Pour les 59 ans de Patrick Cattiaux et Christian Léonard

Toulouse, 9 Juin 2017

La promenade autour des points tardifs

Francis Comets

Université Paris-Diderot, LPMA

Basé sur des travaux avec
Christophe Gallesco, Serguei Popov, Marina Vachkovskaia (Unıcamp, Brasil)

Contents

(9) Souvenirs ${ }^{2}$
(2) Cover time
(3) Dimension $d \geq 3$
(4) Dimension 2Random interlacements2d RI
(7) Late pointsVacant set

Souvenirs, souvenirs ...

NON! SI J'ETAIS UN VRAI DEVIN, I'AURAIS DEVINE QUE LES DESS ALLAIENT FAIRE VII, ALORS J'ALRAIS DIT प्याI, COMME GA VOUS N'AURIEZ PAS CRU QUE JETAIS UN VRAT DEVIN PUISQUE

Figure: Notes de cours de probabilité, novembre 1977

Souvenirs, souvenirs ...

The Canadian Journal of Statiaticn
Wol. 6 (1978), No.2, 143-168.
[143 Ia Revrue Canadievre de Statiotique

geostochastic calculus

by
D.A. Dawson

Carteton Univergity
Key worda and phrasea: Stochastic integral, neasure diffusion process Caneron-Martin-Ciranovy formula, population models, interaction. ANS 1970 Caneron-Martin-Cirsanov formula, population models, interac
subject olasoifioations: Primary 60
605;

ABStract

A stochastic calculua for a farily of continuous neasure-valued Markov processea 18 developed. Such processes arise naturally in the construction of stochastic modele of apatially diatributed populations. The stochantic
calculua 1 a a tool whereby a class of density calculua 1s a tool whereby a class of density dependent nodels can be stud 1ed in terma of the aultiplicative measure diffusion process. In this
the stochastic integral is introduced in the space-time setting and a Caneron-Martin-Cirananov theoren is established.

1. INTRODUCTION

In order to model the evolution of a geographically distributed population or a distributed chenical reaction it is useful to introduce the notion of a measure-valued Markov process. A basic model of this type is the nultiplicative (branching) measure diffusion process which was introduced by Dawson (1975) and which models a reproducing population in the absence of interaction effects. A number of properties and applications of the rultiplicative neasure diffusion process were obtainod by Dauson (1977), Dawson and Hochberg (1978), Dewson and Ivenoff (1978) and Holley and Stroock (1978). However in order to develop nore realistic nodels it is necessary to introduce density dependent nonlinear interaction effects. The nain purpose of this paper is to introduce methods for dealing with the latter which are based on an extension of the Itô stochastic calculus to measure-valued diffusion processes. Starting with the multiplicative measure diffusion process and this geostochastic calculus it is possible to construct stochastic models of complex spatially distributed systems.

In modelling a spatially distributed population there are three main effects which must be incorporated:
(a) the spatial motion and dispersion of the population,
(b) the inherent fluctuation in the population due to demographic and enviromental stochasticity,
(c) nonliniear interaction effects such as limitations on the enviroment carrying capacity.

Veasure-valued stochastic processes incorporating these effects can be heuristically associated with a symbolic stochastic evolution equation of the form

$$
\partial u / \partial t=G u+F(u)+W(u) \text {, }
$$

where G is the infinitesinal generator of the spatial motion on \boldsymbol{a}^{d}, the space on which the systen is assumed to live, $F(u)$ represents the nonlinear interaction tern and $W(u)$ represents the stochastic fluctuation term. We now consider a few exkmples which arise in applications.
stample 1.1 Model of Population with Reproduction and Nigration. Consider a population of individuals which inhabit Buclidean space \boldsymbol{a}^{d}. Each individual has a random life span and at the end of its life-time the individual dies and is replaced by a randoan mumber of offspring. To model spatial migration each individual is assumed to nove in e^{d} according to a Brownian motion process. Applications of this type of model arise in population genetics to describe the dispersion and mutation of the descendants of a new gene in a high density population or a population of rare mutant genes (cf. Sawyer, 1976). A similar nodel arises in neutron transport theory to describe the motion and production of neutrons in a nucloar reactor (cf. Bensoussan, Lions and Papanicolaou, 1978). One method of stulying this model is to con sider a contimuous approxination. This is analogous to modelling population dynarics by an ordinary differential equation. In the present example the diffusion approxination leads to the stochastic evolution equation

