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Figure: Notes de cours de probabilité, novembre 1977
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Souvenirs, souvenirs . . .
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La Revue Canadismre ds S t u t i s t i q u e  
vO1.6 (1978) N0.2, 143-168. 
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GEOSTOCHASTIC CALCULUS 

bY 

D.A. Dawson 
Carteton University 

Ksy and p h e e :  Stochastic i n t eg ra l ,  measure diffusion process, 
Cameron-Martin-Girsnw formula, population models, interact ion.  AM3 1970 
eubj8Ct C&88if&XZt&7R8: P r h r y  60H05; 8 e C O n d a r y  60H20. 

ABSTRACT 

A s tochast ic  calculus for  a family of continuous measure-valued Marlsov 
processes is developed. Such processes arise natural ly  i n  the construction 
of stochastic models of s p a t i a l l y  d i s t r ibu ted  populations. 
calculus is a too l  whereby a c l a s s  of density-dependent models can be stud- 
led i n  terms of the mult ipl icat ive measure diffusion process. I n  t h i s  paper 
the s tochas t i c  i n t eg ra l  is introduced i n  the space-time s e t t i n g  and a 
Cameron-Martin-Girsanov theorem is established. 

The s tochas t i c  

1. INTRODUCTION 

In order to model the evolution of a geographically distributed popu- 
lation or a distributed chemical reaction it is useful to introduce the 
notion of a measure-valued Markov process. A basic model of t h i s  type is 
the miltiplicative (branching) measure diffusion process which was intro- 
duced by Jlawson (1975) and which models a reproducing population in the 
absence of interaction effects. A nwnber of properties and applications 
of the miltiplicative measure diffusion process were obtained by Jlawson 
(1977), Dawson and Hochberg (1978), Dawson and Ivanoff (1978) and Holley 
and Stroock (1978). However in order to  develop more realistic mdels it 
is necessary to introduce density dependent nonlinear interaction effects. 
?he main purpose of this paper is to introduce methods for dealing dith 
the latter which are based on an extension of the It8 stochastic calculus 
to measure-valued diffusion processes. Starting with the multiplicative 
measure diffusion process and this geostochastic calculus it is possible 
to construct stochastic models of complex spatially distributed systems. 

effects which must be incorporated: 
In modelling a spatially distributed population there are three main 

1441 DAWSON [V01.6, No.2 

(a) the spatial mtion and dispersion of the population, 
(b) the inherent fluctuation in the population due to 

damgraphic and environmental stochasticity, 
(c) mnliniear interaction effects SLCh as limitatiox on 

the envirommt carrying capacity. 

Measure-valued stochastic processes incorporating these effects can be 
heuristically associated with a symbolic stochastic evolution equation of 
the form 

a u / a t  - GU + ~ ( u )  + w(u) , (1 .I) 

where G is the infinitesimal generator of the spatial motion on Rd , the 
space on w h i c h  the system is assuned to live, F(u) 
interaction term and N u )  represents the stochastic fluctuation tern. We 
mw consider a few examples which arise in applications. 

sider a population of individuals which inhabit hclidean space 4# . Each 
individual has a random life span and at the end of its life-time the indi- 
vidual dies and is replaced by a random nunber of offspring. To model spatial 
migration each individual is assured to mve in I& according to a Brownian 
motion process. Applications of this type of model arise in population 
genetics to describe the dispersion and mutation of the descendants of a new 
gene in a high density population or a population of rare mutant genes (cf. 
Sawyer, 1976). A similar model arises in neutron transport theory to describe 
the motion and production of neutrons in a nuclear reactor (cf. Bensoussan, 
Lions and Papanicolaou, 1978). One metlmd of stdying this model is to con- 
sider a contirums approximation. This is analogous to modelling population 
dynamics by an ordinary differential equation. 
diffusion approximation leads to the stochastic evolution equation 

represents the nonlinear 

&ample 1 . 1  Model of Population w i t h  Reproduction and Migration. Con- 

In the present example the 

a/at(u(t,.)) = Au(t,.) + au(t,.) + yW(u) , (1.2) 

where A denotes the Iaplacian operator, ci is the Malthusian parameter and 
y is inversely proportional to the mean life span. For each t, u ( t , . )  is 
a random measure, that is, u ( t , A )  denotes the biomass in the region A at 
time t. 'Ihe appropriate stochastic fluctuation tern, W(u) ,  in this case 
is described in detail in Section 3. For a mathematical derivation of the 
diffusion approximation, refer to Dawson and Ivanoff (1978). 

for Resources. 
Exwnple 1.2.  Biogeography: ModeZZing of a Population w i t h  Competition 

Consider a population of individuals subject to repmduction 
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Cover time

(Xt , t = 1, 2, . . .) simple random walk on the torus Z2
n = Z2/nZ2

m

Xt = ΥnSt , S = SRW on Z2, Υn = equivalence mod. n

Hitting time of x
Tn(x) = min{t ≥ 0 : Xt = x},

and the cover time
Tn = max

x∈Z2
n

Tn(x)

Wilf 1989, Aldous-Fill book 1990, Brummelhuis-Hilhorst 1991 . . .

