Schrödinger problem and W_{2}-geodesics joint work with Nicola Gigli

Luca Tamanini

Université Paris Nanterre
SISSA

N.Université - Paris Nanterre

SCUOLA INTERNAZIONALE SUPERIORE di STUDI AVANZATI SUPERIORE di STUDI AVANZATI for Advanced Studies

En l'honneur de P. Cattiaux et C. Léonard Toulouse, le 7 juin 2017

First order differentiation formula

Theorem (Gigli '13)

Let

- $(X, \mathrm{~d}, \mathfrak{m})$ be a $\operatorname{RCD}(K, \infty)$ space;
- $\left(\mu_{t}\right)$ a W_{2}-geodesic with $\mu_{0}, \mu_{1} \leq C \mathfrak{m}$;
- $f \in W^{1,2}(X)$.

Then $t \mapsto \int f \mathrm{~d} \mu_{t}$ is $C^{1}([0,1])$ and

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int f \mathrm{~d} \mu_{t}=-\int\left\langle\nabla f, \nabla \phi_{t}\right\rangle \mathrm{d} \mu_{t}
$$

where $\left(\phi_{t}\right) \subset W^{1,2}(X)$ is any continuous choice of locally Lipschitz functions such that

$$
\partial_{t} \mu_{t}+\operatorname{div}\left(\nabla \phi_{t} \mu_{t}\right)=0
$$

Aim

Let

- ($X, \mathrm{~d}, \mathfrak{m})$ be a $\operatorname{RCD}^{*}(K, N)$ space;
- $\left(\mu_{t}\right)$ a W_{2}-geodesic with $\mu_{0}, \mu_{1} \leq C \mathfrak{m}$;
- $f \in W^{2,2}(X)$.

Question: can we say that $t \mapsto \int f \mathrm{~d} \mu_{t}$ is $C^{2}([0,1])$ and

where $\left(\phi_{t}\right) \subset W^{1,2}(X)$ is any continuous choice of locally Lipschitz functions such that

$$
\partial_{t} \mu_{t}+\operatorname{div}\left(\nabla \phi_{t} \mu_{t}\right)=0 ?
$$

Aim

Let

- $(X, \mathrm{~d}, \mathfrak{m})$ be a $\operatorname{RCD}^{*}(K, N)$ space;
- $\left(\mu_{t}\right)$ a W_{2}-geodesic with $\mu_{0}, \mu_{1} \leq C \mathfrak{m}$;
- $f \in W^{2,2}(X)$.

Question: can we say that $t \mapsto \int f \mathrm{~d} \mu_{t}$ is $C^{2}([0,1])$ and

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \int f \mathrm{~d} \mu_{t}=\int \operatorname{Hess}(f)\left(\nabla \phi_{t}, \nabla \phi_{t}\right) \mathrm{d} \mu_{t}
$$

where $\left(\phi_{t}\right) \subset W^{1,2}(X)$ is any continuous choice of locally Lipschitz functions such that

$$
\partial_{t} \mu_{t}+\operatorname{div}\left(\nabla \phi_{t} \mu_{t}\right)=0 ?
$$

Geodesics in $\left(\mathscr{P}_{2}(X), W_{2}\right)$

A W_{2}-geodesic $\left(\mu_{t}\right)$ on $\mathscr{P}_{2}(X)$ solves

$$
\partial_{t} \mu_{t}+\operatorname{div}\left(\nabla \phi_{t} \mu_{t}\right)=0
$$

for functions $\left(\phi_{t}\right)$ such that

$$
\partial_{t} \phi_{t}+\frac{1}{2}\left|\nabla \phi_{t}\right|^{2}=0
$$

Problem: no matter how nice μ_{0}, μ_{1} are, in general the ϕ_{t} 's are only semiconcave.

Question: given a geodesic $\left(\mu_{t}\right)$, can we find curves $\left(\mu_{t}^{\varepsilon}\right)$ which are smooth and produce a second order approximation of $\left(\mu_{t}\right)$?

Geodesics in $\left(\mathscr{P}_{2}(X), W_{2}\right)$

A W_{2}-geodesic $\left(\mu_{t}\right)$ on $\mathscr{P}_{2}(X)$ solves

$$
\partial_{t} \mu_{t}+\operatorname{div}\left(\nabla \phi_{t} \mu_{t}\right)=0
$$

for functions $\left(\phi_{t}\right)$ such that

$$
\partial_{t} \phi_{t}+\frac{1}{2}\left|\nabla \phi_{t}\right|^{2}=0
$$

Problem: no matter how nice μ_{0}, μ_{1} are, in general the ϕ_{t} 's are only semiconcave.