$$
\begin{equation*}
\partial / \partial t(u(t . .))=\Delta u(t . .)+\operatorname{cus}\left(t_{.} .\right)+\gamma b(u) . \tag{1.2}
\end{equation*}
$$

wherc Δ denotes the Laplacian operator, α is the Malthusian paraneter and r is inversely proportional to the mean life span. For each $t_{,} u\left(t_{,}\right.$,) is a random neasure, that is, $u(t, A)$ denotes the biomass in the region A at tise t. The appropriate stochastic fluctuation tern, $W(u)$, in this case is described in detail in Section 3. For a mathenatical derivation of the diffusion approxination, refer to Dawson and Ivanoff (1978)

Example 1.8. Biogeography: Modelling of a Population with Compstition for Remorcses. Consider a population of individuals subject to reproduction

Contents

(1)
 Souvenirs²

(2) Cover time
(3) Dimension $d \geq 3$

4 Dimension 2Random interlacements$2 d \mathrm{RI}$
(7) Late pointsVacant set

Cover time

$\left(X_{t}, t=1,2, \ldots\right)$ simple random walk on the torus $\mathbb{Z}_{n}^{2}=\mathbb{Z}^{2} / n \mathbb{Z}^{2}$
$X_{t}=\Upsilon_{n} S_{t}, \quad S=$ SRW on $\mathbb{Z}^{2}, \quad \Upsilon_{n}=$ equivalence mod. n

Cover time

$\left(X_{t}, t=1,2, \ldots\right)$ simple random walk on the torus $\mathbb{Z}_{n}^{2}=\mathbb{Z}^{2} / n \mathbb{Z}^{2}$
I
$X_{t}=\Upsilon_{n} S_{t}, \quad S=$ SRW on $\mathbb{Z}^{2}, \quad \Upsilon_{n}=$ equivalence mod. n
Hitting time of x

$$
T_{n}(x)=\min \left\{t \geq 0: X_{t}=x\right\},
$$

and the cover time

$$
\mathcal{T}_{n}=\max _{x \in \mathbb{Z}_{n}^{2}} T_{n}(x)
$$

Cover time

$\left(X_{t}, t=1,2, \ldots\right)$ simple random walk on the torus $\mathbb{Z}_{n}^{2}=\mathbb{Z}^{2} / n \mathbb{Z}^{2}$
$X_{t}=\Upsilon_{n} S_{t}, \quad S=$ SRW on $\mathbb{Z}^{2}, \quad \Upsilon_{n}=$ equivalence mod. n
Hitting time of x

$$
T_{n}(x)=\min \left\{t \geq 0: X_{t}=x\right\},
$$

and the cover time

$$
\mathcal{T}_{n}=\max _{x \in \mathbb{Z}_{n}^{2}} T_{n}(x)
$$

Wilf 1989, Aldous-Fill book 1990, Brummelhuis-Hilhorst 1991 ...

Main questions:

α_{0} Asymptotics $n \rightarrow \infty$ of cover time on a large torus ?
\star_{0} Statistics and Geometry of 2nd, 3rd ... maxima ? Of nearby maxima?
\star_{0} Geometric structure of level sets?

Yet another maximum of r.v.'s more or less dependent

- Maximum of independent identically distributed r.v.'s
- RW on complete graph ($\leadsto \rightarrow d=\infty)$. $\quad T_{n}(x)$'s are independent! Cover time $=$ Coupon collector problem with n^{d} images. (sum of independent but not i.d. r.v.s)

$$
\mathcal{T}_{n}=n^{d} \ln \left(n^{d}\right)+n^{d} \text { Gumbel }+\ldots \quad \quad(\text { Erdos }- \text { Renyi 1961) }
$$

- nearest neighbor random walk: $\quad(d<\infty)$

Correlations!

- Maxima of correlated fields: huge activity.

Especially for log-correlated fields: Gaußian Free Field (d=2), Branching Random Walks and BBM, Multiplicative chaos and Liouville quantum gravity, Last Passage Percolation ...

What is special in $d=2$? Strong correlation!

- Dimension two is critical for the walk (recurrence/transience)
- Hitting time is not much larger than mixing time

Simple Random Walk on \mathbb{Z}^{d}

Pólya's theorem 1921: RW is recurrent for $d=1,2$, and transient for $d \geq 3$.

