xi, ri + 3h) are still in the exterior of the modified domain. The boundary of this
deformation of Bd is denoted by S and it is easily seen that with this construction we are in
the situation of the previous subsection.

From now on we use the notation D0, D∞ and Dε introduced therein.

Now for a smooth function g with compact support included in D∞, we denote

A =

∫
D∞−D2

g2 dµλ,X ,

B =

∫
D2

g2 dµλ,X ,

and

C =

∫
D∞

|∇g|2 dµλ,X .

According to (3.13) and to lemma 3.12, we obtain

A ≤ 1

2

(
C +

1

h2
B

)
and B ≤ 1

2

(
C +

2

h c
√
d
A

)
.

Hence,

A ≤ 1

2

(
1 +

1

2h2

)
C +

1

2h3 c
√
d
A ,

and thanks to our choice of c we get finally

A ≤
(

1 +
1

2h2

)
C , B ≤

(
1 + h2

)
C .
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This yields

Lemma 3.15. Let 0 < b < 1 and h = b
3

√
(d− 1)/2. Assume that λ = 1, and Assumption

3.14 is satisfied. Then, for all smooth function g, compactly supported in D∞ (which depends
on b), it holds ∫

g2 dµλ,X ≤ K

∫
|∇g|2 dµλ,X ,

with

K = 2 +
1

2h2
+ h2 .

3.5. Localizing around the origin for a far enough single obstacle.

Assume that N = 1 and that the single obstacle is far enough, i.e. n = 0 in Assumption 3.14.
Notice that in this situation D∞ is simply the exterior of a large ball B(0, c

√
d). To get some

bound for the Poincaré constant, it remains now to follow the method in [BBCG08, CGZ13].
Let f be a smooth function with compact support. Assume that we are in the situation of
lemma 3.15 (in particular λ = 1).

Recall that µλ,X restricted to the ball {|x| ≤ c
√
d} is just the gaussian measure restricted to

the ball (since this ball does not intersect the obstacle), hence satisfies a Poincaré inequality
with a constant less than 1

2 . If

m =

∫
|x|≤c

√
d
f dµλ,X /µλ,X (|x| ≤ c

√
d) ,

we have

Varµλ,X (f) ≤
∫
D

(f −m)2dµλ,X

so that it is enough to control the second moment of f̄ = f −m.

We write
f̄ = χ f̄ + (1− χ) f̄ = χf̄ + g

where χ is 1-Lipschitz and such that 1I|x|≤c
√
d−1 ≤ χ ≤ 1I|x|≤c

√
d. g is thus compactly sup-

ported in |x| ≥ c
√
d so that we may apply what precedes. In particular∫

D
f̄2 dµλ,X ≤ 2

∫
|x|≤c

√
d
f̄2 dµλ,X + 2

∫
D
g2 dµλ,X

≤
∫
|x|≤c

√
d
|∇f |2 dµλ,X + 2K

∫
D
|∇g|2 dµλ,X

≤
∫
|x|≤c

√
d
|∇f |2 dµλ,X + 4K

∫
x∈D,|x|≥c

√
d−1
|∇f |2 dµλ,X +

+4K

∫
c
√
d≥|x|≥c

√
d−1

f̄2 dµλ,X

≤ (1 + 2K)

∫
|x|≤c

√
d
|∇f |2 dµλ,X + 4K

∫
x∈D,|x|≥c

√
d−1
|∇f |2 dµλ,X

≤ (1 + 6K)

∫
D
|∇f |2 dµλ,X .
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We have thus proved, using (1.6)

Proposition 3.16. Assume that N = 1, and that for some 0 < b < 1, we have r
√
λ ≤

(1 − b)
√

(d− 1)/2, h = b
3

√
(d− 1)/2 and |y|

√
λ > c

√
d for c > 1/(h3

√
d). Then the

measure µλ,X satisfies a Poincaré inequality (1.5) with

CP (λ,B(y, r)) ≤ 1

λ
(1 + 6K) ,

with K = 2 + h2 + 1
2h2

.

The main interest of the previous proposition is that it shows that for a single far enough
small obstacle the Poincaré constant does not depend on the location of the obstacle. We also
have tried to trace a little bit the constants to show that we obtain some tractable explicit
upper bound, the final step being to optimize in b (left to the reader).

3.6. A general result for a single obstacle with small radius.

We can gather together all the previous results in the case N = 1. For the sake of simplicity
the next theorem is not optimal, but readable.

Theorem 3.17. There exists some universal constant κ such that if

r
√
λ ≤ 1

2

√
(d− 1)/2 ,

the measure µλ,X where X = {y} is a singleton, satisfies a Poincaré inequality (1.5) with

CP (λ,B(y, r)) ≤ κ

λ
.

Proof. If d is big enough (d ≥ 33) we may use Proposition 3.10. If d ≤ 33 and |y|
√
λ large,

we may apply Proposition 3.16 with b = 1/(2
√
d− 1). Finally, if d ≤ 33 and |y|

√
λ is small

we may use Proposition 2.4. �

Remark 3.18. In comparison with Proposition 3.10, we have spent a rather formidable
energy in order to cover the small dimension situation. But the alternate method we have
developed for large |y| will be useful in other contexts, in particular for an infinite number
of obstacles.

It is also worth noticing that we have used Proposition 2.4 that cannot be extended to more
than one obstacle. ♦

3.7. The case of infinitely many obstacles.

Now consider the case with more than obstacle. If we look at the localization procedure
in subsection 3.5 we see that a key point is to get the value (or a bound) for the Poincaré
constant in a neighborhood of the origin. If all obstacle are far enough we can mimic what
is done in subsection 3.5. But in general, the n introduced in Assumption 3.14 is not equal
to 0, so that we have to look at the Poincaré constant in D0. Since this set is compact and
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with a smooth boundary, the finiteness of the Poincaré constant is ensured, for instance by
the Down-Meyn-Tweedie theory as we indicate in the introduction.

Unfortunately it is very hard to get some explicit upper bound of this constant depending
on all points xi in X such that the obstacles B(xi, ri) are subsets of D0. Exactly the same
problem occurs in [DLM11] where the value of the Poincaré constant (or the spectral gap)
for the parameter ε (using the notations therein) is shown to be quadratic in ε, but with an
unknown constant pre-factor.

We can nevertheless mimic what we did in subsection 3.5 replacing the value 1/2 by the
unknown Poincaré constant in D0. This yields

Theorem 3.19. For any 1 ≤ N ≤ +∞ (in particular N = +∞), under Assumption 3.14,
µλ,X satisfies a Poincaré inequality with constant CP (λ,X ) = κ

λ < +∞ where κ depends on
n, d and the structure of the (finite) number of the obstacles that are close to the origin.

More precisely, with the notations of Proposition 3.16, κ ≤ 4K+(2+4K)CP (n) where CP (n)
denotes the Poincaré constant in D0.

Corollary 3.20. Ordering the xi’s such that |xi| ≤ |xi+1| for all i, assume that there exists

some 0 ≤ n < +∞ such that ri ≤ (1− b)
√

(d− 1)/2 for some b < 1 and all i ≥ n, and that
in addition there exists ε > 0 such that for all pair i 6= j, dist(B(xi, ri), B(xj , rj)) ≥ ε.
Then CP (λ,X ) < +∞.

Proof. Take b′ =
(
ε/2
√

(d− 1)/2
)
∧b. The condition on the radii ri is still satisfied replacing

b by b′ while h = b′

3

√
(d− 1)/2 satisfies 6h ≤ ε. Hence the balls with radii ri + 3h are non

overlapping and we may apply the previous Theorem. �

3.8. Others obstacles like hypercubes.

Replacing euclidean balls by others geometries of obstacles requires first to find a Lya-
punov function in the neighborhood of each obstacle as in subsection 3.2. We will not discuss
this in details here, but only consider the case where we replace the euclidean ball B(xi, ri)
by some hypercube, in a nice position.

Namely we consider the x’s such that x = xi + (z xi + yi) where yi belongs to the hyperplane

orthogonal to xi intersected with the d − 1 l∞ ball of radius ri
√
d and z ∈ [−ri

√
d, ri
√
d].

In other words we consider hypercubes in d dimensions such that, first the line connecting
the origin to the center of mass xi of the hypercube is orthogonal to some face of the latter,
second the hypercube is included in the euclidean ball B(xi, ri).

In this situation the function Wxi introduced in subsection 3.2 (replacing y by xi) is still a
Lyapunov function with a non-positive normal derivative on the boundary of the hypercube.
The reader who is afraid by the singularities of the boundary can “smooth the corners”.

The results in subsections 3.6 and 3.7 easily extend, but this time with ri ≤ b for some
constant b independent of the dimension. Of course we have to assume that all the obstacles
are in the nice position described above.
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4. General spherical obstacles using stochastic calculus.

As we have seen, provided we are able to find a good Lyapunov function near the obstacles,
we are able to control (even if not explicitly) the Poincaré constant in D. The choice we
made in the previous section implies a limitation for the radius of the obstacles. What we
shall do now is to find a new Lyapunov function near the obstacles. This Lyapunov function
will be built by trying to understand how fast the process goes around the obstacles.

Indeed recall the following results on the exponential moments of hitting times (see e.g.[CGZ13]).

