In honour of the 19th :-) birthday of Patrick and Christian

June, 2017

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Nonparametric estimation for stochastic damping Hamiltonian systems under partial observation

Clémentine PRIEUR

informatiques (methiese tique

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Joint work with

 Patrick Cattiaux (Toulouse, France), Jose R. León and Angie A. Pineda Centeno (Caracas, Venezuela)

• Fabienne Comte (Paris, France), Adeline Samson (Grenoble, France)

イロト 不同下 イヨト イヨト ヨー ろくで

Outline of the talk

2 Assumptions, probabilistic properties of the model

Assumptions, probabilistic properties of the model

Adaptive estimation

Numerical results

Outline of the talk

Assumptions, probabilistic properties of the model

3 Adaptive estimation

4 Numerical results

▲□▶ ▲圖▶ ▲注▶ ▲注▶ … 注: わんぐ

Introduction	Assumptions, probabilistic properties of the model	Adaptive estimation	Numerical results
Model			

We consider a damped hamiltonian system with stochastic noise: $(Z_t := (X_t, Y_t) \in \mathbb{R}^{2d}, t \ge 0)$ given by the s.d.e.

$$\begin{cases} dX_t = Y_t dt \\ dY_t = \sigma(X_t, Y_t) dB_t - (c(X_t, Y_t)Y_t + \nabla V(X_t)) dt \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where B is a standard Brownian motion.

ション ふゆ アメリア メリア しょうくの

Particle in contact with a heat bath

Particle in a contact with a heat thermal reservoir:

Consider a particle in a potential V. Its dynamics is described through the Hamiltonian $H(p,q) = \frac{1}{2}p^2 + V(q)$: $\dot{q} = \partial_p H$, $\dot{p} = -\partial_q H$.

This particle is in contact with some heat bath with temperature T > 0, modeled by an Ornstein-Uhlenbeck process acting as a noise on the momentum p only:

$$\begin{array}{lll} dq_t &=& p_t dt \\ dp_t &=& (-\gamma p_t - \nabla V(q_t)) dt + \sqrt{2\gamma T} dB_t. \end{array}$$

Chain of oscillators in contact with two heat baths (1/2)

Chain of oscillators in contact with two heat bath reservoirs: The dynamics is given by the Hamiltoniann

$$H(p,q) = \sum_{1 \leq i \leq d} \frac{p_i^2}{2} + V(q)$$

with $V\,:\,\mathbb{R} o\mathbb{R}$ in the form

$$\sum_{1 \leq i \leq d} U^{(1)}(q_i) + \sum_{1 \leq i \leq d-1} U^{(2)}(q_i - q_{i+1}).$$

 $U^{(1)}$ is a trapping potential, $U^{(2)}$ an interaction potential.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Assumptions, probabilistic properties of the model

Chain of oscillators in contact with two heat baths (2/2)

The two heat baths with temperature T_1 and T_d act on the momenta of particles 1 and *d* like Ornstein-Uhlenbeck processes:

$$\begin{array}{lll} dq_j(t) &=& p_j(t)dt \quad 1 \leq j \leq d \\ \\ dp_1(t) &=& (-\gamma p_1(t) - \partial_{q_1} V(q_t))dt + \sqrt{2\gamma T_1} dB_1(t) \\ \\ dp_j(t) &=& (-\partial_{q_j} V(q_t))dt \quad 2 \leq j \leq d-1 \\ \\ \\ dp_d(t) &=& (-\gamma p_d(t) - \partial_{q_d} V(q_t))dt + \sqrt{2\gamma T_d} dB_d(t). \end{array}$$

For short:

$$\begin{cases} dq(t) = p(t)dt \\ dp(t) = (-\gamma \Lambda p(t) - \nabla_q V(q(t)))dt + \sqrt{2\gamma T} dB(t) \end{cases}$$

where $\Lambda : \mathbb{R}^d \to \mathbb{R}^2$ is the projection $\Lambda(x_1, \ldots, x_d) = (x_1, x_d)$, $\sqrt{T} : (x_1, x_d) \to (\sqrt{T_1}x_1, \sqrt{T_d}x_d)$ and $B(t) = (B_1(t), B_d(t))$ is a B.M. in \mathbb{R}^2 .