- Green function for $d \geq 3$:

$$
G(x, y)=\mathbb{E}_{x} \sharp\left\{t: X_{t}=y\right\}=g(y-x)
$$

solves

$$
\Delta_{x} G(x, y)=-\delta_{y}(x)
$$

with $\Delta f(x)=\frac{1}{2 d} \sum_{z \sim x} f(z)-f(x)$ the discrete Laplacian.

$$
-g=\Delta^{-1}
$$

$$
\begin{aligned}
g(x) & \leq g(0)<\infty \\
g(x) & =c|x|^{2-d}+O\left(|x|^{-d}\right), \quad|x| \rightarrow \infty
\end{aligned}
$$

Simple Random Walk on \mathbb{Z}^{d}

Pólya's theorem 1921: RW is recurrent for $d=1,2$, and transient for $d \geq 3$.

- Green function for $d \geq 3$:

$$
G(x, y)=\mathbb{E}_{x} \sharp\left\{t: X_{t}=y\right\}=g(y-x)
$$

solves

$$
\Delta_{x} G(x, y)=-\delta_{y}(x)
$$

with $\Delta f(x)=\frac{1}{2 d} \sum_{z \sim x} f(z)-f(x)$ the discrete Laplacian.

$$
-g=\Delta^{-1}
$$

- Green function for $d=2: g$ being infinite is replaced by $-a$,

$$
a(x)=\sum_{t \geq 0}\left[\mathbb{P}_{0}\left(X_{t}=0\right)-\mathbb{P}_{0}\left(X_{t}=x\right)\right]
$$

solves $\Delta a=\delta_{0}$. Then $a(x) \sim \frac{2}{\pi} \ln |x|$ as $|x| \rightarrow \infty$.

Hitting times

Mean value is

$$
\mathbb{E} T_{n}(x) \sim\left\{\begin{array}{cc}
g(0) n^{d}, & d \geq 3 \\
\frac{2}{\pi} n^{2} \ln n, & d=2
\end{array}\right.
$$

(start from uniform !) and the law is close to exponential as $n \rightarrow \infty$

$$
\frac{T_{n}(x)}{\mathbb{E} T_{n}(x)} \xrightarrow{\text { law }} \mathcal{E}(1)
$$

Hitting times

Mean value is

$$
\mathbb{E} T_{n}(x) \sim \begin{cases}g(0) n^{d}, & d \geq 3 \\ \frac{2}{\pi} n^{2} \ln n, & d=2\end{cases}
$$

(start from uniform !) and the law is close to exponential as $n \rightarrow \infty$

$$
\frac{T_{n}(x)}{\mathbb{E} T_{n}(x)} \xrightarrow{\mathrm{law}} \mathcal{E}(1)
$$

- General fact: Matthews' method (1989) shows that

$$
\mathcal{T}_{n} \text { and } \mathbb{E} \mathcal{T}_{n} \leq \mathbb{E} T_{n}(x) \times \ln \left(n^{d}\right),
$$

- Sharp at leading order for $d \geq 3$ (Aldous 1990), and $d=2$ (Dembo-Peres-Rosen-Zeitouni 2004)

Where does dependence show up?

Question: In which respect does cover time behave like the maximum of n^{d} independent exponentially distributed r.v.'s?

$$
\mathcal{T}_{n} \stackrel{?}{\simeq} \max _{n^{d} \text { i.i.d.r.v. }} \mathcal{E}_{x}\left(a_{n}\right)
$$

$\mathcal{E}_{X}\left(a_{n}\right)$ with the "correct mean" (see last slide) ?

Where does dependence show up ?

Question: In which respect does cover time behave like the maximum of n^{d} independent exponentially distributed r.v.'s?

$$
\mathcal{T}_{n} \stackrel{?}{\simeq} \max _{n^{d} \text { i.i.d.r.v. }} \mathcal{E}_{x}\left(a_{n}\right)
$$

$\mathcal{E}_{X}\left(a_{n}\right)$ with the "correct mean" (see last slide) ?
Sloppy answer:

- OK essentially, for large d.
- But when $d=2$, it is false in some asymptotics.