Proposition 4.1. Let U be a bounded connected subset with smooth boundary of D and TU
denotes the hitting time of U .

• Assume that for some θ > 0 and all x ∈ D, Ex
(
eθ TU

)
< +∞. Define W (x) =

Ex
(
eθ TU

)
. Then W belongs to the domain of the generator L of the reflected Ornstein

-Uhlenbeck process (in particular ∂W/∂n = 0 on ∂D), and satisfies LW ≤ −θW
outside of U .
• For all x ∈ D,

Ex
(
eθ TU

)
< +∞ for all θ < θ(U), with θ(U) =

µλ,X (U)

16CP (λ,X )
.

Actually, [CGZ13] only dealt with diffusion processes, without reflection. But the proof of
this Proposition lies on three facts which are still true here: the symmetry of µλ,X , the
existence of a density for the law at time t > 0 of the process starting at any x, the results
of Proposition 1.4 and Remark 1.6 in [CG08] which hold true for general Markov processes
with a square gradient operator.

Hence provided we can control exponential moments of hitting times, we can build (non
explicit) Lyapunov functions.

The discussion below is done for a single obstacle B(y, r). We shall conclude at the end of
the section for more than one obstacle.

4.1. The rate of rotation.

To understand how fast the process goes around the obstacle, we introduce a new sto-
chastic process Yt which is just the reflected Ornstein-Uhlenbeck process in the shell S =
{r ≤ |x− y| ≤ r + q} for some positive q, i.e{

dYt = dWt − λYt dt + (Yt − y) dLt ,

Lt =
∫ t

0

(
1I|Ys−y|=r − 1I|Ys−y|=r+q

)
dLs.

(4.2)

Next as usual, we assume that y = (a, 0) and write the generic point of the euclidean space
as x = (x1, x̄). Again n denotes the normal vector field (x1− a, x̄) (pointing either inward or
outward), so that, for any nice function g, Ito formula yields

g(Yt) = g(Y0) +

∫ t

0
∇g(Ys).dWs +

∫ t

0
Lg(Ys)ds+ r

∫ t

0

∂g

∂n
(Ys) dLs .

Finally we shall look at the process

Zt = arccos

(
Y 1
t − a√

|Ȳt|2 + (Y 1
t − a)2

)
= ϕ(Yt) . (4.3)
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We can calculate

∇ϕ(x) =

(
−|x̄|

(x1 − a)2 + |x̄|2
,

(x1 − a) x̄

|x̄| ((x1 − a)2 + |x̄|2)

)
so that

∂ϕ

∂n
(x) = 0 .

Consider

M = {−r − q ≤ x1 − a ≤ −r , x̄ = 0} .

If Y0 /∈ M , i.e. Z0 6= π, we may apply Ito-Tanaka formula up to time TM (the first time Y.
hits M) yielding for t < TM ,

Z2
t = Z2

0 +

∫ t

0
2Zs 〈∇ϕ(Ys), dWs〉+

∫ t

0
|∇ϕ(Ys)|2 ds (4.4)

+

∫ t

0

Zs(2λ a |Ȳs|+ (d− 2) (Y 1
s − a))

|Ȳs|2 + (Y 1
s − a)2

ds

= Z2
0 +

∫ t

0

2Zs(
|Ȳs|2 + (Y 1

s − a)2
)1/2 dBs +

∫ t

0

1 + Zs(2λ a |Ȳs|+ (d− 2) (Y 1
s − a))

|Ȳs|2 + (Y 1
s − a)2

ds

where B. is a new standard Brownian motion. We have considered Z2 instead of Z to kill
the local time at 0 of Z. (since t < TM the local time of Z. at π does not appear too).

Introduce the subset

K = {x1 − a < 0 , |x̄| ≤ η < r} ∩ S .
Since M ⊂ K we know that TK ≤ TM so that (4.4) holds for t ≤ TK . We want to estimate
TK by comparing Zt with a simpler diffusion process for which estimates are easy to obtain
(since they are known).

Set

A(t) =

∫ t

0

1(
|Ȳs|2 + (Y 1

s − a)2
) ds ,

and A−1(t) the inverse of A(.). Notice that (t/(r + q)2) ≤ A(t) ≤ (t/r2) so that r2t ≤
A−1(t) ≤ (r + q)2t.

Define the time changed process Ỹt = YA−1(t) = (Ỹ 1
t , Ỹ

2
t ) and Ut = Z2

A−1(t). Then for

t < A(TM ), U. satisfies

Ut = Z2
0 +

∫ t

0
2
√
Us dB̃s +

∫ t

0

(
1 +

√
Us (2λ a|Ỹ 2

s |+ (d− 2) (Ỹ 1
s − a))

)
ds , (4.5)

for some new Brownian motion B̃.. In order to compare U. with some CIR process (see
Appendix B) we have to bound the drift term from below.

Remark that for a point ỹ ∈ Kc,

|ỹ2| =
√

(|ỹ2|)2 + (ỹ1 − a)2 sin(
√
u) ≥ r sin(

√
u) ≥ η

π

√
u .

Hence looking separately at the case ỹ1 − a > 0 and ỹ1 − a ≤ 0 it follows that the drift term
satisfies

1 +
√
Us (2λ a|Ỹ 2

s |+ (d− 2) (Ỹ 1
s − a)) ≥ 1 +

(
2λ a η − (d− 2)(r + q)

π

)
Us .
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Hence up to time TK , using standard comparison results for one dimensional diffusions, we
know that Ut ≥ Vt where

dVt = 2
√
Vt dB̃t + (1 + 2βVt)dt

i.e. V. is a generalized squared radial Ornstein-Uhlenbeck process, with β = λa η−(d−2)(r+q)
π

and δ = 1 provided β ≥ 0.

It follows that A(TK) is smaller than the first hitting time of π by V.. According to (B.4),
we thus have

Ex(eθTK ) < +∞ for all x ∈ S provided θ <
β

(r + q)2
.

It is thus tempting to define W (x) = Ex
(
eθ TK

)
, which satisfies LW = −θW in S −K. This

is not yet enough but will be useful.

b
y

s
K ′

2

K ′

1

Figure 2. Rotation around the obstacle.

4.2. The Poincaré inequality in the shell S.

Using what precedes we shall prove the following first result

Proposition 4.6. Let η, s, q be positive numbers such that η + s < r, s < q and

β =
λ a η − (d− 2)(r + q)

π
> 0 .

Assume that a > r + s+ 1√
λ

.
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Then, the (non normalized) restriction of µλ,r to the shell S = {r ≤ |x− y| ≤ r+ q} satisfies
a Poincaré inequality∫

S
f2 dµλ,r ≤ CP (λ, S)

∫
S
|∇f |2 dµλ,r +

1

µλ,r(S)

(∫
S
f dµλ,r

)2

where

CP (λ, S) ≤ 2(r + q)2

β
+

1

λ

(
1 +

2(r + q)2

β s2

) (
2

λs2
+

5

2

)
.

Proof. We shall use the results in the previous subsection. Define W (x) = Ex
(
eθTK

)
for

x ∈ S. Then W belongs to the domain of the generator of Y. (in particular the normal
derivative on the shell’s boundary vanishes) and satisfies LW = −θW in S −K.

Consider now

K ′ =
{
x1 − a < 0 , |x̄| ≤ η + s < r

}
∩ S .

Then as before, using [CGZ13] formula (2.14) (in the present framework of our reflected
Ornstein-Uhlenbeck process Y.), we have

CP (λ, S) ≤ 2

θ
+

(
2

θ s2
+ 1

)
CP (K ′) . (4.7)

It remains to get some bound for CP (K ′).

Again we divide K ′ in two overlapping parts:

K ′1 =
{
−r − q < −r − s < x1 − a < 0 , |x̄| ≤ η + s < r

}
∩ S

and

K ′2 =
{
x1 − a < −r , |x̄| ≤ η + s < r

}
∩ S .

Note that K ′2 is convex. Hence the restriction of the gaussian measure to K ′2 satisfies a
Poincaré inequality with constant 1/2λ.

As before it is then sufficient to build some Lyapunov function in K ′1. This time we choose
W (x) = (x1)2. Note that, on one hand, the normal derivative of W on |x̄| = η+ s is equal to
0, while on the other hand, the (non normalized) inward normal derivative of W on |x−y| = r
is equal to 2(x1 − a)x1. The latter is thus negative provided x1 > 0, hence in particular if
a > r + s.
In addition,

LW (x) = 1− 2λ(x1)2 ≤ −λ(x1)2 in K ′1 (4.8)

as soon as a > r + s+ (1/
√
λ). Thus, as before we obtain

CP (K ′) ≤ 1

λ

(
2

λs2
+

5

2

)
.

