Long time behavior for stochastic switched differential equations

Florent Malrieu

Université de Tours

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The simplest Markov process

Consider the process $(I_t)_{t\geq 0}$ on $\{0,1\}$ with jump rates

• Jum time starting at *i*:

$$\mathbb{P}_i(T > t) = e^{-\lambda_i t}$$

• Jump rates: with $p \in (0, 1)$ and $\beta > 0$,

$$\lambda_1 = (1 - p) eta$$
 and $\lambda_0 = p eta$

• Invariant measure:

$$\nu = (1-p)\delta_0 + p\delta_1$$

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

Switched flows

Framework

- Process $(I_t)_{t \ge 0}$ as before
- Two smooth flows F^0 and F^1 on \mathbb{R}^2

The full process

The process $Z = (X, I) \in \mathbb{R}^d \times \{0, 1\}$ is defined by

$$\dot{X}_t = F^{I_t}(X_t)$$

Main example today

$$F^i(x) = A_i x$$

where A_0 and A_1 are 2 × 2 Hurwitz matrices. (Spec(A_i) $\subset (-\infty, 0) \times \mathbb{R}$)

Lyapunov exponent

Theorem
If
$$\mathbb{P}(X_0 \neq 0) = 1$$
 then
 $\frac{1}{t} \log ||X_t|| \xrightarrow[t \to \infty]{a.s.} \chi(p, \beta).$

This deterministic limit does not depend on the initial condition.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Sketch of proof

Introduce the polar coordinates $(R_t, U_t) \in (0, +\infty) \times S^1$ of X_t :

$$\dot{R}_t = R_t \langle U_t, A_{I_t} U_t \rangle$$

 $\dot{U}_t = A U_t - \langle U_t, A_{I_t} U_t \rangle U_t$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- (U, I) is Markovian
- $\forall t \ge 0$ $R_t = R_0 \exp\left(\int_0^t \langle U_s, A_{I_s} U_s \rangle \, ds\right)$

Sketch of proof

The invariant measures μ on $S^1 \times \{0, 1\}$ are such that

$$orall f: S^1 imes \{0,1\} o \mathbb{R}, \quad \int L f d\mu = 0$$

where L is the generator of (U, I)

$$Lf(u,i) = d_i(u)\partial_u f(u,i) + \lambda_i(f(u,1-i) - f(u,i)).$$

The Ergodic Theorem ensures that

$$\chi(\boldsymbol{p},\beta) = \lim_{t\to\infty} \frac{1}{t} \int_0^t \langle U_s, A_{l_s} U_s \rangle \, ds = \int_{S^1 \times \{0,1\}} \langle u, A_i u \rangle \, d\mu(u,i)$$

First example

Theorem (Benaïm-Le Borgne-M.-Zitt (2014)) Define

$$A_0 = \left(egin{array}{cc} -1 & 2b \ -2/b & -1 \end{array}
ight)$$
 and $A_1 = A_0^T.$

If b-1/b>1 then $eta\mapsto\chi(1/2,eta)$ is increasing and

$$\lim_{eta
ightarrow 0} \chi(1/2,eta) = -1$$

 $\lim_{eta
ightarrow \infty} \chi(1/2,eta) = b - rac{1}{b} - 1 > 0$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Why may χ be positive for large β ?

Even if A_0 and A_1 are Hurwitz matrices, b - 1/b - b is the positive eigenvalue of

$$A_{1/2} = \frac{1}{2}A_0 + \frac{1}{2}A_1$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

For large β s, the inv. meas. concentrates near the instable direction of $A_{1/2}$.

General case. Same situation for $p \neq 1/2$ as soon as $A_p = pA_1 + (1-p)A_0$ has a positive eigenvalue.

A second example

Theorem (Lawley-Mattingly-Reed (2013)) Define

$$A_0 = \begin{pmatrix} -lpha & \mathbf{1} \\ \mathbf{0} & -lpha \end{pmatrix}$$
 and $A_1 = \begin{pmatrix} -lpha & \mathbf{0} \\ -\mathbf{1} & -lpha \end{pmatrix}$

- If β is small or large enough then $\chi(1/2,\beta) < 0$.
- If α is small enough, there exists β_0 such that $\chi(1/2, \beta_0) > 0$.

The Lyapunov exponent $\chi(1/2,\beta)$

$$\chi(\mathbf{1/2},\beta) = -\alpha + \mathbf{G}(\beta)$$

Simulations suggest that G is unimodal...

Figure: $\beta \mapsto \chi(1/2, \beta)$ for $\alpha = 0.2$ (on the left) and $\alpha = 0.15$ (in the right).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Link with deterministic control

The system is unbounded if there exists $t \mapsto I_t$ such that $|X_t| \to \infty$.

Theorem (Balde-Boscain-Mason (2009)) Define

$$A_0 = \begin{pmatrix} -lpha & \mathbf{1} \\ \mathbf{0} & -lpha \end{pmatrix}$$
 and $A_1 = \begin{pmatrix} -lpha & \mathbf{0} \\ -\mathbf{1} & -lpha \end{pmatrix}$

The system is unbounded iff

$$T(\alpha^{2}) := \frac{1 + 2\alpha^{2} + \sqrt{1 + 4\alpha^{2}}}{2\alpha^{2}} e^{-2\sqrt{1 + 4\alpha^{2}}} > 1.$$

The worst trajectory

The worth trajectory with $\alpha = 0.32$, $\alpha = 0.3314$ and $\alpha = 0.34$. The system starts (0, 1) at and evolves clock-wisely.

Lotka-Volterra systems

Evolution of two competitive populations A and B

$$F(x,y) = \begin{cases} \alpha x (1 - ax - by) \\ \beta y (1 - cx - dy) \end{cases}$$

If a < c and b < d, then (1/a, 0) is the unique stable point. The environment is favorable to species A.

Let us switch between two favorable to spec. A environments.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Everything may happen!

Theorem (Benaïm-Lobry (2014))

There exist F^0 and F^1 fav. to spec. A such that the switched process may be fav. to

- spec. A,
- spec. B,
- one of the two spec. randomly (bistability),
- both spec. (persistence),

depending on the jump rates.

The sign of a parameter Λ_j encodes the survival of species *j*.

▲ロト ▲得ト ▲ヨト ▲ヨト - ヨ - の々で

Everythig may happen!

Theorem (M.-Zitt)

• There exists an interval $I \subset (0, 1)$ and $p \in I \mapsto \beta_c(p)$ s.t.

 $\{(\boldsymbol{\rho},\beta) : \Lambda_i(\boldsymbol{\rho},\beta) > \mathbf{0}\} = \{(\boldsymbol{\rho},\beta) : \beta > \beta_c(\boldsymbol{\rho})\}.$

• If persistence occurs, the support of the invariant measure is (almost) known.

Support of the invariant measure

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ▲ ●