Question: given a geodesic $\left(\mu_{t}\right)$, can we find curves $\left(\mu_{t}^{\varepsilon}\right)$ which are smooth and produce a second order approximation of $\left(\mu_{t}\right)$?

Idea

Let $\left(\mu_{t}^{\varepsilon}\right),\left(\phi_{t}^{\varepsilon}\right)$ be smooth and such that

$$
\begin{aligned}
\partial_{t} \mu_{t}^{\varepsilon}+\operatorname{div}\left(\nabla \phi_{t}^{\varepsilon} \mu_{t}^{\varepsilon}\right) & =0 \\
\partial_{t} \phi_{t}^{\varepsilon}+\frac{1}{2}\left|\nabla \phi_{t}^{\varepsilon}\right|^{2} & =a_{t}^{\varepsilon}
\end{aligned}
$$

Then for every f smooth we have

Idea

Let $\left(\mu_{t}^{\varepsilon}\right),\left(\phi_{t}^{\varepsilon}\right)$ be smooth and such that

$$
\begin{aligned}
\partial_{t} \mu_{t}^{\varepsilon}+\operatorname{div}\left(\nabla \phi_{t}^{\varepsilon} \mu_{t}^{\varepsilon}\right) & =0 \\
\partial_{t} \phi_{t}^{\varepsilon}+\frac{1}{2}\left|\nabla \phi_{t}^{\varepsilon}\right|^{2} & =a_{t}^{\varepsilon}
\end{aligned}
$$

Then for every f smooth we have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \int f \mathrm{~d} \mu_{t}^{\varepsilon} & =\int\left\langle\nabla f, \nabla \phi_{t}^{\varepsilon}\right\rangle \mathrm{d} \mu_{t}^{\varepsilon} \\
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \int f \mathrm{~d} \mu_{t}^{\varepsilon} & =\int\left(\operatorname{Hess}(f)\left(\nabla \phi_{t}^{\varepsilon}, \nabla \phi_{t}^{\varepsilon}\right)+\left\langle\nabla f, \nabla a_{t}^{\varepsilon}\right\rangle\right) \mathrm{d} \mu_{t}^{\varepsilon}
\end{aligned}
$$

Rigorous statement of the problem

Given X smooth and μ_{0}, μ_{1} with bounded densities and supports, find $\left(\mu_{t}^{\varepsilon}\right)$ so that
Oth order: $\left(\mu_{t}^{\varepsilon}\right)$ uniformly W_{2}-converges to the only W_{2}-geodesic $\left(\mu_{t}\right)$ from μ_{0} to μ_{1} with densities uniformly bounded;
1st order: up to subsequences, $\phi_{t}^{\varepsilon_{n}} \rightarrow \bar{\phi}_{t}$ in $W^{1,2}(X)$, with $\left(\bar{\phi}_{t}\right)$ a choice of Kantorovich potentials associated to $\left(\mu_{t}\right)$;
2nd order: for every $f \in W^{2,2}(X)$ and $\delta \in(0,1 / 2)$ it holds

$$
\iint_{\delta}^{1-\delta}\left\langle\nabla f, \nabla a_{t}^{\varepsilon}\right\rangle \rho_{t}^{\varepsilon} \mathrm{d} t \mathrm{~d} \mathfrak{m} \rightarrow 0
$$

The estimates should depend only on:

- the L^{∞}-norms of the densities of μ_{0}, μ_{1};
- the diameter of their supports;
- the lower bound on the Ricci curvature of X
- the dimension of X.

Rigorous statement of the problem

Given X smooth and μ_{0}, μ_{1} with bounded densities and supports, find $\left(\mu_{t}^{\varepsilon}\right)$ so that
Oth order: $\left(\mu_{t}^{\varepsilon}\right)$ uniformly W_{2}-converges to the only W_{2}-geodesic $\left(\mu_{t}\right)$ from μ_{0} to μ_{1} with densities uniformly bounded;
1st order: up to subsequences, $\phi_{t}^{\varepsilon_{n}} \rightarrow \bar{\phi}_{t}$ in $W^{1,2}(X)$, with $\left(\bar{\phi}_{t}\right)$ a choice of Kantorovich potentials associated to $\left(\mu_{t}\right)$;
2nd order: for every $f \in W^{2,2}(X)$ and $\delta \in(0,1 / 2)$ it holds

$$
\iint_{\delta}^{1-\delta}\left\langle\nabla f, \nabla a_{t}^{\varepsilon}\right\rangle \rho_{t}^{\varepsilon} \mathrm{d} t \mathrm{~d} \mathfrak{m} \rightarrow 0
$$

The estimates should depend only on:

- the L^{∞}-norms of the densities of μ_{0}, μ_{1};
- the diameter of their supports;
- the lower bound on the Ricci curvature of X;
- the dimension of X.

