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A short summary

I A smooth random function of many variables can be
exponentially complex.

I The basic mathematical tool to study the complexity of
random functions is a link with Random Matrix Theory
(RMT), through the classical tools of random geometry, i.e
Kac-Rice formulae (cf the books by Azais-Wschebor or
Adler-Taylor).
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A short summary

I This is well understood for random smooth functions on the
sphere in high dimensions (aka spherical Spin Glasses), since
the RMT model is a simple modification of the Gaussian
Orthogonal Ensemble (GOE), i.e. NxN real symmetric random
matrices, where the entries are i.i.d Gaussian . I will review
recent progress for this case.

I I will indicate how this complexity question for more general
models of random functions, boils down, once translated into
the RMT framework, to specific questions about Gaussian real
symmetric random matrices, with correlated entries, and how
recent progress in this direction (Dec 2016, by Erdos and al)
can help.
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A short summary

I The general dictionary opens a new set of questions for the
performance of optimization algorithms (and thus statistical
algorithms) for very high dimensional models

I In particular, there is a wide ranging phase transition in
topology/complexity, illustrated here for the problem of
Spiked Tensor PCA

I This topological transition is the case for instance for
questions of statistical estimation in very high dimensional
statistics (aka Big Data), and in particular, for the loss
landscapes of the multilayered networks of deep learning.
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A SIMPLE QUESTION TO BEGIN: MINIMIZING CUBICS



A simple question to begin: minimizing cubics

I Consider a homogeneous polynomial f of degree 3 in N
variables.

I Since it is homogeneous, restrict it to the unit sphere SN−1.

I Question: How easy is it to find its minimum on SN−1?

I Of course the answer depends on the polynomial!

I For instance, if f (x) = x3
1 , the problem is trivial.
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A simple question: minimizing cubics

I What if f is less special and more ”generic”? say f is chosen
randomly?

I Choose

f (x) =
N∑

i ,j ,k=1

Ji ,j ,kxixjxk

where the coefficients J are i.i.d N(0, 1)

I What is the minimum value of f on SN−1?

I Is it easy to minimize f through your preferred algorithm (say
a gradient descent, a stochastic gradient descent, a Langevin
dynamics)?

I Will the algorithm get to (or near to)the minimum or stay
stuck above it (in finite time)?

I If it gets stuck, where?
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A simple question: minimizing cubics. Some answers

I The minimum mN is of order
√
N.

I More precisely

lim
N→∞

mN√
N

= −E0

with E0 ∼ 1.657.

I BUT : a minimization algorithm will probably get stuck (in
finite time) at the threshold −E∞

√
N, with E∞ ∼ 1.633, or

rather slightly above it.

I Don’t trust me, try it! The Facebook research team around
Yann Le Cun did with a stochastic gradient descent algorithm.
(see in our AISTATS 2015 paper)
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A simple question: minimizing cubics

I In order to understand the question above, we need geometric
information.

I How does the (random) function looks like near its low values?

I Many minima? Multiple wells? separated by high barriers?

I What can we say about the topology of the sub-level set
Au := {x ∈ M, f (x) ≤ u}?
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A simple question: minimizing cubics. What is going on?

I A (random) cubic is in fact a very complex function!!

I The number of local minima is exponentially large in N.

I All local minima, and in fact all critical points of finite index,
have values between −E0

√
N and −E∞

√
N

I Among the critical points with values in any interval
(a
√
N, b
√
N) in this range, the local minima dominate

exponentially!
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A simple question: minimizing cubics. What is going on?

I Above the threshold level −E∞
√
N there are only critical

points of diverging index k = cN , and thus no local minima
(good news)

I But below that threshold level, there are ”extensive barriers”
to cross, of order c

√
N (bad news).

I Below that threshold, the Euler characteristic of the sub-level
set Au is exponentially large in N. This is compatible with the
image of a union of an exponentially large number of small
caps around the local minima.

