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Functional estimation
e The basic problem
Construct estimators of some function s, using
as few prior information on s as possible. Some
typical frameworks are the following.

e Density estimation

(X,....X,) i.i.d. sample with unknown density s
with respect to some given measure (i .

e Regression framework

One observes (X..%)...(X,.7,)

With ¥ =s(X )+¢

The explanatory variables X, are fixed or i.i.d.
The errors €, arei.i.d. with £|¢|x |=0



Estimator selection

A versatile approach to functional estimation
consists of considering some (possibly huge)
collection of estimators {5, ,m €91} and
define some genuine selection rule 7 such
that 41[6(5, §m)} 1s as close as possible to the
oracle

inf B[ 4s,5,) |

mein

where 7 1s some given loss function.



In many cases the selection procedure involves
some hyperparemeter A and most of the
positive results ensuring that the selected
estimator behaves approximately like an oracle
are proved under the constraint that 4 is larger
than some quantity which is more or less
precisely known. The choice of 1 is left to the

user...

Message: Negative results can be helpful to
choose A from the data.



Model Selection



Empirical Risk Minimization (ERM)
Consider some empirical criterion (based on the
data) 7 such that

t > E|7,(t)]

achieves a minimum at point 7 = s and the related
s (5[ 1,1} 1, (5]

The ERM estimator 5§ minimizes 7, over some
« model » S . In this case the expected risk

E| 4s,5,) |

reflects the quality of model S .



e Maximum likelihood estimation (MLE)

Context: density estimation (i.i.d. setting to be
simple) (..., ) i.i.d. sample with distribution sdu

with )/n(t)z—%ilogt()(i)
i=1

0(s,t)= K(S,t) > ()
\

Kullback Leibler information



e Least squares estimation (LSE)

Regression

with



Model selection via penalization

Consider some empirical criterion 7, .

« Framework: Consider some (at most countable)
collection of models (S,) . . Each modelS, is

m J me N

represented by s : ERM on model S,

» Purpose: select the « best » estimator among
the collection (5,) .

» Procedure: Given some penalty function
pen: 9 — R | one takes /i minimizing
v, (ﬁm)+pen(m)
over 9 and one defines the selected estimator

~

S=5..
m



« The classical asymptotic approach

Origin: Akaike (log-likelihood), Mallows (least
squares)

(1) The penalty function is proportional to the
number of parameters D_of the model Sm.

Akaike : D_/n
Mallows' C, : 2D ¢*/n,

(2) The heuristics (Akaike (‘73)) leading to the
choice of the penalty function D_/nrelies on the
assumption: the dimensions and the number of
the models are bounded w.r.t. n and n tends to
infinity.



BIC (log-likelihood) criterion Schwartz ( '78) :

- aims at selecting a « true » model rather than
mimicking an oracle

- also asymptotic, with a penalty which is
proportional to the number of parameters:
ln(n)Dm / n

- The non asymptotic approach
Barron,Cover (' 91) for discrete models, Birge,
Massart (‘97) and Barron, Birgé, Massart (" 99))
for general models. Differs from the asymptotic
approach on the following points



« The number as well as the dimensions of the
models may depend on n.

e One can choose a list of models because of its
approximation properties:

wavelet expansions, trigonometric or
piecewise polynomials, artificial neural
networks etc

It may perfectly happen that many models of the
list have the same dimension and in our view, the
« complexity » of the list of models is typically
taken into account. Shape of the penalty

X
m

Dm
C1 n + C2 n

with > e <3 .

meMN



How to penalize?



