Régularisation entropique: du problème de Schrödinger aux simulations numériques

Guillaume Carlier ^a

Congrès en l'honneur de Patrick Cattiaux et Christian Léonard. Toulouse, juin 2017. Collaborations avec J.D. Benamou, L. Nenna, G. Peyré et S. Di Marino.

^aCEREMADE, Université Paris Dauphine et MOKAPLAN (Inria-Dauphine).

/1

Introduction

Soit X et Y deux espaces polonais, $\mu \in \mathcal{P}(X), \nu \in \mathcal{P}(Y), c \in C(X \times Y)$, problème de Monge-Kantorovich:

$$\inf_{\gamma \in \Pi(\mu,\nu)} \langle c, \gamma \rangle := \int_{X \times Y} c(x,y) \mathrm{d}\gamma(x,y)$$

avec

$$\Pi(\mu,\nu) := \{ \gamma \in \mathcal{P}(X \times Y) : \pi_{1\#}\gamma = \mu, \ \pi_{2\#}\gamma = \nu \}$$

Cas quadratique. Notons $\mathcal{P}_2(\mathbf{R}^d)$ l'ensemble des mesures de probabilités sur \mathbf{R}^d de second moment finis, pour ρ_0 et ρ_1 dans $\mathcal{P}_2(\mathbf{R}^d)$, la 2-distance de Wasserstein entre ρ_0 et ρ_1 , $W_2(\rho_0, \rho_1)$ est donnée par

$$W_2^2(\rho_0,\rho_1) = \inf_{\gamma \in \Pi(\rho_0,\rho_1)} \int_{\mathbf{R}^d \times \mathbf{R}^d} |x-y|^2 \mathrm{d}\gamma(x,y)$$

où $\Pi(\rho_0, \rho_1)$ est l'ensemble des plans de transport entre ρ_0 et ρ_1 i.e. les probas sur $\mathbf{R}^d \times \mathbf{R}^d$ ayant ρ_0 et ρ_1 pour marges. W_2 est une distance sur $\mathcal{P}_2(\mathbf{R}^d)$, $(\mathcal{P}_2(\mathbf{R}^d), W_2)$ espace de Wasserstein. Brenier, McCann: si ρ_0 ne charge pas les hypersurfaces Lipschitz il y a une unique solution, qui est caractérisée par $\gamma = (id, \nabla u)_{\#} \rho_0$ avec u convexe. Lien avec Monge-Ampère:

 $\det(D^2 u)\rho_1(\nabla u) = \rho_0, \ u \text{ convexe.}$

Théorie de la régularité L. Caffarelli (avancées récentes: Figalli, De Philippis). Interpolation (McCann): courbe de mesures $t \in [0,1] \mapsto \rho_t = ((1-t) \operatorname{id} + t \nabla u)_{\#} \rho_0$, c'est la géodésique entre ρ_0 et ρ_1 . Notion de convexité par déplacement.

Introduction

Formulation dynamique de Benamou-Brenier:

$$W_2^2(\rho_0, \rho_1) = \inf \int_0^1 \int_{\mathbf{R}^d} |v_t(x)|^2 \rho_t(\mathrm{d}x) \mathrm{d}t$$

sous les contraintes:

$$\partial_t \rho + \operatorname{div}(\rho v) = 0, \ \rho_{|_{t=0}} = \rho_0, \ \rho_{|_{t=1}} = \rho_1.$$

F. Otto: structure formelle de variété Riemannienne, calcul d'Otto. Formellement, étant donnée une énergie E sur $\mathcal{P}_2(\mathbf{R}^d)$, l'équation

$$\partial_t \rho = \operatorname{div}(\rho \nabla E'(\rho))$$

est le flot de gradient (pour W_2) de E. En particulier $E(\rho) = \int_{\mathbf{R}^d} \rho \log(\rho)$: le flot de la chaleur est le flot de l'entropie pour W_2 . Jordan-Kinderlehrer et Otto, 1998, l'équation de Fokker-Planck:

$$\partial_t \rho - \Delta \rho - \operatorname{div}(\rho \nabla V) = 0$$

est le flot gradient pour W_2 de

$$E(\rho) = \int_{\mathbf{R}^d} \rho \log(\rho) + \int_{\mathbf{R}^d} V\rho = \int_{\mathbf{R}^d} \rho \log\left(\frac{\rho}{e^{-V}}\right).$$

Résolution rigoureuse via un schéma d'Euler implicite: le schéma JKO. S'adapte à une variété considérable de situations: diffusions non linéaires (Otto, Agueh...), équations d'agrégation, milieux granulaires (Carrillo, Villani, McCann...), équations du quatrième ordre (films minces, Derrida-Lebowitz-Speer-Spohn, McCann, Matthes, Savaré, Toscani...),

Chapman-Rubinstein-Schatzman en superconductivité (Ambrosio-Serfaty)....