Interpolation between probability densities via the heat flow: the Schrödinger system

Let X be smooth and ρ_{0}, ρ_{1} bounded probability densities with bounded support.

Find functions f, g on X such that

$$
\left\{\begin{array}{l}
\rho_{0}=f P_{1}(g) \\
\rho_{1}=P_{1}(f) g
\end{array}\right.
$$

The entropic interpolation between ρ_{0} and ρ_{1} is then defined by

$$
\rho_{t}:=P_{t}(f) P_{1-t}(g), \quad t \in[0,1] .
$$

Interpolation between probability densities via the heat flow: the Schrödinger system

Let X be smooth and ρ_{0}, ρ_{1} bounded probability densities with bounded support.

Find functions f, g on X such that

$$
\left\{\begin{array}{l}
\rho_{0}=f P_{1}(g) \\
\rho_{1}=P_{1}(f) g
\end{array}\right.
$$

The entropic interpolation between ρ_{0} and ρ_{1} is then defined by

$$
\rho_{t}:=P_{t}(f) P_{1-t}(g), \quad t \in[0,1] .
$$

Interpolation between probability densities via the heat flow: slowing down

Let X be smooth and ρ_{0}, ρ_{1} bounded probability densities with bounded support.

Find functions $f^{\varepsilon}, g^{\varepsilon}$ on X such that

$$
\left\{\begin{array}{l}
\rho_{0}=f^{\varepsilon} P_{\varepsilon}\left(g^{\varepsilon}\right) \\
\rho_{1}=P_{\varepsilon}\left(f^{\varepsilon}\right) g^{\varepsilon}
\end{array}\right.
$$

The entropic interpolation between ρ_{0} and ρ_{1} is then defined by

$$
\rho_{t}^{\varepsilon}:=P_{\varepsilon t}\left(f^{\varepsilon}\right) P_{\varepsilon(1-t)}\left(g^{\varepsilon}\right), \quad t \in[0,1] .
$$

Interpolation between probability densities via the heat flow: slowing down

Let X be smooth and ρ_{0}, ρ_{1} bounded probability densities with bounded support.

Find functions $f^{\varepsilon}, g^{\varepsilon}$ on X such that

$$
\left\{\begin{array}{l}
\rho_{0}=f^{\varepsilon} P_{\varepsilon}\left(g^{\varepsilon}\right) \\
\rho_{1}=P_{\varepsilon}\left(f^{\varepsilon}\right) g^{\varepsilon}
\end{array}\right.
$$

The entropic interpolation between ρ_{0} and ρ_{1} is then defined by

$$
\rho_{t}^{\varepsilon}:=P_{\varepsilon t}\left(f^{\varepsilon}\right) P_{\varepsilon(1-t)}\left(g^{\varepsilon}\right), \quad t \in[0,1] .
$$

How to find the functions $f^{\varepsilon}, g^{\varepsilon}$: the Schrödinger problem

Let R_{ε} be the measure on X^{2} given by

$$
\mathrm{d} R_{\varepsilon}(x, y):=\frac{\mathrm{d} P_{\varepsilon}\left(\delta_{x}\right)}{\mathrm{d} \mathfrak{m}}(y) \mathrm{d}(\mathfrak{m} \otimes \mathfrak{m})(x, y)
$$

Then $\left(f^{\varepsilon}, g^{\varepsilon}\right)$ is a solution to the Schrödinger system if and only if

$$
f^{\varepsilon} \otimes g^{\varepsilon} R_{\varepsilon} \in \operatorname{Adm}\left(\rho_{0} \mathfrak{m}, \rho_{1} \mathfrak{m}\right)
$$

where $f^{\varepsilon} \otimes g^{\varepsilon}(x, y):=f^{\varepsilon}(x) g^{\varepsilon}(y)$.

How to find the functions $f^{\varepsilon}, g^{\varepsilon}$: the Schrödinger problem

Let π^{ε} be the unique minimum of

$$
\inf _{\pi \in \operatorname{Adm}\left(\rho_{0} \mathfrak{m}, \rho_{1} \mathfrak{m}\right)} H\left(\pi \mid R_{\varepsilon}\right)
$$

Its Euler equation is

for every σ such that $\pi_{\#}^{1} \sigma=\pi_{\#}^{2}=0$. This forces

for some $a^{\varepsilon}, b^{\varepsilon}$, where $a^{\varepsilon} \oplus b^{\varepsilon}(x, y):=a^{\varepsilon}(x)+b^{\varepsilon}(y)$. Thus for $f^{\varepsilon}:=\exp \left(a^{\varepsilon}\right), g^{\varepsilon}:=\exp \left(b^{\varepsilon}\right)$ we have