�

Now let a′ > r′ + s′ + 1, y′ = (a′, 0), η′ + s′ < r′. Define (a, r, s, q, η) = 1√
λ

(a′, b′, c′, q′, η′) so

that a > r + s+ 1√
λ

. Define S′ = {r′ ≤ |x− y′| ≤ r′ + q′}. The homogeneity property (1.6)

is still available in our situation yielding

CP (1, S′) = λCP (λ, S)
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for all λ. Hence

CP (1, S′) ≤ 2π(r′ + q′)2

a′η′ − (d− 2) r
′+q′√
λ

+

(
1 +

2(r′ + q′)2

λβ′ (s′)2

) (
2

(s′)2
+

5

2

)
where the meaning of β′ is clear. Now we may let λ go to infinity and obtain

Proposition 4.9. Let s < q, and assume that a > r + s+ 1. Let 0 < η < r − s.
Then, the (non normalized) restriction of µ1,r to the shell S = {r ≤ |x− y| ≤ r+ q} satisfies
a Poincaré inequality∫

S
f2 dµ1,r ≤ CP (1, S)

∫
S
|∇f |2 dµ1,r +

1

µ1,r(S)

(∫
S
f dµ1,r

)2

where

CP (1, S) ≤ 2π(r + q)2

a η
+

(
2

s2
+

5

2

)
.

4.3. A new estimate for an obstacle which is not too close to the origin.

We may use Proposition 4.9 to build a new Lyapunov function near the obstacle when
λ = 1.
In the situation of the proposition consider TS/2 the hitting time of the “half” shell S′ = {r+

(q/2) ≤ |x−y| ≤ r+q}. Then according to proposition 4.1 we may define W (x) = Ex
(
eθTS/2

)
which satisfies LW = −θW for x ∈ S − S′ and ∂W/∂n = 0 on |x− y| = r, provided

θ <
1

8CP (1, S)

µ1,r(S
′)

µ1,r(S)
. (4.10)

Now we can first apply lemma 3.7 with 2h = q/2, provided θh4 > 1.

It remains to choose all parameters. All conditions are satisfied for instance if

q4

44

1

16CP (1, S)

µ1,r(S
′)

µ1,r(S)
> 1 . (4.11)

It is not too difficult to be convinced that the ratio of the two measures is uniformly (in r and
y) bounded from below, provided a− r− q > 1 (1 can be replaced by any positive constant),
i.e. provided the origin is far enough from B(y, r+ q). Indeed the measure restricted to S is
mainly concentrated near the point (a− r − q, 0) which belongs to both S and S′.

Now look at the bound in Proposition 4.9. If r is small (goes to 0), the bound for a given a
becomes very bad. Indeed, for 2/s2 to be nice, we have to choose s bounded from below, so
that q is bounded from below too and since η < r the term governed by 1/aη explodes.

Hence we may choose r > (1− b)
√

(d− 1)/2 in order to cover the case which is not covered

by Theorem 3.17, or simply r > 1
2 .

Now, we have clearly to choose q as small as possible, but satisfying (4.11). To simplify
choose s = 1 so that CP (1, S) ≤ c where c is of order 5 + (2π r(1 + q

r )2/a). We see that for
(4.11) to be satisfied we need q to be greater than a constant of order at least 10. We have
obtained, with m = q + 1
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Proposition 4.12. One can find universal constants m > 0 and C such that, provided
|y| > r +m and r > 1

2 , CP (1, B(y, r)) ≤ C.

4.4. Finiteness of the Poincaré constant for an infinite number of spherical ob-
stacles.

Of course we can use the previous construction of a Lyapunov function near the far enough
obstacles together with the ideas of subsection 3.7 to cover the case of infinitely many obsta-
cles. To this end, instead of using Lemma 3.7 we should also follow what we have done in
subsections 3.3 and 3.4, i.e. replace 2λ (= 2 here) by θ defined above in (3.13). But we have
to be accurate when using Lyapunov functions near the obstacles, that the enlargements we
are using are non overlapping. In particular q and s have to be smaller than the half of the
distance between obstacles.

Theorem 4.13. Let X = (xi)1≤i<+∞ a locally finite collection of distinct points, ordered such
that |xi| ≤ |xi+1| for all i, and R = (ri)1≤i<+∞ a collection of non-negative numbers. Assume
that there exists ε > 0 with |xi − xj | > ri + rj + ε for all i 6= j. Define D = Rd −∪iB(xi, ri)
(for d ≥ 2) where B(y, r) denotes the euclidean ball with center y and radius r.

Then for any λ > 0, the gaussian measure µλ,X has a finite Poincaré constant and the
reflected Ornstein-Uhlenbeck process in D is exponentially ergodic.

Proof. Since the conditions are still satisfied when dilating the space we may assume that
λ = 1.

As for the proof of Corollary 3.20 we shall use the Lyapunov functions near the obstacles
outside some large enough smooth subset containing the origin to be determined during the
proof.

For small obstacles (ri ≤ 1
2

√
d− 1 for instance) we use the Lyapunov function in subsection

3.4. For the large obstacles we use the one introduced in the previous subsection. With the
notations of subsection 3.4, and still with hi = h, we obtain

A ≤ 1

θ

(
C +

1

h2
B

)
, B ≤ 1

2

(
C +

2

αh
A

)
,

where α = min{i large ; |xi| − ri − 2h}.
We have to choose h, q, s of order ε (up to well chosen constants), so that for A and B to be
controlled by C it is enough that h3 α ≥ c(1 + (1/ε2)) for a large enough c.

But it is not difficult to see that |xi| − ri → +∞ as i → +∞, so that there exists a large
enough constant c > 0 such that |xi| − ri ≥ c(1 + (1/ε5)) and we can conclude. �

5. Lower bounds for non spherical obstacles.

We obtained in the previous section that for far enough obstacles, the radii of the obstacles
do not really increase the value of the Poincaré constant. Hence, roughly speaking, the
only radius that really matters is the one of the obstacle containing the origin if such an
obstacle exits (of course we did not prove the result in this so general form). But actually
this property is strongly linked to the geometry of the obstacle, and we shall see below that
replacing spherical obstacles by other geometries will drastically modify the result.
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5.1. Lower bounds for Hypercubes via stochastic calculus.

Replace the ball {|x− y| < r} with y = (a, 0) (a ≥ 0) by an hypercube, Hr = {|x1 − a| <
r , |xj | < r for j ≥ 2}. As we already said, we may “smooth the corners” for the boundary to
be smooth (replacing r by r+ε), so that existence, uniqueness and properties of the reflected
process are similar to those we have mentioned for the disc.

Consider the process Xt starting from x = (a+ r, 0). Denote by S(r) = minj≥2 S
j(r), where

Sj(r) is the exit time of [−r, r] by the coordinate Xj
. . Up to time S(r), the Xj

. ’s (j ≥ 2) are
Ornstein-Uhlenbeck processes, starting at 0, X1

. is an Ornstein-Uhlenbeck process reflected
on a + r, starting at a + r; and all are independent. Of course S(r) = TUc(r) where the set

U(r) = {x1 ≥ a+ r ; maxj≥2 |xj | ≤ r}.
According to Proposition 4.1, if

E(a+r,0)

(
eθ S(r)

)
= +∞ then CP (λ,X ) ≥

µλ,X (U cr )

16 θ
. (5.1)

But according to (B.3) and to the independence of the coordinates of the process, this holds

as soon as θ > (d−1)λ

eλr2−1
. In particular since µλ,X (U c(r)) ≥ 1

2 , we always have

Theorem 5.2. Let D = Rd−Hr where Hr is the hypercube described above. Then there exists

an universal constant C such that the Poincaré constant in D satisfies CP (λ, r) ≥ C e(λr
2)

dλ .

Recall that we have shown that for small enough obstacles (r of order a dimension free
constant) the Poincaré constant is bounded from above by some κ/λ.

What is interesting here is that the lower bound does not depend on the location of y. In
particular consider the situation of Theorem 4.13 with an infinite number of hypercubes as
obstacles, in the position described in subsection 3.8, i.e. the line joining the origin to the
center of mass of each hypercube is orthogonal to some face of the latter. Of course for far
enough obstacles the measure of U ci (ri) will still be larger than one half. So if we allow the
existence of a sequence of radii going to infinity the process is no more exponentially ergodic.

5.2. An isoperimetric approach for hypercubes.

In this subsection, we present another approach for getting lower bounds. The easi-
est way to build functions allowing to see the lower bounds we have obtained in the previous
subsection, is first to look at indicator of sets, hence isoperimetric bounds.

We define the Cheeger constant CC(λ, y, r) as the smallest constant such that for all subset
A ⊂ D with µλ,X (A) ≤ 1

2 ,

CC(λ, y, r)µSλ,X (∂A) ≥ µλ,X (A) . (5.3)

Recall that µSλ,X (∂A) denotes the surface measure of the boundary of A in D defined as

lim inf
h→0

1

h
µλ,X (Ah/A)
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where Ah denotes the euclidean enlargement of A of size h. The important fact here is that
A is considered as a subset of D. In particular, if we denote by ∂Sr the boundary of the
square Sr in the plane R2, A ∩ ∂Sr ⊂ D and so does not belong to the boundary of A in D.

The Cheeger constant is related to the L1 Poincaré inequality, and it is well known that

CP ≤ 4C2
C , (5.4)

while CP can be finite but CC infinite. Hence an upper bound for the Cheeger constant will
provide us with an upper bound for the Poincaré constant while a lower bound can only be
a hint.

