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First order differentiation formula

Theorem (Gigli ’13)
Let

(X , d,m) be a RCD(K ,∞) space;
(µt) a W2-geodesic with µ0, µ1 ≤ Cm;
f ∈W 1,2(X ).

Then t 7→
∫
f dµt is C 1([0, 1]) and

d
dt

∫
f dµt = −

∫
〈∇f ,∇φt〉dµt

where (φt) ⊂W 1,2(X ) is any continuous choice of locally Lipschitz
functions such that

∂tµt + div(∇φtµt) = 0.
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Aim

Let
(X , d,m) be a RCD∗(K ,N) space;
(µt) a W2-geodesic with µ0, µ1 ≤ Cm;
f ∈W 2,2(X ).

Question: can we say that t 7→
∫
f dµt is C 2([0, 1]) and

d2

dt2

∫
f dµt =

∫
Hess(f )(∇φt ,∇φt)dµt

where (φt) ⊂W 1,2(X ) is any continuous choice of locally Lipschitz
functions such that

∂tµt + div(∇φtµt) = 0 ?
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Geodesics in (P2(X ),W2)

A W2-geodesic (µt) on P2(X ) solves

∂tµt + div(∇φtµt) = 0

for functions (φt) such that

∂tφt +
1
2
|∇φt |2 = 0

Problem: no matter how nice µ0, µ1 are, in general the φt ’s are only
semiconcave.

Question: given a geodesic (µt), can we find curves (µεt ) which are
smooth and produce a second order approximation of (µt)?
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Idea

Let (µεt ), (φεt ) be smooth and such that

∂tµ
ε
t + div(∇φεtµεt ) = 0

∂tφ
ε
t +

1
2
|∇φεt |2 = aεt

Then for every f smooth we have

d
dt

∫
f dµεt =

∫
〈∇f ,∇φεt 〉dµεt

d2

dt2

∫
f dµεt =

∫ (
Hess(f )(∇φεt ,∇φεt ) + 〈∇f ,∇aεt 〉

)
dµεt
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Rigorous statement of the problem

Given X smooth and µ0, µ1 with bounded densities and supports, find (µεt )
so that
0th order: (µεt ) uniformly W2-converges to the only W2-geodesic (µt) from
µ0 to µ1 with densities uniformly bounded;
1st order: up to subsequences, φεnt → φt in W 1,2(X ), with (φt) a choice of
Kantorovich potentials associated to (µt);
2nd order: for every f ∈W 2,2(X ) and δ ∈ (0, 1/2) it holds∫∫ 1−δ

δ
〈∇f ,∇aεt 〉ρεtdtdm→ 0

The estimates should depend only on:
the L∞-norms of the densities of µ0, µ1;
the diameter of their supports;
the lower bound on the Ricci curvature of X ;
the dimension of X .
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Interpolation between probability densities via the heat flow:
the Schrödinger system

Let X be smooth and ρ0, ρ1 bounded probability densities with bounded
support.

Find functions f , g on X such that{
ρ0 = f P1(g)

ρ1 = P1(f ) g

The entropic interpolation between ρ0 and ρ1 is then defined by

ρt := Pt(f )P1−t(g), t ∈ [0, 1].
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Interpolation between probability densities via the heat flow:
slowing down

Let X be smooth and ρ0, ρ1 bounded probability densities with bounded
support.

Find functions f ε, g ε on X such that{
ρ0 = f ε Pε(g

ε)

ρ1 = Pε(f
ε) g ε

The entropic interpolation between ρ0 and ρ1 is then defined by

ρεt := Pεt(f
ε)Pε(1−t)(g

ε), t ∈ [0, 1].
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How to find the functions f ε, g ε: the Schrödinger problem

Let Rε be the measure on X 2 given by

dRε(x , y) :=
dPε(δx)

dm
(y)d(m⊗m)(x , y)

Then (f ε, g ε) is a solution to the Schrödinger system if and only if

f ε ⊗ g εRε ∈ Adm(ρ0m, ρ1m)

where f ε ⊗ g ε(x , y) := f ε(x)g ε(y).
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How to find the functions f ε, g ε: the Schrödinger problem

Let πε be the unique minimum of

inf
π∈Adm(ρ0m,ρ1m)

H(π |Rε)

Its Euler equation is ∫
log

(
dπε

dRε

)
dσ = 0

for every σ such that π1
#σ = π2

# = 0. This forces

log

(
dπε

dRε

)
= aε ⊕ bε

for some aε, bε, where aε ⊕ bε(x , y) := aε(x) + bε(y).
Thus for f ε := exp(aε), g ε := exp(bε) we have

πε = f ε ⊗ g εRε
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The dual problem

With some manipulations one can show that the dual problem of

inf
π∈Adm(ρ0m,ρ1m)

εH(π |Rε)

is

sup
ϕ,ψ∈C(X )

{∫
ϕρ0dm +

∫
ψρ1dm− ε log

(∫
e
ϕ⊕ψ
ε dRε

)}
Moreover, if πε is a minimizer and ϕε, ψε maximizers (Schrödinger
potentials), we have

πε = e
ϕε⊕ψε

ε Rε
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Link with optimal transport

Theorem (Mikami-Thieullen ’04 and Léonard ’12)
As ε ↓ 0 the curves t 7→ ρεt converge to the (unique) W2-geodesic between
ρ0m and ρ1m. Moreover

εH(πε |Rε)→ inf
π∈Adm(ρ0m,ρ1m)

1
2

∫
d2(x , y)dπ.

