In honour of the 19th :-) birthday of
Patrick and Christian

June, 2017




Hamiltonian systems under partial observation

Nonparametric estimation for stochastic damping J

Clémentine PRIEUR

LABORATOIRE 4  mehames ques
JEAN KUNTZMANN izia—

MATHEMATIOUES APPLIOUEES - INFORMATIQUE

UNIVERSITE
' Grenoble
2 Alpes



Joint work with

o Patrick Cattiaux (Toulouse, France),
Jose R. Leén and Angie A. Pineda Centeno (Caracas, Venezuela)

@ Fabienne Comte (Paris, France), Adeline Samson (Grenoble, France)




Outline of the talk

@ Introduction

© Assumptions, probabilistic properties of the model

© Adaptive estimation

@ Numerical results



Introduction
Outline of the talk

@ Introduction



Introduction
Model

We consider a damped hamiltonian system with stochastic noise:
(Z: == (X, Ye) € R* | £ > 0) given by the s.d.e.

dXt = Ytdt
dYt = O'(Xt, Yt)dBt — (C(Xt, Yt)Yt 4 VV(Xt))dt

where B is a standard Brownian motion.



Introduction
Particle in contact with a heat bath

Particle in a contact with a heat thermal reservoir:
Consider a particle in a potential V. Its dynamics is described through
the Hamiltonian H(p, q) = %pz + V(q): ¢ =0pH, p=—04H.

This particle is in contact with some heat bath with temperature T > 0,
modeled by an Ornstein-Uhlenbeck process acting as a noise on the
momentum p only:

dg: = pedt
dp; = (—7vp: — VV(qr))dt + 27T dB:.




Introduction

Chain of oscillators in contact with two heat baths (1/2)

Chain of oscillators in contact with two heat bath reservoirs:
The dynamics is given by the Hamiltoniann

Hip.q)= Y %’2+ V(q)

1<i<d

with V : R — R in the form

Z U(l)(CIi)+ Z U(Z)(Qi—q,'+1)~

1<i<d 1<i<d—1

UM s a trapping potential, U@ an interaction potential.



Introduction

Chain of oscillators in contact with two heat baths (2/2)

The two heat baths with temperature T; and T4 act on the momenta of
particles 1 and d like Ornstein-Uhlenbeck processes:

dgj(t) = pj(t)dt 1<j<d
dpi(t) = (=vpu(t) — 9q, V(qr))dt + /27 T1dB(t)

dpi(t) = (—=04V(q:))dt 2<j<d-1

dpa(t) (—=7Pa(t) — 0q,V(ae))dt + /27 TadBa(t).




Introduction

Chain of oscillators in contact with two heat baths (2/2)

The two heat baths with temperature T; and T4 act on the momenta of
particles 1 and d like Ornstein-Uhlenbeck processes:

dgj(t) = pj(t)dt 1<j<d

dpi(t) = (=vpu(t) — 9q, V(qr))dt + /27 T1dB(t)

dpj(t) = (=0gV(ar))dt 2<j<d-1
dpa(t) = (—7pa(t) — g,V (qr))dt + /2y TqdBa(t). )
For short:
{ Zq(t) = p(t)dt
p(t) = (—9Ap(t) — Vo V(a(t)dt + V2 TdB(t)
where A : R? — R? is the projection A(xq,. .., xq) = (x1, Xd),

ﬁ : (X17Xd) — (\/ﬁXl, mxd) and B(f) = (Bl(t), Bd(t)) is a B.M.
in R2.



Introduction

Langevin dynamics

More generally, consider the following system:

dX; = Yidt
dYe = (2871) 20 (X)dWs — (07 (X.) Ye + VV(Xp))dt.

