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Souvenirs, souvenirs ..
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Figure: Notes de cours de probabilité, novembre 1977
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1. INTRODUCTION
order to mdel the evolution of a geographically distributed popu-

Tation or a distributed chemical reaction it is useful o introduce the
notion of a neasure-valuod Markov process. A basic model of this type is
the miltiplicative (branching) measure diffusion process which was intro-
duced by Dawson (1975) and which mdels & reprodcing population in the
absence of interaction effects. A mmber of properties snd spplications
of the miltiplicative messure diffusion process were obtained by Devson
(1977), Dawson and Hochberg (1978), Dawson and Ivanoff (1978) and Holley
and Stroock (1978). However in order to develop more reslistic sodels it
is necessary to introduce density dependent nonlinear interaction effects.
The sain purgose of this paper is to introduce sethods for dealing «ith
the latter vhich are based on s extension of the 1t stochastic calculus
to measure-valued diffusion processes. ~ Starting with the miltiplicative
measure diffusion process and this geostochastic calcalus it is possible
to constrct stochastic mdels of complex spatially distributed systess.

In sodeling  sparially distributed population there are three i
effects which must be incorporated:

w4 DasON (VoL.6, No.2

(a) the spatial motion and dispersion of the population,

(®)  the inherent fluctuation in the population due to
demographic end enviromental stochasticity,

() nonliniear interaction effects such as limitations on
the environsent cas capacity.

Measure-valued stochastic processes incorporating these effects can be
heuristically associated with a sysbolic stochastic evolution equation of

W/ = O h PG 4R a
where G is the infinitesiml generator of the spatial mtion on @ , the
space on which the system is assued to live, P() Tepresents the nonlinear
interaction term and ¥(u) represents the stochastic fluctuation tem. Ne
now consider a few emples which arise in applications.

Example 1.1 Model of Fopulation with Reprodustion and Migration. Con-
sider a population of individuals which inhabit Biclidean space @ . Each
individual has a random 1ife span and at the end of its life-time the indi-
vidual dies and is Teplaced by a random mumber of offspring. To mdel spatial
migration each individual is assumed to rove in & according to a Brownian
motion process. Applications of this type of model arise in population
genetics to describe the dispersion and mitation of the descendants of a new
gene in a high density population or a population of rare mitant genes (cf.
Sawyer, 1976). A sinilar model arises in neutron transport theory to describe
the motion and production of neutrons in a muclear reactor (cf. Bensoussan,
Lions and Papanicolaou, 1978). One method of studying this model is o con-
sider a continuous spproximation. This is analogous to mdelling population
dynanics by an ordinary differential equation. In the present example the
diffusion approxination leads to the stochastic evolution equation

Aa(uta)) = Balsn) + qutr) + D an
where 8 denotes the Laplacian operator, a is the Malthusian parameter and
Y is inversely proortional to the mean life span. For each ¢, u(t,.) is
a random neasure, thit is, u(t,A) denotes the biowass in the region 4 at
tine ¢, The appropriate stochastic fluctuation tem, ¥(), in this case
is described in detail in Section 3. For a nathenatical derivation of the
diffusion spproxination, refer to Dawson and Ivanoff (1978).

Example 1.2, Biogeography: Modelling of a Population with Competition
for Resources. Consider a population of individuals subject to reproduction
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Xi = 1,5, S = SRW on Z?, T, = equivalence mod. n
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Cover time

(Xi,t=1,2,...) simple random walk on the torus 72 = 7?/nz?

(3
Xi = 1,5, S = SRW on Z?, T, = equivalence mod. n

Hitting time of x
To(x) =min{t > 0: X; = x},

and the cover time

Tn = max Ty(x)

x€z2




Cover time

Cover time

(Xi,t=1,2,...) simple random walk on the torus 72 = 7?/nz?

(3
X = T,S;, S = SRW on Z?, T, = equivalence mod. n

Hitting time of x
To(x) = min{t > 0: X; = x},

and the cover time

Tn = max Ty(x)

x€z2

Wilf 1989, Aldous-Fill book 1990, Brummelhuis-Hilhorst 1991 ...