5.2.1. Squared obstacle. For simplicity we shall first assume that d = 2, and use the no-
tation in subsection 5.1. Consider for a > 0, the subset A = {x1 ≥ a + r , |x2| ≤ r} with
boundary ∂A = {x1 ≥ a+ r , |x2| = r}.
Recall the basic inequalities, for 0 < b < c ≤ +∞,

b2

1 + 2b2

(
e− b

2

b
− e− c

2

c

)
≤
∫ c

b
e−u

2
du ≤ 1

2b

(
e− b

2 − e− c
2
)
. (5.5)

It follows, for r
√
λ large enough (say larger than one)

µλ,X (A)

µSλ,X (∂A)
=

(∫ +∞
a+r e

−λz2 dz
) (∫ +r

−r e
−λu2 du

)
2 e−λr2

(∫ +∞
a+r e

−λz2 dz
)

≥ 1

2
√
λ
eλr

2

(
1 − 1

r
√
λ
e−λr

2

)
,

so that

CC(λ, y, r) ≥ 1

2
√
λ
eλr

2

(
1 − 1

r
√
λ
e−λr

2

)
. (5.6)

Note that this lower bound is larger than the one obtained by combining Cheeger’s inequality
(5.4) and the lower bound for the Poincaré constant obtained in Theorem ??, since this

combination furnishes an explosion like eλr
2/2.

We strongly suspect, though we did not find a rigorous proof, that this set is “almost” the
isoperimetric set, in other words that, up to some universal constant, the previous lower
bound is also an upper bound for the Cheeger constant. In particular, we believe that this
upper bound (hence the upper bound for the Poincaré constant) does not depend on a.
Of course, since we know that the isoperimetric constant of the gaussian measure behaves
like 1/

√
λ, isoperimetric sets for the restriction of the gaussian measure to D have some

(usual) boundary part included in the boundary of the obstacle and our guess reduces to the
following statement: if r is large enough, for any subset B ⊂ D with given gaussian measure,
the standard gaussian measure of the part of the usual boundary of B that does not intersect

∂D is greater or equal to C e−r
2

times the measure of the boundary intersecting ∂D.
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5.2.2. Hypercubes. Of course, what we have just done immediately extends to d dimensions,
defining A as A = {x1 ≥ a + r , |xi| ≤ r for all 2 ≤ i ≤ d} and furnishes exactly the same
bound as (5.6) replacing 2 by 2(d− 1), i.e. in dimension d

CC(λ, y, r) ≥ 1

2(d− 1)
√
λ
eλr

2

(
1 − 1

r
√
λ
e−λr

2

)
. (5.7)

In order to get a lower bound for the Poincaré constant, inspired by what precedes, we shall
proceed as follows: denote by A(u) the set

A(u) = {x1 ≥ a+ r , |xi| ≤ u for all 2 ≤ i ≤ d} ,

and for r > 1, choose a Lipschitz function f such that 1IA(r−1) ≤ f ≤ 1IA(r), for instance
f(x) = (1− d(x,A(r − 1)))+.

If Zλ denotes the (inverse normalizing) constant in front of the exponential density of the
gaussian kernel (notice that Zλ goes to 0 as λ goes to infinity), it holds

Varµλ,X (f) ≥ µλ,X (A(r − 1))− (µλ,X (A(r)))2

≥ Zλ

∫ +∞

a+r
e−λu

2
du

((∫ r−1

−r+1
e−λu

2
du

)d−1

− Zλ

(∫ r

−r
e−λu

2
du

)2(d−1) ∫ +∞

a+r
e−λu

2
du

)
,

so that, there exists some universal constant c such that, as soon as r
√
λ > c,

Varµ(f) ≥ Zλ
2

∫ +∞

a+r
e−λu

2
du

(∫ r−1

−r+1
e−λu

2
du

)d−1

.

At the same time again if r
√
λ > c,∫

|∇f |2 dµλ,X ≤
∫ (

1IA(r) − 1IA(r−1)

)
dµλ,X ≤ Zλ

(∫ +∞

a+r
e−λu

2
du

)
e−λ(r−1)2

(r − 1)λ
(d−1)

(∫ r

−r
e−λu

2
du

)d−2

.

It follows, using homogeneity again, that

CP (λ, y, r) ≥ 1

2

(
r
√
λ− 1

(d− 1)λ

)
e(r
√
λ−1)2

(∫ r√λ−1

−r
√
λ+1

e−u
2
du
)d−1

(∫ r√λ
−r
√
λ
e−u2du

)d−2

≥

(
r
√
λ− 1

(d− 1)λ

)
e(r
√
λ−1)2 1

4
√
π

(
1− e−(r

√
λ−1)2

r
√
λ− 1

)d−2

. (5.8)

Notice that this lower bound is smaller (hence worse) than the one we obtained in Theorem
5.2, and also contain an extra dimension dependent term (the last one). But of course it is
much easier to get.
Since 1 is arbitrary, we may replace r

√
λ− 1 by r

√
λ− ε for any 0 ≤ ε ≤ 1, the price to pay

being some extra factor ε2 in front of the lower bound for the Poincaré constant.
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5.3. Back to spherical obstacles. Another lower bound.

It is tempting to develop the same approach in the case of spherical obstacles. First
assume λ = 1.
Introduce for 0 ≤ u ≤ r,

A(u) = {x1 ≥ a , |x̄| ≤ u} ∩ D .

As before we consider, for ε < u, a function 1IA(u−ε) ≤ f ≤ 1IA(u) which is 1/ε-Lipschitz.
Then

Varµλ,X (f) ≥ µλ,X (A(u− ε))− (µλ,X (A(u)))2

and ∫
|∇f |2 dµλ,X ≤ (1/ε2) (µλ,X (A(u))− µλ,X (A(u− ε))) ,

with

µλ,X (A(u)) = Zλ σ(Sd−2)

∫ u

0

(∫ +∞

a+
√
r2−s2

e−t
2
dt

)
sd−2 e−s

2
ds ,

and σ(Sd−2) is the Lebesgue measure of the unit sphere. It follows

(Zλ)−1

∫
|∇f |2 dµλ,X ≤ (σ(Sd−2)/ε2)

∫ u

u−ε

(∫ +∞

a+
√
r2−s2

e−t
2
dt

)
sd−2 e−s

2
ds

≤ σ(Sd−2)

2ε2

∫ u

u−ε

sd−2

(a+
√
r2 − s2)

e−(a+
√
r2−s2)2 e−s

2
ds

≤ σ(Sd−2)ud−2 e−(a2+r2)

2ε2 (a+
√
r2 − u2)

∫ u

u−ε
e−2a

√
r2−s2 ds .

To get a precise upper bound for the final integral, we perform the change of variable v =√
r2 − s2 so that

∫ u

u−ε
e−2a

√
r2−s2 ds =

∫ √r2−(u−ε)2

√
r2−u2

v√
r2 − v2

e−2av dv

≤
√
r2 − (u− ε)2

2a(u− ε)

(
e−2a

√
r2−u2 − e−2a

√
r2−(u−ε)2

)
≤

√
r2 − (u− ε)2

2a(u− ε)
e−2a
√
r2−(u−ε)2

(
e

2aε(2u−ε)√
r2−(u−ε)2+

√
r2−u2 − 1

)
.
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Again for r ≥ c for some large enough c, and a+
√
r2 − u2 ≥ 1, for u > 2ε,

Varµλ,X (f) ≥ 1

2
µλ,X (A(u− ε))

≥ 1

2
Zλ σ(Sd−2) e−(a2+r2)

∫ u−ε

0

a+
√
r2 − s2

1 + 2(a+
√
r2 − s2)2

sd−2 e−2a
√
r2−s2 ds

≥ 1

2
Zλ σ(Sd−2) e−(a2+r2)

∫ u−ε

u−2ε

a+
√
r2 − s2

1 + 2(a+
√
r2 − s2)2

sd−2 e−2a
√
r2−s2 ds

≥ 1

2
Zλ σ(Sd−2) e−(a2+r2) a+

√
r2 − (u− ε)2

1 + 2(a+
√
r2 − (u− 2ε)2)2

(u− 2ε)d−2

∫ u−ε

u−2ε
e−2a

√
r2−s2 ds .

The last integral is bounded from below by∫ u−ε

u−2ε
e−2a

√
r2−s2 ds ≥

√
r2 − (u− ε)2

2a(u− ε)
e−2a
√
r2−(u−ε)2

(
1− e

−2aε(2u−3ε)√
r2−(u−ε)2+

√
r2−(u−2ε)2

)
We thus deduce

CP (1, B(y, r)) ≥ ε2 (a+
√
r2 − u2)(a+

√
r2 − (u− ε)2)

1 + 2(a+
√
r2 − (u− 2ε)2)2

(u− ε)d−2

ud−2
H , (5.9)

with

H =
1− e

−2aε(2u−3ε)√
r2−(u−ε)2+

√
r2−(u−2ε)2

e
2aε(2u−ε)√

r2−(u−ε)2+
√
r2−u2 − 1

.

For small r (smaller than c
√
d− 1 for some small enough c) it is not difficult to show that

CP (1, B(y, r)) ≥ cd, and presumably cd can be chosen independently of d, using again hitting
times.