Assumptions, probabilistic properties of the model

Chain of oscillators in contact with two heat baths (2/2)

The two heat baths with temperature T_1 and T_d act on the momenta of particles 1 and *d* like Ornstein-Uhlenbeck processes:

$$\begin{array}{lll} dq_j(t) &=& p_j(t)dt \quad 1 \leq j \leq d \\ \\ dp_1(t) &=& (-\gamma p_1(t) - \partial_{q_1}V(q_t))dt + \sqrt{2\gamma T_1}dB_1(t) \\ \\ dp_j(t) &=& (-\partial_{q_j}V(q_t))dt \quad 2 \leq j \leq d-1 \\ \\ \\ dp_d(t) &=& (-\gamma p_d(t) - \partial_{q_d}V(q_t))dt + \sqrt{2\gamma T_d}dB_d(t). \end{array}$$

For short:

$$\begin{cases} dq(t) = p(t)dt \\ dp(t) = (-\gamma \Lambda p(t) - \nabla_q V(q(t)))dt + \sqrt{2\gamma T} dB(t) \end{cases}$$

where $\Lambda : \mathbb{R}^d \to \mathbb{R}^2$ is the projection $\Lambda(x_1, \ldots, x_d) = (x_1, x_d)$, $\sqrt{T} : (x_1, x_d) \to (\sqrt{T_1}x_1, \sqrt{T_d}x_d)$ and $B(t) = (B_1(t), B_d(t))$ is a B.M. in \mathbb{R}^2 .

Langevin dynamics

More generally, consider the following system:

$$\begin{cases} dX_t = Y_t dt \\ dY_t = (2\beta^{-1})^{1/2} \sigma(X_t) dW_t - (\sigma^2(X_t)Y_t + \nabla V(X_t)) dt. \end{cases}$$

Observe that the diffusion term, $\tilde{\sigma}(x) = (2\beta^{-1})^{1/2}\sigma(x)$, depends only on the x coordinate and on an unknown parameter β . Moreover, the damping force has the form $c(x, y) = \frac{\beta}{2}\tilde{\sigma}^2(x)$.

Since Einstein, this last relationship between the damping force and the diffusion term is known as the fluctuation-dissipation relation and has numerous applications, e.g.,

- it appears as a tool for the simulation of molecular dynamics (see, e.g., Lelièvre *et al.* (2010) [Section 2.2.3]),
- it also appears as limit of the Ehrenfest nuclei dynamics and is called Langevin dynamics (see Szepessy (2011)).

Assumptions, probabilistic properties of the model

Adaptive estimation

Numerical results

A stochastic neuronal model (1/3)

See, e.g., León and Samson (2017) and references therein.

Data

- Membrane potential: difference in voltage between the interior and exterior of the cell
- High frequency records available ($\delta = 0.1 \text{ ms}$)

Objective

• Prediction of spike emission

Tools

- Neuronal modeling with stochastic models
- Estimation

200

・ロト ・ 理 ・ ・ ヨ ・ ・ ヨ ・ ・ ク ○ ヘ

A stochastic neuronal model (2/3)

The stochastic FitzHugh-Nagumo model is defined as follows:

$$\left\{ egin{array}{l} dV_t = rac{1}{arepsilon}(V_t - V_t^3 - C_t - s)dt \ dC_t = (\gamma V_t - C_t + eta)dt + ilde{\sigma}dB_t \end{array}
ight.$$

- V_t the membrane potential of a single neuron,
- Ct a recovery variable / channel kinetics,
- ε the time scale separation, s the stimulus input,
- β , γ positive constants determining the position of the fixed point and the duration of the excitation,
- B_t a Brownian motion, $\tilde{\sigma} > 0$ the diffusion coefficient.

Assumptions, probabilistic properties of the model

Adaptive estimation

Numerical results

A stochastic neuronal model (3/3)

Defining
$$X_t = V_t$$
 and $Y_t = \frac{1}{\varepsilon}(V_t - V_t^3 - C_t - s)$, we get:

$$\begin{cases} dX_t = Y_t dt \\ dY_t = \frac{1}{\varepsilon} (Y_t (1 - \varepsilon - 3X_t^2) - X_t (\gamma - 1) - X_t^3 - (s + \beta)) dt + \frac{\tilde{\sigma}}{\varepsilon} dB_t. \end{cases}$$

Let
$$\nabla V(x) = \frac{1}{\varepsilon}(x(\gamma - 1) + x^3 + (s + \beta))$$
 and $c(x) = \frac{1}{\varepsilon}(-1 + \varepsilon + 3x^2)$.

