Schrödinger problem and W_2 -geodesics joint work with Nicola Gigli

Luca Tamanini

Université Paris Nanterre SISSA

SCUOLA INTERNAZIONALE SUPERIORE di STUDI AVANZATI International School for Advanced Studies

En l'honneur de P. Cattiaux et C. Léonard Toulouse, le 7 juin 2017

Theorem (Gigli '13)

Let

- $(X, \mathsf{d}, \mathfrak{m})$ be a $\mathsf{RCD}(K, \infty)$ space;
- (μ_t) a W_2 -geodesic with $\mu_0, \mu_1 \leq C\mathfrak{m}$; • $f \in W^{1,2}(X)$.

Then $t\mapsto \int f\mathrm{d}\mu_t$ is $C^1([0,1])$ and

$$\frac{\mathrm{d}}{\mathrm{d}t}\int f\mathrm{d}\mu_t = -\int \langle \nabla f, \nabla \phi_t \rangle \mathrm{d}\mu_t$$

where $(\phi_t) \subset W^{1,2}(X)$ is any continuous choice of locally Lipschitz functions such that

$$\partial_t \mu_t + \operatorname{div}(\nabla \phi_t \mu_t) = 0.$$

Aim

Let

- (X, d, \mathfrak{m}) be a $\mathsf{RCD}^*(K, N)$ space;
- (μ_t) a W_2 -geodesic with $\mu_0, \mu_1 \leq C\mathfrak{m}$;
- $f \in W^{2,2}(X)$.

Question: can we say that $t \mapsto \int f d\mu_t$ is $C^2([0,1])$ and

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}\int f\mathrm{d}\mu_t = \int \mathrm{Hess}(f)(\nabla\phi_t,\nabla\phi_t)\mathrm{d}\mu_t$$

where $(\phi_t) \subset W^{1,2}(X)$ is any continuous choice of locally Lipschitz functions such that

$$\partial_t \mu_t + \operatorname{div}(\nabla \phi_t \mu_t) = 0?$$

Aim

Let

- (X, d, \mathfrak{m}) be a $\mathsf{RCD}^*(K, N)$ space;
- (μ_t) a W_2 -geodesic with $\mu_0, \mu_1 \leq C\mathfrak{m}$;
- $f \in W^{2,2}(X)$.

Question: can we say that $t\mapsto \int f\mathrm{d}\mu_t$ is $C^2([0,1])$ and

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}\int f\mathrm{d}\mu_t = \int \mathrm{Hess}(f)(\nabla\phi_t,\nabla\phi_t)\mathrm{d}\mu_t$$

where $(\phi_t) \subset W^{1,2}(X)$ is any continuous choice of locally Lipschitz functions such that

$$\partial_t \mu_t + \operatorname{div}(\nabla \phi_t \mu_t) = 0?$$

Geodesics in $(\mathscr{P}_2(X), W_2)$

A W_2 -geodesic (μ_t) on $\mathscr{P}_2(X)$ solves

 $\partial_t \mu_t + \operatorname{div}(\nabla \phi_t \mu_t) = \mathbf{0}$

for functions (ϕ_t) such that

$$\partial_t \phi_t + \frac{1}{2} |\nabla \phi_t|^2 = 0$$

Problem: no matter how nice μ_0, μ_1 are, in general the ϕ_t 's are only semiconcave.

Question: given a geodesic (μ_t) , can we find curves (μ_t^{ε}) which are smooth and produce a second order approximation of (μ_t) ?

A W_2 -geodesic (μ_t) on $\mathscr{P}_2(X)$ solves

 $\partial_t \mu_t + \operatorname{div}(\nabla \phi_t \mu_t) = \mathbf{0}$

for functions (ϕ_t) such that

$$\partial_t \phi_t + \frac{1}{2} |\nabla \phi_t|^2 = 0$$

Problem: no matter how nice μ_0, μ_1 are, in general the ϕ_t 's are only semiconcave.

Question: given a geodesic (μ_t) , can we find curves (μ_t^{ε}) which are smooth and produce a second order approximation of (μ_t) ?