Main questions:
- Asymptotics n→∞ of cover time on a large torus ?
- Statistics and Geometry of 2nd, 3rd . . . maxima ? Of nearby maxima ?
- Geometric structure of level sets ?



Souvenirs2 Cover time Dimension d ≥ 3 Dimension 2 Random interlacements 2d RI Late points Vacant set

Cover time

(Xt , t = 1, 2, . . .) simple random walk on the torus Z2
n = Z2/nZ2

m

Xt = ΥnSt , S = SRW on Z2, Υn = equivalence mod. n

Hitting time of x
Tn(x) = min{t ≥ 0 : Xt = x},

and the cover time
Tn = max

x∈Z2
n

Tn(x)

Wilf 1989, Aldous-Fill book 1990, Brummelhuis-Hilhorst 1991 . . .

Main questions:
- Asymptotics n→∞ of cover time on a large torus ?
- Statistics and Geometry of 2nd, 3rd . . . maxima ? Of nearby maxima ?
- Geometric structure of level sets ?



Souvenirs2 Cover time Dimension d ≥ 3 Dimension 2 Random interlacements 2d RI Late points Vacant set

Cover time

(Xt , t = 1, 2, . . .) simple random walk on the torus Z2
n = Z2/nZ2

m

Xt = ΥnSt , S = SRW on Z2, Υn = equivalence mod. n

Hitting time of x
Tn(x) = min{t ≥ 0 : Xt = x},

and the cover time
Tn = max

x∈Z2
n

Tn(x)

Wilf 1989, Aldous-Fill book 1990, Brummelhuis-Hilhorst 1991 . . .

Main questions:
- Asymptotics n→∞ of cover time on a large torus ?
- Statistics and Geometry of 2nd, 3rd . . . maxima ? Of nearby maxima ?
- Geometric structure of level sets ?



Souvenirs2 Cover time Dimension d ≥ 3 Dimension 2 Random interlacements 2d RI Late points Vacant set

Yet another maximum of r.v.’s more or less dependent

Maximum of independent identically distributed r.v.’s

RW on complete graph ( ! d =∞ ) . Tn(x)’s are independent !

Cover time = Coupon collector problem with nd images.

(sum of independent but not i.d. r.v.’s)

Tn = nd ln(nd ) + nd Gumbel + . . . (Erdos−Renyi 1961)

nearest neighbor random walk : ( d <∞ ) Correlations !

Maxima of correlated fields: huge activity.
Especially for log-correlated fields: Gaußian Free Field (d=2), Branching
Random Walks and BBM, Multiplicative chaos and Liouville quantum
gravity, Last Passage Percolation . . .

What is special in d = 2 ? Strong correlation !

Dimension two is critical for the walk (recurrence/transience)

Hitting time is not much larger than mixing time
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Simple Random Walk on Zd

Pólya’s theorem 1921: RW is recurrent for d = 1, 2, and transient for d ≥ 3.

• Green function for d ≥ 3:

G(x , y) = Ex]{t : Xt = y} = g(y − x)

solves
∆x G(x , y) = −δy (x),

with ∆f (x) = 1
2d

∑
z∼x f (z)− f (x) the discrete Laplacian. −g = ∆−1

g(x) ≤ g(0) <∞
g(x) = c|x |2−d + O(|x |−d ), |x | → ∞.

• Green function for d = 2: g being infinite is replaced by −a,

a(x) =
∑
t≥0

[P0(Xt = 0)− P0(Xt = x)]

solves ∆a = δ0. Then a(x) ∼ 2
π

ln |x | as |x | → ∞.
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Hitting times

Mean value is

ETn(x) ∼
{

g(0)nd , d ≥ 3
2
π

n2 ln n, d = 2

(start from uniform !) and the law is close to exponential as n→∞

Tn(x)

ETn(x)
law−→ E(1)

• General fact: Matthews’ method (1989) shows that

Tn and ETn ≤ ETn(x)× ln(nd ),

• Sharp at leading order for d ≥ 3 (Aldous 1990), and d = 2
(Dembo-Peres-Rosen-Zeitouni 2004)
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Where does dependence show up ?

Question: In which respect does cover time behave like the maximum of nd

independent exponentially distributed r.v.’s ?

Tn
??' max

nd i.i.d.r.v.
Ex (an)

Ex (an) with the "correct mean" (see last slide) ?

Sloppy answer:

OK essentially, for large d .

