Contraction Principles some applications

Fabrice Gamboa (Institut de Mathématiques de Toulouse)

7th of June 2017

Christian and Patrick 59th Birthday

Overview

- 1 Appetizer : Christian and Patrick secret lives
- 2 Starter : Around large deviations
- 3 Main course : Sanov and Markov
- 4 Trou normand : Marginal problem and LDP
- 5 Cheese : Markov generalized moment problem and LDP
- 6 Dessert : Sum rules

Overview

1 Appetizer : Christian and Patrick secret lives

- 2 Starter : Around large deviations
- 3 Main course : Sanov and Markov
- 4 Trou normand : Marginal problem and LDP
- 5 Cheese : Markov generalized moment problem and LDP
- 6 Dessert : Sum rules

Starter I : Large deviations

 (\mathbb{P}_n) on E satisfies a LDP with good rate I means that at log scale

 $\forall A \text{ measurable set}, \mathbb{P}_n(A) \approx \exp(-n \inf_{x \in A} I(A)).$

with

- $I \ge 0$ is lower semi-continuous,
- $\forall L > 0, \{x \in E : I(x) \leq L\}$ is compact.
- I is unique

Starter II : Contraction principles

Contraction principle

 $f: E \to F$ a continuous map

 (\mathbb{P}_n) on E LDP with good rate $I \Rightarrow (\mathbb{P}_n \circ f^{-1})$ LDP on F with good rate

$$J(\cdot) := \inf_{\{x:f(x)=\cdot\}} I(x).$$

Inverse contraction principle

 $g: F \to E$ a continuous bijective map + exponential tightness of (\mathbb{P}_n) $(\mathbb{P}_n \circ g^{-1})$ on E LDP with rate $I \Rightarrow (\mathbb{P}_n)$ LDP on F with good rate

 $\mathbf{J}(\cdot) := \mathbf{I}(\mathbf{g}(\cdot)).$

Starter III : Kullback Leibler Divergence I

DR. RICHARD A. LEIBLER

R. Leibler (1914-2003)

DR. SOLOMON KULLBACK

S. Kullback (1907-1994)

P, Q probability measures on some space E

 $\mathsf{K}(\mathsf{P}, Q) = \begin{cases} \int_\mathsf{E} \log \frac{\mathrm{d}\mathsf{P}}{\mathrm{d}Q} d\mathsf{P} \ \text{ if } \mathsf{P} \ll Q \text{ and } \log \frac{\mathrm{d}\mathsf{P}}{\mathrm{d}Q} \in \mathsf{L}^1(\mathsf{P}) \\ +\infty \ \text{ otherwise} \end{cases}$

Starter III : large deviations two examples

Sanov Theorem : (X_n) i.i.d. Q on E

 \Rightarrow F_n(dx) = $\frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}(dx)$ LDP on $\mathbb{P}(E)$ rate K(·, Q)

► Weighted measures : (Z_n) i.i.d. $\mathcal{E}(1), (x_n) \in \text{supp } P \subset E,$ $\frac{1}{n} \sum_{i=1}^n \delta_{x_i}(dx) \rightarrow P$

 $\Rightarrow \nu_n(dx) = \frac{1}{n} \sum_{i=1}^n Z_i \delta_{x_i}(dx)$ LDP on $\mathbb{M}_+(E)$ rate $K(P, \cdot)$

Overview

- 1 Appetizer : Christian and Patrick secret lives
- 2 Starter : Around large deviations
- 3 Main course : Sanov and Markov
- 4 Trou normand : Marginal problem and LDP
- 5 Cheese : Markov generalized moment problem and LDP
- 6 Dessert : Sum rules

Main course : Sanov and Markov

Main course : Sanov and Markov

C. Léonard

P. Cattiaux

- Cattiaux, P., & Léonard C. (1994). Minimization of the Kullback information of diffusion processes. Annales de l'IHP probabilités et statistique, 30, 83-132.
- Cattiaux, P., & Léonard C. (1995). Large deviations and Nelson processes. Forum Mathematicum, 7, 95-116.
- Cattiaux, P., & Léonard C. Minimization of the Kullback information for some Markov processes. (1996). Séminaire de Probabilités XXX, Springer, 288-311