We recognize the system governing the dynamics of a particle with X_t referring to its position and Y_t to its velocity, whose movement is guided by a potential V(x) and a damping force c(x).

$$\begin{cases} dX_t = Y_t dt \\ dY_t = -(c(X_t)Y_t + \nabla V(X_t))dt + \sigma dB_t \end{cases}$$
with $\sigma = \frac{\tilde{\sigma}}{\varepsilon}$.

Outline of the talk

2 Assumptions, probabilistic properties of the model

Assumptions

$$Z_t = (X_t, Y_t) \in \mathbb{R}^{2d}$$
 governed by:
$$\begin{cases} dX_t = Y_t dt \\ dY_t = -(c(X_t, Y_t)Y_t + \nabla V(X_t))dt + \sigma dB_t, \end{cases}$$

with $\sigma > 0$.

- \mathcal{H}_1 The potential V(x) is smooth over \mathbb{R}^d and lower bounded.
- $\begin{array}{l} \mathcal{H}_2 \ \, \text{The damping force } c(x,y) \text{ is smooth, bounded, and there exist } c, \\ M>0 \ \, \text{s.t.} \ \, c^s(x,y) \geq c ld>0, \ \forall (|x|>M, \ y\in \mathbb{R}^d). \end{array}$

From **Wu (2001)**, we know that for every initial state $z = (x, y) \in \mathbb{R}^{2d}$, the system admits a unique weak solution, and that this solution is non-explosive.

The infinitesimal generator writes:

$$L = \frac{\sigma^2}{2}\partial_{yy} + y\partial_x - (c(x,y)y + \nabla_x V(x))\partial_y.$$

Assumptions, probabilistic properties of the model

Adaptive estimation

Numerical results

Local properties, hypoellipticity (1/4)

L can be written in Hörmander's form

$$L = \frac{\sigma^2}{2} \sum_{i=1}^{d} L_i^2 + L_0$$

with vector fields L_i defined by

(1) pour
$$1 \le i \le d$$
, $L_i = \frac{\partial}{\partial y_i}$,
(2)

$$L_0 = \sum_{k=1}^{d} y_k \frac{\partial}{\partial x_k} - \sum_{k=1}^{d} \left((c(x, y)y)_k + \frac{\partial V}{\partial x_k} \right) \frac{\partial}{\partial y_k}$$

It holds

$$[L_i, L_0] = L_i L_0 - L_0 L_i = \frac{\partial}{\partial x_i} - \sum_{k=1}^d \frac{\partial ((c(x, y)y)_k)}{\partial y_i} \frac{\partial}{\partial y_k}$$

so that $\{L_i, 1 \leq i \leq d; [L_i, L_0], 1 \leq i \leq d\}(z)$ span \mathbb{R}^{2d} , for all z.

Local properties, hypoellipticity (2/4)

 \Rightarrow hypoellipticity (Hörmander sum of squares theorem).

Consequence: $\forall z, \forall t > 0$, the distribution $P_t(z, \cdot)$ of Z_t starting at z at time 0 admits a C^{∞} density $p_t(z, \cdot)$ w.r.t. Lebesgue.

Hence, $\mu(dz) = p_s(z)dz$ with $p_s C^{\infty}$, and thus the strong Feller property. Small time behavior of $p_t(z, \cdot)$?

Example: d = 1, c = V = 0. Then Z_t is a two dimensional gaussian vector, with mean $(x_0 + y_0 t, y_0)$ and covariance matrix

$$\operatorname{Var}(X_t) = \frac{t^3}{3}, \operatorname{Var}(Y_t) = t, \operatorname{Cov}(X_t, Y_t) = \frac{t^2}{2}.$$

So the transition density behaves, for small t, as

$$\frac{\sqrt{3}}{\pi} \frac{1}{t^2} e^{-\frac{y_0^2}{6t}} \quad \text{instead of} \quad \frac{1}{2\pi} \frac{1}{t}$$

which is the classical small time explosion for elliptic diffusions (like the B.M.).

