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First order differentiation formula

Theorem (Gigli '13)

Let
e (X,d,m) be a RCD(K, c0) space;
o (ut) a Wh-geodesic with pg, 1 < Cm;
o f e Wh2(X).

Then t — [ fdu is C*([0,1]) and

d
5 [ faue == [ (9. Voddu

where (¢:) € W2(X) is any continuous choice of locally Lipschitz
functions such that

81-/,61- aF le(V(z)t/.Lt) =0.
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Aim

Let
e (X,d,m) be a RCD*(K, N) space;
o (ut) a Wh-geodesic with pg, 1 < Cm;
o f € W22(X).
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Aim

Let
e (X,d,m) be a RCD*(K, N) space;
o (ut) a Wh-geodesic with pg, 1 < Cm;
o f € W22(X).

Question: can we say that t — [ fdue is C3([0,1]) and

d2
Q fd/_l,t = /Hess(f)(v¢t, ngt)d,u,t
where (¢:) € W2(X) is any continuous choice of locally Lipschitz

functions such that
at,ut -+ le(V(ZSt/Lt) =07
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Geodesics in (P,(X), Wa)

A Wh-geodesic (p¢) on P(X) solves
at/,ét + d1v(V¢t,ut) =0

for functions (¢¢) such that

1
Ot e + §|v¢t|2 =0
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Geodesics in (P,(X), Wa)

A Wh-geodesic (p¢) on P(X) solves
Ot + div(Voeue) =0
for functions (¢¢) such that
Ot e + %|V¢t|2 =0

Problem: no matter how nice pg, 1 are, in general the ¢;'s are only
semiconcave.

Question: given a geodesic (u¢), can we find curves (u$) which are
smooth and produce a second order approximation of (y+)?
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Let (u$), (¢5) be smooth and such that
Orpie + div(Vgppz) =0
1
0t + SIVOEl” = 3
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Let (u$), (¢5) be smooth and such that
Outis + div(Vsipis) =
05 + 4|Vl = 5
Then for every f smooth we have

d

o [ fani =[98 Ve

(;i;/fdusz/<Hess(f)(V¢§,V¢§)+<Vf7 Vai>>dﬂi
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Rigorous statement of the problem

Given X smooth and p, 111 with bounded densities and supports, find (%)
so that

Oth order: (u$) uniformly Wh-converges to the only Ws-geodesic (p¢) from
1o to p1 with densities uniformly bounded,;

Ist order: up to subsequences, ¢5" — ¢, in W12(X), with (¢,) a choice of
Kantorovich potentials associated to (u¢);

2nd order: for every f € W?2(X) and ¢ € (0,1/2) it holds

1-6
/ /6 (VF,Vat)pidtdm — 0
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Rigorous statement of the problem

Given X smooth and p, 111 with bounded densities and supports, find (%)
so that

Oth order: (u$) uniformly Wh-converges to the only Ws-geodesic (p¢) from
1o to p1 with densities uniformly bounded,;

Ist order: up to subsequences, ¢5" — ¢, in W12(X), with (¢,) a choice of
Kantorovich potentials associated to (u¢);

2nd order: for every f € W?2(X) and ¢ € (0,1/2) it holds

1-6
/ /5 (VF,Vat)pidtdm — 0

The estimates should depend only on:
@ the L*°-norms of the densities of ug, pi1;
@ the diameter of their supports;
@ the lower bound on the Ricci curvature of X;

o the dimension of X.
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Interpolation between probability densities via the heat flow:

the Schrodinger system

Let X be smooth and pg, p1 bounded probability densities with bounded
support.

Find functions f, g on X such that

po = f Pi(g)
p1=Pi(f)g
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Interpolation between probability densities via the heat flow:

the Schrodinger system

Let X be smooth and pg, p1 bounded probability densities with bounded
support.

Find functions f, g on X such that

po = f Pi(g)
p1=Pi(f)g

The entropic interpolation between pg and p; is then defined by

pt = P:(F)Pi_+(g), te€][0,1].
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Interpolation between probability densities via the heat flow:

slowing down

Let X be smooth and pg, p1 bounded probability densities with bounded
support.

Find functions ¢, g€ on X such that

po = f~P-(g")
p=P(f")g"
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Interpolation between probability densities via the heat flow:

slowing down

Let X be smooth and pg, p1 bounded probability densities with bounded
support.