Contents

(4) Souvenirs ${ }^{2}$
(2) Cover time
(3) Dimension $d \geq 3$
(4) Dimension 2
(5) Random interlacements
(6) $2 d \mathrm{RI}$
(7) Late points
(8) Vacant set

Sznitman's Random Interlacements $d \geq 3$

Model of Random Interlacements (RI) of Sznitman (2008):
$\mathrm{RI}(\alpha)$: A stationary point process in \mathbb{Z}^{d}, given by a Poisson process of paths. It yields "the local picture" left by the trace of a simple random walk in torus.

Theorem (Sznitman'09)

For $\alpha>0$, as $n \rightarrow \infty$, the uncovered set at time αn^{d} converges in law to the vacant set of $R I(\alpha)$.

Sznitman's Random Interlacements $\quad d \geq 3$

Model of Random Interlacements (RI) of Sznitman (2008):
$\mathrm{RI}(\alpha)$: A stationary point process in \mathbb{Z}^{d}, given by a Poisson process of paths. It yields "the local picture" left by the trace of a simple random walk in torus.

Theorem (Sznitman'09)

For $\alpha>0$, as $n \rightarrow \infty$, the uncovered set at time αn^{d} converges in law to the vacant set of $R I(\alpha)$.

Equilibrium measure of a finite $A \subset \subset \mathbb{Z}^{d}$ (escape from A)

$$
e_{A}(x)=P_{x}\left(S_{t} \notin A, t \geq 1\right), \quad x \in \partial A
$$

capacity and harmonic measure (from infinity)

$$
\operatorname{cap}(A)=\sum_{x \in \partial A} e_{A}(x), \quad \operatorname{hm}_{A}(x)=e_{A}(x) / \operatorname{cap}(A)
$$

Theorem means

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left[\Upsilon_{n} A \subset U_{\alpha n^{d}}\right]=\exp (-\alpha \operatorname{cap}(A))=\mathbb{P}\left[A \subset \mathcal{V}^{\alpha}\right]
$$

with \mathcal{V}^{α} the vacant set of $\operatorname{RI}(\alpha)$.

Times beyond $O\left(n^{d}\right)$:

Belius'13 extends the coupling to larger times, up to the mean Cover time. Also, Miller-Sousi'16.
\triangleright Roughly, uncovered points are independent in dimension $d \geq 3$.

Asymptotics in dimension $d \geq 3$

- As $n \rightarrow \infty$, it holds in probability,

$$
\mathcal{T}_{n} \sim g(0) n^{d} \ln \left(n^{d}\right)
$$

with $g(x)$ the Green function.
Fluctuations [Belius 2013]:

$$
\frac{\mathcal{T}_{n}}{g(0) n^{d}}-\ln \left(n^{d}\right) \xrightarrow{\text { law }} \text { Gumbel }
$$

as the if $T_{n}(x)$ were independent for $x \in \mathbb{Z}_{n}^{d}$.

$d \geq 3$: LARGE deviations

Recall Law of Large $\#$ in green (Aldous 1990)

- Lower tail is stretch exponential: For $\gamma \in(0,1)$,

$$
\mathbb{P}\left[\mathcal{T}_{n} \leq \gamma g(0) n^{d} \ln n^{d}\right]=\exp \left(-n^{d(1-\gamma)+o(1)}\right) .
$$

$d \geq 3$: LARGE deviations

Recall Law of Large $\#$ in green (Aldous 1990)

- Lower tail is stretch exponential: For $\gamma \in(0,1)$,

$$
\mathbb{P}\left[\mathcal{T}_{n} \leq \gamma g(0) n^{d} \ln n^{d}\right]=\exp \left(-n^{d(1-\gamma)+o(1)}\right)
$$

- Upper tail has a polynomial decay: For $\gamma>1$,

$$
\mathbb{P}\left[\mathcal{T}_{n} \geq \gamma g(0) n^{d} \ln n^{d}\right]=n^{-d(\gamma-1)+o(1)}
$$

See Goodman-den Hollander 2013 for Brownian motion; with additional (involved) considerations on extremal geometry.

$d \geq 3$: LARGE deviations

Recall Law of Large $\#$ in green (Aldous 1990)

- Lower tail is stretch exponential: For $\gamma \in(0,1)$,

$$
\mathbb{P}\left[\mathcal{T}_{n} \leq \gamma g(0) n^{d} \ln n^{d}\right]=\exp \left(-n^{d(1-\gamma)+o(1)}\right)
$$

- Upper tail has a polynomial decay: For $\gamma>1$,

$$
\mathbb{P}\left[\mathcal{T}_{n} \geq \gamma g(0) n^{d} \ln n^{d}\right]=n^{-d(\gamma-1)+o(1)}
$$

See Goodman-den Hollander 2013 for Brownian motion; with additional (involved) considerations on extremal geometry.