But when d = 2, it is false in some asymptotics.
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Sznitman’s Random Interlacements d ≥ 3

Model of Random Interlacements (RI) of Sznitman (2008):
RI(α): A stationary point process in Zd , given by a Poisson process of paths.
It yields "the local picture" left by the trace of a simple random walk in torus.

Theorem (Sznitman’09)

For α > 0, as n→∞,
the uncovered set at time αnd converges in law to the vacant set of RI(α).

Equilibrium measure of a finite A ⊂⊂ Zd (escape from A)

eA(x) = Px (St /∈ A, t ≥ 1), x ∈ ∂A

capacity and harmonic measure (from infinity)

cap(A) =
∑

x∈∂A

eA(x) , hmA(x) = eA(x)/ cap(A).

Theorem means

lim
n→∞

P[ΥnA ⊂ Uαnd ] = exp
(
− α cap(A)

)
= P[A ⊂ Vα]

with Vα the vacant set of RI(α).
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Times beyond O(nd ):

Belius’13 extends the coupling to larger times, up to the mean Cover time.
Also, Miller-Sousi’16.

B Roughly, uncovered points are independent in dimension d ≥ 3.
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Asymptotics in dimension d ≥ 3

• As n→∞, it holds in probability,

Tn ∼ g(0)nd ln(nd )

with g(x) the Green function.

• Fluctuations [Belius 2013]:

Tn

g(0)nd − ln(nd )
law−→ Gumbel

as the if Tn(x) were independent for x ∈ Zd
n .
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d ≥ 3: LARGE deviations

Recall Law of Large ] in green (Aldous 1990)

* Lower tail is stretch exponential: For γ ∈ (0, 1),

P
[
Tn ≤ γg(0)nd ln nd

]
= exp

(
− nd(1−γ)+o(1)).

* Upper tail has a polynomial decay: For γ > 1,

P
[
Tn ≥ γg(0)nd ln nd

]
= n−d(γ−1)+o(1).

See Goodman-den Hollander 2013 for Brownian motion; with additional
(involved) considerations on extremal geometry.

* Compatible with the independent exponential picture.
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Dimension d = 2: correlation shows up

+ For d = 2, Dembo-Peres-Rosen-Zeitouni’04

Tn
4
π

n2 ln2 n
→ 1 in probability.

+ Ding’12, Belius-Kistler’17 (exact value of c for Wiener sausage):√
Tn/2n2 '

√
2/π ln n − c ln ln n.

Bramson-Zeitouni’s conjecture 2009:
√
Tn/2n2 is tight around its median.

+ C.-Gallesco-Popov-Vachkovskaia’13: For γ ∈ (0, 1),

P
[
Tn ≤

4
π
γn2 ln2 n

]
= exp

(
− n2(1−√γ)+o(1))

The 1st limit is as in independent case (as well as large deviations from
above). But the red terms are different.
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What goes differently in dimension d =2 ?

The set of (n, γ)-late points

Ln(γ) =
{

x : Tn(x) ≥ γ × 4
π

n2 ln2 n
}
,

with γ ∈ (0, 1), is believed to be responsible for the discrepancies.

+ Brummelhuis-Hilhorst’91: fractal structure of late points.

+ Dembo-Peres-Rosen-Zeitouni’06: density of late points is of different order
around a fixed point and around a late point.

Clustering instead of a Poisson structure.

Not compatible with weak dependence between hitting times.

+ Goal: understand the uncovered set at such times
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Sznitman’s Random Interlacements (RI) generalized

. . . by Teixeira’09: Let Ŝ be a random walk on a transient weighted graph.

Construction of random interlacements at level α (abbr. RI(α)). To construct
its restriction to a finite Λ ⊂ V (vertices; here, V = Zd ) :

At each x on the boundary of Λ generate a Poisson(αêΛ(x))-number of
particles; êΛ = equilibrium measure of Λ, has mass ĉap(Λ);

Each particle performs an independent Ŝ-random walks.

"Poisson soup of Ŝ-spaghettis"

This determines the vacant set at level α, more precisely its trace on Λ,

Vα = V \ {visited vertices} .

• Consistent definition for Λ ⊂ V .
• Characterizing property: ∀A ⊂ V finite,

P[A ⊂ Vα] = exp
(
− αĉap(A)

)
. (RI)

In d ≥ 3, simply take Ŝ = S usual RW to obtain Sznitman’s original RI.
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Capacity in the recurrent case

Harmonic measure of a finite A ⊂ Z2 = entrance law “starting at infinity”,

hmA(x) = lim
‖y‖→∞

Py [Sτ(A) = x ].

Potential (solution of ∆a = δ0):

a(x) =
∑
t≥0

[P0(St = 0)− Px (St = 0)].