Let $(\mu_t^{\varepsilon}), (\phi_t^{\varepsilon})$ be smooth and such that

$$\begin{split} \partial_t \mu_t^\varepsilon + \operatorname{div}(\nabla \phi_t^\varepsilon \mu_t^\varepsilon) &= 0\\ \partial_t \phi_t^\varepsilon + \frac{1}{2} |\nabla \phi_t^\varepsilon|^2 &= a_t^\varepsilon \end{split}$$

Then for every *f* smooth we have

$$\frac{\mathrm{d}}{\mathrm{d}t} \int f \mathrm{d}\mu_t^{\varepsilon} = \int \langle \nabla f, \nabla \phi_t^{\varepsilon} \rangle \mathrm{d}\mu_t^{\varepsilon}$$
$$\frac{\mathrm{d}^2}{\mathrm{d}t^2} \int f \mathrm{d}\mu_t^{\varepsilon} = \int \left(\mathrm{Hess}(f) (\nabla \phi_t^{\varepsilon}, \nabla \phi_t^{\varepsilon}) + \langle \nabla f, \nabla a_t^{\varepsilon} \rangle \right) \mathrm{d}\mu_t^{\varepsilon}$$

э

Let $(\mu_t^{\varepsilon}), (\phi_t^{\varepsilon})$ be smooth and such that

$$\partial_t \mu_t^{\varepsilon} + \operatorname{div}(\nabla \phi_t^{\varepsilon} \mu_t^{\varepsilon}) = 0$$

 $\partial_t \phi_t^{\varepsilon} + \frac{1}{2} |\nabla \phi_t^{\varepsilon}|^2 = a_t^{\varepsilon}$

Then for every f smooth we have

$$\frac{\mathrm{d}}{\mathrm{d}t} \int f \mathrm{d}\mu_t^{\varepsilon} = \int \langle \nabla f, \nabla \phi_t^{\varepsilon} \rangle \mathrm{d}\mu_t^{\varepsilon}$$
$$\frac{\mathrm{d}^2}{\mathrm{d}t^2} \int f \mathrm{d}\mu_t^{\varepsilon} = \int \left(\mathrm{Hess}(f) (\nabla \phi_t^{\varepsilon}, \nabla \phi_t^{\varepsilon}) + \langle \nabla f, \nabla a_t^{\varepsilon} \rangle \right) \mathrm{d}\mu_t^{\varepsilon}$$

э

Rigorous statement of the problem

Given X smooth and μ_0, μ_1 with bounded densities and supports, find (μ_t^{ε}) so that

Oth order: (μ_t^{ε}) uniformly W_2 -converges to the only W_2 -geodesic (μ_t) from μ_0 to μ_1 with densities uniformly bounded;

1st order: up to subsequences, $\phi_t^{\varepsilon_n} \to \overline{\phi}_t$ in $W^{1,2}(X)$, with $(\overline{\phi}_t)$ a choice of Kantorovich potentials associated to (μ_t) ;

2nd order: for every $f \in W^{2,2}(X)$ and $\delta \in (0, 1/2)$ it holds

$$\iint_{\delta}^{1-\delta} \langle \nabla f, \nabla a_t^{\varepsilon} \rangle \rho_t^{\varepsilon} \mathrm{d}t \mathrm{d}\mathfrak{m} \to 0$$

The estimates should depend only on:

• the L^{∞} -norms of the densities of μ_0, μ_1 ;

.

- the diameter of their supports;
- the lower bound on the Ricci curvature of X;
- the dimension of X.

Rigorous statement of the problem

Given X smooth and μ_0, μ_1 with bounded densities and supports, find (μ_t^{ε}) so that

Oth order: (μ_t^{ε}) uniformly W_2 -converges to the only W_2 -geodesic (μ_t) from μ_0 to μ_1 with densities uniformly bounded;

1st order: up to subsequences, $\phi_t^{\varepsilon_n} \to \overline{\phi}_t$ in $W^{1,2}(X)$, with $(\overline{\phi}_t)$ a choice of Kantorovich potentials associated to (μ_t) ;

2nd order: for every $f \in W^{2,2}(X)$ and $\delta \in (0, 1/2)$ it holds

$$\iint_{\delta}^{1-\delta} \langle \nabla f, \nabla a_t^{\varepsilon} \rangle \rho_t^{\varepsilon} \mathrm{d} t \mathrm{d} \mathfrak{m} \to 0$$

The estimates should depend only on:

- the L^{∞} -norms of the densities of μ_0, μ_1 ;
- the diameter of their supports;
- the lower bound on the Ricci curvature of X;
- the dimension of X.

Interpolation between probability densities via the heat flow: the Schrödinger system

Let X be smooth and ρ_0, ρ_1 bounded probability densities with bounded support.

Find functions f, g on X such that

$$\begin{cases} \rho_0 = f P_1(g) \\ \rho_1 = P_1(f) g \end{cases}$$

The *entropic interpolation* between ho_0 and ho_1 is then defined by

$$\rho_t := P_t(f) P_{1-t}(g), \quad t \in [0,1].$$

Interpolation between probability densities via the heat flow: the Schrödinger system

Let X be smooth and ρ_0, ρ_1 bounded probability densities with bounded support.

