Long time behavior for stochastic switched differential equations

Florent Malrieu

Université de Tours

The simplest Markov process

Consider the process $\left(I_{t}\right)_{t \geqslant 0}$ on $\{0,1\}$ with jump rates

- Jum time starting at i :

$$
\mathbb{P}_{i}(T>t)=e^{-\lambda_{i} t}
$$

- Jump rates: with $p \in(0,1)$ and $\beta>0$,

$$
\lambda_{1}=(1-p) \beta \quad \text { and } \quad \lambda_{0}=p \beta
$$

- Invariant measure:

$$
\nu=(1-p) \delta_{0}+p \delta_{1}
$$

Switched flows

Framework

- Process $\left(I_{t}\right)_{t \geqslant 0}$ as before
- Two smooth flows F^{0} and F^{1} on \mathbb{R}^{2}

The full process

The process $Z=(X, I) \in \mathbb{R}^{d} \times\{0,1\}$ is defined by

$$
\dot{X}_{t}=F^{\prime t}\left(X_{t}\right)
$$

Main example today

$$
F^{i}(x)=A_{i} x
$$

where A_{0} and A_{1} are 2×2 Hurwitz matrices.
$\left(\operatorname{Spec}\left(A_{i}\right) \subset(-\infty, 0) \times \mathbb{R}\right)$

Lyapunov exponent

$$
\begin{aligned}
& \text { Theorem } \\
& \text { If } \mathbb{P}\left(X_{0} \neq 0\right)=1 \text { then } \\
& \qquad \frac{1}{t} \log \left\|X_{t}\right\| \xrightarrow[t \rightarrow \infty]{\text { a.s. }} \chi(p, \beta) .
\end{aligned}
$$

This deterministic limit does not depend on the initial condition.

Sketch of proof

Introduce the polar coordinates $\left(R_{t}, U_{t}\right) \in(0,+\infty) \times S^{1}$ of X_{t} :

$$
\begin{aligned}
& \dot{R}_{t}=R_{t}\left\langle U_{t}, A_{I_{t}} U_{t}\right\rangle \\
& \dot{U}_{t}=A U_{t}-\left\langle U_{t}, A_{I_{t}} U_{t}\right\rangle U_{t}
\end{aligned}
$$

- (U, I) is Markovian
- $\forall t \geqslant 0$

$$
R_{t}=R_{0} \exp \left(\int_{0}^{t}\left\langle U_{s}, A_{I_{s}} U_{s}\right\rangle d s\right)
$$

Sketch of proof

The invariant measures μ on $S^{1} \times\{0,1\}$ are such that

$$
\forall f: S^{1} \times\{0,1\} \rightarrow \mathbb{R}, \quad \int L f d \mu=0
$$

where L is the generator of (U, I)

$$
L f(u, i)=d_{i}(u) \partial_{u} f(u, i)+\lambda_{i}(f(u, 1-i)-f(u, i))
$$

The Ergodic Theorem ensures that

$$
\chi(p, \beta)=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t}\left\langle U_{s}, A_{I_{s}} U_{s}\right\rangle d s=\int_{S^{1} \times\{0,1\}}\left\langle u, A_{i} u\right\rangle d \mu(u, i)
$$

First example

Theorem (Benaïm-Le Borgne-M.-Zitt (2014))
Define

$$
A_{0}=\left(\begin{array}{cc}
-1 & 2 b \\
-2 / b & -1
\end{array}\right) \quad \text { and } \quad A_{1}=A_{0}^{T} .
$$

If $b-1 / b>1$ then $\beta \mapsto \chi(1 / 2, \beta)$ is increasing and

$$
\begin{aligned}
& \lim _{\beta \rightarrow 0} \chi(1 / 2, \beta)=-1 \\
& \lim _{\beta \rightarrow \infty} \chi(1 / 2, \beta)=b-\frac{1}{b}-1>0
\end{aligned}
$$

Why may χ be positive for large β ?

Even if A_{0} and A_{1} are Hurwitz matrices, $b-1 / b-b$ is the positive eigenvalue of

$$
A_{1 / 2}=\frac{1}{2} A_{0}+\frac{1}{2} A_{1}
$$

For large $\beta \mathrm{s}$, the inv. meas. concentrates near the instable direction of $A_{1 / 2}$.

General case. Same situation for $p \neq 1 / 2$ as soon as $A_{p}=p A_{1}+(1-p) A_{0}$ has a positive eigenvalue.

A second example

Theorem (Lawley-Mattingly-Reed (2013))
Define

$$
A_{0}=\left(\begin{array}{cc}
-\alpha & 1 \\
0 & -\alpha
\end{array}\right) \quad \text { and } \quad A_{1}=\left(\begin{array}{cc}
-\alpha & 0 \\
-1 & -\alpha
\end{array}\right)
$$

- If β is small or large enough then $\chi(1 / 2, \beta)<0$.
- If α is small enough, there exists β_{0} such that $\chi\left(1 / 2, \beta_{0}\right)>0$.

The Lyapunov exponent $\chi(1 / 2, \beta)$

$$
\chi(1 / 2, \beta)=-\alpha+\boldsymbol{G}(\beta)
$$

Simulations suggest that G is unimodal...

Figure: $\beta \mapsto \chi(1 / 2, \beta)$ for $\alpha=0.2$ (on the left) and $\alpha=0.15$ (in the right).

Link with deterministic control

The system is unbounded if there exists $t \mapsto I_{t}$ such that $\left|X_{t}\right| \rightarrow \infty$.

Theorem (Balde-Boscain-Mason (2009))
Define

$$
A_{0}=\left(\begin{array}{cc}
-\alpha & 1 \\
0 & -\alpha
\end{array}\right) \quad \text { and } \quad A_{1}=\left(\begin{array}{cc}
-\alpha & 0 \\
-1 & -\alpha
\end{array}\right)
$$

The system is unbounded iff

$$
T\left(\alpha^{2}\right):=\frac{1+2 \alpha^{2}+\sqrt{1+4 \alpha^{2}}}{2 \alpha^{2}} e^{-2 \sqrt{1+4 \alpha^{2}}}>1
$$

The worst trajectory

The worth trajectory with $\alpha=0.32, \alpha=0.3314$ and $\alpha=0.34$. The system starts $(0,1)$ at and evolves clock-wisely.

Lotka-Volterra systems

Evolution of two competitive populations A and B

$$
F(x, y)=\left\{\begin{array}{l}
\alpha x(1-a x-b y) \\
\beta y(1-c x-d y)
\end{array}\right.
$$

If $a<c$ and $b<d$, then $(1 / a, 0)$ is the unique stable point. The environment is favorable to species A.

Let us switch between two favorable to spec. A environments.

Everything may happen!

Theorem (Benaïm-Lobry (2014))
There exist F^{0} and F^{1} fav. to spec. A such that the switched process may be fav. to

- spec. A,
- spec. B,
- one of the two spec. randomly (bistability),
- both spec. (persistence),
depending on the jump rates.
The sign of a parameter Λ_{j} encodes the survival of species j.

Everythig may happen!

Theorem (M.-Zitt)

- There exists an interval $I \subset(0,1)$ and $p \in I \mapsto \beta_{c}(p)$ s.t.

$$
\left\{(p, \beta): \Lambda_{i}(p, \beta)>0\right\}=\left\{(p, \beta): \beta>\beta_{c}(p)\right\}
$$

- If persistence occurs, the support of the invariant measure is (almost) known.

Support of the invariant measure

Region ++ : persistence