I Above that threshold, the Euler characteristic of the sub-level
set Au oscillates wildly between ec(u)N and −ec(u)N !!
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Just in case you wonder: what about other degrees?

I Complexity only begins with cubics: in fact this theorem is
valid for any degree p ≥ 3.

I But obviously not in degree p ≤ 2.

I An analogous result holds for non homogeneous polynomials,
but the results are more intricate.
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THE LINK WITH RANDOM MATRIX THEORY



The Kac-Rice formula

I The classical Kac-Rice formula (for the first moment) counts
the mean number of critical points of a random Gaussian
function f on a (compact) manifold M.

I Define Crit fN,k(B) to be the number of critical points of f on
the manifold M, of index k and with value in a subset B of
the real line.

I The version of the Kac-Rice formula we will need reads

E [Crit fN,k(B)] =

∫
B

∫
M
ak(x , u)φx(u, 0)dxdu (1)

I where

ak(x , u) = E
[
| det∇2(f )(x)|1i(x)=k ,

∣∣f (x) = u,∇f (x) = 0
]
(2)

I and where φx(u, v) is the density of the law of the gaussian
vector (f (x),∇f (x))



The Kac-Rice formula

I The classical Kac-Rice formula (for the first moment) counts
the mean number of critical points of a random Gaussian
function f on a (compact) manifold M.

I Define Crit fN,k(B) to be the number of critical points of f on
the manifold M, of index k and with value in a subset B of
the real line.

I The version of the Kac-Rice formula we will need reads

E [Crit fN,k(B)] =

∫
B

∫
M
ak(x , u)φx(u, 0)dxdu (1)

I where

ak(x , u) = E
[
| det∇2(f )(x)|1i(x)=k ,

∣∣f (x) = u,∇f (x) = 0
]
(2)

I and where φx(u, v) is the density of the law of the gaussian
vector (f (x),∇f (x))



The Kac-Rice formula

I The classical Kac-Rice formula (for the first moment) counts
the mean number of critical points of a random Gaussian
function f on a (compact) manifold M.

I Define Crit fN,k(B) to be the number of critical points of f on
the manifold M, of index k and with value in a subset B of
the real line.

I The version of the Kac-Rice formula we will need reads

E [Crit fN,k(B)] =

∫
B

∫
M
ak(x , u)φx(u, 0)dxdu (1)

I where

ak(x , u) = E
[
| det∇2(f )(x)|1i(x)=k ,

∣∣f (x) = u,∇f (x) = 0
]
(2)

I and where φx(u, v) is the density of the law of the gaussian
vector (f (x),∇f (x))



The Kac-Rice formula

I The classical Kac-Rice formula (for the first moment) counts
the mean number of critical points of a random Gaussian
function f on a (compact) manifold M.

I Define Crit fN,k(B) to be the number of critical points of f on
the manifold M, of index k and with value in a subset B of
the real line.

I The version of the Kac-Rice formula we will need reads

E [Crit fN,k(B)] =

∫
B

∫
M
ak(x , u)φx(u, 0)dxdu (1)

I where

ak(x , u) = E
[
| det∇2(f )(x)|1i(x)=k ,

∣∣f (x) = u,∇f (x) = 0
]
(2)

I and where φx(u, v) is the density of the law of the gaussian
vector (f (x),∇f (x))



The Kac-Rice formula

I The classical Kac-Rice formula (for the first moment) counts
the mean number of critical points of a random Gaussian
function f on a (compact) manifold M.

I Define Crit fN,k(B) to be the number of critical points of f on
the manifold M, of index k and with value in a subset B of
the real line.

I The version of the Kac-Rice formula we will need reads

E [Crit fN,k(B)] =

∫
B

∫
M
ak(x , u)φx(u, 0)dxdu (1)

I where

ak(x , u) = E
[
| det∇2(f )(x)|1i(x)=k ,

∣∣f (x) = u,∇f (x) = 0
]
(2)

I and where φx(u, v) is the density of the law of the gaussian
vector (f (x),∇f (x))



The Kac-Rice formula

I The classical Kac-Rice formula can also count higher
(factorial) moments of the number of critical points of a
random Gaussian function f on a (compact) manifold M

I It can also compute the moments of the Euler characteristic
of sub-level sets.

