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Model

We consider a damped hamiltonian system with stochastic noise:�
Z
t

:= (X
t

,Y
t

) 2 R2d , t � 0
�

given by the s.d.e.

⇢
dX

t

= Y
t

dt
dY

t

= �(X
t

,Y
t

)dB
t

� (c(X
t

,Y
t

)Y
t

+rV (X
t

))dt

where B is a standard Brownian motion.
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Particle in contact with a heat bath

Particle in a contact with a heat thermal reservoir:
Consider a particle in a potential V . Its dynamics is described through
the Hamiltonian H(p, q) = 1

2 p
2 + V (q): q̇ = @

p

H, ṗ = �@
q

H.

This particle is in contact with some heat bath with temperature T > 0,
modeled by an Ornstein-Uhlenbeck process acting as a noise on the
momentum p only:

dq
t

= p
t

dt
dp

t

= (��p
t

�rV (q
t

))dt +
p

2�TdB
t

.
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Chain of oscillators in contact with two heat baths (1/2)

Chain of oscillators in contact with two heat bath reservoirs:
The dynamics is given by the Hamiltoniann

H(p, q) =
X

1id

p2
i

2
+ V (q)

with V : R ! R in the form
X

1id

U(1)(q
i

) +
X

1id�1

U(2)(q
i

� q
i+1).

U(1) is a trapping potential, U(2) an interaction potential.
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Chain of oscillators in contact with two heat baths (2/2)

The two heat baths with temperature T1 and T
d

act on the momenta of
particles 1 and d like Ornstein-Uhlenbeck processes:

dq
j

(t) = p
j

(t)dt 1  j  d

dp1(t) = (��p1(t)� @
q

1

V (q
t

))dt +
p

2�T1dB1(t)

dp
j

(t) = (�@
q

j

V (q
t

))dt 2  j  d � 1

dp
d

(t) = (��p
d

(t)� @
q

d

V (q
t

))dt +
p

2�T
d

dB
d

(t).

For short:
⇢

dq(t) = p(t)dt
dp(t) = (��⇤p(t)�r

q

V (q(t)))dt +
p

2�TdB(t)

where ⇤ : Rd ! R2 is the projection ⇤(x1, . . . , xd) = (x1, xd),p
T : (x1, xd) ! (

p
T1x1,

p
T
d

x
d

) and B(t) = (B1(t),Bd

(t)) is a B.M.
in R2.
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Langevin dynamics

More generally, consider the following system:
(
dX

t

= Y
t

dt

dY
t

= (2��1)1/2�(X
t

)dW
t

� (�2(X
t

)Y
t

+rV (X
t

))dt.

Observe that the diffusion term, �̃(x) = (2��1)1/2�(x), depends only on
the x coordinate and on an unknown parameter �. Moreover, the
damping force has the form c(x , y) = �

2 �̃
2(x).

Since Einstein, this last relationship between the damping force and the
diffusion term is known as the fluctuation-dissipation relation and has
numerous applications, e.g.,

- it appears as a tool for the simulation of molecular dynamics (see,
e.g., Lelièvre et al. (2010) [Section 2.2.3] ),

- it also appears as limit of the Ehrenfest nuclei dynamics and is called
Langevin dynamics (see Szepessy (2011) ).
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A stochastic neuronal model (1/3)

See, e.g., León and Samson (2017) and references therein.

Data
Membrane potential:
difference in voltage
between the interior and
exterior of the cell
High frequency records
available (� = 0.1 ms)
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Prediction of spike emission
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Neuronal modeling with
stochastic models
Estimation 0 100 200 300 400 500 600

-6
0

-4
0

-2
0

0
2
0

time (ms)

V
 (

m
V

)



Introduction Assumptions, probabilistic properties of the model Adaptive estimation Numerical results

A stochastic neuronal model (2/3)
The stochastic FitzHugh-Nagumo model is defined as follows:

8
<

:
dV

t

=
1
"
(V

t

� V 3
t

� C
t

� s)dt

dC
t

= (�V
t

� C
t

+ �)dt + �̃dB
t

V
t

the membrane potential of a single neuron,
C
t

a recovery variable / channel kinetics,
" the time scale separation, s the stimulus input,
�, � positive constants determining the position of the fixed point
and the duration of the excitation,
B
t

a Brownian motion, �̃ > 0 the diffusion coefficient.
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A stochastic neuronal model (3/3)

Defining X
t

= V
t

and Y
t

= 1
" (Vt

� V 3
t

� C
t

� s), we get:
8
<

:

dX
t

= Y
t

dt

dY
t

=
1
"
(Y

t

(1 � "� 3X 2
t

)� X
t

(� � 1)� X 3
t

� (s + �))dt +
�̃

"
dB

t

.

Let rV (x) = 1
" (x(� � 1) + x3 + (s + �)) and c(x) = 1

" (�1 + "+ 3x2).

We recognize the system governing the dynamics of a particle with X
t

referring to its position and Y
t

to its velocity, whose movement is guided
by a potential V (x) and a damping force c(x).

(
dX

t

= Y
t

dt

dY
t

= �(c(X
t

)Y
t

+rV (X
t

))dt + �dB
t

with � = �̃
" .
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Assumptions

Z
t

= (X
t

,Y
t

) 2 R2d
governed by:

(
dX

t

= Y
t

dt

dY
t

= �(c(X
t

,Y
t

)Y
t

+rV (X
t

))dt + �dB
t

,

with � > 0.

H1 The potential V (x) is smooth over Rd and lower bounded.
H2 The damping force c(x , y) is smooth, bounded, and there exist c ,

M > 0 s.t. cs(x , y) � cId > 0, 8 (|x | > M, y 2 Rd).
From Wu (2001) , we know that for every initial state z = (x , y) 2 R2d ,
the system admits a unique weak solution, and that this solution is
non-explosive.

The infinitesimal generator writes:

L =
�2

2
@
yy

+ y@
x

� (c(x , y)y +r
x

V (x))@
y

.
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Local properties, hypoellipticity (1/4)

L can be written in Hörmander’s form

L =
�2

2

dX

i=1

L2
i

+ L0

with vector fields L
i

defined by
(1) pour 1  i  d , L

i

= @
@y

i

,

(2)

L0 =
dX

k=1

y
k

@

@x
k

�
dX

k=1

✓
(c(x , y)y)

k

+
@V

@x
k

◆
@

@y
k

.

It holds

[L
i

, L0] = L
i

L0 � L0Li =
@

@x
i

�
dX

k=1

@((c(x , y)y)
k

)

@y
i

@

@y
k

so that {L
i

, 1  i  d ; [L
i

, L0], 1  i  d}(z) span R2d , for all z .
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Local properties, hypoellipticity (2/4)
) hypoellipticity (Hörmander sum of squares theorem).

Consequence: 8 z , 8 t > 0,
the distribution P

t

(z , ·) of Z
t

starting at z at time 0 admits a C1 density
p
t

(z , ·) w.r.t. Lebesgue.

Hence, µ(dz) = p
s

(z)dz with p
s

C1, and thus the strong Feller property.

Small time behavior of p
t

(z , ·) ?

Example: d = 1, c = V = 0. Then Z
t

is a two dimensional gaussian
vector, with mean (x0 + y0t, y0) and covariance matrix

Var(X
t

) =
t3

3
, Var(Y

t

) = t, Cov(X
t

,Y
t

) =
t2

2
.

So the transition density behaves, for small t, as
p

3
⇡

1
t2

e�
y

2

0

6 t

instead of

1
2⇡

1
t

which is the classical small time explosion for elliptic diffusions (like the
B.M.).
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Local properties, hypoellipticity (3/4)

Theorem (Konakov, Menozzi & Molchanov, 2010)
(
dX

t

=Y
t

dt

dY
t

=� dW
t

+ b(X
t

,Y
t

)dt ,

with b C1
, bounded as well as all its derivatives. Let T > 0. Then

8 z = (x , y), 8 t > 0, the distribution of Z
t

= (X
t

,Y
t

) has a density

q
t

(z , .) with respect to Lebesgue and 9C , C 0 > 0 t.q. for 0 < t < T ,

q
t

(z , z 0)  C 0 1
t2d

exp

0

B@�C

2

64
|y � y 0|2

4t
+

3
���x 0 � x � t(y+y

0)
2

���
2

t3

3

75

1

CA .