How to find the functions $f^{\varepsilon}, g^{\varepsilon}$: the Schrödinger problem

Let π^{ε} be the unique minimum of

$$
\inf _{\pi \in \operatorname{Adm}\left(\rho_{0} \mathfrak{m}, \rho_{1} \mathfrak{m}\right)} H\left(\pi \mid R_{\varepsilon}\right)
$$

Its Euler equation is

$$
\int \log \left(\frac{\mathrm{d} \pi^{\varepsilon}}{\mathrm{d} R_{\varepsilon}}\right) \mathrm{d} \sigma=0
$$

for every σ such that $\pi_{\#}^{1} \sigma=\pi_{\#}^{2}=0$. This forces

$$
\log \left(\frac{\mathrm{d} \pi^{\varepsilon}}{\mathrm{d} R_{\varepsilon}}\right)=a^{\varepsilon} \oplus b^{\varepsilon}
$$

for some $a^{\varepsilon}, b^{\varepsilon}$, where $a^{\varepsilon} \oplus b^{\varepsilon}(x, y):=a^{\varepsilon}(x)+b^{\varepsilon}(y)$.

How to find the functions $f^{\varepsilon}, g^{\varepsilon}$: the Schrödinger problem

Let π^{ε} be the unique minimum of

$$
\inf _{\pi \in \operatorname{Adm}\left(\rho_{0} \mathfrak{m}, \rho_{1} \mathfrak{m}\right)} H\left(\pi \mid R_{\varepsilon}\right)
$$

Its Euler equation is

$$
\int \log \left(\frac{\mathrm{d} \pi^{\varepsilon}}{\mathrm{d} R_{\varepsilon}}\right) \mathrm{d} \sigma=0
$$

for every σ such that $\pi_{\#}^{1} \sigma=\pi_{\#}^{2}=0$. This forces

$$
\log \left(\frac{\mathrm{d} \pi^{\varepsilon}}{\mathrm{d} R_{\varepsilon}}\right)=a^{\varepsilon} \oplus b^{\varepsilon}
$$

for some $a^{\varepsilon}, b^{\varepsilon}$, where $a^{\varepsilon} \oplus b^{\varepsilon}(x, y):=a^{\varepsilon}(x)+b^{\varepsilon}(y)$.
Thus for $f^{\varepsilon}:=\exp \left(a^{\varepsilon}\right), g^{\varepsilon}:=\exp \left(b^{\varepsilon}\right)$ we have

$$
\pi^{\varepsilon}=f^{\varepsilon} \otimes g^{\varepsilon} R_{\varepsilon}
$$

The dual problem

With some manipulations one can show that the dual problem of

$$
\inf _{\pi \in \operatorname{Adm}\left(\rho_{0} \mathfrak{m}, \rho_{1} \mathfrak{m}\right)} \varepsilon H\left(\pi \mid R_{\varepsilon}\right)
$$

is

$$
\sup _{\varphi, \psi \in C(X)}\left\{\int \varphi \rho_{0} \mathrm{~d} \mathfrak{m}+\int \psi \rho_{1} \mathrm{~d} \mathfrak{m}-\varepsilon \log \left(\int e^{\frac{\varphi \oplus \psi}{\varepsilon}} \mathrm{d} R_{\varepsilon}\right)\right\}
$$

Moreover, if π^{ε} is a minimizer and $\varphi^{\varepsilon}, \psi^{\varepsilon}$ maximizers (Schrödinger potentials), we have

The dual problem

With some manipulations one can show that the dual problem of

$$
\inf _{\pi \in \operatorname{Adm}\left(\rho_{0} \mathfrak{m}, \rho_{1} \mathfrak{m}\right)} \varepsilon H\left(\pi \mid R_{\varepsilon}\right)
$$

is

$$
\sup _{\varphi, \psi \in C(X)}\left\{\int \varphi \rho_{0} \mathrm{~d} \mathfrak{m}+\int \psi \rho_{1} \mathrm{~d} \mathfrak{m}-\varepsilon \log \left(\int e^{\frac{\varphi \oplus \psi}{\varepsilon}} \mathrm{d} R_{\varepsilon}\right)\right\}
$$

Moreover, if π^{ε} is a minimizer and $\varphi^{\varepsilon}, \psi^{\varepsilon}$ maximizers (Schrödinger potentials), we have

$$
\pi^{\varepsilon}=e^{\frac{\varphi^{\varepsilon} \oplus \psi^{\varepsilon}}{\varepsilon}} R_{\varepsilon}
$$

