Contraction Principles some applications

Fabrice Gamboa (Institut de Mathématiques de Toulouse)

7th of June 2017

Christian and Patrick 59th Birthday

Overview

1 Appetizer : Christian and Patrick secret lives

2 Starter: Around large deviations

3 Main course : Sanov and Markov

4 Trou normand: Marginal problem and LDP

5 Cheese : Markov generalized moment problem and LDP

6 Dessert: Sum rules

Overview

1 Appetizer : Christian and Patrick secret lives

2 Starter: Around large deviations

3 Main course : Sanov and Markov

4 Trou normand: Marginal problem and LDP

5 Cheese : Markov generalized moment problem and LDP

6 Dessert: Sum rules

Starter I : Large deviations

$\left(\mathbb{P}_{n}\right)$ on E satisfies a LDP with good rate I means that at log scale

$$
\forall A \text { measurable set, } \mathbb{P}_{n}(A) \approx \exp \left(-n \inf _{x \in A} I(A)\right)
$$

- $\mathrm{I} \geqslant 0$ is lower semi-continuous,
- $\forall \mathrm{L}>0,\{x \in \mathrm{E}: \mathrm{I}(x) \leqslant \mathrm{L}\}$ is compact.
- I is unique

Starter II : Contraction principles

Contraction principle

$\mathrm{f}: \mathrm{E} \rightarrow \mathrm{F}$ a continuous map
$\left(\mathbb{P}_{n}\right)$ on E LDP with good rate $I \Rightarrow\left(\mathbb{P}_{n} \circ \mathrm{f}^{-1}\right)$ LDP on F with good rate

$$
J(\cdot):=\inf _{\{x: f(x)=\cdot\}} I(x) .
$$

Inverse contraction principle

$g: F \rightarrow E$ a continuous bijective map + exponential tightness of $\left(\mathbb{P}_{n}\right)$ $\left(\mathbb{P}_{n} \circ \mathrm{~g}^{-1}\right)$ on E LDP with rate $\mathrm{I} \Rightarrow\left(\mathbb{P}_{n}\right)$ LDP on F with good rate

$$
\mathrm{J}(\cdot):=\mathrm{I}(\mathrm{~g}(\cdot)) .
$$

Starter III : Kullback Leibler Divergence I

Dr. Richard A. Leibler
R. Leibler (1914-2003)

DR. SOLOMON KULLBACK
S. Kullback (1907-1994)

P, Q probability measures on some space E

$$
K(P, Q)=\left\{\begin{array}{l}
\int_{E} \log \frac{d P}{d Q} d P \text { if } P \ll Q \text { and } \log \frac{d P}{d Q} \in L^{1}(P) \\
+\infty \text { otherwise }
\end{array}\right.
$$

Starter III : large deviations two examples

- Sanov Theorem : $\left(X_{n}\right)$ i.i.d. Q on E
$\Rightarrow F_{n}(\mathrm{~d} x)=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}(\mathrm{~d} x)$ LDP on $\mathbb{P}(\mathrm{E})$ rate $\mathrm{K}(\cdot, \mathrm{Q})$
- Weighted measures : $\left(Z_{n}\right)$ i.i.d. $\mathcal{E}(1),\left(x_{n}\right) \in \operatorname{supp} P \subset E$, $\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}}(d x) \rightarrow P$
$\Rightarrow v_{n}(d x)=\frac{1}{n} \sum_{i=1}^{n} Z_{i} \delta_{x_{i}}(d x)$ LDP on $\mathbb{M}_{+}(E)$ rate $K(P, \cdot)$

Overview

1 Appetizer : Christian and Patrick secret lives

2 Starter: Around large deviations

3 Main course : Sanov and Markov

4 Trou normand: Marginal problem and LDP

5 Cheese: Markov generalized moment problem and LDP

6 Dessert: Sum rules

Main course : Sanov and Markov

C. Léonard

P. Cattiaux

- Cattiaux, P., \& Léonard C. (1994). Minimization of the Kullback information of diffusion processes. Annales de l'IHP probabilités et statistique, 30, 83-132.
- Cattiaux, P., \& Léonard C. (1995). Large deviations and Nelson processes. Forum Mathematicum, 7, 95-116.
\rightarrow Cattiaux, P., \& Léonard C. Minimization of the Kullback information for some Markov processes. (1996). Séminaire de Probabilités $X X X$, Springer, 288-311