Sanov Theorem : Q law of a Markov process on [0, T], (X_n) i.i.d. Q

$$F_n(dx) = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}(dx)$$

Random law of a random process-Satisfies LDP rate $K(\cdot, Q)$

Main course (bis) : Sanov and Markov

C. Léonard

P. Cattiaux

Various computation of the contracted functional

 $J(\cdot):=\inf_{\{x:f(P)=\cdot\}}K(P,Q).$

f(P) is the marginals flow of P

Feasibility conditions for the optimization problem (existence of solution having finite entropy)

Overview

- 1 Appetizer : Christian and Patrick secret lives
- 2 Starter : Around large deviations
- 3 Main course : Sanov and Markov
- 4 Trou normand : Marginal problem and LDP
- 5 Cheese : Markov generalized moment problem and LDP
- 6 Dessert : Sum rules

Trou normand : Marginal problem and LDP

P. Cattiaux

F.G

Cattiaux, P., & G F. (1999). Large deviations and variational theorems for marginal problems. Bernoulli, 5, 81-108. P on E \times F, ν on E, μ on F données $\exists Q \ll P \text{ on } E \times F \text{ marginals } v \text{ and } \mu + \text{conditions } ?$ Tool : LDP weighted measures (v_n) +contraction ▶ (Z_n) i.i.d., $(x_n, y_n) \in E \times F$, $= \frac{1}{n} \sum_{i=1}^{n} \delta_{(x_i, u_i)}(dx, dy) \rightarrow P$ $\nu_n(dx, dy) = \frac{1}{n} \sum_{i=1}^n Z_i \delta_{(x_i, y_i)}(dx, dy).$

Trou normand (bis) : Marginal problem and LDP

P. Cattiaux

F.G

$$\nu_n(dx, dy) = \frac{1}{n} \sum_{i=1}^n Z_i \delta_{(x_i, y_i)}(dx, dy).$$

 (ν_n) satisfies a LDP with good rate I

$$I(Q) := \int_{E \times F} \psi^* \left(\frac{dQ}{dP} \right) dP, \ Q \ll P.$$

 ψ^* is the Cramér transform of Z

Trou normand (ter) : Marginal problem and LDP

P. Cattiaux

F.G

Contraction on the two marginals Example : $Z \sim L\mathcal{B}(1/2)$ (L > 1) $\exists Q \ll P \text{ on } E \times F \text{ having marginals } v \text{ and } \mu \text{ with } \frac{dQ}{dP} \leq L$ iff $\forall h_1 \in C(E), h_2 \in C(F)$, $\int_{r} h_1 d\nu + \int_{r} h_2 d\mu \leqslant \int_{r \prec r} \log \left(1 + \exp\left(L(h_1(x) + h_2(y))\right)\right) P(dx, dy)$

Overview

- 1 Appetizer : Christian and Patrick secret lives
- 2 Starter : Around large deviations
- 3 Main course : Sanov and Markov
- 4 Trou normand : Marginal problem and LDP
- 5 Cheese : Markov generalized moment problem and LDP
 - 6 Dessert : Sum rules

Cheese : Markov generalized moment problem and LDP

D. Dacunha-Castelle

F.G

- Dacunha-Castelle, D., & G F. (1990). Maximum d'entropie et problème des moments. Annales de l'IHP probabilités et statistique, 26, 567-596.
- $\mathsf{P}=dx$ on [0,1] and contraction on the $\Phi\text{-moments}$ ($\Phi\in\mathsf{C}^k([0,1])$ given)

