In honour of the 19th :-) birthday of Patrick and Christian

June, 2017

Nonparametric estimation for stochastic damping Hamiltonian systems under partial observation

Clémentine PRIEUR

ecos

Joint work with

- Patrick Cattiaux (Toulouse, France), Jose R. León and Angie A. Pineda Centeno (Caracas, Venezuela)

- Fabienne Comte (Paris, France), Adeline Samson (Grenoble, France)

Outline of the talk

(1) Introduction
(2) Assumptions, probabilistic properties of the model
(3) Adaptive estimation

4 Numerical results

Outline of the talk

(1) Introduction
(2) Assumptions, probabilistic properties of the model

3 Adaptive estimation

4 Numerical results

Model

We consider a damped hamiltonian system with stochastic noise: $\left(Z_{t}:=\left(X_{t}, Y_{t}\right) \in \mathbb{R}^{2 d}, t \geq 0\right)$ given by the s.d.e.

$$
\left\{\begin{array}{l}
d X_{t}=Y_{t} d t \\
d Y_{t}=\sigma\left(X_{t}, Y_{t}\right) d B_{t}-\left(c\left(X_{t}, Y_{t}\right) Y_{t}+\nabla V\left(X_{t}\right)\right) d t
\end{array}\right.
$$

where B is a standard Brownian motion.

Particle in contact with a heat bath

Particle in a contact with a heat thermal reservoir:
Consider a particle in a potential V. Its dynamics is described through the Hamiltonian $H(p, q)=\frac{1}{2} p^{2}+V(q): \dot{q}=\partial_{p} H, \dot{p}=-\partial_{q} H$.

This particle is in contact with some heat bath with temperature $T>0$, modeled by an Ornstein-Uhlenbeck process acting as a noise on the momentum p only:

$$
\begin{aligned}
d q_{t} & =p_{t} d t \\
d p_{t} & =\left(-\gamma p_{t}-\nabla V\left(q_{t}\right)\right) d t+\sqrt{2 \gamma T} d B_{t} .
\end{aligned}
$$

Chain of oscillators in contact with two heat baths $(1 / 2)$

Chain of oscillators in contact with two heat bath reservoirs: The dynamics is given by the Hamiltoniann

$$
H(p, q)=\sum_{1 \leq i \leq d} \frac{p_{i}^{2}}{2}+V(q)
$$

with $V: \mathbb{R} \rightarrow \mathbb{R}$ in the form

$$
\sum_{1 \leq i \leq d} U^{(1)}\left(q_{i}\right)+\sum_{1 \leq i \leq d-1} U^{(2)}\left(q_{i}-q_{i+1}\right)
$$

$U^{(1)}$ is a trapping potential, $U^{(2)}$ an interaction potential.

Chain of oscillators in contact with two heat baths (2/2)

The two heat baths with temperature T_{1} and T_{d} act on the momenta of particles 1 and d like Ornstein-Uhlenbeck processes:

$$
\begin{aligned}
d q_{j}(t) & =p_{j}(t) d t \quad 1 \leq j \leq d \\
d p_{1}(t) & =\left(-\gamma p_{1}(t)-\partial_{q_{1}} V\left(q_{t}\right)\right) d t+\sqrt{2 \gamma T_{1}} d B_{1}(t) \\
d p_{j}(t) & =\left(-\partial_{q_{j}} V\left(q_{t}\right)\right) d t \quad 2 \leq j \leq d-1 \\
d p_{d}(t) & =\left(-\gamma p_{d}(t)-\partial_{q_{d}} V\left(q_{t}\right)\right) d t+\sqrt{2 \gamma T_{d}} d B_{d}(t) .
\end{aligned}
$$

For short

Chain of oscillators in contact with two heat baths (2/2)

The two heat baths with temperature T_{1} and T_{d} act on the momenta of particles 1 and d like Ornstein-Uhlenbeck processes:

$$
\begin{aligned}
d q_{j}(t) & =p_{j}(t) d t \quad 1 \leq j \leq d \\
d p_{1}(t) & =\left(-\gamma p_{1}(t)-\partial_{q_{1}} V\left(q_{t}\right)\right) d t+\sqrt{2 \gamma T_{1}} d B_{1}(t) \\
d p_{j}(t) & =\left(-\partial_{q_{j}} V\left(q_{t}\right)\right) d t \quad 2 \leq j \leq d-1 \\
d p_{d}(t) & =\left(-\gamma p_{d}(t)-\partial_{q_{d}} V\left(q_{t}\right)\right) d t+\sqrt{2 \gamma T_{d}} d B_{d}(t) .
\end{aligned}
$$