- Compatible with the independent exponential picture.

Contents

(9) Souvenirs ${ }^{2}$
(2) Cover time
(3) Dimension $d \geq 3$

4 Dimension 2
(5) Random interlacements$2 d \mathrm{RI}$
(7) Late points
(8) Vacant set

Dimension $d=2$: correlation shows up

For $d=2$, Dembo-Peres-Rosen-Zeitouni'04

$$
\frac{\mathcal{T}_{n}}{\frac{4}{\pi} n^{2} \ln ^{2} n} \rightarrow 1 \quad \text { in probability }
$$

Dimension $d=2$: correlation shows up

For $d=2$, Dembo-Peres-Rosen-Zeitouni'04

$$
\frac{\mathcal{T}_{n}}{\frac{4}{\pi} n^{2} \ln ^{2} n} \rightarrow 1 \quad \text { in probability }
$$

Ding'12, Belius-Kistler'17 (exact value of c for Wiener sausage):

$$
\sqrt{\mathcal{T}_{n} / 2 n^{2}} \simeq \sqrt{2 / \pi} \ln n-c \ln \ln n
$$

Bramson-Zeitouni's conjecture 2009: $\sqrt{\mathcal{T}_{n} / 2 n^{2}}$ is tight around its median.

Dimension $d=2$: correlation shows up

For $d=2$, Dembo-Peres-Rosen-Zeitouni'04

$$
\frac{\mathcal{T}_{n}}{\frac{4}{\pi} n^{2} \ln ^{2} n} \rightarrow 1 \quad \text { in probability }
$$

Ding'12, Belius-Kistler'17 (exact value of c for Wiener sausage):

$$
\sqrt{\mathcal{T}_{n} / 2 n^{2}} \simeq \sqrt{2 / \pi} \ln n-c \ln \ln n
$$

Bramson-Zeitouni's conjecture 2009: $\sqrt{\mathcal{T}_{n} / 2 n^{2}}$ is tight around its median.
C.-Gallesco-Popov-Vachkovskaia'13: For $\gamma \in(0,1)$,

$$
\mathbb{P}\left[\mathcal{T}_{n} \leq \frac{4}{\pi} \gamma n^{2} \ln ^{2} n\right]=\exp \left(-n^{2(1-\sqrt{\gamma})+o(1)}\right)
$$

Dimension $d=2$: correlation shows up

For $d=2$, Dembo-Peres-Rosen-Zeitouni'04

$$
\frac{\mathcal{T}_{n}}{\frac{4}{\pi} n^{2} \ln ^{2} n} \rightarrow 1 \quad \text { in probability }
$$

Ding'12, Belius-Kistler'17 (exact value of c for Wiener sausage):

$$
\sqrt{\mathcal{T}_{n} / 2 n^{2}} \simeq \sqrt{2 / \pi} \ln n-c \ln \ln n
$$

Bramson-Zeitouni's conjecture 2009: $\sqrt{\mathcal{T}_{n} / 2 n^{2}}$ is tight around its median.
C.-Gallesco-Popov-Vachkovskaia'13: For $\gamma \in(0,1)$,

$$
\mathbb{P}\left[\mathcal{T}_{n} \leq \frac{4}{\pi} \gamma n^{2} \ln ^{2} n\right]=\exp \left(-n^{2(1-\sqrt{\gamma})+o(1)}\right)
$$

The 1st limit is as in independent case (as well as large deviations from above).

What goes differently in dimension $d=2$?

The set of (n, γ)-late points

$$
\mathcal{L}_{n}(\gamma)=\left\{x: T_{n}(x) \geq \gamma \times \frac{4}{\pi} n^{2} \ln ^{2} n\right\},
$$

with $\gamma \in(0,1)$, is believed to be responsible for the discrepancies.

What goes differently in dimension $d=2$?

The set of (n, γ)-late points

$$
\mathcal{L}_{n}(\gamma)=\left\{x: T_{n}(x) \geq \gamma \times \frac{4}{\pi} n^{2} \ln ^{2} n\right\},
$$

with $\gamma \in(0,1)$, is believed to be responsible for the discrepancies.
Brummelhuis-Hilhorst'91: fractal structure of late points.
Dembo-Peres-Rosen-Zeitouni'06: density of late points is of different order around a fixed point and around a late point.