Sanov Theorem: Q law of a Markov process on $[0, T],\left(X_{n}\right)$ i.i.d. Q

$$
F_{n}(d x)=\frac{1}{n} \sum_{i=1}^{n} \delta x_{i}(d x)
$$

Random law of a random process-Satisfies LDP rate $\mathrm{K}(\cdot, \mathrm{Q})$

Main course (bis) : Sanov and Markov

P. Cattiaux

Various computation of the contracted functional

$$
J(\cdot):=\inf _{\{x: f(P)=\cdot\}} K(P, Q)
$$

$f(P)$ is the marginals flow of P

Feasibility conditions for the optimization problem (existence of solution having finite entropy)

Overview

1 Appetizer : Christian and Patrick secret lives

2 Starter: Around large deviations

3 Main course : Sanov and Markov

4 Trou normand: Marginal problem and LDP

5 Cheese : Markov generalized moment problem and LDP

6 Dessert: Sum rules

Trou normand : Marginal problem and LDP

P. Cattiaux

F.G

Cattiaux, P., \& G F. (1999). Large deviations and variational theorems for marginal problems. Bernoulli, 5, 81-108.
P on $E \times F, v$ on E, μ on F données
$\exists \mathrm{Q} \ll \mathrm{P}$ on $\mathrm{E} \times \mathrm{F}$ marginals v and $\mu+$ conditions ?
Tool: LDP weighted measures $\left(\gamma_{n}\right)+$ contraction

- $\left(Z_{n}\right)$ i.i.d., $\left(x_{n}, y_{n}\right) \in E \times F$,
$\Rightarrow \frac{1}{n} \sum_{i=1}^{n} \delta_{\left(x_{i}, y_{i}\right)}(d x, d y) \rightarrow P$

$$
v_{n}(d x, d y)=\frac{1}{n} \sum_{i=1}^{n} Z_{i} \delta_{\left(x_{i}, y_{i}\right)}(d x, d y)
$$

Trou normand (bis) : Marginal problem and LDP

P. Cattiaux

F.G

$$
v_{n}(d x, d y)=\frac{1}{n} \sum_{i=1}^{n} Z_{i} \delta_{\left(x_{i}, y_{i}\right)}(d x, d y)
$$

(v_{n}) satisfies a LDP with good rate I

$$
\mathrm{I}(\mathrm{Q}):=\int_{\mathrm{E} \times \mathrm{F}} \psi^{*}\left(\frac{\mathrm{dQ}}{\mathrm{dP}}\right) \mathrm{dP}, \mathrm{Q} \ll \mathrm{P} .
$$

ψ^{*} is the Cramér transform of Z

Trou normand (ter) : Marginal problem and LDP

P. Cattiaux

F.G

Contraction on the two marginals
Example : Z ~ LB(1/2) (L > 1)
$\exists \mathrm{Q} \ll \mathrm{P}$ on $\mathrm{E} \times \mathrm{F}$ having marginals v and μ with $\frac{\mathrm{dQ}}{\mathrm{dP}} \leqslant \mathrm{L}$

$$
\text { iff } \forall h_{1} \in C(E), h_{2} \in C(F) \text {, }
$$

$$
\int_{E} h_{1} d v+\int_{F} h_{2} d \mu \leqslant \int_{E \times F} \log \left(1+\exp \left(L\left(h_{1}(x)+h_{2}(y)\right)\right)\right) P(d x, d y)
$$

Overview

1 Appetizer : Christian and Patrick secret lives

2 Starter: Around large deviations

3 Main course : Sanov and Markov

4 Trou normand : Marginal problem and LDP

5 Cheese : Markov generalized moment problem and LDP

6 Dessert: Sum rules

Cheese : Markov generalized moment problem and LDP

D. Dacunha-Castelle

F.G

Dacunha-Castelle, D., \& G F. (1990). Maximum d'entropie et problème des moments. Annales de l'IHP probabilités et statistique, 26, 567-596.
$\mathrm{P}=\mathrm{dx}$ on $[0,1]$ and contraction on the Φ-moments $\left(\Phi \in \mathrm{C}^{\mathrm{k}}([0,1])\right.$ given $)$
The feasibility of the Markov moment problem for $c \in \mathbb{R}^{k}$

$$
\begin{gathered}
\exists G \in \mathbb{M}_{+}([0,1]) G \ll d x \text { on }[0,1] \text { with } \int_{0}^{1} \Phi(x) G(d x)=c \text { and } \frac{d G}{d x} \leqslant 1 \\
\text { iff } \forall v \in \mathbb{R}^{k}, \quad\langle v, c\rangle \leqslant \int_{0}^{1} \log (1+\exp \langle v, \Phi(x)\rangle) d x
\end{gathered}
$$