The feasibility of the Markov moment problem for $c \in \mathbb{R}^k$

 $\exists G \in \mathbb{M}_+([0,1]) \ G \ll dx \text{ on } [0,1] \text{ with } \int_0^1 \Phi(x)G(dx) = c \text{ and } \frac{dG}{dx} \leq 1$

$$\mathsf{iff} \ \forall \nu \in \mathbb{R}^k, \ \ \langle \nu, c \rangle \leqslant \int_0^1 \mathsf{log} \left(1 + \mathsf{exp} \langle \nu, \Phi(x) \rangle \right) \mathrm{d} x$$

Overview

- 1 Appetizer : Christian and Patrick secret lives
- 2 Starter : Around large deviations
- 3 Main course : Sanov and Markov
- 4 Trou normand : Marginal problem and LDP
- 5 Cheese : Markov generalized moment problem and LDP
- 6 Dessert : Sum rules

Sum rules and LDP coworks with

J. Nagel (Munich and EURANDOM)

A. Rouault (Versailles)

Orthogonal polynomial recursion on ${\mathbb T}$

μ probability measure on T

- 1) (p_n) sequence of orthogonal polynomials associated to μ
- 2) p_{π} is monic and has degree π
- 3) $k \neq n$, $\int_{\mathbb{T}} p_n(z) p_k(z) \mu(dz) = 0$

Satisfies the recursion

```
 \begin{array}{l} \rightarrow \ p_{n+1}(z) = zp_n(z) - \overline{\alpha}_n p_n^*(z) \text{ where } p_n^*(z) := z^n p_n(1/\overline{z}). \\ \rightarrow \ \alpha_n = -p_{n+1}(0) \text{ is the Verblunsky coefficient} \end{array}
```

Orthogonal polynomial recursion on ${\mathbb T}$

• μ probability measure on $\mathbb T$

- 1) (p_n) sequence of orthogonal polynomials associated to μ
- 2) p_n is monic and has degree n
- 3) $k \neq n$, $\int_{\mathbb{T}} p_n(z) p_k(z) \mu(dz) = 0$
- Satisfies the recursion

```
 \begin{array}{l} \rightarrow \ \mathfrak{p}_{n+1}(z) = z\mathfrak{p}_n(z) - \overline{\alpha}_n\mathfrak{p}_n^*(z) \text{ where } \mathfrak{p}_n^*(z) := z^n\mathfrak{p}_n(1/\overline{z}), \\ \rightarrow \ \alpha_n = -\mathfrak{p}_{n+1}(0) \text{ is the Verblunsky coefficient} \end{array}
```

Orthogonal polynomial recursion on ${\mathbb T}$

• μ probability measure on \mathbb{T}

- 1) (p_n) sequence of orthogonal polynomials associated to μ
- 2) p_n is monic and has degree n
- 3) $k \neq n$, $\int_{\mathbb{T}} p_n(z) p_k(z) \mu(dz) = 0$
- Satisfies the recursion

$$\rightarrow p_{n+1}(z) = zp_n(z) - \overline{\alpha}_n p_n^*(z) \text{ where } p_n^*(z) := z^n p_n(1/\overline{z}).$$

$$\,
ightarrow \, lpha_n = - p_{n+1}(0)$$
 is the Verblunsky coefficient

Verblunsky version of Szegö Theorem

G. Szegö (1895-1985)

S. Verblunsky (1906-1996)

Verblunsky-Szegö Theorem

 λ Lebesgue measure on $\mathbb{T}.$

$$\mathsf{K}(\lambda,\mu) = -\sum_{n=0}^{\infty} \log(1-|\alpha_n|^2)$$

Second ingredient : the three parametrisations

• μ probability measure on \mathbb{R}

- $ightarrow\,$ Assume that μ has all its **moments finite**
- $ightarrow \, (p_{n})$ normalized othogonal polynomials in $L^{2}(\mu)$
- \rightarrow Three terms recursion

$$xp_n(x) = a_n p_{n-1}(x) + b_{n+1} p_n(x) + a_{n+1} p_{n+1}(x), a_n > 0, b_{n+1} \in \mathbb{R}$$