# Asymptotics n — oo of cover time on a large torus ?
# Statistics and Geometry of 2nd, 3rd ... maxima ? Of nearby maxima ?
# Geometric structure of level sets ?



Cover time

Yet another maximum of r.v’s more or less dependent

@ Maximum of independent identically distributed r.v.s
@ RWon complete graph (e~ d=00).
Cover time = Coupon collector problem with n® images.

(sum of independent but not i.d. r.v.s)
7n = nIn(n”) + n°Gumbel + ...  (Erdos— Renyi 1961)

@ nearest neighbor randomwalk : (d < o0) Correlations !

° : huge activity.
Especially for fields: GauBian Free Field (d=2), Branching
Random Walks and BBM, Multiplicative chaos and Liouville quantum
gravity, Last Passage Percolation ...

What is special in d = 2 ? Strong correlation !
@ Dimension two is critical for the walk (recurrence/transience)
@ Hitting time is not much larger than mixing time



Cover time

Simple Random Walk on Z¢

Pélya’s theorem 1921: RW is recurrent for d = 1, 2, and transient for d > 3.
° function for d > 3:
G(x,y) =Ext{t: Xt =y} = 9(y — x)

solves
AxG(x,y) = —6y(x),

with Af(x) = - 3, (z) — f(x) the discrete Laplacian.

g(x) < 9(0)<oo
g(x) = cxP U+ 0(x7%),  |x| = oo

A



Cover time

Simple Random Walk on Z¢

Pélya’s theorem 1921: RW is recurrent for d = 1, 2, and transient for d > 3.
. function for d > 3:
G(x,y) =Ext{t : Xe =y} = g(y — x)

solves
AG(x,y) = —8y(x),

with Af(x) = L S, f(z) — f(x) the discrete Laplacian. —g=A"
2d zZr~X

e Green function for : g being infinite is replaced by —a,
a(x) = _[Po(X: = 0) — Po(X: = X)]
t>0

solves Aa = &. Then a(x) ~ 21In|x| as |x| — oc.



Cover time

Hitting times

Mean value is B
0)n“, d>3
ETa(x) ~ { ggf7z)lnn d=2

(start from uniform !) and the law is close to exponential as n — o

Ta(x)
ETa(x)

B e()



Cover time

Hitting times

Mean value is

0)n’, d>3
ET"(X)N{ ggf7z)lnn d=2

(start from uniform !) and the law is close to exponential as n — o

Tn(x)

ETa(x) = (1)

e General fact: Matthews’ method (1989) shows that
Tn and ET, < ET,(x) x In(n%),

e Sharp at leading order for d > 3 (Aldous 1990), and d = 2
(Dembo-Peres-Rosen-Zeitouni 2004)



Cover time

Where does dependence show up ?

Question: In which respect does cover time behave like the maximum of n°
independent exponentially distributed r.v.s ?

Tn~ max &Ex(an)

nd ii.d.r.v.

Ex(an) with the "correct mean" (see last slide) ?



Cover time

Where does dependence show up ?

Question: In which respect does cover time behave like the maximum of n°
independent exponentially distributed r.v.s ?

Tn~ max &Ex(an)

nd ii.d.r.v.
Ex(an) with the "correct mean" (see last slide) ?
Sloppy answer:

@ OK essentially, for large d.
@ But when d = 2, it is false in some asymptotics.
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Dimensiond > 3

Sznitman’s Random Interlacements d > 3

Model of Random Interlacements (RI) of Sznitman (2008):
RI(«): A stationary point process in Z¢, given by a Poisson process of paths.
It yields "the local picture" left by the trace of a simple random walk in torus.

Theorem (Sznitman’09)

Fora > 0,asn— oo,
the uncovered set at time o.n° converges in law to the vacant set of Rl(.).




Dimensiond > 3

Sznitman’s Random Interlacements d > 3

Model of Random Interlacements (RI) of Sznitman (2008):
RI(«): A stationary point process in Z¢, given by a Poisson process of paths.
It yields "the local picture" left by the trace of a simple random walk in torus.

Theorem (Sznitman’09)

Fora > 0,asn— oo,
the uncovered set at time o.n° converges in law to the vacant set of Rl(.).