De plus, 9 t0 > 0 , 9C 00 > 0 t.q. 8 0 < t < t0,

q
t

((x , y) , (x + ty , y)) � C 00 1
t2d

.
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Local properties, hypoellipticity (4/4)

We can generalize that result to a non bounded drift term.

Corollary (Cattiaux, León & Prieur, 2014)

We do no more assume boundedness.

8 z , for any open neighborhood U of z , one can write:

8 z 0 2 U , 8 0 < t < T , p
t

(z , z 0)  q
t

(z , z 0) + C (U)e�
C

0(U)
t

for constants C (U) and C 0(U) > 0.

We also prove

8 (z , z 0) , 9 0 < C (z 0) s.t. 8 t � 0 , p
t

(z , z 0)  D(z 0) < +1 .
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Long time behavior, coercivity and mixing (1/2)
We now add the following assumption
H3 V and rV have polynomial growth at infinity with

+1 � lim inf
|x|!+1

x ·rV (x)

|x | � v > 0 (drift’s condition).

The force �rV (x) is "strong enough" for |x | large to ensure a quick
return of the system to compact subsets of R2d .

Under H
i

, i = 1, 2, 3, the process Z
t

= (X
t

,Y
t

) is positive recurrent with

a unique invariant probability measure µ. Moreover, moments of any

order of µ exist: for all k1, k2 2 N,

E(X k

1

t

Y k

2

t

) =

Z
xk1yk

2dµ(x , y) < +1 .

Scheme of proof: the proof involves the construction of a Lyapunov
function  (x , y), such that there exist a compact K 2 R2d and constants
C , ⇠ > 0, such that �L 

 � ⇠1
K

c � C1
K

. The choice of the Lyapounov
function is not trivial. See, e.g., Wu (2001) .
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Long time behavior, coercivity and mixing (2/2)

For any z , let’s P
t

f (z) = E
z

(f (Z
t

)) for bounded f ’s.

 2 L1(µ). There exist D > 0 and ⇢ < 1 s.t. for all z , all f s.t.

sup
z

|f (z)|
 (z) < +1,

����Pt

f (z)�
Z

fdµ

����  D sup
a

✓ |f (a)� R fdµ]

 (a)

◆
 (z)⇢t .

It follows that (Z
t

:= (X
t

,Y
t

) , t � 0) is �-mixing.
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Invariant density estimators

Complete observations: we observe both coordinates X
t

and Y
t

at
discrete times i�, i = 1, . . . , n. Let K be a kernel function, b = (b1, b2) a
bandwidth.

p̌

s

(x , y) :=
1

nbd1b
d

2

nX

i=1

K

✓
x � X

i�

b1
,
y � Y

i�

b2

◆
.

Now we do not observe y anymore.

Partial observations:

p̂
s

(x , y) :=
1

nbd1b
d

2

n�1X

i=1

K

 
x � X

i�

b1
,
y � X(i+1)��X

i�

�

b2

!
.

Main issue: the choice of the bandwidth b = (b1, b2).
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Adaptive estimation (1/2)

Data-driven procedure [Comte, Prieur, Samson, 2017]
Our selection criterion is based on Goldenshluger and Lepski (2011).