Trois points de vue: programmation linéaire, point de vue dual (le transport provient d'un potentiel: Monge-Ampère dans le cas quadratique), point de vue dynamique (Benamou-Brenier). Ces trois points de vue ont une version entropisée, qui se prête parfaitement à des calculs numériques.

Plan

- ① Régularisation entropique et algorithmes (Sinkhorn, IPFP)
- 2 Régularisation entropique des flots gradients Wasserstein
- ③ Formulation dynamique
- ④ Jeux à champ moyen par minimisation d'entropie

Régularisation entropique

Résoudre un problème de transport optimal est généralement très coûteux, même pour des mesures empiriques, le problème approché en rajoutant ε fois une entropie:

$$\inf_{\gamma \in \Pi(\mu,\nu)} \langle c,\gamma \rangle + \varepsilon \int_{\mathbf{R}^d \times \mathbf{R}^d} \gamma \log \gamma$$

avec $\varepsilon > 0$ et μ et ν d'entropie finie est beaucoup plus simple. C'est un problème de projection pour la divergence de Kullback-Leibler

$$\inf_{\gamma \in \Pi(\mu,\nu)} \operatorname{KL}(\gamma|\gamma^{\varepsilon}) := \int_{\mathbf{R}^d \times \mathbf{R}^d} \gamma \log\left(\frac{\gamma}{\gamma_{\varepsilon}}\right), \ \gamma_{\varepsilon} = e^{-\frac{c}{\varepsilon}}$$

Problème discret

$$\inf_{\gamma \in \Pi(\mu,\nu)} \sum_{ij} \gamma_{ij} \log\left(\frac{\gamma_{ij}}{\theta_{ij}}\right) \tag{1}$$

 $(\theta_{ij} = \exp(-\varepsilon^{-1}c_{ij}))$. Unique solution de la forme $\gamma_{ij} = \theta_{ij}a_ib_j$ où les a_i et b_j sont telles que les contraintes de marges sont satisfaites (problème de Schrödinger discret):

$$a_i = \frac{\mu_i}{\sum_j b_j \theta_{ij}} := R_i(b), \ b_j = \frac{\nu_j}{\sum_i a_i \theta_{ij}} := S_j(a)$$

problème de point fixe sur a: trouver a dans le cône positif tel que a = Ta (avec $T = R \circ S$). Algorithme de Sinkhorn: itérer T.

Calculs complètement parallélisables, seulement 2*I* coefficients à stocker à chaque étape. Idée ancienne, efficacité pour le transport optimal, lien avec l'algorithme de matrix scaling de Sinkhorn plus récente: Marco Cuturi. Convergence, métrique projective de Hilbert:

$$d_H(a, a') := \log\left(\frac{\max_i \frac{a_i}{a'_i}}{\min_i \frac{a_i}{a'_i}}\right), \ (a, a') \in (0, +\infty)^N.$$

pour laquelle T est une contraction.

Autre point de vue; projections alternées

$$\inf_{\gamma \in C_1 \cap C_2} \sum_{ij} \gamma_{ij} \log\left(\frac{\gamma_{ij}}{\theta_{ij}}\right) \tag{2}$$

avec

$$C_1 := \{ \gamma : \sum_j \gamma_{ij} = \mu_i, \ \forall i \}, \ C_2 := \{ \gamma : \sum_i \gamma_{ij} = \nu_j, \ \forall j \}$$

Les projections de θ pour KL sur C_1 et C_2 sont totalement explicites:

$$\operatorname{proj}_{C_1}^{\mathrm{KL}}(\theta)_{ij} = \frac{\theta_{ij}\mu_i}{\sum_l \theta_{il}}, \ \operatorname{proj}_{C_2}^{\mathrm{KL}}(\theta)_{ij} = \frac{\theta_{ij}\nu_j}{\sum_l \theta_{lj}},$$