The bound (5.9) is not interesting if a � r, since in this case H is very small, unless ε is
small enough (of order at most r/a), so that the lower bound we obtain goes to 0 with r/a.
Hence we shall only look at the case where a/r ≤ C. Since 2ε < u < r, for H to be bounded
from below by some universal constant, we see that auε ≤ cr for some small enough universal
constant c, so that we have to choose u and ε of order

√
r/a. It is then not difficult to see

that, combined with all what we have done before, this will furnish the following type of
lower bound

Proposition 5.10. There exists a constant Cd such that for all y and r,

CP (λ,B(y, r)) ≥ Cd
λ

(
1 +

r

|y| ∨ 1

)
.

Even for very large r′s, the previous method furnishes a dimension dependent bound. Propo-
sition 5.10 is interesting when the obstacle contains the origin, in which case we have a linear
dependence in r/|y|. Of course, when y = 0 we know that the lower bound growths as r2.
Also notice that for large a the previous lower bound is similar to the upper bound we have
obtained in the previous section.
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5.4. How to kill the Poincaré constant with far but small non convex obstacles.

In a previous subsection we have seen that an infinity of appropriately oriented squared
obstacle with “centers” and radii going to infinity furnishes an infinite Poincaré constant.
We shall see here that if we break the convexity of the obstacle, even small obstacles at
infinity can kill the Poincaré constant.

For simplicity, we will assume that d = 2, and we shall look at λ = 1 with a non-convex
bounded obstacle, namely we consider

Dc = {0 ≤ y − x1 ≤ α ; |x2| ≤ α} ∪ {0 ≤ x1 − y ≤ α ;
α

2
≤ |x2| ≤ α} .

We simply denote by µ the gaussian measure restricted to D.

B

Dc

Figure 3. A non convex obstacle Dc in gray. The trap B in lightgray

As in the previous subsections we shall introduce some 2/α-Lipschitz function f such that
1IA ≤ f ≤ 1IB with A = {0 ≤ x1 − y ≤ α

2 ; α
2 ≥ |x

2|} and B = {0 ≤ x1 − y ≤ α ; α
2 ≥ |x

2|}.
Hence

Varµ(f) ≥ µ(A)− (µ(B))2 and

∫
|∇f |2 dµ ≤ 4

α2
(µ(B)− µ(A)) .

In addition

µ(A) = Z1

(∫ y+α
2

y
e−u

2
du

) (∫ α
2

−α
2

e−v
2
dv

)
, µ(B) = Z1

(∫ y+α

y
e−u

2
du

) (∫ α
2

−α
2

e−v
2
dv

)

so that



POINCARÉ IN A PUNCTURED DOMAIN. 31

µ(A)

µ(B)
≥

∫ y+α
2

y e−u
2
du∫ y+α

y e−u2 du
≥

y2

1+2y2

(
e−y

2

y − e−(y+α2 )2

y+α
2

)
1
2y

(
e−y2 − e−(α+y)2

)
≥ 2y2

1 + 2y2

1− e−α(y+α
4

)

1− e−α(2y+α)
, (5.11)

and

µ(A)

µ(B)− µ(A)
≥

∫ y+α
2

y e−u
2
du∫ y+α

y+α
2
e−u2 du

≥

y2

1+2y2

(
e−y

2

y − e−(y+α2 )2

y+α
2

)
1
2y

(
e−(y+α

2
)2 − e−(α+y)2

)
≥ 2y2

1 + 2y2

1− e−α(y+α
4

)

e−α(y+α
4

) − e−α(2y+α)

≥ 2y2eα(y+α
4

)

1 + 2y2

1− e−α(y+α
4

)

1− e−α(y+ 3α
4

)
. (5.12)

µ(B) goes to 0 as y → +∞ while there exists some constant c such that µ(A) ≥ c µ(B),
provided α is fixed and y large enough (depending on α), in particular as soon as αy → +∞.
As previously we thus have for αy large enough, Varµ(f) ≥ 1

2 µ(A). Gathering all previous

results, we thus get CP (µ) ≥ 1
8

µ(A)
µ(B)−µ(A) so that CP (µ) explodes (at least) like eαy if αy →

+∞. Hence, even a small non convex obstacle going to infinity, makes the Poincaré constant
explode.

More precisely consider an infinite number of such obstacles (O(yj , αj)) such that one more
time the convex face of the obstacle is orthogonal to the line joining the origin to yj . If
αj → 0 but αj |yj | → +∞, then the process is not exponentially ergodic.

Actually it is not difficult to see, though the calculations are a little bit more intricate, that
the previous situation is similar to the case of two touching balls as in Figure 4.



32 E. BOISSARD, P. CATTIAUX, A. GUILLIN, AND L. MICLO

b
x1

b

x2

B

Figure 4. Touching balls

Appendix A. Existence and uniqueness of the process.

The main (actually unique) result of this section is the following (recall that the notion of
solution for a reflected system involves both X and the local times L, see e.g. [IW81, Cat86])

Theorem A.1. Assume (1.1). Then the system (1.2) has a unique (non explosive) strong
solution for any allowed starting point x. In addition µλ,X is the unique invariant (actually
symmetric) probability measure.

The remainder of this section is devoted to the proof of this result.

In the sequel we shall denote by L the (formal) infinitesimal generator

L =
1

2
∆− λ 〈x,∇〉 , (A.2)

whose domain is some extension of the set of smooth functions f compactly supported in D̄
such that for all i,

∂ f

∂ni
(y) = 0

at any y such that |y − xi| = ri, where ni denotes the normal vector field on the sphere of
center xi and radius ri.

We shall denote by D(L) this core.

A.1. Finite number of obstacles. When N is finite, existence of a unique (strong)
solution of (1.2) starting from any point (belonging to D̄ for (1.2)), up to the explosion time,
is standard (see e.g. [Cat86] for references) at least when the boundary of the obstacles
is smooth. That is why we have chosen to smooth the hypercubes when looking at this
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particular situation. The only point is to show that the explosion time is almost surely
infinite.

To this end, define
dN = max

i=1,...,N
|xi| , r = max

i=1,...,N
ri , (A.3)

and choose a smooth function hN such that hN ≥ 1 everywhere,

hN (x) = 1 if |x| < dN + 2r , hN (x) = 1 + |x|2 if |x| > dN + 3r + 1 . (A.4)

It is enough to remark that hN ∈ D(L) and satisfies

LhN ≤ − 2λhN , for |x| > dL = (d/2λ)
1
2 ∨ (dN + 3r + 1) . (A.5)

hN can thus play the role of a Lyapunov function for Hasminskii’s non explosion test.

We can thus define for any x in D̄ the law Pt(x, dy) of the process at time t, Xt starting
from x, as well as a Markov semi-group Pt acting on continuous and bounded functions. It
is known that, for all t > 0,

Pt(x, dy) = pt(x, y) dy

where pt ∈ C∞(D̄) (see [Cat86, Cat87]). Furthermore, the density pt is everywhere positive.
This is a consequence of (1.1) (which implies in particular that D is path connected) and
standard tools about the support of the law of the whole process.

µλ,X is clearly a symmetric, hence invariant, probability measure. Uniqueness follows from
the previous regularity and positivity as usual. Let us denote by qt the density of the law of
Xt w.r.t. µλ,X i.e.

qt(x, y) = pt(x, y)
dx

dµλ,X
.

Application of the Chapman-Kolmogorov formula and standard regularization arguments
yield

q2t(x, x) =

∫
qt(x, y) qt(y, x)µλ,X (dy) =

∫
q2
t (x, y)µλ,X (dy) , (A.6)

thanks to symmetry, i.e. qt ∈ L2(µλ,X ).

A.2. Infinite number of obstacles.

We now consider the case of infinitely many obstacles, still satisfying the non overlapping
condition (1.1), for the locally finite collection X . We can thus construct the process up to
exit times of an increasing sequence of relatively compact open subsets Un, each of which
containing only a finite number of (closed) obstacles, the remaining (closed) obstacles being
included into (Ūn)c. The sequence Tn of exit times of Un is thus growing to the explosion
time, but now it is much more difficult to control this limit.

A standard way is to use Dirichlet forms theory. Namely let us consider

E(f) =

∫
|∇f |2 dµλ,X (A.7)

defined for f which are smooth, bounded with bounded derivatives.

Our goal is to show that E is a conservative local Dirichlet form, so that one can associate to
E a stationary Hunt process (Yt)t≥0 which is a non exploding diffusion process. This process
coincides with X up to the exit time of Un for all n, provided X0 has distribution µλ,X (exit
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time can be equal to 0). But, since Yt − Y0 is an additive functional of finite energy, it can
be decomposed (Lyons-Zheng decomposition) for 0 ≤ t ≤ T into

Yt − Y0 = Mt +RMT
t

where M. (resp. RMT
. ) is a forward (resp. backward) L2 martingale with brackets 〈M〉t =

〈RMT 〉t = t, hence are Brownian motions. It follows that for any K > 0,

P

(
sup
t∈[0;T ]

|Yt| ≥ K

)
≤ P

(
sup
t∈[0;T ]

|Yt − Y0| ≥
K

2
or |Y0| ≥

K

2

)

≤ P

(
sup
t∈[0;T ]

|Mt| ≥
K

4

)
+ P

(
sup
t∈[0;T ]

|RMT
t | ≥

K

4

)
+ P

(
|Y0| ≥

K

2

)
and Doob’s inequality allows us to conclude that the latter upper bound goes to 0 as K goes
to infinity. It follows that the supremum of the exit times of the balls B(0,K) is almost
surely infinite, hence so does the supremum of the Tn’s, implying that Y and X coincide up
to any time and that X does not explode, when the initial law is µλ,X .