Link with optimal transport

Theorem (Mikami-Thieullen '04 and Léonard '12)

As $\varepsilon \downarrow 0$ the curves $t \mapsto \rho_{t}^{\varepsilon}$ converge to the (unique) W_{2}-geodesic between $\rho_{0} \mathfrak{m}$ and $\rho_{1} \mathfrak{m}$. Moreover

$$
\varepsilon H\left(\pi^{\varepsilon} \mid R_{\varepsilon}\right) \rightarrow \inf _{\pi \in \operatorname{Adm}\left(\rho_{0} \mathfrak{m}, \rho_{1} \mathfrak{m}\right)} \frac{1}{2} \int \mathrm{~d}^{2}(x, y) \mathrm{d} \pi
$$

The precise statement involves:

- abstract spaces;
- 「-convergence;
- a large deviation assumption on the heat kernel.

Link with optimal transport

Theorem (Mikami-Thieullen '04 and Léonard '12)

As $\varepsilon \downarrow 0$ the curves $t \mapsto \rho_{t}^{\varepsilon}$ converge to the (unique) W_{2}-geodesic between $\rho_{0} \mathfrak{m}$ and $\rho_{1} \mathfrak{m}$. Moreover

$$
\varepsilon H\left(\pi^{\varepsilon} \mid R_{\varepsilon}\right) \rightarrow \inf _{\pi \in \operatorname{Adm}\left(\rho_{0} \mathfrak{m}, \rho_{1} \mathfrak{m}\right)} \frac{1}{2} \int \mathrm{~d}^{2}(x, y) \mathrm{d} \pi
$$

The precise statement involves:

- abstract spaces;
- 「-convergence;
- a large deviation assumption on the heat kernel.

Building the approximation

$$
\begin{gathered}
\rho_{t}^{\varepsilon}:=f_{t}^{\varepsilon} g_{t}^{\varepsilon} \quad f_{t}^{\varepsilon}:=P_{\varepsilon t / 2} f^{\varepsilon} \quad g_{t}^{\varepsilon}:=P_{\varepsilon(1-t) / 2} g^{\varepsilon} \\
\partial_{t} f_{t}^{\varepsilon}=\frac{\varepsilon}{2} \Delta f_{t}^{\varepsilon} \quad-\partial_{t} g_{t}^{\varepsilon}=\frac{\varepsilon}{2} \Delta g_{t}^{\varepsilon}
\end{gathered}
$$

Building the approximation

$$
\begin{gathered}
\rho_{t}^{\varepsilon}:=f_{t}^{\varepsilon} g_{t}^{\varepsilon} \quad f_{t}^{\varepsilon}:=P_{\varepsilon t / 2} f^{\varepsilon} \quad g_{t}^{\varepsilon}:=P_{\varepsilon(1-t) / 2} g^{\varepsilon} \\
\partial_{t} f_{t}^{\varepsilon}=\frac{\varepsilon}{2} \Delta f_{t}^{\varepsilon} \quad-\partial_{t} g_{t}^{\varepsilon}=\frac{\varepsilon}{2} \Delta g_{t}^{\varepsilon}
\end{gathered}
$$

$$
\begin{aligned}
\left\{\begin{array}{l}
\varphi_{t}^{\varepsilon}:=\varepsilon \log f_{t}^{\varepsilon} \\
\partial_{t} \varphi_{t}^{\varepsilon}=\frac{1}{2}\left|\nabla \varphi_{t}^{\varepsilon}\right|^{2}+\frac{\varepsilon}{2} \Delta \varphi_{t}^{\varepsilon}
\end{array}\right. & \left\{\begin{array}{l}
\psi_{t}^{\varepsilon}:=\varepsilon \log g_{t}^{\varepsilon} \\
-\partial_{t} \psi_{t}^{\varepsilon}=\frac{1}{2}\left|\nabla \psi_{t}^{\varepsilon}\right|^{2}
\end{array}\right. \\
\varepsilon \log \rho_{t}^{\varepsilon}=\varphi_{t}^{\varepsilon}+\psi_{t}^{\varepsilon} & v_{t}^{\varepsilon}:=\frac{1}{2}\left(\psi_{t}^{\varepsilon}-\varphi_{t}^{\varepsilon}\right)
\end{aligned}
$$