Sinkhorn revient à faire des projection alternées (IPFP, Iterative Proportional Fitting Procedure):

$$C_{2n+1} = C_1, C_{2n} = C_2, \gamma^n = \operatorname{proj}_{C_n}^{\mathrm{KL}}(\gamma^{n-1})$$

Méthodes des projections alternées s'adapte facilement aux problèmes multimarges, au transport partiel, aux barycentres au sens de W_2 etc... cas de contraintes d'égalité: Dykstra, chaque projection est explicite dans chacun de ces exemples. Barycentres pour W_2 : étant données $\nu_1, \dots, \nu_k \in \mathcal{P}_2(\mathbf{R}^d)$ et des poids positifs, $\lambda_1, \dots, \lambda_k$, problème d'interpolation:

 $\inf_{\nu \in \mathcal{P}_2(\mathbf{R}^d)} \sum_{i=1}^k \lambda_i W_2^2(\nu, \nu_i).$ (3)

une solution= un barycentre (pour W_2) des mesures ν_i avec les poids λ_i . Devenu assez populaire en traitement d'images, statistiques et machine learning. $\mathbf{13}$

Calcul de barycentres par Sinkhorn (Cuturi, Doucet):

Synthèse de textures

Transport partiel, deux mesures positives, μ et ν (pas de même masse a priori), $m \leq \min(\mu(X), \nu(Y))$ et l'on s'intéresse à

 $\inf_{\gamma\in\Pi_m^-(\mu,\nu)}\langle c,\gamma\rangle$

 $\Pi_m^-(\mu,\nu) := \{ \gamma \in \mathcal{P}(X \times Y) : \pi_{1\#} \gamma \le \mu, \ \pi_{2\#} \gamma \le \nu, \ \gamma(X \times Y) = m \}.$

Gabriel Peyré et ses coauteurs (Chizat, Schmitzer, Vialard...) ont développé des solveurs efficaces pour des problèmes entropisés plus généraux du type

$$\inf_{\gamma \in \mathcal{P}(X_1 \times \dots \times X_L)} \left\{ \mathrm{KL}(\gamma | \theta) + \sum_{i=1}^L F_i((\pi_i)_{\#} \gamma) \right\}$$

ce qui inclut le transport optimal multimarges, le transport non équilibré, la régularisation de JKO... et certains MFGs.

Régularisation entropique des flots gradients

Schéma JKO pour l'EDP:

$$\partial_t \rho = \operatorname{div}(\rho \nabla E'(\rho)), \ \rho_{|_{t=0}} = \rho_0.$$

On part de ρ_0 et on construit par récurrence une suite de mesures de probabilité via

$$\rho^{k+1} \in \operatorname{argmin}_{\rho \in \mathcal{P}_2(\mathbf{R}^d)} \Big\{ \frac{1}{2\tau} W_2^2(\rho, \rho^k) + E(\rho) \Big\}.$$

On pose $\rho^{\tau}(t) = \rho^{k+1}$ pour $t \in (k\tau, (k+1)\tau]$. Et on cherche à montrer que quand $\tau \to 0$, ρ^{τ} converge vers une solution de l'EDP.

La difficulté dépend de E, pour fixer les idées prenons une énergie interne

$$E(\rho) := \int_{\mathbf{R}^d} U(\rho(x)) \mathrm{d}x$$

avec U strictement convexe, $U(0) = 0, U \ge 0$ (pour simplifier)...

Ce qui correspond à l'équation de diffusion non linéaire:

$$\partial_t \rho = \Delta P(\rho), \ P(\rho) := \rho U'(\rho) - U(\rho).$$

cas particulier: $U(\rho) = \frac{1}{m-1}\rho^m$, m > 1, équation des milieux poreux

$$\partial_t \rho = \Delta \rho^m$$

Equation d'Euler pour la k + 1-ème étape de JKO:

$$\frac{1}{\tau}(y - S^{k+1}(y))\rho^{k+1}(y) = -\nabla U'(\rho^{k+1}(y))\rho^{k+1} = -\nabla P(\rho^{k+1}(y))$$
(4)

avec $S_{\#}^{k+1}\rho^{k+1} = \rho^k$, optimal et donc

$$\int_{k\tau}^{(k+1)\tau} \int_{\mathbf{R}^d} |\nabla P(\rho^{\tau})| \mathrm{d}x \mathrm{d}t = \tau \int_{\mathbf{R}^d} |\nabla P(\rho^{k+1})| \le W_2(\rho^k, \rho^{k+1})$$