Find functions f, g on X such that

$$\begin{cases} \rho_0 = f P_1(g) \\ \rho_1 = P_1(f) g \end{cases}$$

The entropic interpolation between ρ_0 and ρ_1 is then defined by

$$\rho_t := P_t(f)P_{1-t}(g), \quad t \in [0,1].$$

Interpolation between probability densities via the heat flow: slowing down

Let X be smooth and ρ_0, ρ_1 bounded probability densities with bounded support.

Find functions $f^{\varepsilon}, g^{\varepsilon}$ on X such that

$$\begin{cases} \rho_0 = f^{\varepsilon} P_{\varepsilon}(g^{\varepsilon}) \\ \rho_1 = P_{\varepsilon}(f^{\varepsilon}) g^{\varepsilon} \end{cases}$$

The *entropic interpolation* between ho_0 and ho_1 is then defined by

$$ho_t^arepsilon := P_{arepsilon t}(f^arepsilon) P_{arepsilon(1-t)}(g^arepsilon), \quad t\in [0,1].$$

Interpolation between probability densities via the heat flow: slowing down

Let X be smooth and ρ_0, ρ_1 bounded probability densities with bounded support.

Find functions $f^{\varepsilon}, g^{\varepsilon}$ on X such that

$$\begin{cases} \rho_0 = f^{\varepsilon} P_{\varepsilon}(g^{\varepsilon}) \\ \rho_1 = P_{\varepsilon}(f^{\varepsilon}) g^{\varepsilon} \end{cases}$$

The *entropic interpolation* between ρ_0 and ρ_1 is then defined by

$$\rho_t^{\varepsilon} := P_{\varepsilon t}(f^{\varepsilon}) P_{\varepsilon(1-t)}(g^{\varepsilon}), \quad t \in [0,1].$$

Let R_{ε} be the measure on X^2 given by

$$\mathrm{d} R_{\varepsilon}(x,y) := rac{\mathrm{d} P_{\varepsilon}(\delta_x)}{\mathrm{d} \mathfrak{m}}(y) \mathrm{d}(\mathfrak{m} \otimes \mathfrak{m})(x,y)$$

Then $(f^{\varepsilon}, g^{\varepsilon})$ is a solution to the Schrödinger system if and only if

$$f^{\varepsilon} \otimes g^{\varepsilon} R_{\varepsilon} \in \operatorname{Adm}(\rho_0 \mathfrak{m}, \rho_1 \mathfrak{m})$$

where $f^{\varepsilon} \otimes g^{\varepsilon}(x, y) := f^{\varepsilon}(x)g^{\varepsilon}(y)$.

How to find the functions $f^{\varepsilon}, g^{\varepsilon}$: the Schrödinger problem

Let π^{ε} be the unique minimum of

 $\inf_{\pi\in \mathrm{Adm}(\rho_{0}\mathfrak{m},\rho_{1}\mathfrak{m})}H(\pi\mid R_{\varepsilon})$

Its Euler equation is

$$\int \log\left(\frac{\mathrm{d}\pi^{\varepsilon}}{\mathrm{d}R_{\varepsilon}}\right)\mathrm{d}\sigma = 0$$

for every σ such that $\pi^1_{\#}\sigma=\pi^2_{\#}=$ 0. This forces

$$\log\left(rac{\mathrm{d}\pi^arepsilon}{\mathrm{d}R_arepsilon}
ight)=a^arepsilon\oplus b^arepsilon$$

for some $a^{\varepsilon}, b^{\varepsilon}$, where $a^{\varepsilon} \oplus b^{\varepsilon}(x, y) := a^{\varepsilon}(x) + b^{\varepsilon}(y)$. Thus for $f^{\varepsilon} := \exp(a^{\varepsilon}), g^{\varepsilon} := \exp(b^{\varepsilon})$ we have

$$\pi^{\varepsilon} = f^{\varepsilon} \otimes g^{\varepsilon} R_{\varepsilon}$$

How to find the functions $f^{\varepsilon}, g^{\varepsilon}$: the Schrödinger problem

Let π^{ε} be the unique minimum of

$$\inf_{\pi\in \mathrm{Adm}(\rho_{0}\mathfrak{m},\rho_{1}\mathfrak{m})}H(\pi \mid R_{\varepsilon})$$