For short:

$$
\left\{\begin{aligned}
d q(t) & =p(t) d t \\
d p(t) & =\left(-\gamma \Lambda p(t)-\nabla_{q} V(q(t))\right) d t+\sqrt{2 \gamma T} d B(t)
\end{aligned}\right.
$$

where $\Lambda: \mathbb{R}^{d} \rightarrow \mathbb{R}^{2}$ is the projection $\Lambda\left(x_{1}, \ldots, x_{d}\right)=\left(x_{1}, x_{d}\right)$, $\sqrt{T}:\left(x_{1}, x_{d}\right) \rightarrow\left(\sqrt{T_{1}} x_{1}, \sqrt{T_{d}} x_{d}\right)$ and $B(t)=\left(B_{1}(t), B_{d}(t)\right)$ is a B.M. in \mathbb{R}^{2}.

Langevin dynamics

More generally, consider the following system:

$$
\left\{\begin{array}{l}
d X_{t}=Y_{t} d t \\
d Y_{t}=\left(2 \beta^{-1}\right)^{1 / 2} \sigma\left(X_{t}\right) d W_{t}-\left(\sigma^{2}\left(X_{t}\right) Y_{t}+\nabla V\left(X_{t}\right)\right) d t .
\end{array}\right.
$$

Observe that the diffusion term, $\tilde{\sigma}(x)=\left(2 \beta^{-1}\right)^{1 / 2} \sigma(x)$, depends only on the x coordinate and on an unknown parameter β. Moreover, the damping force has the form $c(x, y)=\frac{\beta}{2} \tilde{\sigma}^{2}(x)$.

Since Einstein, this last relationship between the damping force and the diffusion term is known as the fluctuation-dissipation relation and has numerous applications, e.g.,

- it appears as a tool for the simulation of molecular dynamics (see, e.g., Lelièvre et al. (2010) [Section 2.2.3]),
- it also appears as limit of the Ehrenfest nuclei dynamics and is called Langevin dynamics (see Szepessy (2011)).

A stochastic neuronal model (1/3)

See, e.g., León and Samson (2017) and references therein.

Data

- Membrane potential: difference in voltage between the interior and exterior of the cell
- High frequency records available ($\delta=0.1 \mathrm{~ms}$)

Objective

- Prediction of spike emission

Tools

- Neuronal modeling with stochastic models
- Estimation

A stochastic neuronal model $(2 / 3)$

The stochastic FitzHugh-Nagumo model is defined as follows:

$$
\left\{\begin{array}{l}
d V_{t}=\frac{1}{\varepsilon}\left(V_{t}-V_{t}^{3}-C_{t}-s\right) d t \\
d C_{t}=\left(\gamma V_{t}-C_{t}+\beta\right) d t+\tilde{\sigma} d B_{t}
\end{array}\right.
$$

- V_{t} the membrane potential of a single neuron,
- C_{t} a recovery variable / channel kinetics,
- ε the time scale separation, s the stimulus input,
- β, γ positive constants determining the position of the fixed point and the duration of the excitation,
- B_{t} a Brownian motion, $\tilde{\sigma}>0$ the diffusion coefficient.

A stochastic neuronal model (3/3)

Defining $X_{t}=V_{t}$ and $Y_{t}=\frac{1}{\varepsilon}\left(V_{t}-V_{t}^{3}-C_{t}-s\right)$, we get:

$$
\left\{\begin{array}{l}
d X_{t}=Y_{t} d t \\
d Y_{t}=\frac{1}{\varepsilon}\left(Y_{t}\left(1-\varepsilon-3 X_{t}^{2}\right)-X_{t}(\gamma-1)-X_{t}^{3}-(s+\beta)\right) d t+\frac{\tilde{\sigma}}{\varepsilon} d B_{t}
\end{array}\right.
$$