- Assume moreover that μ is supported on $[0, +\infty)$ $b_n = z_{2n-2} + z_{2n-1}$, and $a_n^2 = z_{2n-1}z_{2n}$.
- ► If μ is supported on [0, 1], μ may be seen as the pushforward of a measure on \mathbb{T} invariant by $2\pi \theta$ by $\sin^2(\theta/2)$. $b_{k+1} = 1/4[2 + (1 - \alpha_{2k-1})\alpha_{2k} - (1 + \alpha_{2k-1})\alpha_{2k-2}]$ and $a_{k+1} = 1/4\sqrt{(1 - \alpha_{2k-1})(1 - \alpha_{2k}^2)(1 + \alpha_{2k+1})}$

Second ingredient : the three parametrisations

• μ probability measure on \mathbb{R}

- $\rightarrow~$ Assume that μ has all its moments finite
- $\rightarrow (p_n)$ normalized othogonal polynomials in $L^2(\mu)$
- \rightarrow Three terms recursion

 $xp_{n}(x) = a_{n}p_{n-1}(x) + b_{n+1}p_{n}(x) + a_{n+1}p_{n+1}(x), \ a_{n} > 0, \ b_{n+1} \in \mathbb{R}$

Assume moreover that μ is supported on $[0, +\infty[$ $b_n = z_{2n-2} + z_{2n-1}$, and $a_n^2 = z_{2n-1}z_{2n}$.

► If μ is supported on [0, 1], μ may be seen as the pushforward of a measure on \mathbb{T} invariant by $2\pi - \theta$ by $\sin^2(\theta/2)$. $b_{k+1} = 1/4[2 - (1 - \alpha_{2k-1})\alpha_{2k} - (1 + \alpha_{2k-1})\alpha_{2k-2}]$ and $a_{k+1} = 1/4\sqrt{(1 - \alpha_{2k-1})(1 - \alpha_{2k}^2)(1 + \alpha_{2k+1})}$

Semicircular distribution

$$R = 2$$

$$SC(dx) = \frac{1}{2\pi} \sqrt{4 - x^2} \mathbb{1}_{[-2,2]}(x) \, dx$$

Limit of the eigenvalues distribution of the GUE

 $a_k=1, \ b_k=0 \ \text{ for all } k \geqslant 1.$

Dessert : Sum rules

Pastur-Marchenko Distribution

L. Pastur

V. Marchenko

$$\mathsf{MP}_{\tau}(dx) = \frac{\sqrt{(\tau^+ - x)(x - \tau^-)}}{2\pi\tau x} \ \mathbb{1}_{(\tau^-, \tau^+)}(x) dx \ \text{,} \tau^{\pm} = (1 \pm \sqrt{\tau})^2$$

Limit of the squared singular values distribution of rectangular Gaussian matrices. $\tau\in]0,1]$ the asymptotic ratio nb col/ nb line

$$a_k=\sqrt{\tau}\;(k\geqslant 1)$$
 , $b_1=1$, $b_k=1+\tau\;(k\geqslant 2)$

and correspond to $z_{2n-1} = 1$ and $z_{2n} = \tau$ for all $n \ge 1$.

H. Kesten

B. Mc Kay

 $\mathsf{KMK}_{\kappa_{1},\kappa_{2}}(dx) = \frac{(2+\kappa_{1}+\kappa_{2})}{2\pi} \frac{\sqrt{(u^{+}-x)(x-u^{-})}}{x(1-x)} \, \mathbbm{1}_{(u^{-},u^{+})}(x) dx$

$$u^{\pm} := \frac{1}{2} + \frac{\kappa_1^2 - \kappa_2^2 \pm 4\sqrt{(1+\kappa_1)(1+\kappa_2)(1+\kappa_1+\kappa_2)}}{2(2+\kappa_1+\kappa_2)^2}, \, \kappa_1, \, \kappa_2 \geqslant 0.$$