I Denote the sub-level set below u by

A(u) = {x ∈ M, f (x) ≤ u} (3)

I Then the KR formula for the Euler characteristic reads

E [χ(A(u)] =

∫ u

−∞

∫
M
b(x , v)φx(v , 0)dxdv (4)

I where

b(x , v) = E
[

det∇2f (x)
∣∣f (x) = v ,∇f (x) = 0

]
(5)
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The link with Random Matrix Theory

I The link with RMT is thus that this formula reduces the study
of the moments of the number of critical points or of the
Euler characteristics of the sub-levels sets, to the
understanding of the distribution of the absolute value of the
determinant of the Hessian of f at x conditionally on x being
a critical point, and on f (x) = u

I This is the law of a NxN Gaussian random real symmetric
matrix.

I Its covariance structure defines a 4-tensor, which is
computable by differentiating the Covariance function C (plus
some linear algebra to take the conditioning into account).

C (x , y) = E [f (x)f (y)]− E [f (x)]E [f (y)] (6)
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some linear algebra to take the conditioning into account).

C (x , y) = E [f (x)f (y)]− E [f (x)]E [f (y)] (6)



The link with Random Matrix Theory

I So the covariance function C defines a Random Matrix model
of Gaussian matrices, with dependent entries in general

I In fact, in order to understand the higher moments of the
number of critical points, and thus study its possible
concentration and show that the first moment gives the
correct behavior, one needs to understand a field of correlated
Gaussian random matrices, given by the Hessians of f at the
critical points.

I This class of random matrix models is hard in general. The
first broad result of convergence dates back to Dec 6
2016(Erdos and al, Arxiv).
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The link with Random Matrix Theory

I But our spherical case corresponds to one of the most studied
and simplest class of random matrices, i.e the GOE (Gaussian
Orthogonal Ensemble)!

I The GOE is the distribution of a symmetric real random
Gaussian matrix M where the entries are independent and
Gaussian centered, with variances

E [M2
i ,j ] =

1 + δi ,j
2N

(7)
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The link with Random Matrix Theory

I A trivial computation shows that for a random homogeneous
polynomial of degree p, the covariance is given by

C (x , y) = E [f (x)f (y)] = (x .y)p (8)

I By differentiation of C one sees that the distribution of the
Hessian at x conditioned by the the fact x is a critical point
and by the value f (x) = u is a shifted GOE; cuId −M, where
the shift is a function of the critical value c = c(p) and where
M is a GOE matrix.
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The link with Random Matrix Theory

I Using the Kac-Rice formula above, we must compute

E [|det(M − XId)|1i(M−XId)=k1X∈B ] (9)

I where M is a GOE (N-1) matrix, and X is an independent
Gaussian variable

I or, for the Euler characteristic,

E [det(M − XId)1X≤u] (10)
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The link with Random Matrix Theory

I Theorem (Auffinger-Ben Arous-Cerny)

If B is a subset of the real line,

E [Critk(p,
√
NB)] = cpEGOE(N)[e−N

p−2
2p
λ2
k 1λk∈c ′pB ]

where cp = 2
√

(2/p)(p − 1)N/2 and c ′p = p
2(p−1)

1/2 and

λ0 ≤ λ1 ≤ ... ≤ λN−1

are the eigenvalues of a GOE matrix of size N.