Local properties, hypoellipticity (2/4)

 \Rightarrow hypoellipticity (Hörmander sum of squares theorem).

Consequence: $\forall z, \forall t > 0$, the distribution $P_t(z, \cdot)$ of Z_t starting at z at time 0 admits a C^{∞} density $p_t(z, \cdot)$ w.r.t. Lebesgue.

Hence, $\mu(dz) = p_s(z)dz$ with $p_s C^{\infty}$, and thus the strong Feller property. Small time behavior of $p_t(z, \cdot)$?

Example: d = 1, c = V = 0. Then Z_t is a two dimensional gaussian vector, with mean $(x_0 + y_0t, y_0)$ and covariance matrix

$$\operatorname{Var}(X_t) = \frac{t^3}{3}, \operatorname{Var}(Y_t) = t, \operatorname{Cov}(X_t, Y_t) = \frac{t^2}{2}.$$

So the transition density behaves, for small t, as

$$\frac{\sqrt{3}}{\pi}\frac{1}{t^2} e^{-\frac{y_0^2}{6t}} \quad \text{instead of} \quad \frac{1}{2\pi}\frac{1}{t}$$

which is the classical small time explosion for elliptic diffusions (like the B.M.).

Assumptions, probabilistic properties of the model

Adaptive estimation

Numerical results

Local properties, hypoellipticity (3/4)

Theorem (Konakov, Menozzi & Molchanov, 2010)

$$\begin{cases} dX_t = Y_t dt \\ dY_t = \sigma \, dW_t + b(X_t, Y_t) dt \, , \end{cases}$$

with b C^{∞} , bounded as well as all its derivatives. Let T > 0. Then $\forall z = (x, y), \forall t > 0$, the distribution of $Z_t = (X_t, Y_t)$ has a density $q_t(z, .)$ with respect to Lebesgue and $\exists C, C' > 0$ t.q. for 0 < t < T,

$$q_t(z,z') \leq C' \frac{1}{t^{2d}} \exp\left(-C\left[\frac{|y-y'|^2}{4t} + \frac{3\left|x'-x-\frac{t(y+y')}{2}\right|^2}{t^3}\right]\right)$$

De plus, $\exists t_0 > 0$, $\exists C'' > 0 t.q. \forall 0 < t < t_0$,

$$q_t((x,y),(x+ty,y)) \ge C'' \frac{1}{t^{2d}}$$

◆ロト ◆課 ▶ ◆注 ▶ ◆注 ▶ ─ 注 ─ のへで

イロト 不得下 不可下 イヨト 一日 うらつ

Local properties, hypoellipticity (4/4)

We can generalize that result to a non bounded drift term.

Corollary (Cattiaux, León & Prieur, 2014)

We do no more assume boundedness. $\forall z$, for any open neighborhood U of z, one can write:

$$\forall z' \in U, \ \forall 0 < t < T, \ p_t(z,z') \le q_t(z,z') + C(U)e^{-\frac{C'(U)}{t}}$$

for constants C(U) and C'(U) > 0. We also prove

$$\forall (z,z'), \ \exists 0 < C(z') \text{ s.t. } \forall t \geq 0, \ p_t(z,z') \leq D(z') < +\infty.$$

Long time behavior, coercivity and mixing (1/2)

We now add the following assumption

 $\mathcal{H}_3~V~\text{and}~\nabla V$ have polynomial growth at infinity with

$$+\infty \ge \liminf_{|x| \to +\infty} \frac{x \cdot \nabla V(x)}{|x|} \ge v > 0$$
 (drift's condition).

The force $-\nabla V(x)$ is "strong enough" for |x| large to ensure a quick return of the system to compact subsets of \mathbb{R}^{2d} .