Asymptotic distribution of the eigenvalues in the Jacobi-ensemble

The associated Verblunsky coefficients for $k \ge 0$,

$$\alpha_{2k} = \frac{\kappa_1 - \kappa_2}{2 + \kappa_1 + \kappa_2}, \quad \alpha_{2k+1} = -\frac{\kappa_1 + \kappa_2}{2 + \kappa_1 + \kappa_2}$$

Then

$$a_1 = \frac{\sqrt{(1+\kappa_1)(1+\kappa_2)}}{(2+\kappa_1+\kappa_2)^{3/2}} \ , \quad b_1 = \frac{1+\kappa_2}{2+\kappa_1+\kappa_2}$$

and for $k \ge 2$

 $a_k = \frac{\sqrt{(1+\kappa_1+\kappa_2)(1+\kappa_1)(1+\kappa_2)}}{(2+\kappa_1+\kappa_2)^2} \ , \quad b_k = \frac{1}{2} \left[1 - \frac{\kappa_1^2-\kappa_2^2}{(2+\kappa_1+\kappa_2)^2} \right] \ .$

Dessert : Sum rules

Killip Simon Theorem

R. Killip

B. Simon

$$\begin{split} \mathsf{K}(\mathsf{SC}|\,\mu) + \sum_{n=1}^{\mathsf{N}^+} \mathfrak{F}_{\mathsf{H}}^+(\lambda_n^+) + \sum_{n=1}^{\mathsf{N}^-} \mathfrak{F}_{\mathsf{H}}^-(\lambda_n^-) &= \sum_{k \geqslant 1} \left(\frac{1}{2} b_k^2 + a_k^2 - 1 - \log(a_k^2) \right) \\ \mathfrak{F}_{\mathsf{H}}^+(x) &:= \begin{cases} & \int_2^x \sqrt{t^2 - 4} \, dt = \frac{x}{2} \sqrt{x^2 - 4} - 2 \log\left(\frac{x + \sqrt{x^2 - 4}}{2}\right) & \text{if } x \geqslant 2 \\ & \infty & \text{otherwise,} \end{cases} \end{split}$$

 $\mathcal{F}^-_{\mathsf{H}}(\mathsf{x}) := \mathcal{F}^+_{\mathsf{H}}(-\mathsf{x})$

Our sum rules I

$$\begin{split} \mathsf{K}(\mathsf{MP}_\tau|\mu) + \sum_{n=1}^{\mathsf{N}^+} \mathcal{F}_L^+(\lambda_n^+) + \sum_{n=1}^{\mathsf{N}^-} \mathcal{F}_L^-(\lambda_n^-) &= \sum_{k=1}^\infty \tau^{-1} \mathsf{G}(z_{2k-1}) + \mathsf{G}(\tau^{-1} z_{2k}) \\ \mathcal{F}_L^+(x) &= \begin{cases} & \int_{\tau^+}^x \frac{\sqrt{(t-\tau^-)(t-\tau^+)}}{t\tau} \, dt & \text{if } x \geqslant \tau^+, \\ & \infty & \text{otherwise}, \end{cases} \\ \mathcal{F}_L^-(x) &= \begin{cases} & \int_x^{\tau^-} \frac{\sqrt{(\tau^--t)(\tau^+-t)}}{t\tau} \, dt & \text{if } x \leqslant \tau^-, \\ & \infty & \text{otherwise}. \end{cases} \\ \mathcal{G}(x) &= x - 1 - \log x, \ (x > 0). \end{cases} \end{split}$$