Clustering instead of a Poisson structure.
Not compatible with weak dependence between hitting times.
Goal: understand the uncovered set at such times

Contents

(4) Souvenirs ${ }^{2}$
(2) Cover time
(3) Dimension $d \geq 3$Dimension 2
(5) Random interlacements$2 d \mathrm{RI}$
(7) Late points
(8) Vacant set

Sznitman's Random Interlacements (RI) generalized

... by Teixeira'09: Let \widehat{S} be a random walk on a transient weighted graph.
Construction of random interlacements at level α (abbr. RI(α)). To construct its restriction to a finite $\Lambda \subset V$ (vertices; here, $\left.V=\mathbb{Z}^{d}\right)$:

- At each x on the boundary of Λ generate a Poisson $\left(\alpha \widehat{e}_{\wedge}(x)\right)$-number of particles; $\widehat{e}_{\Lambda}=$ equilibrium measure of Λ, has mass cap (Λ);
- Each particle performs an independent \widehat{S}-random walks.
"Poisson soup of \widehat{S}-spaghettis"

Sznitman's Random Interlacements (RI) generalized

... by Teixeira'09: Let \widehat{S} be a random walk on a transient weighted graph.
Construction of random interlacements at level α (abbr. RI(α)). To construct its restriction to a finite $\Lambda \subset V$ (vertices; here, $\left.V=\mathbb{Z}^{d}\right)$:

- At each x on the boundary of \wedge generate a Poisson $\left(\alpha \widehat{e}_{\wedge}(x)\right)$-number of particles; $\widehat{e}_{\Lambda}=$ equilibrium measure of Λ, has mass cap (Λ);
- Each particle performs an independent \widehat{S}-random walks.
"Poisson soup of \widehat{S}-spaghettis"
This determines the vacant set at level α, more precisely its trace on \wedge,

$$
\mathcal{V}^{\alpha}=V \backslash\{\text { visited vertices }\}
$$

Sznitman's Random Interlacements (RI) generalized

... by Teixeira'09: Let \widehat{S} be a random walk on a transient weighted graph.
Construction of random interlacements at level α (abbr. RI(α)). To construct its restriction to a finite $\Lambda \subset V$ (vertices; here, $\left.V=\mathbb{Z}^{d}\right)$:

- At each x on the boundary of Λ generate a Poisson $\left(\alpha \widehat{e}_{\wedge}(x)\right)$-number of particles; $\quad \widehat{e}_{\Lambda}=$ equilibrium measure of Λ, has mass cap (Λ);
- Each particle performs an independent \widehat{S}-random walks.
"Poisson soup of \widehat{S}-spaghettis"
This determines the vacant set at level α, more precisely its trace on \wedge,

$$
\mathcal{V}^{\alpha}=V \backslash\{\text { visited vertices }\}
$$

- Consistent definition for $\wedge \subset V$.
- Characterizing property: $\forall A \subset V$ finite,

$$
\begin{equation*}
\mathbb{P}\left[A \subset \mathcal{V}^{\alpha}\right]=\exp (-\alpha \widehat{\operatorname{cap}}(A)) . \tag{RI}
\end{equation*}
$$

- In $d \geq 3$, simply take $\hat{S}=S$ usual RW to obtain Sznitman's original RI.

Capacity in the recurrent case

Harmonic measure of a finite $A \subset \mathbb{Z}^{2}=$ entrance law "starting at infinity",

$$
\operatorname{hm}_{A}(x)=\lim _{\|y\| \rightarrow \infty} P_{y}\left[S_{\tau(A)}=x\right] .
$$

Potential (solution of $\Delta \boldsymbol{a}=\delta_{0}$):

$$
a(x)=\sum_{t \geq 0}\left[P_{0}\left(S_{t}=0\right)-P_{x}\left(S_{t}=0\right)\right]
$$

Capacity of a finite $A \subset \mathbb{Z}^{2}$,

$$
\operatorname{cap}(A)=\sum_{x \in A} a\left(x-x_{0}\right) \operatorname{hm}_{A}(x) \quad\left(x_{0} \in A \text { arbitrary }\right)
$$

The capacity is invariant by translation and the capacity of a singleton is 0 . For the random walk and a finite A in \mathbb{Z}^{2},

$$
P_{x}(\tau(B(0, R))<\tau(A))=\frac{\ln \|x\|}{\ln R}+\frac{C-\frac{\pi}{2} \operatorname{cap}(A)+\varepsilon(x)+\varepsilon_{x}(R)}{\ln R},
$$

as $R \rightarrow \infty$ and then $x \rightarrow \infty$.