Let $\nabla V(x)=\frac{1}{\varepsilon}\left(x(\gamma-1)+x^{3}+(s+\beta)\right)$ and $c(x)=\frac{1}{\varepsilon}\left(-1+\varepsilon+3 x^{2}\right)$.
We recognize the system governing the dynamics of a particle with X_{t} referring to its position and Y_{t} to its velocity, whose movement is guided by a potential $V(x)$ and a damping force $c(x)$.

$$
\left\{\begin{array}{l}
d X_{t}=Y_{t} d t \\
d Y_{t}=-\left(c\left(X_{t}\right) Y_{t}+\nabla V\left(X_{t}\right)\right) d t+\sigma d B_{t}
\end{array}\right.
$$

with $\sigma=\frac{\tilde{\sigma}}{\varepsilon}$.

Outline of the talk

(1) Introduction
(2) Assumptions, probabilistic properties of the model 3 Adaptive estimation

4 Numerical results

Assumptions

$Z_{t}=\left(X_{t}, Y_{t}\right) \in \mathbb{R}^{2 d}$ governed by:

$$
\left\{\begin{array}{l}
d X_{t}=Y_{t} d t \\
d Y_{t}=-\left(c\left(X_{t}, Y_{t}\right) Y_{t}+\nabla V\left(X_{t}\right)\right) d t+\sigma d B_{t}
\end{array}\right.
$$

with $\sigma>0$.
\mathcal{H}_{1} The potential $V(x)$ is smooth over \mathbb{R}^{d} and lower bounded.
\mathcal{H}_{2} The damping force $c(x, y)$ is smooth, bounded, and there exist c, $M>0$ s.t. $c^{s}(x, y) \geq c l d>0, \forall\left(|x|>M, y \in \mathbb{R}^{d}\right)$.
From $\mathbf{W u}$ (2001), we know that for every initial state $z=(x, y) \in \mathbb{R}^{2 d}$, the system admits a unique weak solution, and that this solution is non-explosive.

The infinitesimal generator writes:

$$
L=\frac{\sigma^{2}}{2} \partial_{y y}+y \partial_{x}-\left(c(x, y) y+\nabla_{x} V(x)\right) \partial_{y} .
$$

Local properties, hypoellipticity (1/4)

L can be written in Hörmander's form

$$
L=\frac{\sigma^{2}}{2} \sum_{i=1}^{d} L_{i}^{2}+L_{0}
$$

with vector fields L_{i} defined by
(1) pour $1 \leq i \leq d, L_{i}=\frac{\partial}{\partial y_{i}}$,
(2)

$$
L_{0}=\sum_{k=1}^{d} y_{k} \frac{\partial}{\partial x_{k}}-\sum_{k=1}^{d}\left((c(x, y) y)_{k}+\frac{\partial V}{\partial x_{k}}\right) \frac{\partial}{\partial y_{k}} .
$$

It holds

$$
\left[L_{i}, L_{0}\right]=L_{i} L_{0}-L_{0} L_{i}=\frac{\partial}{\partial x_{i}}-\sum_{k=1}^{d} \frac{\partial\left((c(x, y) y)_{k}\right)}{\partial y_{i}} \frac{\partial}{\partial y_{k}}
$$

so that $\left\{L_{i}, 1 \leq i \leq d ;\left[L_{i}, L_{0}\right], 1 \leq i \leq d\right\}(z)$ span $\mathbb{R}^{2 d}$, for all z.

Local properties, hypoellipticity (2/4)

\Rightarrow hypoellipticity (Hörmander sum of squares theorem).
Consequence: $\forall z, \forall t>0$, the distribution $P_{t}(z, \cdot)$ of Z_{t} starting at z at time 0 admits a C^{∞} density $p_{t}(z, \cdot)$ w.r.t. Lebesgue.
Hence, $\mu(d z)=p_{s}(z) d z$ with $p_{s} C^{\infty}$, and thus the strong Feller property. Small time behavior of $p_{t}(z, \cdot)$?