Our sum rules II

$$\begin{split} \mathsf{K}(\mathsf{KMK}_{\kappa_1,\kappa_2}|\mu) + \sum_{n=1}^{\mathsf{N}^+} \mathfrak{F}_J^+(\lambda_n^+) + \sum_{n=1}^{\mathsf{N}^-} \mathfrak{F}_J^-(\lambda_n^-) &= \sum_{k=0}^{\infty} \mathsf{H}_1(\alpha_{2k+1}) + \mathsf{H}_2(\alpha_{2k}) \\ \\ \mathfrak{F}_J^+(x) &= \begin{cases} \int_{u^+}^{x} \frac{\sqrt{(t-u^+)(t-u^-)}}{t(1-t)} \, dt & \text{if } u^+ \leqslant x \leqslant 1 \\ \text{otherwise.} \end{cases} \\ \\ \mathfrak{F}_J^-(x) &= \begin{cases} \int_{x}^{u^-} \frac{\sqrt{(u^--t)(u^+-t)}}{t(1-t)} \, dt & \text{if } 0 \leqslant x \leqslant u^- \\ \infty & \text{otherwise.} \end{cases} \end{split}$$

For $-1 \leqslant x \leqslant 1$

$$\begin{split} H_1(x) &= -(1+\kappa_1+\kappa_2)\log\left[\frac{2+\kappa_1+\kappa_2}{2(1+\kappa_1+\kappa_2)}(1-x)\right] \\ &-\log\left[\frac{2+\kappa_1+\kappa_2}{2}(1+x)\right] \end{split}$$

$$\begin{split} H_2(x) &= -(1+\kappa_1) \log \left[\frac{(2+\kappa_1+\kappa_2)}{2(1+\kappa_1)} (1+x) \right] \\ &-(1+\kappa_2) \log \left[\frac{(2+\kappa_1+\kappa_2)}{2(1+\kappa_1)} (1-x) \right] \end{split}$$

Particular case $\kappa_1 = \kappa_2 = 0 \Rightarrow u^- = 0$, $u^+ = 1$, KMK_{κ_1,κ_2} arsine law.

We recover the Szegö Theorem pushed on [0, 1] by $sin^2(\theta/2)$.

How it works?

Main idea

Large deviations +inverse contraction principle

Random measures

Spectral random measures associated to classical ensembles of random matrices $\left(A_n\right)$

 (v_n) defined by its moments

$$\left\{ x^{k} \mathbf{v}_{n}(\mathrm{d}x) := \langle e, A_{n}^{k} e \rangle, \ (k \in \mathbb{N}), \ \|e\| = 1, e \text{ cyclic}
ight\}$$

Theorem

Main tool I

- v_n is supported by the eigenvalues of A_n .
- For the classical ensembles the weights and the supporting points are independents
- Furthermore, in this last case, the vector of weights is Dirichlet distributed.

Theorem

Main tool II

- 1) In the GUE, (a_k^n) and (b_k^n) are independent sequences of independent variables (normal and χ^2)
- 2) In the Wishart model, (z_k^n) is a sequence of independent variables (χ^2) .
- 3) In the Jacobi model, (α_k^n) is a sequence of independent variables (Beta)

Some references around the dessert

- Verblunsky, S. (1936). On positive harmonic functions. Proceedings of the London Mathematical Society, 2(1), 290-320.
- Killip, R., & Simon, B. (2003). Sum rules for Jacobi matrices and their applications to spectral theory. Annals of mathematics, 253-321.
- Simon, B. (2010). Szegö's theorem and its descendants : spectral theory for L2 perturbations of orthogonal polynomials. Princeton University Press.
- GF., Nagel, J., & Rouault, A. (2016). Sum rules via large deviations. Journal of Functional Analysis, 270(2), 509-559.
- GF., Nagel, J., & Rouault, A. (2016). Sum rules and large deviations for spectral matrix measures. arXiv preprint arXiv :1601.08135.
- ► GF., Nagel, J., & Rouault, A. (2017). Sum rules and large deviations for spectral measures on the unit circle. Random Matrices : Theory and Applications.
- Breuer, J., Simon, B., & Zeitouni, O. (2017). Large Deviations and Sum Rules for Spectral Theory-A Pedagogical Approach. To appear in Jounal of Spectral Theory.
- Breuer, J., Simon, B., & Zeitouni, O. (2017). Large deviations and the Lukic conjecture. arXiv preprint arXiv :1703.00653.