Find functions ¢, g€ on X such that

po = f~P-(g")
p=P(f")g"

The entropic interpolation between pg and pj is then defined by

Py = Pit(fE)Pa(l—t)(gg)v t €[0,1].
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How to find the functions ¢, g%: the Schrodinger problem

Let R. be the measure on X2 given by

dP.(0x)

dRE(X7.y) = dm

(y)d(m @ m)(x,y)
Then (f¢, g°) is a solution to the Schrédinger system if and only if
f°® g°R. € Adm(pom, pym)

where ¢ ® g°(x,y) = f°(x)g°(y)-

L. Tamanini (Paris Nanterre & SISSA) Schrédinger pb. and Wa-geodesics Toulouse, 07-06-17



How to find the functions ¢, g%: the Schrodinger problem

Let 7¢ be the unique minimum of

inf H(m|R,
ﬂEAdml(pom,plm) (ﬂ-| 5)
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How to find the functions ¢, g%: the Schrodinger problem

Let 7¢ be the unique minimum of

inf H(m|R,
ﬂEAdmI(pom,plm) (ﬂ-| 5)

dn®
/Iog (dR5>dG_O

for every o such that W%Ea = Wi = 0. This forces

dm®
og (dRE> a®b

for some a°, b°, where a® @ b*(x,y) := a°(x) + b°(y).

Its Euler equation is
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How to find the functions ¢, g%: the Schrodinger problem

Let 7¢ be the unique minimum of

inf H(m|R,
ﬂEAdml(pom,plm) (ﬂ-| 5)

dn®
/Iog (dR5>dG_O

for every o such that W%Ea = Wi = 0. This forces

dm®
og (dRE> a®b

for some a°, b°, where a® @ b*(x,y) := a°(x) + b°(y).
Thus for f¢ := exp(a®), g° := exp(b°) we have

Its Euler equation is

= f 2 g°R.
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The dual problem

With some manipulations one can show that the dual problem of

in eH(m | R
r€Adm(pom,p1m) ( ’ E)

sup {/@podm—i—/wpldm—elog (/ecpesawd&)}
pabeC(X)
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The dual problem

With some manipulations one can show that the dual problem of

in eH(m | R
r€Adm(pom,p1m) ( ’ E)

sup {/@podm—i—/wpldm—elog (/e%?wdl?a}
pabeC(X)

Moreover, if 7€ is a minimizer and ¢, 1* maximizers (Schrédinger
potentials), we have

o
™ =e ¢ R.
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Link with optimal transport

Theorem (Mikami-Thieullen '04 and Léonard '12)

As ¢ | 0 the curves t — p§ converge to the (unique) Wh-geodesic between
pom and pym. Moreover

1
H(7® | R, inf = [ d? dr.
c (7T | 6) - TrGAdmI(npom,plm) 2 / (X,y) T
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Link with optimal transport

Theorem (Mikami-Thieullen '04 and Léonard '12)

As ¢ | 0 the curves t — p§ converge to the (unique) Wh-geodesic between
pom and pym. Moreover

1
H(7® | R, inf = [ d? dr.
c (7T | 6) - TrGAdmI(npom,plm) 2 / (X,y) T

The precise statement involves:
@ abstract spaces;
o [-convergence;
@ a large deviation assumption on the heat kernel.
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Building the approximation

Pri=figr 5= Papf® g = Paagg”
Ouff = SO~ Ol = - Ag;

L. Tamanini (Paris Nanterre & SISSA) Schrddinger pb. and W>-geodesics Toulouse, 07-06-17 13 /19



Building the approximation

Pri=figr 5= Papf® g = Paagg”
Ouff = SO~ Ol = - Ag;

e = clogfy ¢ =cloggr

1 € 1 €
Ooi = 5Vl + SAgE | —0ws = I VUil + SAY;
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Building the approximation

Pri=figr 5= Papf® g = Paagg”
Ouff = SO~ Ol = - Ag;

e = clogfy ¢ =cloggr

1 € 1 €
Ooi = 5Vl + SAgE | —0ws = I VUil + SAY;

1
elog pi = ¢f + 7 V5 = 5(¢§ - ¢5)
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Building the approximation

Pri=figr 5= Papf® g = Paagg”
Ouff = SO~ Ol = - Ag;

e = clogfy ¢ =cloggr
e 1 12 € e € 1 €12 € €
Ot = §|V<Pt| + EASDt -0y = §|V7/’t| + EAT/’t