Building the approximation

$$
\begin{gathered}
\rho_{t}^{\varepsilon}:=f_{t}^{\varepsilon} g_{t}^{\varepsilon} \quad f_{t}^{\varepsilon}:=P_{\varepsilon t / 2} f^{\varepsilon} \quad g_{t}^{\varepsilon}:=P_{\varepsilon(1-t) / 2} g^{\varepsilon} \\
\partial_{t} f_{t}^{\varepsilon}=\frac{\varepsilon}{2} \Delta f_{t}^{\varepsilon} \quad-\partial_{t} g_{t}^{\varepsilon}=\frac{\varepsilon}{2} \Delta g_{t}^{\varepsilon}
\end{gathered}\left\{\begin{array}{l}
\left\{\begin{array}{l}
\varphi_{t}^{\varepsilon}:=\varepsilon \log f_{t}^{\varepsilon} \\
\partial_{t} \varphi_{t}^{\varepsilon}=\frac{1}{2}\left|\nabla \varphi_{t}^{\varepsilon}\right|^{2}+\frac{\varepsilon}{2} \Delta \varphi_{t}^{\varepsilon} \quad\left\{\begin{array}{l}
\log g_{t}^{\varepsilon} \\
-\partial_{t} \psi_{t}^{\varepsilon}=\frac{1}{2}\left|\nabla \psi_{t}^{\varepsilon}\right|^{2}+\frac{\varepsilon}{2} \Delta \psi_{t}^{\varepsilon} \\
\varepsilon \log \rho_{t}^{\varepsilon}=\varphi_{t}^{\varepsilon}+\psi_{t}^{\varepsilon} \quad \vartheta_{t}^{\varepsilon}:=\frac{1}{2}\left(\psi_{t}^{\varepsilon}-\varphi_{t}^{\varepsilon}\right)
\end{array}\right. \\
\partial_{t} \rho_{t}^{\varepsilon}+\operatorname{div}\left(\nabla \vartheta_{t}^{\varepsilon} \rho_{t}^{\varepsilon}\right)=0 \\
\partial_{t} \vartheta_{t}^{\varepsilon}+\frac{1}{2}\left|\nabla \vartheta_{t}^{\varepsilon}\right|^{2}=-\frac{1}{8} \varepsilon^{2}\left(2 \Delta \log \rho_{t}^{\varepsilon}+\left|\nabla \log \rho_{t}^{\varepsilon}\right|^{2}\right)
\end{array}\right.
\end{array}\right.
$$

Building the approximation

$$
\left.\begin{array}{c}
\rho_{t}^{\varepsilon}:=f_{t}^{\varepsilon} g_{t}^{\varepsilon} \quad f_{t}^{\varepsilon}:=P_{\varepsilon t / 2} f^{\varepsilon} \quad g_{t}^{\varepsilon}:=P_{\varepsilon(1-t) / 2} g^{\varepsilon} \\
\partial_{t} f_{t}^{\varepsilon}=\frac{\varepsilon}{2} \Delta f_{t}^{\varepsilon} \quad-\partial_{t} g_{t}^{\varepsilon}=\frac{\varepsilon}{2} \Delta g_{t}^{\varepsilon}
\end{array}\right\} \begin{aligned}
& \left\{\begin{array}{l}
\varphi_{t}^{\varepsilon}:=\varepsilon \log f_{t}^{\varepsilon} \\
\partial_{t} \varphi_{t}^{\varepsilon}=\frac{1}{2}\left|\nabla \varphi_{t}^{\varepsilon}\right|^{2}+\frac{\varepsilon}{2} \Delta \varphi_{t}^{\varepsilon} \quad\left\{\begin{array}{l}
\psi_{t}^{\varepsilon}:=\varepsilon \log g_{t}^{\varepsilon} \\
-\partial_{t} \psi_{t}^{\varepsilon}=\frac{1}{2}\left|\nabla \psi_{t}^{\varepsilon}\right|^{2}+\frac{\varepsilon}{2} \Delta \psi_{t}^{\varepsilon} \\
\varepsilon \log \rho_{t}^{\varepsilon}=\varphi_{t}^{\varepsilon}+\psi_{t}^{\varepsilon} \quad \vartheta_{t}^{\varepsilon}:=\frac{1}{2}\left(\psi_{t}^{\varepsilon}-\varphi_{t}^{\varepsilon}\right)
\end{array}\right. \\
\partial_{t} \rho_{t}^{\varepsilon}+\operatorname{div}\left(\nabla \vartheta_{t}^{\varepsilon} \rho_{t}^{\varepsilon}\right)=0 \\
\partial_{t} \vartheta_{t}^{\varepsilon}+\frac{1}{2}\left|\nabla \vartheta_{t}^{\varepsilon}\right|^{2}=\underbrace{-\frac{1}{8} \varepsilon^{2}\left(2 \Delta \log \rho_{t}^{\varepsilon}+\left|\nabla \log \rho_{t}^{\varepsilon}\right|^{2}\right)}_{=: a_{t}^{\varepsilon}}
\end{array}\right.
\end{aligned}
$$