Contents

(4) Souvenirs ${ }^{2}$
(2) Cover time
(3) Dimension $d \geq 3$
(4) Dimension 2
(5) Random interlacements
(6) $2 d \mathrm{RI}$Late pointsVacant set

Random Interlacements in 2 dimensions

2 Problems:

- (1) What \hat{S} gives a meaningful process RI when $d=2$?
- (2) What does the RI describe in terms of RW or BM on torus?

Random Interlacements in 2 dimensions

- (1) Take $\widehat{S}=$ random walk conditioned to never hit 0 - i.e., Doob's h-transform with transition

$$
\widehat{p}(x, y)=\frac{a(y)}{4 a(x)}, \quad y \sim x \neq 0
$$

- \widehat{S} is reversible w.r.t. $\mu_{x}:=a^{2}(x)$, conductances $a(x) a(y), x \sim y \in \mathbb{Z}^{2}$,
- \widehat{S} is transient.

Crucial identity: $\forall A \subset \mathbb{Z}^{2}$ with $0 \in A$,

$$
\operatorname{cap}(A)=\widehat{\operatorname{cap}}(A)
$$

Random Interlacements in 2 dimensions

- (1) Take $\widehat{S}=$ random walk conditioned to never hit 0 - i.e., Doob's h-transform with transition

$$
\hat{p}(x, y)=\frac{a(y)}{4 a(x)}, \quad y \sim x \neq 0 .
$$

- \hat{S} is reversible w.r.t. $\mu_{x}:=a^{2}(x)$, conductances $a(x) a(y), x \sim y \in \mathbb{Z}^{2}$,
- \hat{S} is transient.

Crucial identity: $\forall A \subset \mathbb{Z}^{2}$ with $0 \in A$,

$$
\operatorname{cap}(A)=\widehat{\operatorname{cap}}(A)
$$

- (2) Finally, for the corresponding interlacement, we have

$$
\mathbb{P}\left[A \subset \mathcal{V}^{\alpha}\right]=\exp (-\alpha \pi \operatorname{cap}(A)), \quad A \subset \subset \mathbb{Z}^{2} \text { containing } 0
$$

Contents

(4) Souvenirs ${ }^{2}$
(2) Cover time
(3) Dimension $d \geq 3$
(4) Dimension 2
(5) Random interlacements2d RI
(7) Late points
(8. Vacant set

V - Late points for RW on the torus and $\mathrm{RI}(d=2)$

Uncovered set by the walk by time

$$
U_{t}^{(n)}=\left\{x \in \mathbb{Z}_{n}^{2}: T_{n}(x)>t\right\} .
$$

Taking time of the order of the cover time:

$$
t_{\alpha}:=\frac{4 \alpha}{\pi} n^{2} \ln ^{2} n,
$$

$U_{t_{\alpha}}^{(n)}$ is the set of (n, α)-late points.

V - Late points for RW on the torus and $\mathrm{RI}(d=2)$

Uncovered set by the walk by time

$$
U_{t}^{(n)}=\left\{x \in \mathbb{Z}_{n}^{2}: T_{n}(x)>t\right\} .
$$

Taking time of the order of the cover time:

$$
t_{\alpha}:=\frac{4 \alpha}{\pi} n^{2} \ln ^{2} n,
$$

$U_{t_{\alpha}}^{(n)}$ is the set of (n, α)-late points.

Theorem (FC+S.Popov+M.Vachkovskaia 2016)

Let $\alpha>0$ and A is a finite subset of \mathbb{Z}^{2}. We have

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left[\Upsilon_{n} A \subset U_{t_{\alpha}}^{(n)} \mid 0 \in U_{t_{\alpha}}^{(n)}\right]=\exp (-\pi \alpha \operatorname{cap}(A \cup\{0\})) .
$$

The RI describes the structure of the late points around a randomly picked late point (conditionally that there exist some.)