Akaike’ s heuristics revisited

The main issue is to remove the asymptotic
approximation argument in Akaike’ s heuristics

70(35) =7, (55) = 74 (55) = 7. (55)]

\_/

A

variance term Vo

minimizing ¥ (§D) + pen(D) , i1s equivalent to
minimizing

M) —V, + pen(D)

Fair estimate of the bias /(S, S,)



Ideally: pen_ (D) =V, + E(s S )

D’~D
In order to (approximately) minimize

/(s,S,) = Us,s,)+ K(SD,§D)
Evaluate the excess risks

VD:yn(SD)_yn(gD) K(SD,gD)

This is the very point where the various
approaches diverge. Akaike’ s criterion relies
on the asymptotic approximation

n n D
Us,,S,))=V, = o




while for Mallows’ C,




The method initiated in Birge, Massart (" 97) relies on
upper bounds for the sum of the excess risks which

can be written as

p T f( Sp» D) = [77n(50)_ yn(gD):|

where 7 denotes the empirical process

7,(0)=7,(c)= £[7,(1)]
These bounds derive from concentration inequalities
for the supremum of the appropriately weighted

empirical process _ _
AURACI

a)(t,u) ’ P
The prototype being Talagrand’ s inequality (" 96) for
empirical processes.




This approach has been fruitfully used in several
works. Among others: Baraud (" 00) and (" 03) for
least squares in the regression framework,
Castellan (" 03) for log-splines density estimation,
Patricia Reynaud (" 03) for poisson processes, etc...
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Main drawback: typically involve some
unkown multiplicative constant which may
depend on the unknown distribution
(variance of the regression errors, supremum
of the density, classification noise etc...).

Needs to be calibrated...

Slope heuristics: one looks for some
approximation of v, (typically) of the form
AD . When D is large, 7,,(5,)) is almost
constant, it suffices to « read » 1 as a slope
on the graph of 7,(3,) . One chooses the
final penalty as

pen(D) =2x AD



The factor 2 which is finally used reflects the
hope that the excess risks

VD =’}/n(SD)—’}/n(§D) Z(SD’S\D)

are of the same order of magnitude. If this is
the case then

« optimal » penalty=2 * « minimal » penalty




Data driven penalization

« Recipe »

1. Compute the ERM S on the union of models

with D parameters

2. Use theory to guess the shape of the
penalty pen(D), typically pen(D)=AD (but
AD(2+ln(n/D)) is another possibi

3. Estimate A from the data
2 the smallest value for w
penalized criterion explod

Oy mu
nich t

es.

lity)
tiplying by

ne

Theoretical validation in Birge and M. (’07) for
some Gaussian model selection issues.

Implemented by Lebarbier ( ‘05) for multiple

change points detection.



Celeux, Martin, Maugis

* Gene expression data: 1020 genes and 20 experiments

K
* Mixture models Sk ={xecR® }—>Z P (X|j1x. )
k=1

* Choice of K ? Slope heuristics: K=17 BIC: K=17 ICL: K=15
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Mathematical results



Birgé, M. (‘07)

One of the results that we proved for
Gaussian model selection is that for a
family of nested linear models taking a
penalty of the form pen(D)= 1D, if 1is
below the critical value

A =0’/n
then the criterion « explodes » while the

choice 1 =21 leads to some optimal
oracle inequality (asymptotically).



Concentration inequalities

The proofs in the Gaussian case relie on
concentration inequalities for chi-square
distributions that are sharp enough to capture
the behavior of the empirical excess loss when
the dimension becomes large.

In particular, the explosion phenomenon
derives from lower tails inequalities.

In the general case such inequalities are much
more difficult to establish.




Crucial issue: behavior of the excess losses
Concentration of the empirical excess loss:
connected to empirical processes theory because

(508, =sup7, (5.7, (1)

Difficult problem: Talagrand’ s inequality does not
make directly the job (the 1/ n rate is hard to gain).
The main task (Boucheron and M. PTRF “11): prove
that the empirical excess loss concentrates around its
expectation at a rate which is of order of the
variance of 7,(s,..)-7,(%.) at point =35,

(typically smaller than the maximal variance).



e Concentration tools

Let & ,..£ be some independent copy of & ...£. Defining
7, =¢(&..8 E.6 ..¢ ) and setting

y = E{i(Z— zZ)

i=1

Efron-Stein’ s inequality asserts that
Var|Z|<E [Vﬂ

A Burkholder-type inequality (BBLM, AOP2005)
For every ¢ >2 such that |z|'is integrable, one has

q/2



Illustration
In the (bounded) regression case. If we consider

the regressogram estimator on some partition
with D pieces, it can be proved that

n‘ €n(SD,§D)—E[€H(SD,§D)]HQ < C[ gD +q}

In this case nE[f(ss)] can be shown to be

approximately proportional to D.
Application to model selection with adaptive

penalties: Arlot and M., JMLR 2009.