A natural tool : Large Deviations for Random Matrices

M is a GOEN matrix, if it is a real symmetric NxN matrix, whose
entries are i.i.d centered Gaussian (above the diagonal) with

E (M2
i ,j) =

(1 + δi ,j)

2N

and λ0 ≤ λ1 · · · ≤ λN−1 its eigenvalues.
It is well known that the empirical spectral measure µN = 1

N

∑
δλi

converges to the semi-circle distribution (with radius
√

2).
Moreover a LDP is proved with rate N2 (BA-Guionnet)

P[µN ∈ A] ∼ e−N
2 infµ∈A I (µ) (11)

From this we deduce a LDP for the k-th eigenvalue λk , with rate
N2 if it is in the bulk: k ∼ cN

P[λk ∈ A] ∼ e−N
2 infµ∈A Ic (µ) (12)



Large Deviations for Random Matrices

It is also well known that the smallest eigenvalue λ0 converges to
the left edge −

√
2 of the semi-circle. Moreover a LDP is proved in

the scale N (BA-Dembo-Guionnet) for deviations to the left

P[λ0 ≤ −
√

2− u] ∼ e−NJ(u) (13)

and in the scale N2 for deviations to the right

P[λ0 ≥ −
√

2 + u] ∼ e−N
2J′(u) (14)

Similarly LDP are proven for eigenvalues λk , with k fixed as N
tends ∞.



Complexity of random homogeneous polynomials

I Theorem (Auffinger-Ben Arous-Cerny)

lim
N→∞

1

N
log E [Critk(−∞,−Nu)] = θk,p(u)

Here the (annealed) complexity function θk(u) is continuous,
non-decreasing and explicit.

I For u ≤ −E∞

θk,p(u) = 1/2 log(p − 1)− p − 2

4(p − 1)
u2 − (k + 1)I (

u

E∞
)

with E∞ = 2
√

p−1
p and I (v) = 2

∫ 1
v

√
v2 − 1dv

I For u ≥ −E∞

θk,p(u) = 1/2 log(p − 1)− p − 2

p
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Complexity of random homogeneous polynomials

I On the interval (−∞,−E∞), for any k

θ0(u) > θ1(u) > · · · > θk(u)

I So that on this interval, the local minima dominate
exponentially

I On the interval (−E∞,∞), the functions θk are all constant

I So (whp) there are no critical points of finite index with
values above −E∞N.

I In fact, the probability to find one such critical point is of
order e−cN
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Complexity of random homogeneous polynomials

I Define Ek by θk(Ek) = 0.

I Ek is the threshold of positive complexity of critical points of
index k, i.e the level above which the average number is
exponentially large.

I Obviously the sequence Ek is strictly increasing. It converges
to E∞.

I On the interval (−E0N,−E∞N), the average number of local
minima is exponentially large.

I On the interval (−E0N,−E1N), the average number of local
minima is exponentially large and the number of critical
points of positive index is exponentially small. This hints at
the existence of high (extensive) barriers.



Complexity of random homogeneous polynomials

I Define Ek by θk(Ek) = 0.

I Ek is the threshold of positive complexity of critical points of
index k, i.e the level above which the average number is
exponentially large.

I Obviously the sequence Ek is strictly increasing. It converges
to E∞.

I On the interval (−E0N,−E∞N), the average number of local
minima is exponentially large.

I On the interval (−E0N,−E1N), the average number of local
minima is exponentially large and the number of critical
points of positive index is exponentially small. This hints at
the existence of high (extensive) barriers.



Complexity of random homogeneous polynomials

I Define Ek by θk(Ek) = 0.

I Ek is the threshold of positive complexity of critical points of
index k, i.e the level above which the average number is
exponentially large.

I Obviously the sequence Ek is strictly increasing. It converges
to E∞.

I On the interval (−E0N,−E∞N), the average number of local
minima is exponentially large.

I On the interval (−E0N,−E1N), the average number of local
minima is exponentially large and the number of critical
points of positive index is exponentially small. This hints at
the existence of high (extensive) barriers.



Complexity of random homogeneous polynomials

I Define Ek by θk(Ek) = 0.

I Ek is the threshold of positive complexity of critical points of
index k, i.e the level above which the average number is
exponentially large.