Evidemment, on a

$$W_2^2(\rho^{k+1}, \rho^k) \le 2\tau \Big(E(\rho^k) - E(\rho^{k+1}) \Big).$$

De sorte que (avec $N \simeq T/\tau$)

$$\sum_{k=0}^{N-1} W_2^2(\rho^{k+1}, \rho^k) \le C\tau, \tag{5}$$

D'où une borne $C^{0,1/2}$ en temps

$$W_2(\rho^{\tau}(t), \rho^{\tau}(s)) \le C\sqrt{|t-s| + \tau}.$$
 (6)

et une estimation $L^1((0,T), BV)$ pour la pression

$$\sum_{k=0}^{N-1} \int_{k\tau}^{(k+1)\tau} \int_{\mathbf{R}^d} |\nabla P(\rho^{\tau})| \mathrm{d}x \mathrm{d}t \le C(N\tau)^{1/2} \le C_T.$$
(7)

Plus des bornes sur l'énergie et les moments d'ordre 2. Par un argument de type Aubin-Lions-Simon (cf. Rossi-Savaré pour le cas d'un module de continuité en temps donné par une distance plutot qu'une estimation Sobolev en temps), convergence forte: la famille $\{P(\rho^{\tau})\}_{\tau}$ est relativement compacte dans $L^1((0,T) \times \mathbf{R}^d)$. Convergence forte de ρ^{τ} et $P(\rho^{\tau})$: limites ρ et $P(\rho)$. Régularisation entropique des flots gradients

$$\begin{aligned} \text{Fonction-test } \phi \in C_c^{\infty}((0,T) \times \mathbf{R}^d) \text{:} \\ \int_0^T \int_{\mathbf{R}^d} \partial_t \phi \rho^{\tau} &= -\sum_{k=0}^N \int_{\mathbf{R}^d} \phi(k\tau, .)(\rho^{k+1} - \rho^k) \\ &= -\sum_{k=0}^N \int_{\mathbf{R}^d} (\phi(k\tau, y) - \phi(k\tau, S^{k+1}(y)))\rho^{k+1}(y) \mathrm{d}y \\ &= -\sum_{k=0}^N \int_{\mathbf{R}^d} \nabla \phi(k\tau, y) \cdot (y - S^{k+1}(y))\rho^{k+1}(y) \mathrm{d}y \\ &+ O(\tau)(\text{avec } (6)) \\ (\text{avec } (4)) &= -\sum_{k=0}^N \tau \int_{\mathbf{R}^d} \Delta \phi(k\tau, x) P(\rho^{\tau}(x)) \mathrm{d}x + O(\tau). \end{aligned}$$

Et donc en faisant $\tau \to 0, \ \partial_t \rho = \Delta P(\rho). \end{aligned}$

S'adapte sous des hypothèses convenables à des énergies plus générales:

$$E(\rho) := \int_{\mathbf{R}^d} U(\rho(x)) dx + \int_{\mathbf{R}^d} V(x)\rho(x) dx + \frac{1}{2} \int_{\mathbf{R}^d \times \mathbf{R}^d} W(x-y)\rho(x)\rho(y) dx dy$$
(8)

dont le flot de gradient W_2 s'écrit:

$$\partial_t \rho = \operatorname{div} \Big(\rho (\nabla U'(\rho) + \nabla V + \nabla W \star \rho) \Big).$$

Stabilité, unicité, contraction pour W_2 , convergence vers l'équilibre: ok si E est convexe par déplacement i.e. $t \mapsto E(\rho_t)$ est convexe le long des géodésiques (V est W convexe et Uvérifie la condition de McCann). Terme d'interaction W: équations d'agrégation, milieux granulaires... Quelques exemples plus compliqués.