Some properties of RI

- $\lim _{y \rightarrow \infty} P_{x}\left(\hat{\tau}_{y}<\infty\right)=1 / 2$
- Density decay

$$
\mathbb{P}\left[x \in \mathcal{V}^{\alpha}\right]=\exp \left(-\pi \alpha \frac{a(x)}{2}\right) \sim C_{\alpha}\|x\|^{-\alpha}
$$

- When $s:=\|x\| \rightarrow \infty,\|y\|=s^{1+o(1)}$ and $\|x-y\|=s^{\beta+o(1)}$ with some $\beta \in[0,1]$, the correlation decays like

$$
\operatorname{Cor}\left(\mathbf{1}_{\left\{x \in \mathcal{V}^{\alpha}\right\}}, \mathbf{1}_{\left\{y \in \mathcal{V}^{\alpha}\right\}}\right)=s^{-\frac{\alpha \beta}{4-\beta}+o(1)} .
$$

Some properties of RI

- If $0 \in A \subset B(r)$,

$$
\mathbb{P}\left[A \subset \mathcal{V}^{\alpha} \mid x \in \mathcal{V}^{\alpha}\right]=\exp \left(-\frac{\pi \alpha}{4} \operatorname{cap}(A) \frac{1+O\left(\frac{r \ln r \ln \|x\|}{\|x\|}\right)}{1-\frac{\operatorname{cap}(A)}{2 a(x)}+O\left(\frac{r \ln r}{\|x\|}\right)}\right)
$$

Figure: How the "local rate" looks like if we condition on the event that a "distant" site is vacant.

Contents

(9) Souvenirs 2
(2) Cover time
(3) Dimension $d \geq 3$
(4) Dimension 2Random interlacements2d RI
(7) Late points
(8) Vacant set

Size of the vacant set

Recall

$$
\mathcal{V}^{\alpha}=V \backslash\{\text { visited vertices }\}
$$

Phase transition (2016):

- For $\alpha>1, \quad\left|\mathcal{V}^{\alpha}\right|<\infty \quad$ a.s.,
- For $\alpha \in(0,1), \quad\left|\mathcal{V}^{\alpha}\right|=\infty \quad$ a.s.

Size of the vacant set

Recall

$$
\mathcal{V}^{\alpha}=V \backslash\{\text { visited vertices }\}
$$

Phase transition (2016):

- For $\alpha>1, \quad\left|\mathcal{V}^{\alpha}\right|<\infty \quad$ a.s.,
- For $\alpha \in(0,1), \quad\left|\mathcal{V}^{\alpha}\right|=\infty \quad$ a.s.

Theorem (FC+S.Popov 2017+)

$\mathcal{V}^{1} \quad$ is a.s. infinite.

Critical case $\alpha=1$

Contradicting arguments:
Times corresponds formally to "just after" the actual covering time because of the negative $\log \log n$-correction to the leading order. So around the origin (and assuming it is not visited yet) there should not be much unvisited points:

- this is in favor of scenario: $\quad \mathcal{V}^{1}$ a.s. finite

On the other hand, conditioning by a rare event (everything has not been visited), we put the walk in a deviating regime, and it may occur that many points around are unvisited, leading to the

- opposite scenario: \mathcal{V}^{1} a.s. infinite ...

Why 2nd scenario is correct ???

Critical case $\alpha=1$

Contradicting arguments:
Times corresponds formally to "just after" the actual covering time because of the negative $\log \log n$-correction to the leading order. So around the origin (and assuming it is not visited yet) there should not be much unvisited points:

- this is in favor of scenario: \mathcal{V}^{1} a.s. finite ...

On the other hand, conditioning by a rare event (everything has not been visited), we put the walk in a deviating regime, and it may occur that many points around are unvisited, leading to the

- opposite scenario: \mathcal{V}^{1} a.s. infinite \ldots

Strategy of proof: take a sequence of nested pairs of balls $B_{k}=B\left(x_{k}, b_{k}\right)$, with increasing size and increasing distance.

- Local fluctuations of excursions produce too few excursions: for many k's,

$$
\sharp\left(k \text {-excursions } \partial B_{k+1} \rightarrow \partial B_{k}\right) \ll \text { (mean number) }
$$

- If too few excursions, $\mathbb{P}\left(B_{k}\right.$ has an unvisited point $) \geq c>0$.
- The decorrelation between the different balls is good enough.

Coming next. . .

More properties of RI...
.... in the continuous case (work in progress FC + S.Popov) ...
Featuring: The Wiener moustache!