Equilibrium measure of a finite A cC Z° (escape from A)
ea(x) = Px(St ¢ At >1), xe€dA

capacity and harmonic measure (from infinity)

cap(A) = Z ea(x), hma(x) = ea(x)/cap(A).

X€OA

Theorem means
nlim P[ThA C U, 4] = exp (— acap(A)) = P[A C V]
— 00

with YV the vacant set of RI(«).



Belius’13 extends the coupling to larger times, up to the mean Cover time.
Also, Miller-Sousi’16.

> Roughly, uncovered points are independent in dimension d > 3.



Dimensiond > 3

Asymptotics in dimension d > 3

As n — oo, it holds in probability,
o ~ 9(0)n” In(n”)
with g(x) the Green function.
Fluctuations [Belius 2013]:

Tn

W — In(nd) |a_W> Gumbel

as the if T,(x) were independent for x € Z2.
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d > 3: LARGE deviations

Recall Law of Large f in (Aldous 1990)
@ |ower tail is stretch exponential:  For v € (0,1),

IP[Tn <~ } =exp (— n?=Fem),
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d > 3: LARGE deviations

Recall Law of Large f in (Aldous 1990)
@ |ower tail is stretch exponential:  For v € (0,1),

P[,ﬁ’ <7 } = exp ( — nd(1—“/)+0(1)).
« Upper tail has a polynomial decay:  For v > 1,
P[ﬂ >79(0)n’In nd] — pd=1o()

See Goodman-den Hollander 2013 for Brownian motion; with additional
(involved) considerations on extremal geometry.



Dimensiond > 3

d > 3: LARGE deviations

Recall Law of Large f in (Aldous 1990)
@ |ower tail is stretch exponential:  For v € (0,1),

P[,ﬁ’ <7 } = exp ( — nd(1—“/)+0(1)).
« Upper tail has a polynomial decay:  For v > 1,
P[ﬂ >79(0)n’In nd] — pd=1o()

See Goodman-den Hollander 2013 for Brownian motion; with additional
(involved) considerations on extremal geometry.

@« Compatible with the independent exponential picture.
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Dimension d = 2: correlation shows up

= For d = 2, Dembo-Peres-Rosen-Zeitouni’'04

Tn

— =1 in probability.
An2In®n P Y
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Dimension d = 2: correlation shows up

= For d = 2, Dembo-Peres-Rosen-Zeitouni’'04

Tn

— =1 in probability.
An2In®n P Y

= Ding’12, Belius-Kistler'17 (exact value of ¢ for Wiener sausage):

\/Tn/2n2 ~+/2/wInn—cIninn.

Bramson-Zeitouni’s conjecture 2009: /7T,/2n? is tight around its median.
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Dimension d = 2: correlation shows up

= For d = 2, Dembo-Peres-Rosen-Zeitouni’'04

Tn

— =1 in probability.
An2In®n P Y

= Ding’12, Belius-Kistler'17 (exact value of ¢ for Wiener sausage):

\/Tn/2n2 ~+/2/wInn—cIninn.

Bramson-Zeitouni’s conjecture 2009: /7T,/2n? is tight around its median.
= C.-Gallesco-Popov-Vachkovskaia’'13: For v € (0,1),

P[Tn < iwnz In? n] =exp (- n2(‘—ﬁ)+0(1))
s



Dimension 2

Dimension d = 2: correlation shows up

= For d = 2, Dembo-Peres-Rosen-Zeitouni’'04

Tn

— =1 in probability.
An2In®n P Y

= Ding’12, Belius-Kistler'17 (exact value of ¢ for Wiener sausage):

\/Tn/2n2 ~+/2/wInn—cIninn.

Bramson-Zeitouni’s conjecture 2009: /7T,/2n? is tight around its median.
= C.-Gallesco-Popov-Vachkovskaia’'13: For v € (0,1),

P[Tn < iwnz In? n] =exp (- n2(‘—ﬁ)+0(1))
s

The 1st limit is as in independent case (as well as large deviations from
above). But the red terms are different.



Dimension 2

What goes differently in dimension d=2 ?

The set of (n,)-late points

4
Ln(v) = {Xi Ta(x) > v x ;nzln2 n} ,

with v € (0, 1), is believed to be responsible for the discrepancies.