Mouvements de foules: Maury, Roudneff-Chupin, Santambrogio

$$\partial_t \rho = \operatorname{div}(\rho(\nabla V + \nabla p)), \ p \ge 0, \ \rho \le 1, \ p(1-\rho) = 0.$$

qui correspond à

$$E(\rho) = \begin{cases} \int_{\mathbf{R}^d} V\rho \, \text{si} \, \rho \le 1\\ +\infty \, \text{sinon} \end{cases}$$

Modèles du quatrième ordre: Jüngel, Toscani, Matthes, McCann, Savaré... Equation des films minces

$$\partial_t \rho = -\operatorname{div}\left(\rho \nabla \Delta \rho\right) \text{ correspond à } E(\rho) = \frac{1}{2} \int_{\mathbf{R}^d} |\nabla \rho|^2.$$

Equation de dérive-diffusion quantique de Derrida-Lebowitz-Speer-Spohn:

$$\partial_t \rho = -\operatorname{div}\left(\rho \nabla \left(\frac{\Delta \sqrt{\rho}}{\sqrt{\rho}} + V\right)\right)$$

qui correspond à

$$E(\rho) = \int_{\mathbf{R}^d} |\nabla \sqrt{\rho}|^2 + V\rho.$$

Peut-on utiliser le schéma JKO numériquement en pratique? Résoudre:

$$\inf_{\rho \in \mathcal{P}_2(\mathbf{R}^d)} \left\{ \frac{1}{2\tau} W_2^2(\rho, \rho^k) + E(\rho) \right\}$$

pour un E "raisonnable". La difficulté est le terme de transport optimal W_2^2 . Facile en dimension un, car la géométrie est simple:

$$W_2^2(\mu,\nu) = \int_0^1 (F_{\mu}^{-1}(s) - F_{\nu}^{-1}(s))^2 \mathrm{d}s,$$

moins facile en dimension supérieure.

Nombreux développements ces dernières années, progrès récents avec des méthodes Lagrangiennes (Carrilllo, Matthes, Benamou-C.-Oudet-Mérigot) ou Euleriennes (Benamou-C.). On va s'intéresser a la régularisation entropique proposée par G. Peyré:

$$\rho^{k+1} \in \operatorname{argmin}_{\rho \in \mathcal{P}_2(\mathbf{R}^d)} \left\{ \frac{1}{2} W_2^2(\rho, \rho^k) + \tau E(\rho) \right\}$$
(9)

approché par

$$\rho^{k+1} \in \operatorname{argmin}_{\rho \in \mathcal{P}_2(\mathbf{R}^d)} \left\{ \frac{1}{2} K_{\varepsilon}(\rho, \rho^k) + \tau E(\rho) \right\}$$
(10)

où $\varepsilon>0$ et

$$\begin{split} K_{\varepsilon}(\mu,\nu) &:= \inf_{\gamma \in \Pi(\mu,\nu)} \int_{\mathbf{R}^d \times \mathbf{R}^d} |x-y|^2 \gamma(x,y) \mathrm{d}x \mathrm{d}y \\ &+ \varepsilon \int_{\mathbf{R}^d \times \mathbf{R}^d} \gamma(x,y) \log(\gamma(x,y)) \mathrm{d}x \mathrm{d}y. \end{split}$$

Deux petits paramètres ε et τ , comment les relier pour avoir convergence? Prenons:

$$E(\rho) := \int_{\mathbf{R}^d} U(\rho(x)) dx + \int_{\mathbf{R}^d} v(x)\rho(x) dx$$

avec (par exemple) $U(\rho) = \rho \log(\rho)$ ou ρ^m , m > 1, $v \ge 0$ et régulière et $\rho_0 \in \mathcal{P}_2(\mathbf{R}^d)$, $E(\rho_0) < +\infty$. Le flot de gradient de Ecorrespond donc à

$$\partial_t \rho = \Delta P(\rho) + \operatorname{div}(\rho \nabla v), \ \rho|_{t=0} = \rho_0, \tag{11}$$

avec

$$P(\rho) = \rho U'(\rho) - U(\rho).$$

Equation d'Euler-Lagrange de (10): semblable à la version non régularisée un terme en $\frac{\varepsilon}{\tau}\Delta\rho^{k+1}$ en plus et surtout γ^{k+1} optimal pour $K_{\varepsilon}(\rho^k, \rho^{k+1})$ et non plus $W_2^2(\rho^k, \rho^{k+1})$.