I Obviously the sequence Ek is strictly increasing. It converges
to E∞.

I On the interval (−E0N,−E∞N), the average number of local
minima is exponentially large.

I On the interval (−E0N,−E1N), the average number of local
minima is exponentially large and the number of critical
points of positive index is exponentially small. This hints at
the existence of high (extensive) barriers.



Complexity of random homogeneous polynomials

I On the interval (−∞,−E0N) the average number of local
minima is exponentially small, so that the minimum mN is
larger than (−E0 − ε)

√
N with high probability.

I Getting an upper bound on mN , and proving that
mN ∼ −

√
NE0 is much more delicate.

I It can be done as in the original paper using the Parisi formula
for the free energy of spherical spin glasses (and its one step
replica symmetry breaking (1RSB) at low temperature for
pure p-spins), or with probabilistic tools, as in the recent work
of E. Subag, by controlling the second moment sharply.
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Pure p-spins: SUBAG’s results

I The results above are about the mean number of critical
points, It is a first moment method.

I They have been improved through a second moment analysis,
valid for low values of the energy ( Subag 2015). Through a
study of the second moment Kac-Rice formula, the complexity
questions boils down to question about a pair of correlated
GOE matrices.

I Theorem (Subag 2015)

For u < −E∞

lim
N→∞

1

N
log E [Crit0(−∞,Nu)2] = 2θ0,p(u) (15)

lim
N→∞

Crit0(−∞,Nu)

E [Crit0(−∞,Nu)]
= 1 (16)
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Pure p-spins: SUBAG’s results

I This approach gives a full asymptotic description of the
extremal process (Subag-Zeitouni 2016 ) as a Poisson-Gumbel
process

I And even a very detailed description of the Gibbs measure at
very low temperature, which exhibits the TAP states (Subag
2016) These TAP states are centered on the ”deepest” wells,
their bottoms are near the ground state.

I This analysis at very low temperature shows the absence of
”temperature chaos”
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Pure p-spins: Open questions

I The second moment analysis is valid only below the threshold
−E∞ for the total number of critical points or for local
minima, since they dominate there. What about other saddle
points in this region?

I The TAP like description is valid only for very low
temperatures (as long as a harmonic approximation is valid).
It should be for higher temperatures (below the static
transition). And there should be no temperature chaos there.

I What about the phase above this where the Gibbs measure is
carried by an exponential number of wells centered on deep
wells centered on local minima above the ground state. This
phase is RS but complex.



Pure p-spins: Dynamics questions

I What do these result mean for Langevin dynamics?

I In finite time scales, the situation is well understood
(Cugliandolo-Kurchan, Dembo-Guionnet-GBA) The dynamics
can only reach the dynamic threshold −E∞.

I What about longer time scales? Mixing time? Metastability?
Aging?



Pure p-spins: Dynamics questions

I Recent result: Jagannath-BA, 2017, valid for hard spins and
spherical cases

Theorem
The mixing time is exponential is N as soon as the so-called
Franz-Parisi potential has a ”secondary minimum”, and for
instance as soon as the support of the Parisi measure is not
connected. So in particular for this 1 RSB situation.



Pure p-spins: Dynamics questions

I This result is based on a Cheeger type estimate applied to a
pair of replicated dynamics, using a new large deviation
principle for the distribution of the overlap of two replica, in
tunr based on the recent and veyr deep work of Panchenko on
the so-called 2d Guerra-Talagrand bounds.