Standard arguments (see [FOT94]) imply that there is no explosion starting from quasi every
point x (i.e. all x’s not belonging to some polar set N , recall that here polar sets coincide
with sets of zero capacity), though here we only need that this property holds for µλ,X almost
all x’s, which is an immediate consequence of disintegration of the measure.

Now let x be some point in D, and choose a small ball B(x, ε) ⊂ D. If Py denotes the law of
X starting from y as usual, we have for all z ∈ B(x, ε),

Pz(sup
n
Tn < +∞) =

∫
|y−x|=ε

Py(sup
n
Tn < +∞) ηz(dy)

where ηz denotes the Pz law of Xτ with τ the exit time of B(x, ε) (that τ is almost surely
finite is well known and actually follows from the arguments below).

Up to the exit time of B(x, ε), X is just an Ornstein-Uhlenbeck process, so that its law is
equivalent to the one of the Brownian motion. For Brownian motion, it is well known that τ
is a.s. finite, that the exit measure (starting from z) is simply the harmonic measure (related
to z) on the sphere S(x, ε), hence is equivalent to the surface measure σx. Thus the same
properties hold true for our Ornstein-Uhlenbeck process.

It follows that ηz is equivalent to the surface measure σx on the sphere S(x, ε), so that ηz
and ηx are equivalent.

(One can see e.g [Cat91] theorem 4.18 for much more sophisticated situations).

Choose z /∈ N . The previous formula shows that for ηz almost all y ∈ S(x, ε), Py(supn Tn <
+∞) = 0, so that the same holds ηx almost surely and finally Px(supn Tn < +∞) = 0,
showing that no explosion occurs starting from any point.

It remains to show that E is a conservative and local Dirichlet form. To this end introduce
the truncated form

En(f) =
1

µλ,X (Un)

∫
Un

|∇f |2 dµλ,X (A.8)

corresponding to the reflected O-U process in Un with hard obstacles. It is not difficult to
see that we can build the open sets Un in such a way that ∂Un is smooth. It thus follows that
En is a conservative and local Dirichlet form, to which is associated a non-exploding process
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Xn. The same reasoning as before shows that we can start from any point x ∈ Un. We use
the superscript n for the Markov law corresponding to En
Let τK be the exit time from the ball B(0,K) and let nK be such that for n ≥ nK , B(0,K) ⊂
Un. All processes Xn (n ≥ nK), starting from x ∈ B(0,K), coincide up to time τK (and
coincide with the possibly exploding X). Now choose some initial measure ν(dy) = u(y)dy
where u is bounded and has compact support included in B(0, R). Then ν is absolutely
continuous with respect to µnλ,r and one can find some constant C(K, ν) such that

‖ dν

dµnλ,X
‖∞≤ C(K, ν) for all n ≥ nK .

For any T > 0, it yields, using the Lyons-Zheng decomposition as before

Pν

(
sup
t∈[0;T ]

|Xn
t | ≥ K

)
≤ C(K, ν)Pµnλ,r

(
sup
t∈[0;T ]

|Xn
t −Xn

0 | ≥
K

2
or |Xn

0 | ≥
K

2

)

≤ C(K, ν)

(
Pµnλ,r

(
sup
t∈[0;T ]

|Mn
t | ≥

K

4

)
+ Pµnλ,r

(
sup
t∈[0;T ]

|RMT,n
t | ≥

K

4

))
+

+C(K, ν)Pµnλ,r

(
|Xn

0 | ≥
K

2

)
≤ C(K, ν)

(
C1 e

−C2K2/T + µnλ,X (Bc(0,K/2))
)

≤ C(K, ν)

(
C1 e

−C2K2/T +
µλ,X (Bc(0,K/2))

µλ,X (Un)

)
for well chosen universal constants C1, C2. It immediately follows that Pν(τK ≤ T ) (here
we consider the process X) goes to 0 as K goes to +∞, so that the process starting from ν
does not explode. This is of course sufficient for our purpose, since conservativeness follows
by choosing a sequence νj converging to µλ,X .

Remark A.9. Once the non explosion is proven, standard arguments show that the process
is Feller. Hence compact sets are closed petite sets in the terminology of [DMT95, DFMS04].
We refer to the latter reference for a complete discussion. ♦

Appendix B. Useful estimates for exponential moments of hitting times.

In this section we shall recall some estimates of exponential moments of hitting times for
some special linear processes. Denotes by S(r) the first exit time of the symmetric interval
[−r, r] for a one dimensional process.

For the linear Brownian motion it is well known, (see [RY91] Exercise 3.10) that

E0

(
eθ S(r)

)
=

1

cos(r
√

2θ)
< +∞

if and only if

θ ≤ π2

8 r2
.
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Surprisingly enough (at least for us) a precise description of the Laplace transform of S(r) for
the O-U process is very recent: it was first obtained in [GJY03]. A simpler proof is contained
in [GJ08] Theorem 3.1. The result reads as follows

Theorem B.1. {see [GJY03, GJ08]} If S(r) denotes the exit time from [−r, r] of a linear
O-U process with drift −λx (λ > 0), then for θ ≥ 0,

E0

(
e− θ S(r)

)
=

1

1F1

(
θ

2λ ,
1
2 , λ r

2
) ,

where 1F1 denotes the confluent hypergeometric function.

The function 1F1 is also denoted by Φ (in [GJY03] for instance) or by M in [AS72] (where
it is called Kummer function) and is defined by

1F1(a, b, z) =

+∞∑
k=0

(a)k
(b)k

zk

k!
where (a)k = a(a+ 1)...(a+ k − 1) , (a)0 = 1 . (B.2)

In our case, b = 1
2 , so that 1F1 is an analytic function, as a function of both z and θ. It

follows that θ 7→ E0

(
e− θ S(r)

)
can be extended, by analytic continuation, to θ < 0 as long as

λr2 is not a zero of 1F1( θ
2λ ,

1
2 , .).

The zeros of the confluent hypergeometric function are difficult to study. Here we are looking
for the first negative real zero. For −1 < a < 0, b > 0, it is known (and easy to see) that
there exists only one such zero, denoted here by u. Indeed 1F1(a, b, 0) = 1 and all terms in
the expansion (B.2) are negative for z > 0 except the first one, implying that the function
is decaying to −∞ as z → +∞. However, an exact or an approximate expression for u are
unknown (see the partial results of Slater in [Sla56, AS72], or in [Gat90]). Our situation
however is simpler than the general one, and we shall obtain a rough but sufficient bound.

First, comparing with the Brownian motion, we know that for all λ > 0 we must have

−θ
λ
≤ π2

8(r
√
λ)2

.

So, if λ r2 > π2/8 and −θ/2λ ≥ 1/2, the Laplace transform (or the exponential moment) is
infinite. We may thus assume that −θ/2λ < 1/2.

Hence, for 1F1

(
θ

2λ ,
1
2 , λ r

2
)

to be negative it is enough that

1 <
−θ
λ

(
(λ r2) +

+∞∑
k=2

(1 + θ
2λ)(2 + θ

2λ)...(k − 1 + θ
2λ)

(1 + 1
2)(2 + 1

2)...(k − 1 + 1
2)

(λ r2)k

k!

)

<
−θ
λ

(
+∞∑
k=1

(λ r2)k

k!

)
,

i.e.

as soon as β = −θ > λ

eλ r2 − 1
then E0

(
eβ S(r)

)
= +∞ . (B.3)

So there is a drastically different behavior between both processes.
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Finally we shall also need estimates for a general CIR process or generalized squared radial
Ornstein-Uhlenbeck process, i.e. the solution of

dUt = 2
√
UtdBt + (δ + 2β Ut) dt

when β > 0 and δ > 0. According to [GJY03] Theorem 3, for θ > 0,

E0

(
e− θ S(u)

)
=

eβ u

1F1

(
(θ+βδ)

2β , δ2 , β u
) . (B.4)

It follows that for 0 < θ < β δ, E0

(
eθ S(u)

)
< +∞.

Appendix C. The case N = 1. Another estimate for a general y using
decomposition of variance.

A very usual method to deal with dimension controls is the decomposition of variance. This
method can be used here in order to transfer the results of Proposition 2.1 to a non centered
obstacle. Though the results are non optimal in many directions, the method contains some
interesting features.

In this section for simplicity we will first assume that λ = 1, and second that d ≥ 3. Recall
that we are looking here at the case of an unique spherical obstacle B(y, r), so that we simply
denote by µd,r the restricted gaussian measure µλ,X . Since we will use an induction procedure
on the dimension d we explicitly make it appear in the notation.

Using rotation invariance we may also assume that y = (a, 0) for some a ∈ R+, 0 being the
null vector of Rd−1. So, writing x = (u, x̄) ∈ R× Rd−1,

µd,r(du, dx̄) = ν0
d−1,R(u)(dx̄)µ1(du) ,

where ν0
d−1,R(u)(dx̄) is the d− 1 dimensional gaussian measure restricted to Bc(0, R(u)) as in

section 2.1 with R(u) =
√(

(r2 − (u− a)2)+

)
and µ1 is the first marginal of µd,r given by

µ1(du) =
γd−1(Bc(0, R(u)))

γd(Bc(y, r))
γ1(du) ,

γn denoting the n dimensional gaussian measure cn e
−|x|2 dx.