Dimension 2

What goes differently in dimension d=2 ?

The set of (n,)-late points

4 21,2
= : > —
La(7) {x Ta(X) 2 v x ZrIn n} ,
with v € (0, 1), is believed to be responsible for the discrepancies.
ww Brummelhuis-Hilhorst'91: fractal structure of late points.

= Dembo-Peres-Rosen-Zeitouni’06: density of late points is of different order
around a fixed point and around a late point.

Clustering instead of a Poisson structure.

Not compatible with weak dependence between hitting times.

Goal: understand the uncovered set at such times
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Random interlacements

Sznitman’s Random Interlacements (RI) generalized

... by Teixeira’09: Let S be a random walk on a transient weighted graph.

Construction of random interlacements at level « (abbr. Rl(«)). To construct
its restriction to a finite A C V (vertices; here, V = Z9) :

@ At each x on the boundary of A generate a Poisson(aéx(x))-number of
particles; €\ = equilibrium measure of A, has mass cap(A);

@ Each particle performs an independent S-random walks.

"Poisson soup of §-spaghettis"



Random interlacements

Sznitman’s Random Interlacements (RI) generalized

... by Teixeira’09: Let S be a random walk on a transient weighted graph.

Construction of random interlacements at level « (abbr. Rl(«)). To construct
its restriction to a finite A C V (vertices; here, V = Z9) :

@ At each x on the boundary of A generate a Poisson(aéx(x))-number of
particles; €\ = equilibrium measure of A, has mass cap(A);

@ Each particle performs an independent S-random walks.
"Poisson soup of §-spaghettis"
This determines the vacant set at level a, more precisely its trace on A,

V< = V\ {visited vertices} .



Random interlacements

Sznitman’s Random Interlacements (RI) generalized

... by Teixeira’09: Let S be a random walk on a transient weighted graph.

Construction of random interlacements at level « (abbr. Rl(«)). To construct
its restriction to a finite A C V (vertices; here, V = Z9) :

@ At each x on the boundary of A generate a Poisson(aéx(x))-number of
particles; €\ = equilibrium measure of A, has mass cap(A);

@ Each particle performs an independent S-random walks.
"Poisson soup of §-spaghettis"
This determines the vacant set at level o, more precisely its trace on A,
V< = V\ {visited vertices} .

forAC V.
: YA C V finite,

P[A € V*] = exp ( — acap(A)). ‘ (RI)

@ Ind > 3, simply take & = S usual RW to obtain Sznitman’s original RI.



Random interlacements

Capacity in the recurrent case

Harmonic measure of a finite A ¢ Z2 = entrance law “starting at infinity”,

hmA(X) = lim P}/[ST(A) = X].

Iyl =00

Potential (solution of Aa = do):
a(x) = > _[Po(S: = 0) — P«(Si = 0)].
t>0

Capacity of a finite A C 72,
cap(A) = Z a(x —xo) hma(x) (Xo € A arbitrary)
X€EA

The capacity is invariant by translation and the capacity of a singleton is 0.
For the random walk and a finite A in Z2,

In x| n C — Zcap(A) + e(x) + ex(R)
InR InR ’

P« (7(B(0,R)) < 7(A)) =

as R — oo and then x — oo.
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Random Interlacements in 2 dimensions

2 Problems:

e (1) What S gives a meaningful process Rl when d =2 ?
¢ (2) What does the Rl describe in terms of RW or BM on torus ?



Random Interlacements in 2 dimensions

e (1) Take S = random walk conditioned to never hit 0 - i.e., Doob’s
h-transform with transition

ﬁ(x,y):fé(yx)), y~x#0.

o Sis reversible w.r.t. px = a(x), conductances a(x)a(y), x ~ y € 72,

@ Sis transient.

Crucial identity: VA C 72 with ,

| cap(A) = G@p(A) |




Random Interlacements in 2 dimensions

o (1) Take S = random walk conditioned to never hit 0 - i.e., Doob’s
h-transform with transition

p(x,y) = f;(yx)), y~x#0.