Under \mathcal{H}_i , i = 1, 2, 3, the process $Z_t = (X_t, Y_t)$ is positive recurrent with a unique invariant probability measure μ . Moreover, moments of any order of μ exist: for all $k_1, k_2 \in \mathbb{N}$,

$$\mathbb{E}(X_t^{k_1}Y_t^{k_2}) = \int x^{k_1}y^{k_2}d\mu(x,y) < +\infty.$$

Scheme of proof: the proof involves the construction of a Lyapunov function $\Psi(x, y)$, such that there exist a compact $K \in \mathbb{R}^{2d}$ and constants $C, \xi > 0$, such that $-\frac{L\Psi}{\Psi} \ge \xi \mathbb{1}_{K^c} - C \mathbb{1}_K$. The choice of the Lyapounov function is not trivial. See, e.g., Wu (2001).

Long time behavior, coercivity and mixing (2/2)

For any z, let's $P_t f(z) = \mathbb{E}_z(f(Z_t))$ for bounded f's.

$$\begin{split} \psi \in \mathbb{L}^{1}(\mu). \ \text{There exist } D > 0 \ \text{and } \rho < 1 \ \text{s.t. for all } z, \ \text{all } f \ \text{s.t.} \\ \sup_{z} \frac{|f(z)|}{\psi(z)} < +\infty, \\ \left| P_{t}f(z) - \int fd\mu \right| \leq D \sup_{a} \left(\frac{|f(a) - \int fd\mu]}{\psi(a)} \right) \psi(z)\rho^{t}. \end{split}$$

It follows that $(Z_t := (X_t, Y_t), t \ge 0)$ is β -mixing.

Outline of the talk

Assumptions, probabilistic properties of the model

3 Adaptive estimation

4 Numerical results

▲□▶ ▲圖▶ ▲注▶ ▲注▶ … 注: わんぐ

イロト 不得 トイヨ トイヨ うらくろ

Invariant density estimators

Complete observations: we observe both coordinates X_t and Y_t at discrete times $i\delta$, i = 1, ..., n. Let K be a kernel function, $b = (b_1, b_2)$ a bandwidth.

$$\check{p}_s(x,y) := \frac{1}{nb_1^d b_2^d} \sum_{i=1}^n K\left(\frac{x-X_{i\delta}}{b_1}, \frac{y-Y_{i\delta}}{b_2}\right).$$

Now we do not observe y anymore.

Partial observations:

$$\hat{p}_s(x,y) := \frac{1}{nb_1^d b_2^d} \sum_{i=1}^{n-1} K\left(\frac{x - X_{i\delta}}{b_1}, \frac{y - \frac{X_{(i+1)\delta} - X_{i\delta}}{\delta}}{b_2}\right)$$

Main issue: the choice of the bandwidth $b = (b_1, b_2)$.

٠

イロト 不得 トイヨ トイヨ うらくろ

Invariant density estimators

Complete observations: we observe both coordinates X_t and Y_t at discrete times $i\delta$, i = 1, ..., n. Let K be a kernel function, $b = (b_1, b_2)$ a bandwidth.

$$\check{p}_s(x,y) := \frac{1}{nb_1^d b_2^d} \sum_{i=1}^n K\left(\frac{x-X_{i\delta}}{b_1}, \frac{y-Y_{i\delta}}{b_2}\right).$$

Now we do not observe y anymore.

Partial observations:

$$\hat{p}_s(x,y) := rac{1}{nb_1^d b_2^d} \sum_{i=1}^{n-1} K\left(rac{x-X_{i\delta}}{b_1}, rac{y-rac{X_{(i+1)\delta}-X_{i\delta}}{\delta}}{b_2}
ight)$$

Main issue: the choice of the bandwidth $b = (b_1, b_2)$.

Assumptions, probabilistic properties of the model

Adaptive estimation

Numerical results

Adaptive estimation (1/2)

Data-driven procedure [Comte, Prieur, Samson, 2017] Our selection criterion is based on Goldenshluger and Lepski (2011).