I Aging: the classical Fractional kinetics type aging (a la
Bouchaud) should be valid for Langevin dynamics in
exponential time scales. (proven for Hard p-spins for the
simpler Random Hopping TIme (RHT) or Bouchaud dynamics
(Bovier-Cerny-BA, 2009), and for Metropolis dynamics for
REM (Cerny-Wassmer, Gayrard 2016).
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An important phase transition; the topological transition

I What if the Gaussian process has a non zero mean mN(x),
which is non complex, i.e has only a few critical points

I We study this case on the sphere with G. Biroli and C.
Cammarota by adding a mean to the Gaussian process

m(x) = CN(

∑
xini
N

)k (17)

where n is a fixed point on the sphere, say n = e1, to a
random homogeneous polynomial of degree p (a p-spin
spherical spin glass)

I Then there is an important phase transition depending on the
strength of the signal-to-noise ratio C , with different
behaviors if k = 1, k = 2 and k > 2
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A denoising problem: Tensor PCA

I You observe a p-tensor in N variables X = Cv⊗p + Z

I Here v is a fixed unknown vector on the unit sphere SN , and
Z is a random centered p-tensor.

I We assume that the noise Z is Gaussian, and that its entries
are i.i.d.

I The objective is to reconstruct (estimate) v . This is done by
the maximum likelihood estimator, vML obtained by solving
the following optimization problem

I Find the maximum of < X , u⊗p > for u ∈ SN
I When p ≤ 3, this optimization problem is NP hard (Hillar and

Lim 2013)
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A denoising problem: Tensor PCA

I Of course when p = 2 this is the usual spiked Principal
Component Aanalysis model.

I It is well known that there is an important transition
depending on the value of C ,for various models of noise.

I This BBP transition is the basis of many practical ”shrinking”
algorithms ( Johnstone, Donoho ...)

I We want to explore if something similar happens for tensors
(recent works by A. Montanari et al, Ge et al, A. Bandeira et
al...)

I But this is exactly our problem above, if one restricts to the
case k = p!
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The topological/complexity phase transition (when k > 2)

I When C < C1 is small, the model is exponentially complex
and the critical points are on the equator

I When C1 < C < C2, then the model is still exponentially
complex but there are exponentially many local minima in a
band inside the north hemisphere

I When C > C2, the model is no longer complex and the (now
unique) local minimum gets closer the north pole

I Joint works with C. Cammarota and G. Biroli (using the
physics replica method), and exact computation of complexity
with M.Nica (based on the BBP transition and recent work by
M. Maida).
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The topological/complexity transition (when k > 2)

I What are the dynamical consequences? For a gradient descent
algorithm? For Langevin dynamics? For a stochastic gradient
descent?

I Joint work with C. Cammarota and G. Biroli, and numerical
work in progress with L.Sagun and M. Baity-Jesy.

I In the third (non complex) phase, gradient descent finds the
minimum in finite time. The signal is recovered almost fully.

I In the first (complex) phase, gradient descent as well as
Langevin dynamics cannot escape the equator, even in
exponential time. Converges to a measure carried by the
equator (i.e. the signal is fully lost).
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The intermediate phase of topological/complexity
transition

I In the intermediate phase, gradient descent cannot escape the
equator, except if it is given a warm start. Langevin dynamics
stops in one of the exponentially many local minima, in a
band near the pole, but takes exponential time to get there.

I If the signal to noise ratio diverges as a power of N (should be
k − 2/4), then one finds this band in finite time

I Instead if one has K samples, then the on-line stochastic
gradient descent algorithm finds this band after the crossing
of a small barrier (note the signal to noise ratio also diverges)



THE NATURAL QUESTIONS IN A MORE GENERAL CONTEXT



The natural questions

I Consider a random smooth function fN(x) on the manifold
MN of large dimension N.

I Assume fN is Gaussian, and thus characterized by its mean
function mN(x) and its covariance CN(x , y).

I Question 1: Compute the number of critical points? at (or
below) a fixed value? with a fixed index?

Critk(B) = #(x ∈ MN ,∇fN(x) = 0, i(∇2fN(x)) = k , fN(x) ∈ B)
(18)

I Question 2: Understand the topology of this landscape, for
instance the Euler characteristic of its sub-level sets?

χ(u) = χ({x ∈ MN , fN(x) ≤ u}) (19)
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The natural questions

I Question 3: How can this geometric information be used to
understand the behavior of Gibbs measures at low
temperature?