Observe that the diffusion term, &(x) = (237%)*/2¢(x), depends only on
the x coordinate and on an unknown parameter 3. Moreover, the
damping force has the form c(x,y) = a(72(><)

Since Einstein, this last relationship between the damping force and the
diffusion term is known as the fluctuation-dissipation relation and has
numerous applications, e.g.,

- it appears as a tool for the simulation of molecular dynamics (see,
e.g., Lelievre et al. (2010) [Section 2.2.3] ),

- it also appears as limit of the Ehrenfest nuclei dynamics and is called
Langevin dynamics (see Szepessy (2011) ).



Introduction

A stochastic neuronal model (1/3)

See, e.g., Ledn and Samson (2017) and references therein.
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Introduction

A stochastic neuronal model (2/3)

The stochastic FitzHugh-Nagumo model is defined as follows:
1
dV, = g(vt — V32— C —s)dt

V; the membrane potential of a single neuron,

C; a recovery variable / channel kinetics,

€ the time scale separation, s the stimulus input,

B, v positive constants determining the position of the fixed point
and the duration of the excitation,

B;: a Brownian motion, & > 0 the diffusion coefficient.




Introduction

A stochastic neuronal model (3/3)

Defining X, = V; and Y, = £(V, — V2 — C, — s), we get:
dXt == Ytdt

. .
dYe = (Vi1 == = 3X2) = Xe(y = 1) = X2 = (s + B))dlt + gdBt.

Let VV(x) = 2(x(v = 1)+ x3+ (s + B)) and c(x) = 2(—1 + ¢ + 3x?).

We recognize the system governing the dynamics of a particle with X;
referring to its position and Y; to its velocity, whose movement is guided
by a potential V(x) and a damping force c(x).

dXt - Ytdt
dYy = —(c(X) Y: + VV(X,))dt + odB;

™ |Qt

with o =



Assumptions, probabilistic properties of the model

Outline of the talk

© Assumptions, probabilistic properties of the model



Assumptions, probabilistic properties of the model

Assumptions

Z: = (X:, Yi) € R?? governed by:

dXt = Ytdt
dYt = _(C(Xt7 Yt)Yt + vV(Xt))dt + O'dBt,

with o > 0.

H1 The potential V(x) is smooth over RY and lower bounded.

Ho The damping force c(x,y) is smooth, bounded, and there exist c,
M >0s.t. c5(x,y) > cld >0,V (|x| > M, y € RY).

From Wu (2001) , we know that for every initial state z = (x,y) € R?9,
the system admits a unique weak solution, and that this solution is
non-explosive.

The infinitesimal generator writes:

2
o
L= 78” +y0x — (c(x,y)y + Vi V(x))0, .



Assumptions, probabil roperties of the model

Local properties, hypoellipticity (1/4)

L can be written in Hérmander's form

02 &
=7ZL?+L0

with vector fields L; defined by
: _ 0
(1) pour1 <i<d, Li—aT/,-'

(2)

d

d
0 ovy 0
Lo = E — = E , 4+ — ) =
’ k:lykaxk <(C(X I 8Xk) Yk

k=1
It holds

[Li? LO] = LiLO — LoL,' = Z C(X y )aik

Xi Gz

so that {L;, 1 < i <d; [L;,Lo], 1 < i< d}(z) span R??, for all z.



Assumptions, probabilistic properties of the model

Local properties, hypoellipticity (2/4)

= hypoellipticity (Hérmander sum of squares theorem).

Consequence: Vz, Vit >0,
the distribution P¢(z,-) of Z; starting at z at time 0 admits a C* density
pt(z,) w.r.t. Lebesgue.

Hence, 11(dz) = ps(z)dz with ps C°°, and thus the strong Feller property.

Small time behavior of p;(z,-) 7



Assumptions, probabilistic properties of the model

Local properties, hypoellipticity (2/4)

= hypoellipticity (Hérmander sum of squares theorem).

Consequence: Vz, Vit >0,
the distribution P¢(z,-) of Z; starting at z at time 0 admits a C* density
pt(z,) w.r.t. Lebesgue.