Its Euler equation is

$$\int \log\left(\frac{\mathrm{d}\pi^{\varepsilon}}{\mathrm{d}R_{\varepsilon}}\right) \mathrm{d}\sigma = \mathbf{0}$$

for every σ such that $\pi^1_{\#}\sigma=\pi^2_{\#}=$ 0. This forces

$$\log\left(rac{\mathrm{d}\pi^arepsilon}{\mathrm{d}R_arepsilon}
ight)= \pmb{a}^arepsilon\oplus \pmb{b}^arepsilon$$

for some $a^{\varepsilon}, b^{\varepsilon}$, where $a^{\varepsilon} \oplus b^{\varepsilon}(x, y) := a^{\varepsilon}(x) + b^{\varepsilon}(y)$. Thus for $f^{\varepsilon} := \exp(a^{\varepsilon}), g^{\varepsilon} := \exp(b^{\varepsilon})$ we have

$$\pi^{\varepsilon} = f^{\varepsilon} \otimes g^{\varepsilon} R_{\varepsilon}$$

How to find the functions $f^{\varepsilon}, g^{\varepsilon}$: the Schrödinger problem

Let π^{ε} be the unique minimum of

$$\inf_{\pi\in \mathrm{Adm}(\rho_{0}\mathfrak{m},\rho_{1}\mathfrak{m})}H(\pi \mid R_{\varepsilon})$$

Its Euler equation is

$$\int \log\left(\frac{\mathrm{d}\pi^{\varepsilon}}{\mathrm{d}R_{\varepsilon}}\right) \mathrm{d}\sigma = \mathbf{0}$$

for every σ such that $\pi^1_{\#}\sigma=\pi^2_{\#}=$ 0. This forces

$$\log\left(\frac{\mathrm{d}\pi^{\varepsilon}}{\mathrm{d}R_{\varepsilon}}\right) = \pmb{a}^{\varepsilon} \oplus \pmb{b}^{\varepsilon}$$

for some $a^{\varepsilon}, b^{\varepsilon}$, where $a^{\varepsilon} \oplus b^{\varepsilon}(x, y) := a^{\varepsilon}(x) + b^{\varepsilon}(y)$. Thus for $f^{\varepsilon} := \exp(a^{\varepsilon}), g^{\varepsilon} := \exp(b^{\varepsilon})$ we have

$$\pi^{\varepsilon} = f^{\varepsilon} \otimes g^{\varepsilon} R_{\varepsilon}$$

is

With some manipulations one can show that the dual problem of

$$\inf_{\pi \in \operatorname{Adm}(\rho_0 \mathfrak{m}, \rho_1 \mathfrak{m})} \varepsilon H(\pi \mid R_{\varepsilon})$$
$$\sup_{\varphi, \psi \in C(X)} \left\{ \int \varphi \rho_0 \mathrm{d}\mathfrak{m} + \int \psi \rho_1 \mathrm{d}\mathfrak{m} - \varepsilon \log \left(\int e^{\frac{\varphi \oplus \psi}{\varepsilon}} \mathrm{d}R_{\varepsilon} \right) \right\}$$

Moreover, if π^{ε} is a minimizer and $\varphi^{\varepsilon}, \psi^{\varepsilon}$ maximizers (Schrödinger potentials), we have

$$\pi^arepsilon = e^{rac{arphi^arepsilon \oplus \psi^arepsilon}{arepsilon}} extbf{R}_arepsilon$$

Toulouse, 07-06-17

With some manipulations one can show that the dual problem of

$$\inf_{\pi\in \mathrm{Adm}(\rho_0\mathfrak{m},\rho_1\mathfrak{m})}\varepsilon H(\pi\,|\,R_\varepsilon)$$

is

$$\sup_{\varphi,\psi\in C(X)}\left\{\int \varphi\rho_{0}\mathrm{d}\mathfrak{m}+\int \psi\rho_{1}\mathrm{d}\mathfrak{m}-\varepsilon\log\left(\int e^{\frac{\varphi\oplus\psi}{\varepsilon}}\mathrm{d}R_{\varepsilon}\right)\right\}$$

Moreover, if π^ε is a minimizer and $\varphi^\varepsilon,\psi^\varepsilon$ maximizers (Schrödinger potentials), we have

$$\pi^arepsilon = e^{rac{arphi^arepsilon\oplus\psi^arepsilon}{arepsilon}} extsf{ extsf} extsf} e$$

Theorem (Mikami-Thieullen '04 and Léonard '12)

As $\varepsilon \downarrow 0$ the curves $t \mapsto \rho_t^{\varepsilon}$ converge to the (unique) W_2 -geodesic between $\rho_0 \mathfrak{m}$ and $\rho_1 \mathfrak{m}$. Moreover

$$\varepsilon H(\pi^{\varepsilon} | R_{\varepsilon}) \to \inf_{\pi \in \operatorname{Adm}(\rho_0 \mathfrak{m}, \rho_1 \mathfrak{m})} \frac{1}{2} \int d^2(x, y) d\pi.$$

The precise statement involves:

- abstract spaces;
- Γ-convergence;
- a large deviation assumption on the heat kernel.