Capacity of a finite A ⊂ Z2,

cap(A) =
∑
x∈A

a(x−x0) hmA(x) (x0 ∈ A arbitrary)

The capacity is invariant by translation and the capacity of a singleton is 0.
For the random walk and a finite A in Z2,

Px
(
τ(B(0,R)) < τ(A)

)
=

ln ‖x‖
ln R

+
C − π

2 cap(A) + ε(x) + εx (R)

ln R
,

as R →∞ and then x →∞.
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Random Interlacements in 2 dimensions

2 Problems:

• (1) What Ŝ gives a meaningful process RI when d = 2 ?
• (2) What does the RI describe in terms of RW or BM on torus ?

• (1) Take Ŝ = random walk conditioned to never hit 0 - i.e., Doob’s
h-transform with transition

p̂(x , y) =
a(y)

4a(x)
, y ∼ x 6= 0.

Ŝ is reversible w.r.t. µx := a2(x), conductances a(x)a(y), x ∼ y ∈ Z2,

Ŝ is transient.

Crucial identity: ∀A ⊂ Z2 with 0 ∈ A,

cap(A) = ĉap(A).

• (2) Finally, for the corresponding interlacement, we have

P[A ⊂ Vα] = exp
(
− απ cap(A)

)
, A ⊂⊂ Z2 containing 0 (∗)
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Ŝ is reversible w.r.t. µx := a2(x), conductances a(x)a(y), x ∼ y ∈ Z2,
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V - Late points for RW on the torus and RI (d = 2)

Uncovered set by the walk by time

U(n)
t = {x ∈ Z2

n : Tn(x) > t}.

Taking time of the order of the cover time:

tα :=
4α
π

n2 ln2 n,

U(n)
tα is the set of (n, α)-late points.

Theorem (FC+S.Popov+M.Vachkovskaia 2016)

Let α > 0 and A is a finite subset of Z2. We have

lim
n→∞

P[ΥnA ⊂ U(n)
tα | 0 ∈ U(n)

tα ] = exp
(
− πα cap(A ∪ {0})

)
.

The RI describes the structure of the late points around a randomly picked
late point (conditionally that there exist some.)
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Vacant set (in blue) of RI(α) in Z2. Thanks to Darcy Cunha.

For α = 1.5 the only vacant site is the origin.

α
=
0
.2
5

α
=
0
.7
5

α
=
1
.0

α
=
1
.2
5

α
=
1
.5

α
=
0
.5
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Some properties of RI

limy→∞ Px (τ̂y <∞) = 1/2

Density decay

P[x ∈ Vα] = exp
(
− παa(x)

2

)
∼ Cα‖x‖−α.

When s := ‖x‖ → ∞, ‖y‖ = s1+o(1) and ‖x − y‖ = sβ+o(1) with some
β ∈ [0, 1], the correlation decays like

Cor
(
1{x∈Vα}, 1{y∈Vα}

)
= s−

αβ
4−β

+o(1)
.
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Some properties of RI

If 0 ∈ A ⊂ B(r),

P[A ⊂ Vα | x ∈ Vα] = exp

(
− πα

4
cap(A)

1 + O
( r ln r ln ‖x‖

‖x‖

)
1− cap(A)

2a(x)
+ O

( r ln r
‖x‖

)).

A1

A2

x

0

s2

s

α1 ≈ 1
4α

α2 ≈ 2
7α

Figure: How the “local rate” looks like if we condition on the event that a “distant” site is
vacant.
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Size of the vacant set

Recall
Vα = V \ {visited vertices} .

Phase transition (2016):

For α > 1, |Vα| <∞ a.s.,

For α ∈ (0, 1), |Vα| =∞ a.s.

Theorem (FC+S.Popov 2017+)

V1 is a.s. infinite.
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Critical case α = 1

Contradicting arguments:

Times corresponds formally to "just after" the actual covering time because of
the negative log log n-correction to the leading order. So around the origin
(and assuming it is not visited yet) there should not be much unvisited points:

* this is in favor of scenario : V1 a.s. finite . . .

On the other hand, conditioning by a rare event (everything has not been
visited), we put the walk in a deviating regime, and it may occur that many
points around are unvisited, leading to the

* opposite scenario : V1 a.s. infinite . . .

Why 2nd scenario is correct ???

Strategy of proof: take a sequence of nested pairs of balls Bk = B(xk , bk ) ,
with increasing size and increasing distance.

* Local fluctuations of excursions produce too few excursions: for many k ’s,
](k-excursions ∂Bk+1 → ∂Bk ) << (mean number)

* If too few excursions, P(Bk has an unvisited point) ≥ c > 0.

* The decorrelation between the different balls is good enough.
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Coming next. . .

More properties of RI. . .

. . . in the continuous case (work in progress FC + S.Popov) . . .

Featuring: The Wiener moustache !
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