Overview

1 Appetizer : Christian and Patrick secret lives

2 Starter: Around large deviations

3 Main course : Sanov and Markov

4 Trou normand: Marginal problem and LDP

5 Cheese : Markov generalized moment problem and LDP

6 Dessert: Sum rules

Sum rules and LDP coworks with

J. Nagel (Munich and EURANDOM)

A. Rouault (Versailles)

Orthogonal polynomial recursion on \mathbb{T}

- μ probability measure on \mathbb{T}

1) (p_{n}) sequence of orthogonal polynomials associated to μ
2) p_{n} is monic and has degree n
3) $k \neq n, \int_{\mathbb{T}} p_{n}(z) p_{k}(z) \mu(d z)=0$

- Satisfies the recursion
$\rightarrow p_{n+1}(z)=z p_{n}(z)-\dot{\alpha}_{n} p_{n}^{*}(z)$ where $p_{n}^{*}(z):=z^{n} \overline{p_{n}(1 / \bar{z})}$.
$\rightarrow \alpha_{n}=-p_{n+1}(0)$ is the Verblunsky coefficient

Orthogonal polynomial recursion on \mathbb{T}

- μ probability measure on \mathbb{T}

1) (p_{n}) sequence of orthogonal polynomials associated to μ
2) p_{n} is monic and has degree n
3) $k \neq n, \int_{\mathbb{T}} p_{n}(z) p_{k}(z) \mu(d z)=0$

- Satisfies the recursion

Orthogonal polynomial recursion on \mathbb{T}

- μ probability measure on \mathbb{T}

1) (p_{n}) sequence of orthogonal polynomials associated to μ
2) p_{n} is monic and has degree n
3) $k \neq n, \int_{\mathbb{T}} p_{n}(z) p_{k}(z) \mu(d z)=0$

- Satisfies the recursion
$\rightarrow p_{n+1}(z)=z p_{n}(z)-\bar{\alpha}_{n} p_{n}^{*}(z)$ where $p_{n}^{*}(z):=z^{n} \overline{p_{n}(1 / \bar{z})}$.
$\rightarrow \alpha_{n}=-p_{n+1}(0)$ is the Verblunsky coefficient

Verblunsky version of Szegö Theorem

G. Szegö (1895-1985)

S. Verblunsky (1906-1996)

Verblunsky-Szegö Theorem

λ Lebesgue measure on \mathbb{T}.

$$
K(\lambda, \mu)=-\sum_{n=0}^{\infty} \log \left(1-\left|\alpha_{n}\right|^{2}\right)
$$

Second ingredient : the three parametrisations

- μ probability measure on \mathbb{R}
\rightarrow Assume that μ has all its moments finite
$\rightarrow\left(p_{n}\right)$ normalized othogonal polynomials in $L^{2}(\mu)$
\rightarrow Three terms recursion

$$
x p_{n}(x)=a_{n} p_{n-1}(x)+b_{n+1} p_{n}(x)+a_{n+1} p_{n+1}(x), \quad a_{n}>0, b_{n+1} \in \mathbb{R}
$$

- Assume moreover that μ is supported on $[0,+\infty[$ $b_{n}=z_{2 n-2}+z_{2 n-1}$, and $a_{n}^{2}=z_{2 n-1} z_{2 n}$.
- If μ is supported on $[0,1], \mu$ may be seen as the pushforward of a measure on \mathbb{T} invariant by $2 \pi-\theta$ by $\sin ^{2}(\theta / 2)$.
$b_{k+1}=1 / 4\left[2+\left(1-\alpha_{2 k-1}\right) \alpha_{2 k}-\left(1+\alpha_{2 k-1}\right) \alpha_{2 k-2}\right]$ and
$a_{k+1}=1 / 4 \sqrt{ }\left(1-\alpha_{2 k-1}\right)\left(1-\alpha_{2 k}^{2}\right)\left(1+\alpha_{2 k+1}\right)$