The precise statement involves:
abstract spaces;
Γ-convergence;
a large deviation assumption on the heat kernel.
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Building the approximation

ρεt := f εt g
ε
t f εt := Pεt/2f

ε g εt := Pε(1−t)/2g
ε

∂t f
ε
t =

ε

2
∆f εt − ∂tg εt =

ε

2
∆g εtϕ

ε
t := ε log f εt

∂tϕ
ε
t =

1
2
|∇ϕεt |2 +

ε

2
∆ϕεt

ψ
ε
t := ε log g εt

−∂tψεt =
1
2
|∇ψεt |2 +

ε

2
∆ψεt

ε log ρεt = ϕεt + ψεt ϑεt :=
1
2

(ψεt − ϕεt )

∂tρ
ε
t + div(∇ϑεtρεt ) = 0

∂tϑ
ε
t +

1
2
|∇ϑεt |2 = −1

8
ε2(2∆ log ρεt + |∇ log ρεt |2)︸ ︷︷ ︸

=:aεt
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Statement of the convergence results

Given X smooth and µ0, µ1 with bounded densities and supports, with the
notations previously introduced we have that:
0th order: (ρεtm) uniformly W2-converges to the only W2-geodesic (µt)
from µ0 to µ1 with densities uniformly bounded;
1st order: up to subsequences, ϑεnt → ϑt in W 1,2

loc (X ), with (ϑt) a choice of
Kantorovich potentials associated to (µt);
2nd order: for every f ∈ H2,2(X ) and δ ∈ (0, 1/2) it holds∫∫ 1−δ

δ
〈∇f ,∇aεt 〉ρεtdtdm→ 0

The estimates only depend on ‖ρ0‖L∞ , ‖ρ1‖L∞ ,K ,N and on the diameter
of the supports of ρ0, ρ1.
Actually, the statement holds on RCD∗(K ,N) spaces.
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A couple of estimates

Let (ut) be a solution of the heat equation with positive compactly
supported L1 initial datum. Then:

Hamilton’s gradient estimate

|∇ log ut | ≤
C1

t

(
1 + d(·, x̄)

)
, ∀t ∈ (0, 1];

Li-Yau Laplacian estimate

∆ log ut ≥ −
C2

t
, ∀t ∈ (0, 1].

The constants C1,C2 are positive and only depend on K ,N and on the
diameter of supp(u0) (on x̄ too for C1).
; this leads to 0th and 1st order approximation
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Second order approximation

We start from

Theorem (Léonard ’13)

d2

dt2
H(ρεtm |m) =

1
2

∫ (
Γ2(ϕεt ) + Γ2(ψεt )

)
ρεtdm

=

∫ (
Γ2(ϑεt ) +

ε

2
Γ2(log ρεt )

)
ρεtdm

where

Γ2(h) := ∆
|∇h|2

2
− 〈∇h,∇∆h〉
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Second order approximation

Then from Léonard’s formula we deduce that

sup
ε∈(0,1)

∫∫ 1−δ

δ

(
|Hess(ϑεt )|2 + ε2|Hess(log ρεt )|2

)
ρεtdtdm < +∞

sup
ε∈(0,1)

∫∫ 1−δ

δ

(
|∆ϑεt |2 + ε2|∆ log ρεt |2

)
ρεtdtdm < +∞

for every δ ∈ (0, 1/2).

Indeed, in the case K = 0,

Γ2(h) ≥ |Hess(h)|2

Γ2(h) ≥ (∆h)2

N
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Second order differentiation formula

Theorem (Gigli-T. ’17)
Let

(X , d,m) be a RCD∗(K ,N) space;
(µt) a W2-geodesic with µ0, µ1 ≤ Cm and bounded supports;
f ∈ H2,2(X ).

Then t 7→
∫
f dµt is C 2([0, 1]) and

d2

dt2

∫
f dµt =

∫
Hess(f )(∇φt ,∇φt)dµt

where (φt) ⊂W 1,2(X ) is any continuous choice of locally Lipschitz
functions such that

∂tµt + div(∇φtµt) = 0.

In particular, the choice of evolved Kantorovich potential does the job.
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Merci de votre attention!
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