µβ,N(dx) =
1

ZN(β)
e−βfN(x)dx (20)

I Question 4: How can it be used for dynamical properties?
Either for natural Langevin dynamics, or for optimization
algorithms used in statistics of big data, like stochastic
gradient descent.
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TWO IMPORTANT MODELS



The isotropic models of Gaussian Smooth Functions

I Assume that the manifold MN is Riemannian, call dN the
Riemannian distance.

I Assume that random function fN is centered mN(x) = 0 and
that the covariance is a function of the distance.

C (x , y) = cov(f (x), f (y)) = g(dN(x , y)) (21)

I The variance is constant: Var(f (x) = g(0) (and fN is
independent from its gradient)

I wlog we assume that Var(f (x) = g(0) = 1

I The metric induced by the Gaussian process is topologically
equivalent to the Riemannian metric.

E [(f (x)− f (y))2] = 2(1− g)(dN(x , y)) (22)
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The isotropic models on the Sphere

I If the manifold M is the unit sphere SN−1, the functions g
such that g(dM(x , y)) defines a covariance (i.e. is positive
definite) have been characterized by Schoenberg in 1942.

I If we assume that g is independent of the dimension N, then
there exists a sequence ap ≥ 0 such that

g(d) =
∞∑
p=1

ap(cos d)p (23)

I Another way to write this is to introduce the function
ν(r) =

∑∞
p=1 apr

p and

CN(x , y) = ν(< x , y >) (24)



The isotropic models on the Sphere

I Define, for a sequence ap ≥ 0, the random function

fN,ν(x) =
∞∑
p=2

√
apfN,p(x) =

∞∑
p=2

√
ap

N∑
i1,i2,...,ip=1

Ji1,...1pxi1 ...xip

(25)
where the J’s are i.i.d Gaussian N(0, 1).

I It is easy to see that

cov(fN,ν(x), fN,ν(y)) =
∑

ap < x , y >p= ν(< x , y >) (26)

I With this realization, it is easy to see that, if the ap decay fast
enough (say exponentially), then the random function fN,ν(x)
is a.s. smooth (and Morse)
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The isotropic models on the Sphere

I The isotropic models on the sphere are exactly the mixed
Spherical Spin Glass models.

I The general mixed Spherical Spin Glass hamiltonian is defined
on SN−1(

√
N), the sphere of radius

√
N by

HN,ν(σ) =
√
NfN,ν(

σ√
N

) (27)



Minimizing risk or loss in statistics

I One of the most important tasks in statistics is parameter
estimation.

I In parametric models of statistics, one is given a family of
probability measures Pθ on RD , depending on the parameter
θ ∈ RN

I The ”true” parameter, say θ0 is unknown, and one wants to
estimate it using the data, i.e an M-sample of i.i.d random
variables X1, ...,XM in RD



Minimizing risk or loss in statistics

I The most common path to parameter estimation is through
minimizing of a risk/loss (or maximizing a likelihood)

I The true risk (or population risk) is unaccessible and is given
by

R(θ) =

∫
L(x , θ)]dP(x) (28)

I Here θ is a parameter in RN , to be estimated, by minimizing
R(θ)

I x is the data, in Rd , whose distribution P is unknown.



Minimizing risk or loss in statistics

I The population risk in unknown, since P is unknown

I But an i.i.d sample of he distribution P, (xi )1≤i≤M , is the data

I So one tries to minimize the empirical risk, rather than the
population risk

RM(θ) =
1

M

M∑
i=1

L(xi , θ) (29)



Minimizing risk or loss in statistics

I Thus the question becomes: can the minimization of RM(θ)
be a good substitute for the minimization of R(θ)?

I The answer is yes, in classical parametric statistics where N is
fixed and not large and M tends to ∞

I The answer is also yes, when both N and M are large and of
the same order. This has been explored massively in the last
ten years, see Candes-Tao for instance, and see recent work by
Montanari and his coauthors (among many others).