Second ingredient : the three parametrisations

- μ probability measure on \mathbb{R}
\rightarrow Assume that μ has all its moments finite
$\rightarrow\left(p_{n}\right)$ normalized othogonal polynomials in $L^{2}(\mu)$
\rightarrow Three terms recursion

$$
x p_{n}(x)=a_{n} p_{n-1}(x)+b_{n+1} p_{n}(x)+a_{n+1} p_{n+1}(x), \quad a_{n}>0, b_{n+1} \in \mathbb{R}
$$

- Assume moreover that μ is supported on $[0,+\infty$ [
$b_{n}=z_{2 n-2}+z_{2 n-1}$, and $a_{n}^{2}=z_{2 n-1} z_{2 n}$.
- If μ is supported on $[0,1], \mu$ may be seen as the pushforward of a measure on \mathbb{T} invariant by $2 \pi-\theta$ by $\sin ^{2}(\theta / 2)$.
$b_{k+1}=1 / 4\left[2-\left(1-\alpha_{2 k-1}\right) \alpha_{2 k}-\left(1+\alpha_{2 k-1}\right) \alpha_{2 k-2}\right]$ and
$a_{k+1}=1 / 4 \sqrt{ }\left(1-\alpha_{2 k-1}\right)\left(1-\alpha_{2 k}^{2}\right)\left(1+\alpha_{2 k+1}\right)$

Semicircular distribution

$$
R=2
$$

$$
\mathrm{SC}(\mathrm{~d} x)=\frac{1}{2 \pi} \sqrt{4-x^{2}} \mathbb{1}_{[-2,2]}(x) \mathrm{d} x
$$

Limit of the eigenvalues distribution of the GUE

$$
a_{k}=1, b_{k}=0 \text { for all } k \geqslant 1
$$

Pastur-Marchenko Distribution

L. Pastur

V. Marchenko

$$
M P_{\tau}(d x)=\frac{\sqrt{\left(\tau^{+}-x\right)\left(x-\tau^{-}\right)}}{2 \pi \tau x} \mathbb{1}_{\left(\tau^{-}, \tau^{+}\right)}(x) d x, \tau^{ \pm}=(1 \pm \sqrt{\tau})^{2}
$$

Limit of the squared singular values distribution of rectangular Gaussian matrices. $\tau \in] 0,1]$ the asymptotic ratio $\mathrm{nb} \mathrm{col} / \mathrm{nb}$ line

$$
a_{k}=\sqrt{\tau}(k \geqslant 1), \quad b_{1}=1, \quad b_{k}=1+\tau \quad(k \geqslant 2)
$$

and correspond to $z_{2 n-1}=1$ and $z_{2 n}=\tau$ for all $n \geqslant 1$.

Kesten Mac Kay Distribution

H. Kesten

B. Mc Kay

$$
\begin{aligned}
& \mathrm{KMK}_{\kappa_{1}, \kappa_{2}}(d x)=\frac{\left(2+\kappa_{1}+\kappa_{2}\right)}{2 \pi} \frac{\sqrt{\left(u^{+}-x\right)\left(x-u^{-}\right)}}{x(1-x)} \mathbb{1}_{\left(u^{-}, u^{+}\right)}(x) d x \\
& u^{ \pm}:=\frac{1}{2}+\frac{\kappa_{1}^{2}-\kappa_{2}^{2} \pm 4 \sqrt{\left(1+\kappa_{1}\right)\left(1+\kappa_{2}\right)\left(1+\kappa_{1}+\kappa_{2}\right)}}{2\left(2+\kappa_{1}+\kappa_{2}\right)^{2}}, \kappa_{1}, \kappa_{2} \geqslant 0 .
\end{aligned}
$$

Asymptotic distribution of the eigenvalues in the Jacobi-ensemble

The associated Verblunsky coefficients for $k \geqslant 0$,

$$
\alpha_{2 k}=\frac{\kappa_{1}-\kappa_{2}}{2+\kappa_{1}+\kappa_{2}}, \quad \alpha_{2 k+1}=-\frac{\kappa_{1}+\kappa_{2}}{2+\kappa_{1}+\kappa_{2}} .
$$

Then

$$
a_{1}=\frac{\sqrt{\left(1+\kappa_{1}\right)\left(1+\kappa_{2}\right)}}{\left(2+\kappa_{1}+\kappa_{2}\right)^{3 / 2}}, \quad b_{1}=\frac{1+\kappa_{2}}{2+\kappa_{1}+\kappa_{2}}
$$

and for $k \geqslant 2$
$a_{k}=\frac{\sqrt{\left(1+k_{1}+k_{2}\right)\left(1+k_{1}\right)\left(1+k_{2}\right)}}{\left(2+k_{1}+k_{2}\right)^{2}}$,

$$
b_{k}=\frac{1}{2}\left[1-\frac{\kappa_{1}^{2}-k_{2}^{2}}{\left(2+\mathrm{k}_{1}+\mathrm{k}_{2}\right)^{2}}\right] .
$$