Hence, 11(dz) = ps(z)dz with ps C°°, and thus the strong Feller property.
Small time behavior of p;(z,-) 7

Example: d =1, c =V =0. Then Z; is a two dimensional gaussian
vector, with mean (xo + yot, o) and covariance matrix

3 2
Var(X;) = %, Var(Y;) = t, Cov(X;, i) = %

So the transition density behaves, for small t, as

31 3 11
i— e~# instead of - -
T t? 27 t
which is the classical small time explosion for elliptic diffusions (like the

B.M.).



Assumptions, probabil roperties of the model

Local properties, hypoellipticity (3/4)

Theorem (Konakov, Menozzi & Molchanov, 2010)

dXt :Ytdt
dYt =0 th aF b()(t7 Yt)dt,

with b C*°, bounded as well as all its derivatives. Let T > 0. Then
Yz =(x,y), Yt >0, the distribution of Z; = (Xt, Y;) has a density
g:(z,.) with respect to Lebesgue and 3C, C' >0 t.q. for0 <t < T,

" |12
. |y_y/|2 +3 XI—X——t(y;y)

4t t3

1
q:(z,2) < CI@ exp

De plus, 3tg > 0,3C" >0 t.q. VO < t < to,

1
Clt((Xa}/)a(X‘f't%Y))Z C”m~




Assumptions, probabilistic properties of the model

Local properties, hypoellipticity (4/4)

We can generalize that result to a non bounded drift term.

Corollary (Cattiaux, Leén & Prieur, 2014)

We do no more assume boundedness.
Y z, for any open neighborhood U of z, one can write:

()]

VZeU,V0<t<T, p(z,Z) < qz,2')+ C(U)e™

for constants C(U) and C'(U) > 0.
We also prove

V(z,2'), 30< C(Z') s.t. Vt >0, pi(z,2') < D(Z') < +o0.




Assumptions, probabilistic properties of the model

Long time behavior, coercivity and mixing (1/2)

We now add the following assumption
Hsz V and VV have polynomial growth at infinity with

400 > liminf LV(X)

>v >0 (drift’s condition).
|x|—+o00 x|

The force —VV/(x) is "strong enough" for |x| large to ensure a quick
return of the system to compact subsets of R29.

Under H;, i = 1,2,3, the process Z; = (X, Y;) is positive recurrent with

a unique invariant probability measure .. Moreover, moments of any
order of u exist: for all ki, ko € N,

]E(Xt’<1 Ytkz) = /x"‘y’<2 du(x,y) < 4o0.

Scheme of proof: the proof involves the construction of a Lyapunov
function W(x, y), such that there exist a compact K € R?? and constants
C, £ > 0, such that —% > £l ke — Clk. The choice of the Lyapounov
function is not trivial. See, e.g., Wu (2001) .



Assumptions, probabil roperties of the model

Long time behavior, coercivity and mixing (2/2)

For any z, let's P;f(z) = E,(f(Z;)) for bounded f’s.

Y € LY(u). There exist D >0 and p < 1 s.t. for all z, all f s.t.
sup, =) 00,

0
Pf(z) — / fdu' < Dsup (%) U(2)p".

It follows that (Z; := (X;, Y:), t > 0) is S-mixing.
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Adaptive estimation

Invariant density estimators

Complete observations: we observe both coordinates X; and Y; at
discrete times id, i = 1,...,n. Let K be a kernel function, b = (by, by) a
bandwidth.

. , Xis ¥y —Yis
Pe(x,y) = bdbdz ( ", )



Adaptive estimation

Invariant density estimators

Complete observations: we observe both coordinates X; and Y; at
discrete times id, i = 1,...,n. Let K be a kernel function, b = (by, by) a
bandwidth.

. , Xis ¥y —Yis
Pe(x,y) = bdbdz ( ", )

Now we do not observe y anymore.

Partial observations:

n—1 Xi+1)s —Xis
1 x—Xis y— %
As 5 = K y .
p (X }/) nbdbd ; ( b]_ b2

Main issue: the choice of the bandwidth b = (b, b).