Convergence:

Théorème 1 (C., Duval, Peyré, Schmitzer) Le schéma (10) converge vers une solution de (11) quand $\varepsilon, \tau \to 0$ dès que $\varepsilon |\log(\varepsilon)| = O(\tau^2).$

Formulation dynamique

Est ce que la régularisation entropique est simplement une régularisation ou cela correspond-il à un problème pertinent en soi? C'est grâce à Christian Léonard qu'on sait que la réponse est positive. Soit $\Omega := C([0, 1], \mathbf{R}^d)$ et R la "loi" d'un mouvement Brownien standard avec condition initiale distribuée uniformément sur \mathbf{R}^d , problème du pont de Schrödinger entre ρ_0 et ρ_1 :

$$S(\rho_0, \rho_1) := \inf \left\{ H(Q|R) : e_{0\#}Q = \rho_0, \ e_{1\#}Q = \rho_1 \right\}$$

avec

$$H(Q|R) := \int_{\Omega} \ln\left(\frac{dQ}{dR}\right) dQ$$

et e_t est l'évaluation au temps t, $e_t(\omega) = \omega(t)$.

On désintègre Q et R par rapport à $Q_{0,1} := (e_0, e_1)_{\#} Q \in \Pi(\rho_0, \rho_1)$ et $R_{0,1} := (e_0, e_1)_{\#} R$ $(R_{0,1}(x, y) = (2\pi)^{-\frac{d}{2}} \exp(-\frac{|x-y|^2}{2}) := G_{0,1}(x-y)):$ $Q = \int Q^{x,y} Q_{0,1}(dx, dy)$ et $R = \int R^{x,y} R_{0,1}(dx, dy)$ ($R^{x,y}$: pont Brownien).

$$H(Q|R) = H(Q_{0,1}|R_{0,1}) + \int H(Q^{x,y}|R^{x,y})Q_{0,1}(dx,dy)$$

de sorte que l'optimum consiste à prendre $Q^{x,y} = R^{x,y}$ (dans Benamou-Brenier c'était la Dirac en la géodésique) et $Q_{0,1}$ qui optimise le problème statique:

$$S(\rho_0, \rho_1) := \inf \Big\{ H(Q_{0,1}|R_{0,1}), \ Q_{0,1} \in \Pi(\rho_0, \rho_1) \Big\}.$$

La condition d'optimalité est

$$Q_{0,1}(x,y) = G_{0,1}(x-y)f_0(x)g_1(y)$$

et les conditions de marges fixées imposent que

$$(G_{0,1} \star g_1) f_0 = \rho_0, \ (G_{0,1} \star f_0) g_1 = \rho_0 \tag{12}$$

qui n'est autre que le problème de Schrödinger statique vu précédemment. Si l'on dispose d'une telle paire de potentiels f_0, g_1 on pose $f_1 := G_{0,1} \star f_0, g_0 := G_{0,1} \star g_1$ de sorte que $\rho_0 = f_0 g_0, \rho_1 = f_1 g_1$. Interpolation: $\rho_t := f_t g_t$ où

$$\partial_t f = \frac{1}{2} \Delta f, \ f|_{t=0} = f_0, \ \partial_t g = -\frac{1}{2} \Delta g, \ g|_{t=1} = g_1.$$
 (13)

On a alors que cette interpolation ρ est solution de l'équation de Fokker-Planck avec drift $\nabla \varphi$ où $\varphi = \log g$ (c'est Hopf-Cole...):

$$\partial_t \rho + \operatorname{div}(\rho \nabla \varphi) - \frac{1}{2} \Delta \rho = 0,$$
 (14)

tandis que φ est solution de l'équation d'Hamilton-Jacobi-Bellman retrograde

$$\partial_t \varphi + \frac{1}{2} |\nabla \varphi|^2 + \frac{1}{2} \Delta \varphi = 0 \tag{15}$$

Noter qu'il y a deux conditions limites sur ρ et aucune sur φ (comme en contrôle optimal). Analogue avec diffusion de Benamou-Brenier.