Killip Simon Theorem

R. Killip

B. Simon

$$
\begin{aligned}
& \mathrm{K}(\mathrm{SC} \mid \mu)+\sum_{n=1}^{\mathrm{N}^{+}} \mathcal{F}_{\mathrm{H}}^{+}\left(\lambda_{n}^{+}\right)+\sum_{n=1}^{\mathrm{N}^{-}} \mathcal{F}_{\mathrm{H}}^{-}\left(\lambda_{n}^{-}\right)=\sum_{\mathrm{k} \geqslant 1}\left(\frac{1}{2} b_{k}^{2}+a_{k}^{2}-1-\log \left(a_{k}^{2}\right)\right) \\
& \mathcal{F}_{\mathrm{H}}^{+}(x):=\left\{\begin{array}{l}
\int_{2}^{x} \sqrt{\mathrm{t}^{2}-4} \mathrm{dt}=\frac{x}{2} \sqrt{x^{2}-4}-2 \log \left(\frac{x+\sqrt{x^{2}-4}}{2}\right) \text { if } x \geqslant 2 \\
\infty \text { otherwise, }
\end{array}\right. \\
& \mathcal{F}_{\mathrm{H}}^{-}(x):=\mathcal{F}_{\mathrm{H}}^{+}(-x)
\end{aligned}
$$

Our sum rules I

$$
\mathrm{K}\left(\mathrm{MP}_{\tau} \mid \mu\right)+\sum_{n=1}^{\mathrm{N}^{+}} \mathcal{F}_{\mathrm{L}}^{+}\left(\lambda_{n}^{+}\right)+\sum_{\mathrm{n}=1}^{\mathrm{N}^{-}} \mathcal{F}_{\mathrm{L}}^{-}\left(\lambda_{n}^{-}\right)=\sum_{\mathrm{k}=1}^{\infty} \tau^{-1} \mathrm{G}\left(z_{2 \mathrm{k}-1}\right)+\mathrm{G}\left(\tau^{-1} z_{2 k}\right)
$$

$$
\begin{aligned}
& \mathcal{F}_{\mathrm{L}}^{+}(x)=\left\{\begin{array}{l}
\int_{\tau^{+}}^{x} \frac{\sqrt{\left(\mathrm{t}-\tau^{-}\right)\left(\mathrm{t}-\tau^{+}\right)}}{\mathrm{t} \tau} \mathrm{dt} \quad \text { if } x \geqslant \tau^{+}, \\
\infty \text { otherwise, }
\end{array}\right. \\
& \mathcal{F}_{\mathrm{L}}^{-}(x)=\left\{\begin{array}{l}
\int_{x}^{\tau^{-}} \frac{\sqrt{\left(\tau^{-}-\mathrm{t}\right)\left(\tau^{+}-\mathrm{t}\right)}}{\mathrm{t} \tau} \mathrm{dt} \text { if } x \leqslant \tau^{-}, \\
\infty \text { otherwise. }
\end{array}\right. \\
& G(x)=x-1-\log x,(x>0) .
\end{aligned}
$$

Our sum rules II

$\mathrm{K}\left(\mathrm{KMK}_{\kappa_{1}, \mathrm{~K}_{2}} \mid \mu\right)+\sum_{\mathrm{n}=1}^{\mathrm{N}^{+}} \mathcal{F}_{\mathrm{J}}^{+}\left(\lambda_{n}^{+}\right)+\sum_{\mathrm{n}=1}^{\mathrm{N}^{-}} \mathcal{F}_{\mathrm{J}}^{-}\left(\lambda_{n}^{-}\right)=\sum_{\mathrm{k}=0}^{\infty} \mathrm{H}_{1}\left(\alpha_{2 \mathrm{k}+1}\right)+\mathrm{H}_{2}\left(\alpha_{2 \mathrm{k}}\right)$