Statement of the convergence results

Given X smooth and μ_{0}, μ_{1} with bounded densities and supports, with the notations previously introduced we have that:
Oth order: $\left(\rho_{t}^{\varepsilon} \mathfrak{m}\right)$ uniformly W_{2}-converges to the only W_{2}-geodesic $\left(\mu_{t}\right)$ from μ_{0} to μ_{1} with densities uniformly bounded;
1st order: up to subsequences, $\vartheta_{t}^{\varepsilon_{n}} \rightarrow \bar{\vartheta}_{t}$ in $W_{\text {loc }}^{1,2}(X)$, with $\left(\bar{\vartheta}_{t}\right)$ a choice of Kantorovich potentials associated to $\left(\mu_{t}\right)$; 2nd order: for every $f \in H^{2,2}(X)$ and $\delta \in(0,1 / 2)$ it holds

$$
\iint_{\delta}^{1-\delta}\left\langle\nabla f, \nabla a_{t}^{\varepsilon}\right\rangle \rho_{t}^{\varepsilon} \mathrm{d} t \mathrm{~d} \mathfrak{m} \rightarrow 0
$$

The estimates only depend on $\left\|\rho_{0}\right\|_{L^{\infty}},\left\|\rho_{1}\right\|_{L^{\infty}}, K, N$ and on the diameter of the supports of ρ_{0}, ρ_{1}.
Actually, the statement holds on RCD* (K, N) spaces.

Statement of the convergence results

Given X smooth and μ_{0}, μ_{1} with bounded densities and supports, with the notations previously introduced we have that:
Oth order: $\left(\rho_{t}^{\varepsilon} \mathfrak{m}\right)$ uniformly W_{2}-converges to the only W_{2}-geodesic $\left(\mu_{t}\right)$ from μ_{0} to μ_{1} with densities uniformly bounded;
1st order: up to subsequences, $\vartheta_{t}^{\varepsilon_{n}} \rightarrow \bar{\vartheta}_{t}$ in $W_{\text {loc }}^{1,2}(X)$, with $\left(\bar{\vartheta}_{t}\right)$ a choice of Kantorovich potentials associated to $\left(\mu_{t}\right)$; 2nd order: for every $f \in H^{2,2}(X)$ and $\delta \in(0,1 / 2)$ it holds

$$
\iint_{\delta}^{1-\delta}\left\langle\nabla f, \nabla a_{t}^{\varepsilon}\right\rangle \rho_{t}^{\varepsilon} \mathrm{d} t \mathrm{~d} \mathfrak{m} \rightarrow 0
$$

The estimates only depend on $\left\|\rho_{0}\right\|_{L^{\infty}},\left\|\rho_{1}\right\|_{L^{\infty}}, K, N$ and on the diameter of the supports of ρ_{0}, ρ_{1}.
Actually, the statement holds on $\mathrm{RCD}^{*}(K, N)$ spaces.

A couple of estimates

Let $\left(u_{t}\right)$ be a solution of the heat equation with positive compactly supported L^{1} initial datum. Then:

- Hamilton's gradient estimate

$$
\left|\nabla \log u_{t}\right| \leq \frac{C_{1}}{t}(1+\mathrm{d}(\cdot, \bar{x})), \quad \forall t \in(0,1]
$$

- Li-Yau Laplacian estimate

$$
\Delta \log u_{t} \geq-\frac{C_{2}}{t}, \quad \forall t \in(0,1]
$$

The constants C_{1}, C_{2} are positive and only depend on K, N and on the diameter of $\operatorname{supp}\left(u_{0}\right)$ (on \bar{x} too for $\left.C_{1}\right)$.
\leadsto this leads to 0th and 1st order approximation

A couple of estimates

Let $\left(u_{t}\right)$ be a solution of the heat equation with positive compactly supported L^{1} initial datum. Then:

- Hamilton's gradient estimate

$$
\left|\nabla \log u_{t}\right| \leq \frac{C_{1}}{t}(1+\mathrm{d}(\cdot, \bar{x})), \quad \forall t \in(0,1]
$$

- Li-Yau Laplacian estimate

$$
\Delta \log u_{t} \geq-\frac{C_{2}}{t}, \quad \forall t \in(0,1]
$$

The constants C_{1}, C_{2} are positive and only depend on K, N and on the diameter of $\operatorname{supp}\left(u_{0}\right)$ (on \bar{x} too for $\left.C_{1}\right)$.
\leadsto this leads to 0 th and 1st order approximation