The standard decomposition of variance tells us that for a nice f ,

Varµd,r(f) =

∫ (
Varν0

d−1,R(u)
(f)
)
µ1(du) + Varµ1(f̄) , (C.1)

where

f̄(u) =

∫
f(u, x̄) ν0

d−1,R(u)(dx̄) .

According to Proposition 2.1, on one hand, it holds for all u,

Varν0
d−1,R(u)

(f) ≤
(

1 +
(r2 − (u− a)2)+

d− 1

) ∫
|∇x̄f |2 dν0

d−1,R(u) , (C.2)

so that ∫ (
Varν0

d−1,R(u)
(f)
)
µ1(du) ≤

(
1 +

r2

d− 1

) ∫
|∇x̄f |2 dµd,r . (C.3)
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On the other hand, µ1 is a logarithmically bounded perturbation of γ1 hence satisfies some
Poincaré inequality so that

Varµ1(f̄) ≤ C1

∫ ∣∣∣∣df̄du
∣∣∣∣2 dµ1 . (C.4)

So we have first to get a correct bound for C1, second to understand what df̄
du is.

C.1. A bound for C1. Since µ1 is defined on the real line, upper and lower bounds for
C1 may be obtained by using Muckenhoupt bounds (see [ABC+00] Theorem 6.2.2). Unfor-
tunately we were not able to obtain the corresponding explicit expression in our situation as
µ1 is not sufficiently explicitly given to use Muckenhoupt criterion. So we shall give various
upper bounds using other tools.

The usual Holley-Stroock perturbation argument combined with the Poincaré inequality for
γ1 imply that

C1 ≤
1

2

supu {γd−1(Bc(0, R(u)))}
infu {γd−1(Bc(0, R(u)))}

≤ 1

2

∫ +∞
0 ρd−2 e−ρ

2
dρ∫ +∞

r ρd−2 e−ρ2 dρ
=

1

2

(
1 +

∫ r
0 ρd−2 e−ρ

2
dρ∫ +∞

r ρd−2 e−ρ2 dρ

)
.

(C.5)
Using the first inequality and the usual lower bound for the denominator, it follows that

for all r > 0, C1 ≤ π(d−2)/2 er
2

rd−3
.

The function ρ 7→ ρd−2 e−ρ
2

increases up to its maximal value which is attained for ρ2 =
(d − 2)/2 and then decreases to 0. It follows, using the second form of the inequality (C.5)
that

• if r ≤
√

d−2
2 we have C1 ≤ 1

2 + r2, while

• if r ≥
√

d−2
2 we have

C1 ≤
1

2
+

(
d− 2

2

) d−2
2

e−
d−2
2

er
2

rd−4
.

These bounds are quite bad for large r’s but do not depend on y.

Why is it bad ? First for a = 0 (corresponding to the situation of section 2.1) we know that

C1 ≤ 1 + r2

d according to Proposition 2.1 applied to functions depending on x1. Actually the
calculations we have done in the proof of proposition 2.1, are unchanged for f(z) = z1, so

that it is immediately seen that C1 ≥ max(1
2 ,

r2

d ).

Intuitively the case a = 0 is the worst one, though we have no proof of this. We can
nevertheless give some hints.

The natural generator associated to µ1 is

L1 =
d2

du2
−
(
u− d

du
log(γd−1(Bc(0, R(u))))

)
d

du

=
d2

du2
− u d

du
+

(u− a) (R(u))d−3 e−R
2(u)∫ +∞

R(u) ρ
d−2 e−ρ2 dρ

1I|u−a|≤r
d

du
.
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The additional drift term behaves badly for a ≤ u ≤ a + r, since in this case it is larger
than −u, while for u ≤ a it is smaller. In stochastic terms it means that one can compare
the induced process with the Ornstein-Uhlenbeck process except possibly for a ≤ u ≤ a+ r.
In analytic terms let us look for a Lyapunov function for L1. As for the O-U generator the
simplest one is g(u) = u 7→ u2 for which

L1g ≤ 2− 4u2 + 4u(u− a) 1Ia≤u≤a+r .

Remember that a ≥ r so that −au ≤ 1
2 u

2. It follows

provided a ≥ r, L1g ≤ 2− 2g . (C.6)

For |u| ≥ 2 we then have L1g(u) ≤ − g(u), so that g is a Lyapunov function outside the
interval [−

√
2,
√

2] and the restriction of µ1 to this interval coincides (up to the constants)
with the gaussian law γ1 hence satisfies a Poincaré inequality with constant 1

2 on this interval.
According to the results in [BBCG08] we recalled in the previous section, we thus have that
C1 is bounded above by some universal constant c.

We may gather our results

Lemma C.7. The following upper bound holds for C1 :

(1) (small obstacle) if r ≤
√

d−2
2 we have C1 ≤ 1

2 + r2,

(2) (far obstacle) if |y| > r +
√

2, C1 ≤ c for some universal constant c,

(3) (centered obstacle) if y = 0, C1 ≤ 1 + r2

d ,

(4) in all other cases, there exists c(d) such that C1 ≤ c(d) er
2

rd−3 .

We conjecture that actually C1 ≤ C(1 + r2) for some universal constant C.

Remark C.8. In a recent preprint [KT13], the authors obtain a much better upper bound
in case (4) (in fact a constant) when the origin belongs to the boundary of the ball and d = 3.
♦ ♦

C.2. Controlling df̄
du . It remains to understand what df̄

du is and to compute the integral
of its square against µ1.

Recall that

f̄(u) =

∫
f(u, x̄) ν0

d−1,R(u)(dx̄) .

Hence

f̄(u) = 1I|u−a|>r

∫
f(u, x̄) ν0

d−1,0(dx̄)

+ 1I|u−a|≤r

∫
Sd−2

∫ +∞

R(u)
f(u, ρ θ)

ρd−2 e−ρ
2

c(d) γd−1(Bc(0, R(u)))
dρ dθ ,
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where dθ is the non-normalized surface measure on the unit sphere Sd−2 and c(d) the nor-
malization constant for the gaussian measure. Hence, for |u− a| 6= r we have

d

du
f̄(u) =

∫
∂f

∂x1
(u, x̄) ν0

d−1,R(u)(dx̄)

− 1I|u−a|≤r

∫
f(u, x̄) 1I|x̄|>R(u)

d
du (γd−1(Bc(0, R(u))))

γ2
d−1(Bc(0, R(u)))

γd−1(dx̄)

− 1I|u−a|≤r
R′(u)Rd−2(u) e−R

2(u)

c(d) γd−1(Bc(0, R(u)))

∫
Sd−2

f(u,R(u) θ) dθ .

Notice that if f only depends on u, f̄ = f so that

d

du
f̄(u) =

∂f

∂x1
(u) =

∫
∂f

∂x1
(u) ν0

d−1,R(u)(dx̄) ,

and thus the sum of the two remaining terms is equal to 0. Hence in computing the sum
of the two last terms, we may replace f by f −

∫
f(u, x̄) ν0

d−1,R(u)(dx̄) or if one prefers, we

may assume that the latter
∫
f(u, x̄) ν0

d−1,R(u)(dx̄) vanishes. Observe that this change will

not affect the gradient in the x̄ direction.

Assuming this, the second term becomes

− 1I|u−a|≤r

d
du (γd−1(Bc(0, R(u))))

γd−1(Bc(0, R(u)))

∫
f(u, x̄) ν0

d−1,R(u)(dx̄) = 0 .

We thus have (using Cauchy-Schwarz inequality) and a scale change∫ ∣∣∣∣df̄du
∣∣∣∣2 dµ1 ≤ 2

∫ ∣∣∣∣ ∂f∂x1

∣∣∣∣2 (u, x̄)µd,r(du, dx̄)

+ 2

∫ (
1I|u−a|≤r

R′(u) e−R
2(u)

c(d) γd−1(Bc(0, R(u)))

∫
Sd−2(R(u))

f(u, θ) dθ

)2

µ1(du) .

Our goal is to control the last term using the gradient of f . One good way to do it is to use
the Green-Riemann formula, in a well adapted form. Indeed, let V be a vector field written
as

V (x̄) = − ϕ(|x̄|)
|x̄|d−1

x̄ where ϕ(R(u)) = Rd−2(u) . (C.9)

This choice is motivated by the fact that the divergence, ∇.(x̄/|x̄|d−1) = 0 on the whole
Rd−1 − {0}.
Of course in what follows we may assume that R(u) > 0, so that all calculations make sense.
The Green-Riemann formula tells us that, denoting gu(x̄) = f(u, x̄), for some well choosen φ∫

Sd−2(R(u))
f(u, θ) dθ =

∫
Sd−2(R(u))

gu 〈V, (−x̄/|x̄|)〉 dθ =

∫
1I|x̄|≥R(u)∇.(guV )(x̄) dx̄

= −
∫

1I|x̄|≥R(u) 〈∇gu(x̄), (x̄/|x̄|d−1)〉ϕ(|x̄|) dx̄

−
∫

1I|x̄|≥R(u) gu(x̄) (ϕ′(|x̄|)/|x̄|d−1) dx̄ .
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Now we choose ϕ(s) = Rd−2(u) eR
2(u) e−s

2
and recall that R′(u) = −((u− a)/R(u)) 1I|u−a|≤r.