$$
\begin{aligned}
& \mathcal{F}_{\mathrm{J}}^{+}(x)= \begin{cases}\int_{\mathfrak{u}^{+}}^{x} \frac{\sqrt{\left(\mathrm{t}-\mathfrak{u}^{+}\right)\left(\mathrm{t}-\mathrm{u}^{-}\right)}}{\mathrm{t}(1-\mathrm{t})} \mathrm{dt} & \text { if } \mathfrak{u}^{+} \leqslant x \leqslant 1 \\
\infty & \text { otherwise. }\end{cases} \\
& \mathcal{F}_{\mathrm{J}}^{-}(x)= \begin{cases}\int_{x}^{u^{-}} \frac{\sqrt{\left(u^{-}-\mathrm{t}\right)\left(u^{+}-\mathrm{t}\right)}}{\mathrm{t}(1-\mathrm{t})} \mathrm{dt} & \text { if } 0 \leqslant x \leqslant u^{-} \\
\infty & \text { otherwise. }\end{cases}
\end{aligned}
$$

For $-1 \leqslant x \leqslant 1$

$$
\begin{array}{r}
\begin{array}{r}
H_{1}(x)=-\left(1+k_{1}+\kappa_{2}\right) \log [
\end{array}\left[\frac{2+k_{1}+k_{2}}{2\left(1+\kappa_{1}+\kappa_{2}\right)}(1-x)\right] \\
-\log \left[\frac{2+\kappa_{1}+\kappa_{2}}{2}(1+x)\right] \\
H_{2}(x)=-\left(1+k_{1}\right) \log \left[\frac{\left(2+\kappa_{1}+\kappa_{2}\right)}{2\left(1+k_{1}\right)}(1+x)\right] \\
-\left(1+k_{2}\right) \log \left[\frac{\left(2+k_{1}+k_{2}\right)}{2\left(1+k_{1}\right)}(1-x)\right] .
\end{array}
$$

Particular case $\mathrm{k}_{1}=\mathrm{k}_{2}=0 \Rightarrow \mathrm{u}^{-}=0, \mathrm{u}^{+}=1, \mathrm{KMK}_{\mathrm{\kappa}_{1}, \mathrm{\kappa}_{2}}$ arsine law.
We recover the Szegö Theorem pushed on $[0,1]$ by $\sin ^{2}(\theta / 2)$.

How it works?

Main idea
Large deviations +inverse contraction principle

Random measures

Spectral random measures associated to classical ensembles of random matrices (A_{n})
$\left(v_{n}\right)$ defined by its moments

$$
\int x^{k} \gamma_{n}(d x):=\left\langle e, A_{n}^{k} e\right\rangle,(k \in \mathbb{N}),\|e\|=1, \text { e cyclic }
$$

Main tool I

Theorem

- v_{n} is supported by the eigenvalues of A_{n}.
- For the classical ensembles the weights and the supporting points are independents
- Furthermore, in this last case, the vector of weights is Dirichlet distributed.

Main tool II

Theorem

1) In the GUE, (a_{k}^{η}) and $\left(b_{k}^{\eta}\right)$ are independent sequences of independent variables (normal and χ^{2})
2) In the Wishart model, $\left(z_{\mathrm{k}}^{\mathfrak{n}}\right)$ is a sequence of independent variables $\left(\chi^{2}\right)$.
3) In the Jacobi model, $\left(\alpha_{k}^{n}\right)$ is a sequence of independent variables (Beta)

Some references around the dessert

- Verblunsky, S. (1936). On positive harmonic functions. Proceedings of the London Mathematical Society, 2(1), 290-320.
- Killip, R., \& Simon, B. (2003). Sum rules for Jacobi matrices and their applications to spectral theory. Annals of mathematics, 253-321.
- Simon, B. (2010). Szegö's theorem and its descendants : spectral theory for L2 perturbations of orthogonal polynomials. Princeton University Press.
- GF., Nagel, J., \& Rouault, A. (2016). Sum rules via large deviations. Journal of Functional Analysis, 270(2), 509-559.
- GF., Nagel, J., \& Rouault, A. (2016). Sum rules and large deviations for spectral matrix measures. arXiv preprint arXiv :1601.08135.
- GF., Nagel, J., \& Rouault, A. (2017). Sum rules and large deviations for spectral measures on the unit circle. Random Matrices : Theory and Applications.
- Breuer, J., Simon, B., \& Zeitouni, O. (2017). Large Deviations and Sum Rules for Spectral Theory-A Pedagogical Approach. To appear in Jounal of Spectral Theory.
- Breuer, J., Simon, B., \& Zeitouni, O. (2017). Large deviations and the Lukic conjecture. arXiv preprint arXiv :1703.00653.