Example: $d=1, c=V=0$. Then Z_{t} is a two dimensional gaussian vector, with mean ($x_{0}+y_{0} t, y_{0}$) and covariance matrix

So the transition density behaves, for small t, as

Local properties, hypoellipticity (2/4)

\Rightarrow hypoellipticity (Hörmander sum of squares theorem).
Consequence: $\forall z, \forall t>0$, the distribution $P_{t}(z, \cdot)$ of Z_{t} starting at z at time 0 admits a C^{∞} density $p_{t}(z, \cdot)$ w.r.t. Lebesgue.
Hence, $\mu(d z)=p_{s}(z) d z$ with $p_{s} C^{\infty}$, and thus the strong Feller property. Small time behavior of $p_{t}(z, \cdot)$?
Example: $d=1, c=V=0$. Then Z_{t} is a two dimensional gaussian vector, with mean ($x_{0}+y_{0} t, y_{0}$) and covariance matrix

$$
\operatorname{Var}\left(X_{t}\right)=\frac{t^{3}}{3}, \operatorname{Var}\left(Y_{t}\right)=t, \operatorname{Cov}\left(X_{t}, Y_{t}\right)=\frac{t^{2}}{2}
$$

So the transition density behaves, for small t, as

$$
\frac{\sqrt{3}}{\pi} \frac{1}{t^{2}} e^{-\frac{y_{0}^{2}}{6 t}} \quad \text { instead of } \quad \frac{1}{2 \pi} \frac{1}{t}
$$

which is the classical small time explosion for elliptic diffusions (like the B.M.).

Local properties, hypoellipticity (3/4)

Theorem (Konakov, Menozzi \& Molchanov, 2010)

$$
\left\{\begin{array}{l}
d X_{t}=Y_{t} d t \\
d Y_{t}=\sigma d W_{t}+b\left(X_{t}, Y_{t}\right) d t
\end{array}\right.
$$

with $b C^{\infty}$, bounded as well as all its derivatives. Let $T>0$. Then $\forall z=(x, y), \forall t>0$, the distribution of $Z_{t}=\left(X_{t}, Y_{t}\right)$ has a density $q_{t}(z,$.$) with respect to Lebesgue and \exists C, C^{\prime}>0 t . q$. for $0<t<T$,

$$
q_{t}\left(z, z^{\prime}\right) \leq C^{\prime} \frac{1}{t^{2 d}} \exp \left(-C\left[\frac{\left|y-y^{\prime}\right|^{2}}{4 t}+\frac{3\left|x^{\prime}-x-\frac{t\left(y+y^{\prime}\right)}{2}\right|^{2}}{t^{3}}\right]\right)
$$

De plus, $\exists t_{0}>0, \exists C^{\prime \prime}>0$ t.q. $\forall 0<t<t_{0}$,

$$
q_{t}((x, y),(x+t y, y)) \geq C^{\prime \prime} \frac{1}{t^{2 d}}
$$

Local properties, hypoellipticity (4/4)

We can generalize that result to a non bounded drift term.

Corollary (Cattiaux, León \& Prieur, 2014)

We do no more assume boundedness.
$\forall z$, for any open neighborhood U of z, one can write:

$$
\forall z^{\prime} \in U, \forall 0<t<T, p_{t}\left(z, z^{\prime}\right) \leq q_{t}\left(z, z^{\prime}\right)+C(U) e^{-\frac{c^{\prime}(U)}{t}}
$$

for constants $C(U)$ and $C^{\prime}(U)>0$.
We also prove

$$
\forall\left(z, z^{\prime}\right), \exists 0<C\left(z^{\prime}\right) \text { s.t. } \forall t \geq 0, p_{t}\left(z, z^{\prime}\right) \leq D\left(z^{\prime}\right)<+\infty .
$$

Long time behavior, coercivity and mixing (1/2)

We now add the following assumption $\mathcal{H}_{3} V$ and ∇V have polynomial growth at infinity with

$$
+\infty \geq \liminf _{|x| \rightarrow+\infty} \frac{x \cdot \nabla V(x)}{|x|} \geq v>0 \quad \text { (drift's condition) }
$$

The force $-\nabla V(x)$ is "strong enough" for $|x|$ large to ensure a quick return of the system to compact subsets of $\mathbb{R}^{2 d}$.