Second order approximation

We start from

Theorem (Léonard '13)

$$
\begin{aligned}
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} H\left(\rho_{t}^{\varepsilon} \mathfrak{m} \mid \mathfrak{m}\right) & =\frac{1}{2} \int\left(\Gamma_{2}\left(\varphi_{t}^{\varepsilon}\right)+\Gamma_{2}\left(\psi_{t}^{\varepsilon}\right)\right) \rho_{t}^{\varepsilon} \mathrm{d} \mathfrak{m} \\
& =\int\left(\Gamma_{2}\left(\vartheta_{t}^{\varepsilon}\right)+\frac{\varepsilon}{2} \Gamma_{2}\left(\log \rho_{t}^{\varepsilon}\right)\right) \rho_{t}^{\varepsilon} \mathrm{d} \mathfrak{m}
\end{aligned}
$$

where

$$
\Gamma_{2}(h):=\Delta \frac{|\nabla h|^{2}}{2}-\langle\nabla h, \nabla \Delta h\rangle
$$

Second order approximation

Then from Léonard's formula we deduce that

$$
\begin{aligned}
& \sup _{\varepsilon \in(0,1)} \iint_{\delta}^{1-\delta}\left(\left|\operatorname{Hess}\left(\vartheta_{t}^{\varepsilon}\right)\right|^{2}+\varepsilon^{2}\left|\operatorname{Hess}\left(\log \rho_{t}^{\varepsilon}\right)\right|^{2}\right) \rho_{t}^{\varepsilon} \mathrm{d} t \mathrm{~d} \mathfrak{m}<+\infty \\
& \sup _{\varepsilon \in(0,1)} \iint_{\delta}^{1-\delta}\left(\left|\Delta \vartheta_{t}^{\varepsilon}\right|^{2}+\varepsilon^{2}\left|\Delta \log \rho_{t}^{\varepsilon}\right|^{2}\right) \rho_{t}^{\varepsilon} \mathrm{d} t \mathrm{~d} \mathfrak{m}<+\infty
\end{aligned}
$$

for every $\delta \in(0,1 / 2)$.
Indeed, in the case $K=0$,

$$
\begin{aligned}
& \Gamma_{2}(h) \geq|\operatorname{Hess}(h)|^{2} \\
& \Gamma_{2}(h) \geq \frac{(\Delta h)^{2}}{N}
\end{aligned}
$$

Second order approximation

Then from Léonard's formula we deduce that

$$
\begin{aligned}
& \sup _{\varepsilon \in(0,1)} \iint_{\delta}^{1-\delta}\left(\left|\operatorname{Hess}\left(\vartheta_{t}^{\varepsilon}\right)\right|^{2}+\varepsilon^{2}\left|\operatorname{Hess}\left(\log \rho_{t}^{\varepsilon}\right)\right|^{2}\right) \rho_{t}^{\varepsilon} \mathrm{d} t \mathrm{dm}<+\infty \\
& \sup _{\varepsilon \in(0,1)} \iint_{\delta}^{1-\delta}\left(\left|\Delta \vartheta_{t}^{\varepsilon}\right|^{2}+\varepsilon^{2}\left|\Delta \log \rho_{t}^{\varepsilon}\right|^{2}\right) \rho_{t}^{\varepsilon} \mathrm{d} t \mathrm{~d} \mathfrak{m}<+\infty
\end{aligned}
$$

for every $\delta \in(0,1 / 2)$.
Indeed, in the case $K=0$,

$$
\begin{aligned}
& \Gamma_{2}(h) \geq|\operatorname{Hess}(h)|^{2} \\
& \Gamma_{2}(h) \geq \frac{(\Delta h)^{2}}{N}
\end{aligned}
$$

Second order differentiation formula

Theorem (Gigli-T. '17)

Let

- $(X, \mathrm{~d}, \mathfrak{m})$ be a $\mathrm{RCD}^{*}(K, N)$ space;
- $\left(\mu_{t}\right)$ a W_{2}-geodesic with $\mu_{0}, \mu_{1} \leq C \mathfrak{m}$ and bounded supports;
- $f \in H^{2,2}(X)$.

Then $t \mapsto \int f \mathrm{~d} \mu_{t}$ is $C^{2}([0,1])$ and

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \int f \mathrm{~d} \mu_{t}=\int \operatorname{Hess}(f)\left(\nabla \phi_{t}, \nabla \phi_{t}\right) \mathrm{d} \mu_{t}
$$

where $\left(\phi_{t}\right) \subset W^{1,2}(X)$ is any continuous choice of locally Lipschitz functions such that

$$
\partial_{t} \mu_{t}+\operatorname{div}\left(\nabla \phi_{t} \mu_{t}\right)=0
$$

In particular, the choice of evolved Kantorovich potential does the job.

Merci de votre attention!