@ Sis reversible w.rt. s, := &(x), conductances a(x)a(y), x ~ y € 72,
o Sis transient.
Crucial identity: VA c 72 with ,
cap(A) = cap(A).

o (2) Finally, for the corresponding interlacement, we have

P[A C V] = exp (— arcap(A)), A CC Z? containing 0 (%)
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Late points

V - Late points for RW on the torus and RI (d = 2)

Uncovered set by the walk by time
U™ = {x € 72 : To(x) > t}.
Taking time of the order of the cover time:

4o
t, = —n?In®n,
s

Ut(:) is the set of (n, a)-late points.



Late points

V - Late points for RW on the torus and RI (d = 2)

Uncovered set by the walk by time
U™ = {x € 72 : To(x) > t}.
Taking time of the order of the cover time:

4o
t, = —n?In®n,
s

Ut(:) is the set of (n, a)-late points.

Theorem (FC+S.Popov+M.Vachkovskaia 2016)

Let o > 0 and A is a finite subset of Z2. We have

lim P[T,A C U |0 € UM = exp (— macap(AU {0})).

The Rl describes the structure of the late points around a randomly picked
late point (conditionally that there exist some.)



Late points

Vacant set (in blue) of Rl(«) in Z2. Thanks to Darcy Cunha.

For o = 1.5 the only vacant site is the origin.

giv
*w n 5 °
- o

a=0.
a=1.
a=1.

. " =y

a=0.25
a=0.75
a=1.25




Late points

Some properties of Rl

@ limy_o Px(fy < o0) =1/2
@ Density decay

Plx € V*] = exp ( - m#) ~ Ca|lX|| 7

@ When s := ||x|| = oo, |ly|| = "M and ||x — y|| = s**°() with some
B € [0, 1], the correlation decays like

af
COI‘(1 {xeve}, 1{yEV0‘}) = Sim+o(1).



Late points

Some properties of Rl

e lfoeAc B(r),

14 O("”"l'x””"x“)
i)

a a e’
PIACV* |xeV ]:exp<—4cap(A)1 _CaP(A)_Fo(u

n
2a(x) X

o

RV

Qg ~

Figure: How the “local rate” looks like if we condition on the event that a “distant” site is
vacant.
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Vacant set

Size of the vacant set

Recall
V* = V\ {visited vertices} .
Phase transition (2016):
@ Fora>1, V¥ <o as,
@ Fora e (0,1), V¥ =0 as.



Vacant set

Size of the vacant set

Recall
V* = V\ {visited vertices} .

Phase transition (2016):
@ Fora>1, |V <o as,
@ Forae(0,1), [V¥ = as.

Theorem (FC+S.Popov 2017+)

V' s a.s. infinite.




Vacant set

Critical case a = 1

Contradicting arguments:

Times corresponds formally to "just after" the actual covering time because of
the negative log log n-correction to the leading order. So around the origin
(and assuming it is not visited yet) there should not be much unvisited points:

@ this is in favor of scenario : V' a.s. finite

On the other hand, conditioning by a rare event (everything has not been
visited), we put the walk in a deviating regime, and it may occur that many
points around are unvisited, leading to the

& opposite scenario : V' a.s. infinite
Why 2nd scenario is correct ?7?



Vacant set

Critical case a = 1

Contradicting arguments:

Times corresponds formally to "just after" the actual covering time because of
the negative log log n-correction to the leading order. So around the origin
(and assuming it is not visited yet) there should not be much unvisited points:

& this is in favor of scenario : V' a.s. finite

On the other hand, conditioning by a rare event (everything has not been
visited), we put the walk in a deviating regime, and it may occur that many
points around are unvisited, leading to the

& opposite scenario : V' a.s. infinite

Strategy of proof: take a sequence of nested pairs of balls Bx = B(xk, bx) ,
with increasing size and increasing distance.

@ Local fluctuations of excursions produce too few excursions: for many k’s,
#(k-excursions 0By.1 — 0By) << (mean number)

@ |f too few excursions, P(By has an unvisited point) > ¢ > 0.
@ The decorrelation between the different balls is good enough. O



Vacant set

Coming next. ..

More properties of RI....
...in the continuous case (work in progress FC + S.Popov) ...

Featuring: The Wiener moustache !
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