1
elogp; = ¢f + 7 U7 = E(wi - ¢5)

Orpt + div(Viipt) = 0
1
005 + 5[V U5 2 = — 5228 log pi + |V log i)

—- €
=:af
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Statement of the convergence results

Given X smooth and pg, u1 with bounded densities and supports, with the
notations previously introduced we have that:

Oth order: (pim) uniformly Wh-converges to the only W)-geodesic (p¢)
from po to p1 with densities uniformly bounded,;

1st order: up to subsequences, 95" — U, in W,o%(X), with (J;) a choice of
Kantorovich potentials associated to (1);

2nd order: for every f € H?>2(X) and 6 € (0,1/2) it holds

1-§
//6 (Vf,Va;)pidtdm — 0

The estimates only depend on ||po|| 1<, ||p1]|L, K, N and on the diameter
of the supports of pg, p1.

L. Tamanini (Paris Nanterre & SISSA) Schrddinger pb. and W>-geodesics Toulouse, 07-06-17 14 / 19



Statement of the convergence results

Given X smooth and pg, u1 with bounded densities and supports, with the
notations previously introduced we have that:

Oth order: (pim) uniformly Wh-converges to the only W)-geodesic (p¢)
from po to p1 with densities uniformly bounded,;

1st order: up to subsequences, 95" — U, in W,o%(X), with (J;) a choice of
Kantorovich potentials associated to (1);

2nd order: for every f € H?>2(X) and 6 € (0,1/2) it holds

1-§
//6 (Vf,Va;)pidtdm — 0

The estimates only depend on ||po|| 1<, ||p1]|L, K, N and on the diameter
of the supports of pg, p1.
Actually, the statement holds on RCD*(K, ) spaces.
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A couple of estimates

Let (u¢) be a solution of the heat equation with positive compactly
supported L1 initial datum. Then:

@ Hamilton's gradient estimate
G _
IV log ug| < T(l v d(-,x)>, vt € (0, 1];
@ Li-Yau Laplacian estimate
C
Aloguy > —72, vt € (0,1].

The constants C;, G are positive and only depend on K, N and on the
diameter of supp(up) (on X too for Cy).
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A couple of estimates

Let (u¢) be a solution of the heat equation with positive compactly
supported L1 initial datum. Then:

@ Hamilton's gradient estimate
G _
IV log ug| < T(l v d(-,x)>, vt € (0, 1];
@ Li-Yau Laplacian estimate
C
Aloguy > —72, vt € (0,1].
The constants C;, G are positive and only depend on K, N and on the

diameter of supp(up) (on X too for Cy).
~ this leads to Oth and 1st order approximation
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Second order approximation

We start from
Theorem (Léonard '13)

2

CaH(mm) = 3 [ (Ta(ef) + Fa(u) i

ar?

= [ (ra(09) + 5ratiog 7)) ctm

where
VAP

Mo(h) = A — (Vh,VAh)
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Second order approximation

Then from Léonard’s formula we deduce that

1-6
sup ([ (Hess(05) + lHess(log )R e < 400
e€(0,1) J J§

1-6
sup // (]Aﬂﬂz + %A Iogpﬂz)pidtdm < 400
€€(0,1) 0

for every 6 € (0,1/2).
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Second order approximation

Then from Léonard’s formula we deduce that

1-6
sup ([ (Hess(05) + lHess(log )R e < 400
e€(0,1) J J§

1-6
sup // (]Aﬂﬂz + %A Iogpﬂz)pidtdm < 400
e€(0,1) 0

for every 6 € (0,1/2).
Indeed, in the case K =0,

[2(h) > [Hess(h)[?
(Ah)?

F2(h) > N
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Second order differentiation formula

Theorem (Gigli-T. '17)
Let
e (X,d,m) be a RCD*(K, N) space;
o (ut) a Wh-geodesic with g, u1 < Cm and bounded supports;
o f € H>2(X).
Then t — [ fdue is C2([0,1]) and
2

dt2 /fd'ut:/Hess(f)(v¢tav¢t)dﬂt

where (¢:) C W12(X) is any continuous choice of locally Lipschitz
functions such that

8t,ut I d1V(V¢tut) = 0.

In particular, the choice of evolved Kantorovich potential does the job.
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Merci de votre attention!
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