Saumard (EJS ‘13)

Extension to piecewise polynomials:

linear expansion+control of the remainder
term via empirical process technics
(Koltchinskii and Giné (2006)).

Conclusion: empirical excess loss and
expected loss are of the same order and
(approximately) proportional to dimension.



Selection of linear estimators



Arlot and Bach (2011)

Gaussian fixed design regression

s =AY=A s+A €
(example: the m-nearest neighbours
estimator). It is still relevent to consider
the penalized least square criterion to

select among some collection of such
estimators by minimizing

Y, (§m ) + pen(m)



One can extend the above analysis in this
context. This time the minimal penalty writes

pen_ (m)= 672(2Tr(An{Am)— 7r(4,))

while the optimal penalty has a possibly different
shape

20°

; Tr(Am)

pGIIOpt (WI) =



For projection estimators one recovers the same
formulas as before

pen (m) = GZD”” el (m) =2 Pen i (m)

And the same holds true for /71 -nearest neighbours
estimators if one sets D =n/m

But of course, it may perfectly happen (for ridge
regression for instance) that the optimal and
minimal penalties are no longer linked within a

factor 2.



Nevertheless one can still use the explosion property
of selection criterion

pen, (m)=A(2Tr(47 4 )~ Tr(4,))

below the critical level A" =c°/n , to estimate
A" from the data by A and finally use as a penalty

pen(m) = iTr(Am)



Lepski’s method

Lepski’s method is an alternative selection
method to penalized empirical risk minimization.
It has the advantage to be usable whatever the
loss function. Several versions are available,
here is one due to Goldensluger and Lepski.
Assume the collection to be ordered and define

B(m)=sup(¢(3,,.5,.)—pen(m"))

m'>m +



and then select /72 minimizing
B(m) + pen(m)

Is the concept of minimal penalty still relevent
for this method?

An answer can be provided in the context

which widely used by Lepski and his co-
authors: kernel density estimation



Kernel density estimation
Let us consider the density (with respect to
Lebesgue measure on the real line) estimation
framework. Given some convolution « kernel »
K on the real line and some collection (grid) of
bandwidths {/,,,m € 91 } the corresponding
collection of kernel density estimators is defined

by .
§m (x): ;Khm (x—Xl_)

<5

with K, =

S| =



Joint work with Claire Lacour (SPA‘15). For
bandwith selection of kernel density

estimators, for the squared L,-loss, we can
prove that a minimal penalty does exist

The existence of an optimal penalty is not that
clear and we decided to shift to some close in
spirit but different method.

2

K

hm 2

n

pen . (WL) —



PCO: A new selection method

In the process of understanding how to calibrate
Goldenshluger-Lepski’s method we discovered
that it can be much simplified. Assume that
there exists some « worse/best » estimator s, as

far as the « variance/bias » trade off is
concerned and consider this time

B(m) - €(§m’§N)



We introduce the Penalized Comparison to
Overfitting which consists of selecting
minimizing

B(m)+pen(m)

We have been able to show (joint work with C.
Lacour and V. Rivoirard (Sankhya’17)) that for
bandwith selection of kernel density
estimators, for the square 7, -loss, taking the
penalty as

2 2

‘K ‘K _K
penl(m):/l | | I S

n n




leads to a minimal penalty for the critical
value 1 =0 , while the value 1=1
corresponds to an optimal choice of the
penalty. Simulations are confirming the theory

(which remains valid in the multivariate case).



Open problems



= Several algorithms (CART, stepwise
variable selection, Lasso) have been
designed to oversome this difficulty,
leading to the natural issue of selecting
a model among a data dependent list.
Empirical studies indicate that the
slope heuristics behaves well (Thesis:
Meynet (2012), Devijver (2015)).

= We do not know yet what are the
limitations of PCO (different loss
functions, different kind of estimators).