Let p̌

b,b0 = K
b

0 ? p̌

b

(x , y), with K
b

0(u, v) = 1
b

0
1

b

0
2

K ( u

b

0
1

, v

b

0
2

). Let
p
b

= K
b

? p. In the following, d = 1.

b̃ = arg min
b2B

n

(A(b) + U(b)) , with

B
n

= {(b1,k , b2,`) = (1/k , 1/`), k , ` = 1, . . . ,B
n

},
A(b) mimicking the bias (= sup

b

02B
n

(kp̌
b,b0 � p̌

b

0k2 � U(b0))+)

V (b) mimicking the variance (= kKk2

1

kKk2

nb

1

b

2

P
n�1
i=0 �(i�))

E
�kp̌

b̃

� pk2�  C inf
b2B

n

�kp � p
b

k2 + U(b)
�
+ C 0 log(n)

n�
.

 can then be calibrated by the slope heuristic (see Arlot and Massart,
2009, Lacour et al., 2016). Same results in the partial observations case.
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Adaptive estimation (2/2)

That procedure is numerically demanding due to the double convolutions
p̌

b,b0 , especially in the multidimensional case.

In practice, we implement the selection procedure in Lacour, Massart and
Rivoirard (2016):

b̂ = arg min
b2B

n

�kp̌
b

� p̌

b

min

k2 + U(b)
�

with

b
min

= (min1kB

n

b1,k ,min1`B

n

b2,`).
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Numerical results (1/4)

Harmonic Oscillator:
(
dX

t

=Y
t

dt

dY
t

=� (↵X
t

+ �Y
t

)dt + �dB
t

with ↵ > 0, � > 0. In the following, we choose ↵ = 4, � = 0.5,� = 0.5.
The potential is then V (x) = ↵/2x2. The stationary distribution is
Gaussian, with mean zero and explicit diagonal variance matrix:

p(x , y) =
�
p
↵

⇡�2 exp(� 2�
2�2 y

2 � 2�↵
2�2 x

2)

with diagonal variances equal to 1/16 and 1/4, respectively in our case.
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Numerical results (2/4)

Kernel estimation of the invariant
density:

complete observations (top)
partial observations
(bottom)

n = 2000, � = 0.2.
100 trajectories simulated with a
Euler scheme with step size �/10.
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dens
ity

B
n

= {(b1, b2) 2 {1/p4n, 2/
p

4n, . . . , 30/
p

4n}2}}. Anisotropic selected
bandwidth b̂ = (8/

p
4n, 17/

p
4n) (complete), b̂ = (9/

p
4n, 19/

p
4n)

(partial).
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Numerical results (3/4)

Van Der Pol Oscillator:
(
dX

t

=Y

t

dt

dY

t

=� ((c1X
2
t

� c2)Yt

+ !2
0Xt

)dt + �dB
t

with �, c1, c2,!
2
0 > 0. In the following, we choose � = c1 = c2 = !2

0 = 1.
The potential is then V (x) = !2

0/2x
2. The invariant density p satisfies

Fokker-Planck equation:

1

2

@2
p(x , y)
@y2 � y

@p(x , y)
@x

+ c(x)p(x , y) + (c(x)y +rD(x))
@p(x , y)

@y
= 0

solved with finite difference scheme (see Kumar et al., 2006).

Sample (X
i�)i=0,...,n (top left),

(Y
i�)i=0,...,n (top right) and state

phase (bottom) for � = 0.5 and

n = 2000.
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Numerical results (4/4)

Kernel estimation of the invariant
density:

complete observations (top)
partial observations
(bottom)

n = 2000, � = 0.05.
100 trajectories simulated with a
Euler scheme with step size �/10.
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Conclusion, perspectives

Conclusion: we obtained
non parametric (recursive) estimation for the invariant density

(Cattiaux et al., 2014a, 2015 ),

a data-driven procedure for the selection of the bandwidth

(see Comte et al., 2016 ),

see also Cattiaux et al. (2014b,2016,2017) for the estimation of the drift

and of the diffusion matrix.

We have considered the more realistic non trivial case of partial
observations.

Perspectives:

to consider more complex models which are more realistic for
environmental modeling (non linear Fokker-Planck equations,
confined models, degenerated variances, . . . ),
adaptive estimation in higher dimension,
adaptivity with respect to �,
. . .
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Thanks for your attention

Happy birthday
Parabéns !
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