Au moins formellement le couple $(\rho, \nabla \varphi)$ est optimal pour le problème de contrôle

$$FP(\rho_0, \rho_1) := \inf \left\{ \frac{1}{2} \int_0^1 \int_{\mathbf{R}^d} |v_t(x)|^2 \mu_t(x) dx dt \right\},\$$

sous les contraintes

$$\partial_t \mu + \operatorname{div}(\mu v) - \frac{1}{2}\Delta \mu = 0, \ \mu_{t=0,1} = \rho_0, \rho_1$$

On a aussi

$$S(\rho_0, \rho_1) = FP(\rho_0, \rho_1) + \int_{\mathbf{R}^d} \rho_0 \ln(\rho_0).$$

La solution de $S(\rho_0, \rho_1)$ est Markovienne c'est la loi de X:

$$dX_t = \nabla \varphi_t(X_t) dt + dW_t, \ X_0 \simeq X_0.$$

Une question cruciale est l'existence des potentiels de Schrödinger f_0 et g_1 .

Références : Léonard 2012, 2014, Gentil, Léonard, Ripani 2016, Mikami 1991, Zambrini 1986, Jamison 1975.

Jeux à champ moyen par minimisation d'entropie

Les jeux à champ moyen ont été introduits par Jean-Michel Lasry et Pierre-Louis Lions en 2006 et traduisent la structure des équilibres de Nash dans des jeux différentiels stochastiques avec un continnum de joueurs indistinguables. Un cas simple, chaque joueur cherche à minimiser:

$$\mathbf{E}\Big(\int_{0}^{1} \Big[\frac{1}{2}|\alpha_{s}|^{2} + f(\rho_{s}(X_{s}))\Big]ds + g(\rho_{1}(X_{1}))\Big),$$

avec

$$X_0 = x, \ dX_s = \alpha_s ds + dW_s,$$

et ρ_s représente la densité de l'ensemble des joueur, ρ_0 donnée.

Jeux à champ moyen par minimisation d'entropie/1

Equilibre: les agents, résolvent leur problème individuel de contrôle optimal, HJB, en prenant ρ comme donnée (prior), cela induit un feedback optimal $\alpha = \nabla \varphi$ (φ =-la fonction valeur). Ce drift gouverne l'évolution de la densité des joueurs, Fokker-Planck ce qui donne lieu à une nouvelle distribution des jouers (posterior). L'équilibre est la situation où le posterior coïncide avec le prior.

Force de l'approche: ramène l'équilibre à un système d'EDPs (qui a un air de famille avec ce que nous avons vu avant...).

Système MFG:

$$\begin{cases} \partial_t \varphi + \frac{1}{2} |\nabla \varphi|^2 + \frac{1}{2} \Delta \varphi = -f(\rho), \ \varphi_{|_{t=1}} = -g(\rho_1) \\ \partial_t \rho + \operatorname{div}(\rho \nabla \varphi) - \frac{1}{2} \Delta \rho = 0, \ \rho_{|_{t=0}} = \rho_0. \end{cases}$$

Ce système est la condition d'optimalité pour le problème consistant à minimiser

$$\int_{0}^{1} \int_{\mathbf{R}^{d}} \left[\frac{1}{2} |v_{s}(x)|^{2} \rho_{s}(x) + F(\rho_{s}(x)) \right] dx ds + \int_{\mathbf{R}^{d}} G(\rho_{1}(x)) dx$$

avec F' = f, G' = g (convexes quand f et g croissantes: congestion) sous la contrainte

$$\partial_t \rho + \operatorname{div}(\rho v) - \frac{1}{2}\Delta \rho = 0, \ \rho_{|_{t=0}} = \rho_0.$$

Jeux à champ moyen par minimisation d'entropie/3

Point de vue entropique: modifier le problème de Schrödinger en ajoutant un coût sur les marges en temps. Idée fructueuse pour traduire l'incompressibilité dans Navier Stokes: Yasue, Zambrini, Arnaudon, Cruzeiro, Léonard. Pour les MFG, cela donne:

$$\inf_{Q: e_{0\#}Q = \rho_0} H(Q|R) + \int_0^1 \int_{\mathbf{R}^d} F(e_{s\#}Q)ds + \int_{\mathbf{R}^d} G(e_{1\#}Q)$$

qui est une reformulation équivalente du problème de départ. Intérêt: Sinkhornisation de la discrétisation en temps: calculs numériques rapides (en cours avec J.-D. Benamou, L. Nenna et S. Di Marino).

Jeux à champ moyen par minimisation d'entropie/5