Under $\mathcal{H}_{i}, i=1,2,3$, the process $Z_{t}=\left(X_{t}, Y_{t}\right)$ is positive recurrent with a unique invariant probability measure μ. Moreover, moments of any order of μ exist: for all $k_{1}, k_{2} \in \mathbb{N}$,

$$
\mathbb{E}\left(X_{t}^{k_{1}} Y_{t}^{k_{2}}\right)=\int x^{k_{1}} y^{k_{2}} d \mu(x, y)<+\infty
$$

Scheme of proof: the proof involves the construction of a Lyapunov function $\Psi(x, y)$, such that there exist a compact $K \in \mathbb{R}^{2 d}$ and constants $C, \xi>0$, such that $-\frac{L \Psi}{\Psi} \geq \xi \mathbb{1}_{K^{c}}-C \mathbb{1}_{K}$. The choice of the Lyapounov function is not trivial. See, e.g., Wu (2001) .

Long time behavior, coercivity and mixing (2/2)

For any z, let's $P_{t} f(z)=\mathbb{E}_{z}\left(f\left(Z_{t}\right)\right)$ for bounded f 's.
$\psi \in \mathbb{L}^{1}(\mu)$. There exist $D>0$ and $\rho<1$ s.t. for all z, all f s.t. $\sup _{z} \frac{|f(z)|}{\psi(z)}<+\infty$,

$$
\left|P_{t} f(z)-\int f d \mu\right| \leq D \sup _{a}\left(\frac{\left.\mid f(a)-\int f d \mu\right]}{\psi(a)}\right) \psi(z) \rho^{t} .
$$

It follows that $\left(Z_{t}:=\left(X_{t}, Y_{t}\right), t \geq 0\right)$ is β-mixing.

Outline of the talk

(2) Assumptions, probabilistic properties of the model
(3) Adaptive estimation

4 Numerical results

Invariant density estimators

Complete observations: we observe both coordinates X_{t} and Y_{t} at discrete times $i \delta, i=1, \ldots, n$. Let K be a kernel function, $b=\left(b_{1}, b_{2}\right)$ a bandwidth.

$$
\check{\mathrm{p}}_{s}(x, y):=\frac{1}{n b_{1}^{d} b_{2}^{d}} \sum_{i=1}^{n} K\left(\frac{x-X_{i \delta}}{b_{1}}, \frac{y-Y_{i \delta}}{b_{2}}\right) .
$$

Now we do not observe y anymore.

Partial observations:

Main issue: the choice of the bandwidth $b=\left(b_{1}, b_{2}\right)$

Invariant density estimators

Complete observations: we observe both coordinates X_{t} and Y_{t} at discrete times $i \delta, i=1, \ldots, n$. Let K be a kernel function, $b=\left(b_{1}, b_{2}\right)$ a bandwidth.

$$
\check{\mathrm{p}}_{s}(x, y):=\frac{1}{n b_{1}^{d} b_{2}^{d}} \sum_{i=1}^{n} K\left(\frac{x-X_{i \delta}}{b_{1}}, \frac{y-Y_{i \delta}}{b_{2}}\right) .
$$

Now we do not observe y anymore.

Partial observations:

$$
\hat{p}_{s}(x, y):=\frac{1}{n b_{1}^{d} b_{2}^{d}} \sum_{i=1}^{n-1} K\left(\frac{x-X_{i \delta}}{b_{1}}, \frac{y-\frac{X_{(i+1) \delta}-X_{i \delta}}{\delta}}{b_{2}}\right) .
$$

Main issue: the choice of the bandwidth $b=\left(b_{1}, b_{2}\right)$.

Adaptive estimation (1/2)

Data-driven procedure [Comte, Prieur, Samson, 2017]
Our selection criterion is based on Goldenshluger and Lepski (2011).
Let $\check{\mathrm{p}}_{b, b^{\prime}}=K_{b^{\prime}} \star \check{\mathrm{p}}_{b}(x, y)$, with $K_{b^{\prime}}(u, v)=\frac{1}{b_{1}^{\prime} b_{2}^{\prime}} K\left(\frac{u}{b_{1}^{\prime}}, \frac{v}{b_{2}^{\prime_{2}}}\right)$. Let
$p_{b}=K_{b} \star p$. In the following, $d=1$.