I But what if the data is really very high dimensional, and N is
much larger than M? Which is the case for the most
important questions of machine learning usually solved
through deep learning or deep convolutional networks.



Minimizing risk or loss in statistics

I

RM(θ) ≈ R(θ) +
1√
M

GM(θ) (30)

Where GM is a fluctuation term, which one may assume to be
a Gaussian function of the parameter θ ∈ Rp

I So the question is now to understand the critical points and
the local/global minima of a Gaussian function of many
variables (non centered).

I Typically one assumes that the mean (or the signal) R(θ) is
not complex, and the question becomes: can the random term
bring much larger complexity?

I The next step is then: can this complexity impede the
minimization procedure?



The Loss landscape of multilayered networks

I Consider a multilayered network, with internal parameters
x = (J, θ). Here the synaptic strength parameters of the
network are denoted by J and the thresholds are denoted by θ.
The dimension of the space of internal parameters will be
noted N.

I Let In be the space of inputs, and Out the space of outputs.

I The network is fed with M random inputs ik , sampled i.i.d
from an unknown distribution ν on the input space In

I For any input i ∈ In, the network computes an output
O(i , x) = O(i , J, θ), by linear maps using the parameters J
(on the edges) and thresholding using the parameters θ (on
the nodes).



The Loss landscape of multilayered networks

I Let T be the function being learned from a space In (in puts)
to a space Out (outputs). i.e., if i ∈ In is an input, then
T (i) ∈ Out is the ”true value of the output”.

I The Loss function is the total error made on the sample, for
given parameters x = (J, θ)

Loss(x) = 1/M
∑

k=1,..,M

Err(O(ik , x),T (ik)) (31)

where Err is the error function used to rate the network.

I The goal is to minimize this random Loss function.



The Loss landscape of multilayered networks

I Its mean is mN(x) =
∫
Err(O(i , x),T (i))dν(i)

I Its covariance is

CN(x , y) = KN(x , y)−mN(x)mN(y) (32)

where

KN(x , y) =

∫
Err(O(i , x),T (i))Err(O(i , y),T (i))dν(i)

(33)

I If the size M of the sample is large, it might be reasonable to
assume that the Loss function is a Gaussian function of
x = (J, θ)

LN(x) � mN(x) +
1√
M

GN(x) (34)

where GN(x) is a centered Gaussian function with covariance
CN on the space MN of internal parameters.
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The Loss landscape of multi-layered networks

I The question is thus: how complex is this Gaussian landscape,
and how hard is it to minimize this function?

I Can we learn from the Spherical case?

I Can we prove the same type of results?

I What is the role of the ”signal”, here the unknown function
mN? and of the signal to noise ratio, i.e the relative size of
the sample M (the length of the supervised learning phase)
and the dimension N?



Loss surfaces

”The vast majority of practical applications of deep learning use supervised learning
with very deep networks. The supervised loss function (usually a cross entropy) is
minimized using some form of stochastic gradient descent (SGD). The general shape
of the loss function is very poorly understood. Several researchers experimenting with
larger networks and SGD had noticed that while multilayer nets do have many local
minima, the results of multiple experiments consistently give very similar performance.
This suggests that,while local minima are numerous, they are relatively easy to find,
and they are more or less equivalent in terms of performance on the test set.”



WHAT WOULD THAT PICTURE MEAN IN STATISTICS
AND DATA SCIENCE

I If we could indeed understand well enough the random matrix
model defined by a statistical model as above, and if we could
understand the analog of the phase transition just described,
then the following scenario would be possible

I When the learning phase is too short (the sample is too
small), then the empirical risk optimization is exponentially
complex, and the model learns only ”noise”

I When the learning phase is longer (the sample is larger), then
the optimization task is still exponentially complex, the result
is NOT close to the absolute minimum of the population risk
(i.e. the estimation is not consistent!), but still the
performance is a positive fraction of the best possible.

I When the sample is longer the estimation becomes consistent.
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