Theorem (Mikami-Thieullen '04 and Léonard '12)

As $\varepsilon \downarrow 0$ the curves $t \mapsto \rho_t^{\varepsilon}$ converge to the (unique) W_2 -geodesic between $\rho_0 \mathfrak{m}$ and $\rho_1 \mathfrak{m}$. Moreover

$$\varepsilon H(\pi^{\varepsilon} | R_{\varepsilon}) \to \inf_{\pi \in \operatorname{Adm}(\rho_0 \mathfrak{m}, \rho_1 \mathfrak{m})} \frac{1}{2} \int d^2(x, y) d\pi.$$

The precise statement involves:

- abstract spaces;
- Γ-convergence;
- a large deviation assumption on the heat kernel.

$$\begin{split} \rho_t^{\varepsilon} &:= f_t^{\varepsilon} g_t^{\varepsilon} \quad f_t^{\varepsilon} := P_{\varepsilon t/2} f^{\varepsilon} \quad g_t^{\varepsilon} := P_{\varepsilon(1-t)/2} g^{\varepsilon} \\ \partial_t f_t^{\varepsilon} &= \frac{\varepsilon}{2} \Delta f_t^{\varepsilon} \quad -\partial_t g_t^{\varepsilon} = \frac{\varepsilon}{2} \Delta g_t^{\varepsilon} \\ \begin{cases} \varphi_t^{\varepsilon} := \varepsilon \log f_t^{\varepsilon} \\ \partial_t \varphi_t^{\varepsilon} = \frac{1}{2} |\nabla \varphi_t^{\varepsilon}|^2 + \frac{\varepsilon}{2} \Delta \varphi_t^{\varepsilon} \end{cases} \quad \begin{cases} \psi_t^{\varepsilon} := \varepsilon \log g_t^{\varepsilon} \\ -\partial_t \psi_t^{\varepsilon} = \frac{1}{2} |\nabla \psi_t^{\varepsilon}|^2 + \frac{\varepsilon}{2} \Delta \psi_t^{\varepsilon} \end{cases} \\ \varepsilon \log \rho_t^{\varepsilon} = \varphi_t^{\varepsilon} + \psi_t^{\varepsilon} \quad \vartheta_t^{\varepsilon} := \frac{1}{2} (\psi_t^{\varepsilon} - \varphi_t^{\varepsilon}) \end{cases} \\ \partial_t \rho_t^{\varepsilon} + \operatorname{div} (\nabla \vartheta_t^{\varepsilon} \rho_t^{\varepsilon}) = 0 \\ \partial_t \vartheta_t^{\varepsilon} + \frac{1}{2} |\nabla \vartheta_t^{\varepsilon}|^2 = -\frac{1}{2} \varepsilon^2 (2\Delta \log \rho_t^{\varepsilon} + |\nabla \log \rho_t^{\varepsilon}|^2) \end{split}$$

L. Tamanini (Paris Nanterre & SISSA) Schrödinger pb. and W₂-geodesics

3

$$\begin{split} \rho_t^{\varepsilon} &:= f_t^{\varepsilon} g_t^{\varepsilon} \quad f_t^{\varepsilon} := P_{\varepsilon t/2} f^{\varepsilon} \quad g_t^{\varepsilon} := P_{\varepsilon(1-t)/2} g^{\varepsilon} \\ \partial_t f_t^{\varepsilon} &= \frac{\varepsilon}{2} \Delta f_t^{\varepsilon} \quad -\partial_t g_t^{\varepsilon} = \frac{\varepsilon}{2} \Delta g_t^{\varepsilon} \\ \begin{cases} \varphi_t^{\varepsilon} := \varepsilon \log f_t^{\varepsilon} \\ \partial_t \varphi_t^{\varepsilon} &= \frac{1}{2} |\nabla \varphi_t^{\varepsilon}|^2 + \frac{\varepsilon}{2} \Delta \varphi_t^{\varepsilon} \end{cases} \quad \begin{cases} \psi_t^{\varepsilon} := \varepsilon \log g_t^{\varepsilon} \\ -\partial_t \psi_t^{\varepsilon} &= \frac{1}{2} |\nabla \psi_t^{\varepsilon}|^2 + \frac{\varepsilon}{2} \Delta \psi_t^{\varepsilon} \end{cases} \\ \varepsilon \log \rho_t^{\varepsilon} &= \varphi_t^{\varepsilon} + \psi_t^{\varepsilon} \quad \vartheta_t^{\varepsilon} := \frac{1}{2} (\psi_t^{\varepsilon} - \varphi_t^{\varepsilon}) \end{cases} \end{split}$$