Let $\check{p}_{b,b'} = K_{b'} \star \check{p}_b(x, y)$, with $K_{b'}(u, v) = \frac{1}{b'_1 b'_2} K(\frac{u}{b'_1}, \frac{v}{b'_2})$. Let $p_b = K_b \star p$. In the following, d = 1.

$$\tilde{b} = \arg\min_{b\in\mathcal{B}_n}(A(b) + U(b)), \quad with$$

- $\mathcal{B}_n = \{(b_{1,k}, b_{2,\ell}) = (1/k, 1/\ell), k, \ell = 1, \dots, B_n\},\$
- A(b) mimicking the bias (= $\sup_{b' \in \mathcal{B}_n} (\|\check{p}_{b,b'} \check{p}_{b'}\|^2 U(b'))_+$)
- V(b) mimicking the variance $\left(=\kappa \frac{\|K\|_1^2 \|K\|^2}{nb_1 b_2} \sum_{i=0}^{n-1} \beta(i\delta)\right)$

$$\mathbb{E}\left(\|\check{p}_{\tilde{b}}-p\|^{2}\right) \leq C\inf_{b\in\mathcal{B}_{n}}\left(\|p-p_{b}\|^{2}+U(b)\right)+C'\frac{\log(n)}{n\delta}$$

 κ can then be calibrated by the slope heuristic (see Arlot and Massart, 2009, Lacour *et al.*, 2016). Same results in the partial observations case.

ション ふゆ アメリア メリア しょうくの

Adaptive estimation (2/2)

That procedure is numerically demanding due to the double convolutions $\check{\rm p}_{b,b'}$, especially in the multidimensional case.

In practice, we implement the selection procedure in Lacour, Massart and Rivoirard (2016):

$$\hat{b} = \arg\min_{b \in \mathcal{B}_{q}} \left(\|\check{\mathbf{p}}_{b} - \check{\mathbf{p}}_{b_{min}}\|^{2} + U(b) \right) \text{ with }$$

 $b_{\min} = (\min_{1 \le k \le B_n} b_{1,k}, \min_{1 \le \ell \le B_n} b_{2,\ell}).$

Outline of the talk

Assumptions, probabilistic properties of the model

3 Adaptive estimation

ション ふゆ アメリア メリア しょうくの

Numerical results (1/4)

Harmonic Oscillator:

$$\begin{cases} dX_t = Y_t dt \\ dY_t = -(\alpha X_t + \gamma Y_t) dt + \sigma dB_t \end{cases}$$

with $\alpha > 0, \gamma > 0$. In the following, we choose $\alpha = 4, \gamma = 0.5, \sigma = 0.5$. The potential is then $V(x) = \alpha/2x^2$. The stationary distribution is Gaussian, with mean zero and explicit diagonal variance matrix:

$$p(x,y) = \frac{\gamma\sqrt{\alpha}}{\pi\sigma^2} \exp(-\frac{2\gamma}{2\sigma^2}y^2 - \frac{2\gamma\alpha}{2\sigma^2}x^2)$$

with diagonal variances equal to 1/16 and 1/4, respectively in our case.

Numerical results (2/4)

Kernel estimation of the invariant density:

- complete observations (top)
- partial observations (bottom)

 $n = 2000, \delta = 0.2.$ 100 trajectories simulated with a Euler scheme with step size $\delta/10$.

 $\mathcal{B}_n = \{(b_1, b_2) \in \{1/\sqrt{4n}, 2/\sqrt{4n}, \dots, 30/\sqrt{4n}\}^2\}\}.$ Anisotropic selected bandwidth $\hat{b} = (8/\sqrt{4n}, 17/\sqrt{4n})$ (complete), $\hat{b} = (9/\sqrt{4n}, 19/\sqrt{4n})$ (partial).

Numerical results (3/4)

Van Der Pol Oscillator:

$$\begin{cases} dX_t = Y_t dt \\ dY_t = -\left(\left(c_1 X_t^2 - c_2\right) Y_t + \omega_0^2 X_t\right) dt + \sigma dB_t \end{cases}$$

with σ , c_1 , c_2 , $\omega_0^2 > 0$. In the following, we choose $\sigma = c_1 = c_2 = \omega_0^2 = 1$. The potential is then $V(x) = \omega_0^2/2x^2$. The invariant density p satisfies Fokker-Planck equation:

$$\frac{1}{2}\frac{\partial^2 p(x,y)}{\partial y^2} - y\frac{\partial p(x,y)}{\partial x} + c(x)p(x,y) + (c(x)y + \nabla D(x))\frac{\partial p(x,y)}{\partial y} = 0$$

solved with finite difference scheme (see Kumar et al., 2006).