$$
\tilde{b}=\arg \min _{b \in \mathcal{B}_{n}}(A(b)+U(b)), \text { with }
$$

- $\mathcal{B}_{n}=\left\{\left(b_{1, k}, b_{2, \ell}\right)=(1 / k, 1 / \ell), k, \ell=1, \ldots, B_{n}\right\}$,
- $A(b)$ mimicking the bias $\left(=\sup _{b^{\prime} \in \mathcal{B}_{n}}\left(\left\|\check{p}_{b, b^{\prime}}-\check{p}_{b^{\prime}}\right\|^{2}-U\left(b^{\prime}\right)\right)_{+}\right)$
- $V(b)$ mimicking the variance $\left(=\kappa \frac{\|K\|_{1}^{2}\|K\|^{2}}{n b_{1} b_{2}} \sum_{i=0}^{n-1} \beta(i \delta)\right)$

$$
\mathbb{E}\left(\left\|\check{p}_{\check{b}}-p\right\|^{2}\right) \leq C \inf _{b \in \mathcal{B}_{n}}\left(\left\|p-p_{b}\right\|^{2}+U(b)\right)+C^{\prime} \frac{\log (n)}{n \delta} .
$$

κ can then be calibrated by the slope heuristic (see Arlot and Massart, 2009, Lacour et al., 2016). Same results in the partial observations case.

Adaptive estimation (2/2)

That procedure is numerically demanding due to the double convolutions $\check{p}_{b, b^{\prime}}$, especially in the multidimensional case.

In practice, we implement the selection procedure in Lacour, Massart and Rivoirard (2016):

$$
\hat{b}=\arg \min _{b \in \mathcal{B}_{n}}\left(\left\|\check{\mathrm{p}}_{b}-\check{\mathrm{p}}_{b_{\text {min }}}\right\|^{2}+U(b)\right) \text { with }
$$

$b_{\text {min }}=\left(\min _{1 \leq k \leq B_{n}} b_{1, k}, \min _{1 \leq \ell \leq B_{n}} b_{2, \ell}\right)$.

Outline of the talk

(2) Assumptions, probabilistic properties of the model

3 Adaptive estimation
(4) Numerical results

Numerical results (1/4)

Harmonic Oscillator:

$$
\left\{\begin{aligned}
d X_{t} & =Y_{t} d t \\
d Y_{t} & =-\left(\alpha X_{t}+\gamma Y_{t}\right) d t+\sigma d B_{t}
\end{aligned}\right.
$$

with $\alpha>0, \gamma>0$. In the following, we choose $\alpha=4, \gamma=0.5, \sigma=0.5$. The potential is then $V(x)=\alpha / 2 x^{2}$. The stationary distribution is Gaussian, with mean zero and explicit diagonal variance matrix:

$$
p(x, y)=\frac{\gamma \sqrt{\alpha}}{\pi \sigma^{2}} \exp \left(-\frac{2 \gamma}{2 \sigma^{2}} y^{2}-\frac{2 \gamma \alpha}{2 \sigma^{2}} x^{2}\right)
$$

with diagonal variances equal to $1 / 16$ and $1 / 4$, respectively in our case.

Numerical results (2/4)

Kernel estimation of the invariant density:

- complete observations (top)
- partial observations (bottom)
$n=2000, \delta=0.2$.
100 trajectories simulated with a Euler scheme with step size $\delta / 10$.

$\left.\mathcal{B}_{n}=\left\{\left(b_{1}, b_{2}\right) \in\{1 / \sqrt{4 n}, 2 / \sqrt{4 n}, \ldots, 30 / \sqrt{4 n}\}^{2}\right\}\right\}$. Anisotropic selected bandwidth $\hat{b}=(8 / \sqrt{4 n}, 17 / \sqrt{4 n})$ (complete), $\hat{b}=(9 / \sqrt{4 n}, 19 / \sqrt{4 n})$ (partial).

Numerical results (3/4)

Van Der Pol Oscillator:

$$
\left\{\begin{array}{l}
d X_{t}=Y_{t} d t \\
d Y_{t}=-\left(\left(c_{1} X_{t}^{2}-c_{2}\right) Y_{t}+\omega_{0}^{2} X_{t}\right) d t+\sigma d B_{t}
\end{array}\right.
$$

with $\sigma, c_{1}, c_{2}, \omega_{0}^{2}>0$. In the following, we choose $\sigma=c_{1}=c_{2}=\omega_{0}^{2}=1$. The potential is then $V(x)=\omega_{0}^{2} / 2 x^{2}$. The invariant density p satisfies Fokker-Planck equation:

$$
\frac{1}{2} \frac{\partial^{2} p(x, y)}{\partial y^{2}}-y \frac{\partial p(x, y)}{\partial x}+c(x) p(x, y)+(c(x) y+\nabla D(x)) \frac{\partial p(x, y)}{\partial y}=0
$$

solved with finite difference scheme (see Kumar et al., 2006).