$$\partial_t \rho_t^{\varepsilon} + \operatorname{div}(\nabla \vartheta_t^{\varepsilon} \rho_t^{\varepsilon}) = 0$$
$$\partial_t \vartheta_t^{\varepsilon} + \frac{1}{2} |\nabla \vartheta_t^{\varepsilon}|^2 = \underbrace{-\frac{1}{8} \varepsilon^2 (2\Delta \log \rho_t^{\varepsilon} + |\nabla \log \rho_t^{\varepsilon}|^2)}_{=:a_t^{\varepsilon}}$$

< A

æ

$$\begin{split} \rho_t^{\varepsilon} &:= f_t^{\varepsilon} g_t^{\varepsilon} \quad f_t^{\varepsilon} := P_{\varepsilon t/2} f^{\varepsilon} \quad g_t^{\varepsilon} := P_{\varepsilon (1-t)/2} g^{\varepsilon} \\ \partial_t f_t^{\varepsilon} &= \frac{\varepsilon}{2} \Delta f_t^{\varepsilon} \quad -\partial_t g_t^{\varepsilon} = \frac{\varepsilon}{2} \Delta g_t^{\varepsilon} \\ \begin{cases} \varphi_t^{\varepsilon} := \varepsilon \log f_t^{\varepsilon} \\ \partial_t \varphi_t^{\varepsilon} &= \frac{1}{2} |\nabla \varphi_t^{\varepsilon}|^2 + \frac{\varepsilon}{2} \Delta \varphi_t^{\varepsilon} \end{cases} \quad \begin{cases} \psi_t^{\varepsilon} := \varepsilon \log g_t^{\varepsilon} \\ -\partial_t \psi_t^{\varepsilon} &= \frac{1}{2} |\nabla \psi_t^{\varepsilon}|^2 + \frac{\varepsilon}{2} \Delta \psi_t^{\varepsilon} \end{cases} \\ \varepsilon \log \rho_t^{\varepsilon} &= \varphi_t^{\varepsilon} + \psi_t^{\varepsilon} \quad \vartheta_t^{\varepsilon} := \frac{1}{2} (\psi_t^{\varepsilon} - \varphi_t^{\varepsilon}) \end{split}$$

 $\partial_t \rho_t^{\varepsilon} + \operatorname{div}(\nabla \vartheta_t^{\varepsilon} \rho_t^{\varepsilon}) = 0$ $\partial_t \vartheta_t^{\varepsilon} + \frac{1}{2} |\nabla \vartheta_t^{\varepsilon}|^2 = \underbrace{-\frac{1}{8} \varepsilon^2 (2\Delta \log \rho_t^{\varepsilon} + |\nabla \log \rho_t^{\varepsilon}|^2)}_{=:a_t^{\varepsilon}}$

$$\begin{split} \rho_t^{\varepsilon} &:= f_t^{\varepsilon} g_t^{\varepsilon} \quad f_t^{\varepsilon} := P_{\varepsilon t/2} f^{\varepsilon} \quad g_t^{\varepsilon} := P_{\varepsilon(1-t)/2} g^{\varepsilon} \\ \partial_t f_t^{\varepsilon} &= \frac{\varepsilon}{2} \Delta f_t^{\varepsilon} \quad -\partial_t g_t^{\varepsilon} = \frac{\varepsilon}{2} \Delta g_t^{\varepsilon} \\ \begin{cases} \varphi_t^{\varepsilon} := \varepsilon \log f_t^{\varepsilon} \\ \partial_t \varphi_t^{\varepsilon} &= \frac{1}{2} |\nabla \varphi_t^{\varepsilon}|^2 + \frac{\varepsilon}{2} \Delta \varphi_t^{\varepsilon} \end{cases} \quad \begin{cases} \psi_t^{\varepsilon} := \varepsilon \log g_t^{\varepsilon} \\ -\partial_t \psi_t^{\varepsilon} &= \frac{1}{2} |\nabla \psi_t^{\varepsilon}|^2 + \frac{\varepsilon}{2} \Delta \psi_t^{\varepsilon} \end{cases} \\ \varepsilon \log \rho_t^{\varepsilon} &= \varphi_t^{\varepsilon} + \psi_t^{\varepsilon} \quad \vartheta_t^{\varepsilon} := \frac{1}{2} (\psi_t^{\varepsilon} - \varphi_t^{\varepsilon}) \end{split}$$