Adaptive estimation

Adaptive estimation (1/2)

Data-driven procedure [Comte, Prieur, Samson, 2017]
Our selection criterion is based on Goldenshluger and Lepski (2011).

Let Py, p = Kby * Dp(x, ¥), with Ki (u,v) = b’b’ K(+ A 2. Let
pp = Kp x p. In the following, d = 1.

b=arg ggilg (A(b) + U(b)), with

o B, ={(bix,boy) = (1/k,1/), k, £ =1,...,B,},
o A(b) mimicking the bias (= supy cp. (|Ppr — Py ||* — U(D'))+)

e V/(b) mimicking the variance (= r w Sy B(i6))

nby ba

E (g —pl*) < C mf (||p Pb||2+U(b))+C’IOg(n)

k can then be calibrated by the slope heuristic (see Arlot and Massart,
2009, Lacour et al., 2016). Same results in the partial observations case.
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Adaptive estimation (2/2)

That procedure is numerically demanding due to the double convolutions
Db, especially in the multidimensional case.

In practice, we implement the selection procedure in Lacour, Massart and
Rivoirard (2016):

~

b=arg m|n (||pb Db,

2+ U(b)) with

bmin = (Min1<k<g, b1k, Mini</<p, b2 ¢).
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Numerical results

Numerical results (1/4)

Harmonic Oscillator:

dXt :Ytdt
dYt = — (aXt + 'yyt)dt + O'dBt

with & > 0,y > 0. In the following, we choose @ = 4,y = 0.5,0 = 0.5.
The potential is then V/(x) = a/2x2. The stationary distribution is
Gaussian, with mean zero and explicit diagonal variance matrix:

p(x,y) = ﬂ\f exp(

2y 5, 2o,
202y 202X )

with diagonal variances equal to 1/16 and 1/4, respectively in our case.



Numerical results

Numerical results (2/4)

Kernel estimation of the invariant
density: .|

@ complete observations (top)

@ partial observations
(bottom)

n =2000,§ =0.2.
100 trajectories simulated with a
Euler scheme with step size §/10.

B, = {(b1, b2) € {1/v/4n,2/\/4n,...,30/\/4n}?}}. Anisotropic selected
bandwidth b = (8/v/4n,17/v/4n) (complete), b = (9/v/4n,19/+/4n)

(partial).



Numerical results

Numerical results (3/4)

Van Der Pol Oscillator:
dXt :Ytdt
dY, = — ((aX? — @) Y: + ws X;)dt + cdB:

with o, c1, c2,w3 > 0. In the following, we choose 0 = ¢c; = o = wg = 1.
The potential is then V(x) = w3/2x>. The invariant density p satisfies
Fokker-Planck equation:

19%p(x,y)  9p(x,y)

Ip(x,y)
2 0y? Y ox

Oy

+ c(x)p(x,y) + (c(x)y + VD(x)) =0

solved with finite difference scheme (see Kumar et al., 2006).

Sample (Xjs)i=0,...,.n (top left), WWWW WWNW\(HW
(Yis)i=o,....n (top right) and state Rdille A |

phase (bottom) for § = 0.5 and
n = 2000.
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Numerical results (4/4)

Kernel estimation of the invariant "]
density: -
e complete observations (top)

@ partial observations
(bottom)

n = 2000, 5 = 0.05.
100 trajectories simulated with a
Euler scheme with step size §/10.




Numerical results

Conclusion, perspectives

Conclusion: we obtained

@ non parametric (recursive) estimation for the invariant density
(Cattiaux et al., 2014a, 2015 ),

@ a data-driven procedure for the selection of the bandwidth
(see Comte et al., 2016 ),

@ see also Cattiaux et al. (2014b,2016,2017) for the estimation of the drift
and of the diffusion matrix.

We have considered the more realistic non trivial case of partial
observations.

Perspectives:

@ to consider more complex models which are more realistic for
environmental modeling (non linear Fokker-Planck equations,
confined models, degenerated variances, ...),

@ adaptive estimation in higher dimension,

@ adaptivity with respect to §,
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