Sample $\left(X_{i \delta}\right)_{i=0, \ldots, n}$ (top left), $\left(Y_{i \delta}\right)_{i=0, \ldots, n}$ (top right) and state
 phase (bottom) for $\delta=0.5$ and $n=2000$.

Numerical results (4/4)

Kernel estimation of the invariant density:

- complete observations (top)
- partial observations (bottom)
$n=2000, \delta=0.05$.
100 trajectories simulated with a Euler scheme with step size $\delta / 10$.

Conclusion, perspectives

Conclusion: we obtained

- non parametric (recursive) estimation for the invariant density (Cattiaux et al., 2014a, 2015),
- a data-driven procedure for the selection of the bandwidth (see Comte et al., 2016),
- see also Cattiaux et al. $(2014 b, 2016,2017)$ for the estimation of the drift and of the diffusion matrix.

We have considered the more realistic non trivial case of partial observations.

Perspectives:

- to consider more complex models which are more realistic for environmental modeling (non linear Fokker-Planck equations, confined models, degenerated variances, ...),
- adaptive estimation in higher dimension,
- adaptivity with respect to δ,
- .. .

Some references I

Arlot, S. and Massart, P. (2009).
Data-driven calibration of penalties for least-squares regression.
Journal of Machine Learning Research, 10:245-279.

Cattiaux, P., León, J. R., Pineda Centeno, A., and Prieur, C. (2017).
An overlook on statistical inference issues for stochastic damping hamiltonian systems under the fluctuation-dissipation condition.
Statistics, 51(1):11-29.

Cattiaux, P., León, J. R., and Prieur, C. (2014a).
Estimation for stochastic damping hamiltonian systems under partial observation. IInvariant density.
Stochastic Processes and their Applications, 124(3):1236-1260.
Cattiaux, P., León, J. R., and Prieur, C. (2014b).
Estimation for stochastic damping hamiltonian systems under partial observation. II-Drift term.
ALEA (Latin American Journal of Probability and Statistics), 11(1):p-359.
Cattiaux, P., León, J. R., and Prieur, C. (2015).
Recursive estimation for stochastic damping hamiltonian systems.
Journal of Nonparametric Statistics, 27(3):401-424.

Some references II

Cattiaux, P., León, J. R., and Prieur, C. (2016).
Estimation for stochastic damping hamiltonian systems under partial observation. III-Diffusion term.
Ann. Appl. Probab., 26(3):1581-1619.
Comte, F., Prieur, C., and Samson, A.
Adaptive estimation for stochastic damping hamiltonian systems under partial observation.
to appear in Stochastic Processes and their Applications.
Goldenshluger, A. and Lepski, O. (2011).
Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality.
The Annals of Statistics, pages 1608-1632.
Konakov, V., Menozzi, S., and Molchanov, S. (2010).
Explicit parametrix and local limit theorems for some degenerate diffusion processes.
Annales de l'institut Henri Poincaré (B), 46(4):908-923.
Kumar, P. and Narayanan, S. (2006).
Solution of fokker-planck equation by finite element and finite difference methods for nonlinear systems.
Sadhana, 31:445-461.

Some references III

Lacour, C., Massart, P., and Rivoirard, V. (2016).
Estimator selection: a new method with applications to kernel density estimation.
Arxiv Preprint arXiv:1607.05091v1.
Lelièvre, T., Stoltz, G., and Rousset, M. (2010).
Free energy computations: A mathematical perspective.
World Scientific.
Leon, J. R. and Samson, A. (2017).
Hypoelliptic stochastic FitzHugh-Nagumo neuronal model: mixing, up-crossing and estimation of the spike rate.
hal-01492590.
Szepessy, A. (2011).
Langevin molecular dynamics derived from ehrenfest dynamics.
Mathematical Models and Methods in Applied Sciences, 21(11):2289-2334.
Wu, L. (2001).
Large and moderate deviations and exponential convergence for stochastic damping hamiltonian systems.
Stochastic processes and their applications, 91(2):205-238.

Thanks for your attention

Happy birthday Parabéns!