$$\partial_t \rho_t^{\varepsilon} + \operatorname{div}(\nabla \vartheta_t^{\varepsilon} \rho_t^{\varepsilon}) = 0$$
$$\partial_t \vartheta_t^{\varepsilon} + \frac{1}{2} |\nabla \vartheta_t^{\varepsilon}|^2 = \underbrace{-\frac{1}{8} \varepsilon^2 (2\Delta \log \rho_t^{\varepsilon} + |\nabla \log \rho_t^{\varepsilon}|^2)}_{=:a_t^{\varepsilon}}$$

æ

Given X smooth and μ_0, μ_1 with bounded densities and supports, with the notations previously introduced we have that: Oth order: $(\rho_t^{\varepsilon}\mathfrak{m})$ uniformly W_2 -converges to the only W_2 -geodesic (μ_t) from μ_0 to μ_1 with densities uniformly bounded; 1st order: up to subsequences, $\vartheta_t^{\varepsilon_n} \to \overline{\vartheta}_t$ in $W_{loc}^{1,2}(X)$, with $(\overline{\vartheta}_t)$ a choice of Kantorovich potentials associated to (μ_t) ; 2nd order: for every $f \in H^{2,2}(X)$ and $\delta \in (0, 1/2)$ it holds

$$\iint_{\delta}^{1-\delta} \langle \nabla f, \nabla a_t^{\varepsilon} \rangle \rho_t^{\varepsilon} \mathrm{d} t \mathrm{d} \mathfrak{m} \to 0$$

The estimates only depend on $\|\rho_0\|_{L^{\infty}}, \|\rho_1\|_{L^{\infty}}, K, N$ and on the diameter of the supports of ρ_0, ρ_1 .

Actually, the statement holds on $RCD^*(K, N)$ spaces.

Given X smooth and μ_0, μ_1 with bounded densities and supports, with the notations previously introduced we have that: Oth order: $(\rho_t^{\varepsilon}\mathfrak{m})$ uniformly W_2 -converges to the only W_2 -geodesic (μ_t) from μ_0 to μ_1 with densities uniformly bounded; 1st order: up to subsequences, $\vartheta_t^{\varepsilon_n} \to \overline{\vartheta}_t$ in $W_{loc}^{1,2}(X)$, with $(\overline{\vartheta}_t)$ a choice of Kantorovich potentials associated to (μ_t) ; 2nd order: for every $f \in H^{2,2}(X)$ and $\delta \in (0, 1/2)$ it holds

$$\iint_{\delta}^{1-\delta} \langle \nabla f, \nabla a_t^{\varepsilon} \rangle \rho_t^{\varepsilon} \mathrm{d} t \mathrm{d} \mathfrak{m} \to 0$$

The estimates only depend on $\|\rho_0\|_{L^{\infty}}, \|\rho_1\|_{L^{\infty}}, K, N$ and on the diameter of the supports of ρ_0, ρ_1 . Actually, the statement holds on $\text{RCD}^*(K, N)$ spaces. Let (u_t) be a solution of the heat equation with positive compactly supported L^1 initial datum. Then:

• Hamilton's gradient estimate

$$|
abla \log u_t| \leq rac{C_1}{t} \Big(1 + \mathsf{d}(\cdot, ar{x})\Big), \quad orall t \in (0, 1];$$

Li-Yau Laplacian estimate

$$\Delta \log u_t \geq -\frac{C_2}{t}, \quad \forall t \in (0,1].$$

The constants C_1 , C_2 are positive and only depend on K, N and on the diameter of $supp(u_0)$ (on \bar{x} too for C_1).

ightarrow this leads to 0th and 1st order approximation

Toulouse, 07-06-17

Let (u_t) be a solution of the heat equation with positive compactly supported L^1 initial datum. Then:

• Hamilton's gradient estimate

$$|
abla \log u_t| \leq rac{C_1}{t} \Big(1 + \mathsf{d}(\cdot, ar{x})\Big), \quad orall t \in (0, 1];$$