Sample $(X_{i\delta})_{i=0,...,n}$ (top left), $(Y_{i\delta})_{i=0,...,n}$ (top right) and state phase (bottom) for $\delta = 0.5$ and n = 2000.

Numerical results (4/4)

Kernel estimation of the invariant density:

- complete observations (top)
- partial observations (bottom)

 $n = 2000, \delta = 0.05.$

100 trajectories simulated with a Euler scheme with step size $\delta/10$.

イロト 不同下 イヨト イヨト ヨー ろくで

うして ふぼう ふほう ふほう しょうく

Conclusion, perspectives

Conclusion: we obtained

- non parametric (recursive) estimation for the invariant density (Cattiaux *et al.*, 2014a, 2015),
- a data-driven procedure for the selection of the bandwidth (see Comte *et al.*, 2016),
- see also Cattiaux *et al.* (2014b,2016,2017) for the estimation of the drift and of the diffusion matrix.

We have considered the more realistic non trivial case of partial observations.

Perspectives:

- to consider more complex models which are more realistic for environmental modeling (non linear Fokker-Planck equations, confined models, degenerated variances, ...),
- adaptive estimation in higher dimension,
- adaptivity with respect to δ ,
- . . .

ション ふゆ アメリア メリア しょうくの

Some references I

Arlot, S. and Massart, P. (2009).

Data-driven calibration of penalties for least-squares regression.

Journal of Machine Learning Research, 10:245–279.

Cattiaux, P., León, J. R., Pineda Centeno, A., and Prieur, C. (2017).

An overlook on statistical inference issues for stochastic damping hamiltonian systems under the fluctuation-dissipation condition.

Statistics, 51(1):11-29.

Cattiaux, P., León, J. R., and Prieur, C. (2014a).

Estimation for stochastic damping hamiltonian systems under partial observation. I-Invariant density.

Stochastic Processes and their Applications, 124(3):1236–1260.

Cattiaux, P., León, J. R., and Prieur, C. (2014b).

Estimation for stochastic damping hamiltonian systems under partial observation. II-Drift term.

ALEA (Latin American Journal of Probability and Statistics), 11(1):p-359.

Cattiaux, P., León, J. R., and Prieur, C. (2015).

Recursive estimation for stochastic damping hamiltonian systems. Journal of Nonparametric Statistics, 27(3):401–424.

Some references II

Cattiaux, P., León, J. R., and Prieur, C. (2016).

 $\mbox{Estimation for stochastic damping hamiltonian systems under partial observation. \\ \mbox{III-Diffusion term.}$

Ann. Appl. Probab., 26(3):1581-1619.

Comte, F., Prieur, C., and Samson, A.

Adaptive estimation for stochastic damping hamiltonian systems under partial observation.

to appear in Stochastic Processes and their Applications.

Goldenshluger, A. and Lepski, O. (2011).

Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality.

The Annals of Statistics, pages 1608-1632.

Konakov, V., Menozzi, S., and Molchanov, S. (2010).

Explicit parametrix and local limit theorems for some degenerate diffusion processes. Annales de l'institut Henri Poincaré (B), 46(4):908–923.

Kumar, P. and Narayanan, S. (2006).

Solution of fokker-planck equation by finite element and finite difference methods for nonlinear systems.

Sadhana, 31:445-461.

ション ふゆ アメリア メリア しょうくの

Some references III

Lacour, C., Massart, P., and Rivoirard, V. (2016).

Estimator selection: a new method with applications to kernel density estimation. Arxiv Preprint arXiv:1607.05091v1.

Lelièvre, T., Stoltz, G., and Rousset, M. (2010).

Free energy computations: A mathematical perspective. World Scientific.

Leon, J. R. and Samson, A. (2017).

Hypoelliptic stochastic FitzHugh-Nagumo neuronal model: mixing, up-crossing and estimation of the spike rate.

hal-01492590.

Szepessy, A. (2011).

Langevin molecular dynamics derived from ehrenfest dynamics. Mathematical Models and Methods in Applied Sciences, 21(11):2289–2334.

Wu, L. (2001).

Large and moderate deviations and exponential convergence for stochastic damping hamiltonian systems.

Stochastic processes and their applications, 91(2):205-238.

イロト イ団ト イヨト イヨト 三日

Thanks for your attention

Happy birthday Parabéns !