We have finally obtained

1I|u−a|≤r
R′(u) e−R

2(u)

c(d) γd−1(Bc(0, R(u)))

∫
Sd−2(R(u))

f(u, θ) dθ =

= 1I|u−a|≤r (u− a)Rd−3(u)

∫
〈∇x̄f(u, x̄), (x̄/|x̄|d−1)〉 ν0

d−1,R(u)(dx̄)

− 1I|u−a|≤r (u− a)Rd−3(u) 2

∫
(f(u, x̄)/|x̄|d−3) ν0

d−1,R(u)(dx̄) .

To control the first term we use Cauchy-Schwarz inequality, while for the second one we use
Cauchy-Schwarz and the Poincaré inequality for ν0

d−1,R(u), since
∫
f(u, x̄) ν0

d−1,R(u)(dx̄) = 0.

This yields ∫ ∣∣∣∣df̄du
∣∣∣∣2 dµ1 ≤ 2

∫ ∣∣∣∣ ∂f∂x1

∣∣∣∣2 (u, x̄)µd,r(du, dx̄)

+ 4

∫
|∇x̄f |2 µd,r(du, dx̄) (A1 + 4A2)

where

A1 =

∫
|u− a|2 1I|u−a|≤r R

2d−6(u)

(∫
|x̄|4−2d ν0

d−1,R(u)(dx̄)

)
µ1(du) ,

and

A2 =

∫
|u− a|2 1I|u−a|≤r R

2d−6(u)

(
1 +

R2(u)

d− 1

) (∫
|x̄|6−2d ν0

d−1,R(u)(dx̄)

)
µ1(du) .

It is immediate (recall that the support of ν0
d−1,R(u) is |x̄| ≥ R(u)) that

A2 ≤ r2

(
1 +

1

d− 1

∫
R(u)>0

R2(u)µ1(du)

)
.

If r ≤ β
√
d− 1 we thus have A2 ≤ (1+β2)r2. In full generality it holds A2 ≤ r2 (1+(r2/d−1)).

This bound can be improved for large r’s provided a is large too. Indeed, on R(u) > 0,

µ1(du) ≤ γd−1(Bc(0, R(u)))

γd(Bc(0, r))
γ1(du) ≤ c

er
2−u2

r

(∫ +∞

R(u)
ρd−2 e−ρ

2
dρ

)
du,

for some universal constant c. Using integration by parts we have, for z > 0,∫ +∞

z
ρd−2 e−ρ

2
dρ ≤ 1

2
zd−3 e−z

2
+
d− 3

2

∫ +∞

z
ρd−4 e−ρ

2
dρ

≤ 1

2
zd−3 e−z

2
+
d− 3

2z2

∫ +∞

z
ρd−2 e−ρ

2
dρ ,

so that, provided z2 > d− 1,∫ +∞

z
ρd−2 e−ρ

2
dρ ≤ z2

2z2 − (d− 3)
zd−3 e−z

2 ≤ zd−1

2d+ 1
e−z

2
.
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To bound A2, we perform the integral on R(u) ≤
√
d− 1 and R(u) >

√
d− 1, so that using

the previous bound we obtain

A2 ≤ r2

(
2 + c

rd

(d− 1)(2d+ 1)

∫
R(u)>

√
d−1

er
2−u2−R2(u) du

)

≤ r2

(
2 + c

2 rd+2

(d− 1)(2d+ 1)
er

2−(a−r)2−(d−1)

)
,

provided a > r. If a > (2 + α)r for some α > 0 we thus have,

A2 ≤ r2

(
2 + c

2 rd+2

(d− 1)(2d+ 1)
e−α r

2

)
≤ C(α) r2 ,

for some C(α) that only depends on α (and not on d).

Finally we have obtained

(1) if for some α > 0, r < α
√
d− 1 or a > (2 + α)r, A2 ≤ C(α) r2 ,

(2) in all cases A2 ≤ r2 (1 + (r2/d− 1)).

The control of A1 is also a little bit delicate. Indeed we have to split the integral in two
parts, the first one corresponding to the u’s such that R(u) ≥ 1 (if this set is not empty),
the second one to the u’s such that R(u) < 1. Thus we have the following rough bound

A1 ≤ r2

(
1 +

∫
0<R(u)≤1

R2d−6(u)

∫
ρ>R(u) ρ

2−d e−ρ
2
dρ∫

ρ>R(u) ρ
d−2 e−ρ2 dρ

µ1(du)

)
.

To bound the second term in the sum, we use, for d > 3,∫
ρ>R(u)

ρ2−d e−ρ
2
dρ ≤

∫
ρ>R(u)

ρ2−d dρ =
R3−d(u)

d− 3

and ∫
ρ>R(u)

ρd−2 e−ρ
2
dρ ≥ Rd−3(u)

2e
.

Combining these two bounds, we obtain

A1 ≤ r2

(
1 +

∫
0<R(u)≤1

2e

d− 3
µ1(du)

)
≤ r2

(
1 +

2e

d− 3

)
,

provided d > 3.

If d = 3, we have∫
ρ>R(u)

ρ2−d e−ρ
2
dρ ≤

∫
1>ρ>R(u)

ρ−1 dρ+

∫
ρ>1

e−ρ
2
dρ ≤ log(1/R(u)) +

√
π .

It follows

A1 ≤ r2

(
1 + 2e

√
π +

∫
0<R(u)≤1

2e log(1/R(u))µ1(du)

)
.

It remains to get an upper bound for

B1 =

∫
0<R(u)≤1

log(1/R2(u))µ1(du) .
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When r ≤ 1(= (
√
d− 1/

√
2), we have for some universal constant c that may vary from line

to line,

B1 ≤ − c
∫ a+r

a−r
log(r2 − (u− a)2)

γ2(Bc(0, R(u)))

γ3(Bc(0, r))
e−u

2
du

≤ − c
∫ a+r

a−r
log(r2 − (u− a)2) e−u

2−R2(u) du

≤ − c
∫ a+1

a−1
log(1− (u− a)2) du

≤ c .

When r > 1 the integral splits in two terms

B1 = − c
∫ a−

√
r2−1

a−r
log(r2 − (u− a)2)

e−u
2−R2(u)+r2

r
du

− c
∫ a+r

a+
√
r2−1

log(r2 − (u− a)2)
e−u

2−R2(u)+r2

r
du .

Note that, provided a > 2r, −u2 − R2(u) + r2 = −a(2u − a) ≤ −a(a − 2r) ≤ 0 in the first
integral while −u2−R2(u) + r2 ≤ −a2 ≤ 0 for all a in the second one. So we have, using the
change of variable u− a = −r + rv (resp. u− a = r− rv) and recalling that c may vary but
is still universal,

B1 ≤ − c
∫ (r−

√
r2−1)/r

0
log(r) log(v(2− v)) dv ≤ c log(r) .

If we assume that a > (2 + α)r for some α > 0, one can improve the previous bound in c(α)
independent of r.

Unfortunately, when 0 ≤ a ≤ 2r we only obtain B1 ≤ c log(r) ea(2r−a).

We have thus obtained

(1) if d > 3 then A1 ≤ c r2,
(2) for d = 3, if r ≤ 1 or a > (2 + α)r, A1 ≤ cr2,
(3) for d = 3, r > 1 and a > 2r, A1 ≤ c r2 log(r),

(4) for d = 3, r > 1 and 0 < a < 2r, A1 ≤ c r2 (1 + ea(2r−a)) ≤ c r2 er
2
.

Gathering together all we have done we have shown

Theorem C.10. Assume d ≥ 3. There exists a function C(r, d) such that, for all y ∈ Rd,
CP (1, y, r) ≤ C(r, d) .

Furthermore, there exists some universal constant c such that

C(r, d) ≤
(

1 +
r2

d− 1

)
+ C1(r) max (2 , C2(r)) ,

C1(r) being given in Lemma C.7 and C2(r) satisfying

(1) if r ≤
√

(d− 1)/2 or |y| > (2 + α)r, C2(r) ≤ c r2,

(2) if d > 3 or d = 3, r ≥ 1 and |y| > 2r, C2(r) ≤ c r2
(

1 + r2

d−1

)
,

(3) if d = 3, r ≥ 1 and 0 ≤ |y| ≤ 2r, C2(r) ≤ c r2 max
(
r2 , e|y|(2r−|y|)

)
.
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Remark C.11. The previous theorem is interesting as it shows that when N = 1, the
Poincaré constant is bounded uniformly in y and it furnishes some tractable bounds.

The method suffers nevertheless two defaults. First it does not work for d = 2, in which case
the conditioned measure does no more satisfy a Poincaré inequality. More important for our
purpose, the method does not extend to more than one obstacle, unless the obstacles have a
particular location. ♦
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frontière. Ann. Inst. Henri Poincaré. Prob. Stat., 22:67–112, 1986.
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Paul Sabatier,, 118 route de Narbonne, F-31062 Toulouse cedex 09.

E-mail address: emmanuel.boissard@gmail.com
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