Li-Yau Laplacian estimate

$$\Delta \log u_t \geq -rac{C_2}{t}, \quad \forall t \in (0,1].$$

The constants C_1 , C_2 are positive and only depend on K, N and on the diameter of $supp(u_0)$ (on \bar{x} too for C_1). \sim this leads to 0th and 1st order approximation

We start from

$$\begin{split} \frac{\mathrm{d}^2}{\mathrm{d}t^2} \mathcal{H}(\rho_t^{\varepsilon} \mathfrak{m} \,|\, \mathfrak{m}) &= \frac{1}{2} \int \left(\mathsf{\Gamma}_2(\varphi_t^{\varepsilon}) + \mathsf{\Gamma}_2(\psi_t^{\varepsilon}) \right) \rho_t^{\varepsilon} \mathrm{d}\mathfrak{m} \\ &= \int \left(\mathsf{\Gamma}_2(\vartheta_t^{\varepsilon}) + \frac{\varepsilon}{2} \mathsf{\Gamma}_2(\log \rho_t^{\varepsilon}) \right) \rho_t^{\varepsilon} \mathrm{d}\mathfrak{m} \end{split}$$

where

$$\Gamma_2(h) := \Delta rac{|
abla h|^2}{2} - \langle
abla h,
abla \Delta h
angle$$

Toulouse, 07-06-17

æ

Second order approximation

Then from Léonard's formula we deduce that

$$\begin{split} \sup_{\varepsilon \in (0,1)} \iint_{\delta}^{1-\delta} \Big(|\mathrm{Hess}(\vartheta_{t}^{\varepsilon})|^{2} + \varepsilon^{2} |\mathrm{Hess}(\log \rho_{t}^{\varepsilon})|^{2} \Big) \rho_{t}^{\varepsilon} \mathrm{d}t \mathrm{d}\mathfrak{m} < +\infty \\ \sup_{\varepsilon \in (0,1)} \iint_{\delta}^{1-\delta} \Big(|\Delta \vartheta_{t}^{\varepsilon}|^{2} + \varepsilon^{2} |\Delta \log \rho_{t}^{\varepsilon}|^{2} \Big) \rho_{t}^{\varepsilon} \mathrm{d}t \mathrm{d}\mathfrak{m} < +\infty \end{split}$$

for every $\delta \in (0, 1/2).$

Indeed, in the case K = 0,

$$\Gamma_2(h) \ge |\mathrm{Hess}(h)|^2$$

 $\Gamma_2(h) \ge \frac{(\Delta h)^2}{N}$

Toulouse, 07-06-17

Second order approximation

Then from Léonard's formula we deduce that

$$\begin{split} \sup_{\varepsilon \in (0,1)} &\iint_{\delta}^{1-\delta} \Big(|\mathrm{Hess}(\vartheta_{t}^{\varepsilon})|^{2} + \varepsilon^{2} |\mathrm{Hess}(\log \rho_{t}^{\varepsilon})|^{2} \Big) \rho_{t}^{\varepsilon} \mathrm{d}t \mathrm{d}\mathfrak{m} < +\infty \\ &\sup_{\varepsilon \in (0,1)} \iint_{\delta}^{1-\delta} \Big(|\Delta \vartheta_{t}^{\varepsilon}|^{2} + \varepsilon^{2} |\Delta \log \rho_{t}^{\varepsilon}|^{2} \Big) \rho_{t}^{\varepsilon} \mathrm{d}t \mathrm{d}\mathfrak{m} < +\infty \end{split}$$

for every $\delta \in (0, 1/2).$

Indeed, in the case K = 0,

$$\Gamma_2(h) \ge |\mathrm{Hess}(h)|^2$$

 $\Gamma_2(h) \ge rac{(\Delta h)^2}{N}$

Toulouse, 07-06-17

Theorem (Gigli-T. '17)

Let

- (X, d, \mathfrak{m}) be a RCD^{*}(K, N) space;
- (µ_t) a W₂-geodesic with µ₀, µ₁ ≤ Cm and bounded supports;
 f ∈ H^{2,2}(X).

Then $t\mapsto \int f\mathrm{d}\mu_t$ is $C^2([0,1])$ and

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}\int f\mathrm{d}\mu_t = \int \mathrm{Hess}(f)(\nabla\phi_t,\nabla\phi_t)\mathrm{d}\mu_t$$

where $(\phi_t) \subset W^{1,2}(X)$ is any continuous choice of locally Lipschitz functions such that

$$\partial_t \mu_t + \operatorname{div}(\nabla \phi_t \mu_t) = 0.$$

In particular, the choice of evolved Kantorovich potential does the job.

Merci de votre attention!

æ