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Functional estimation  
•  The basic problem 
Construct estimators of some function s, using  
as few prior information on s as possible. Some  
typical frameworks are the following. 
•  Density estimation 
              i.i.d. sample with unknown density s 

with respect to some given measure     . 
•  Regression framework 
One observes                   
With 
The explanatory variables      are fixed or i.i.d. 
The errors      are i.i.d. with 
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Estimator selection 
A versatile approach to functional estimation 
consists of considering some (possibly huge) 
collection of estimators                        and 
define some genuine selection rule     such 
that                     is as close as possible to the 
oracle 
 
where    is some given loss function. 
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In many cases the selection procedure involves 
some hyperparemeter    and most of the 
positive results ensuring that the selected 
estimator behaves approximately like an oracle 
are proved under the constraint that    is larger 
than some quantity which is more or less 
precisely known. The choice of    is left to the 
user…  
Message: Negative results can be helpful to 
choose     from the data. 
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Model Selection 



Empirical Risk Minimization (ERM) 
Consider some empirical criterion (based on the  
data)       such that  
 
achieves a minimum at point           and the related  
loss                                       .  
 
The ERM estimator     minimizes     over some  
« model »      . In this case the expected risk 
 
 
reflects the quality of model      . 
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•  Maximum likelihood estimation (MLE) 
 
Context: density estimation (i.i.d. setting to be  
simple)               i.i.d. sample with distribution   
 
with 
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•  Least squares estimation (LSE) 
 
Regression 
 
 
with 
 
 
 
Density 
 
with   
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Model selection via penalization 

Consider some empirical criterion      . 
•  Framework: Consider some (at most countable) 

collection of models              . Each model     is 
represented by     : ERM on model 

•  Purpose: select the « best » estimator among 
the collection          .             

•  Procedure: Given some penalty function 
                       , one takes     minimizing                              
 
   over      and one defines the selected estimator       
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    Origin: Akaike (log-likelihood), Mallows (least 
squares) 

           The penalty function is proportional to the 
number of parameters     of the model     . 

                  Akaike : 
                  Mallows’    :              ,           
    
           The heuristics (Akaike (‘73)) leading to the 

choice of the penalty function         relies on the 
assumption: the dimensions and the number of 
the models are bounded w.r.t. n and n tends to 
infinity. 
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•   The classical asymptotic approach 
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BIC (log-likelihood) criterion Schwartz (‘78) : 

-  aims at selecting a « true » model rather than 
mimicking an oracle 

-  also asymptotic, with a penalty which is 
proportional to the number of parameters: 

  
ln n( )Dm

/ n

•   The non asymptotic approach 
Barron,Cover (’91) for discrete models, Birgé, 
Massart (‘97) and   Barron, Birgé, Massart (’99)) 
for general models. Differs from the asymptotic 
approach on the following points 

 



•  The number as well as the dimensions of the 
models may depend on n. 

•  One can choose a list of models because of its 
approximation properties: 

         wavelet expansions, trigonometric or 
         piecewise polynomials, artificial neural  
         networks etc  
    It may perfectly happen that many models of the 

list have the same dimension and in our view, the 
« complexity » of the list of models is typically 
taken into account. Shape of the penalty 

                                                             
   
    with                   .  
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How to penalize? 



Akaike’s heuristics revisited 
   The main issue is to remove the asymptotic 

approximation argument in Akaike’s heuristics  
 
 
     
     
   minimizing                             , is equivalent to 
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Ideally:  
In order to (approximately) minimize 
   
The key : Evaluate the excess risks 
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This is the very point where the various 
approaches diverge. Akaike’s criterion relies 
on the asymptotic approximation    
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while for Mallows’  pC
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   The method initiated in Birgé, Massart (’97) relies on 
upper bounds for the sum of the excess risks which 
can be written as 
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These bounds derive from concentration inequalities 
for the supremum of the appropriately weighted 
empirical process 
 
 
 The prototype being Talagrand’s inequality (’96) for 
empirical processes.  
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ω t,u( ) ,t ∈SD



This approach has been fruitfully used in several 
works. Among others: Baraud (’00) and (’03) for 
least squares in the regression framework, 
Castellan (’03) for log-splines density estimation, 
Patricia Reynaud (’03) for poisson processes, etc…  



   Main drawback: typically involve some 
unkown multiplicative constant which may 
depend on the unknown distribution 
(variance of the regression errors, supremum 
of the density, classification noise etc…).  
Needs to be calibrated… 

 
 

             

Slope heuristics: one looks for some 
approximation of      (typically) of the form     
     . When D is large,            is almost 
constant, it suffices to « read »    as a slope 
on the graph of          . One chooses the 
final penalty as 
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The factor 2 which is finally used  reflects the 
hope that the excess risks  
 
   
 
are of the same order of magnitude. If this is  
the case then 
 
 
 

 
 
 
 
 

« optimal » penalty=2 * « minimal » penalty 
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Data driven penalization 
        
1.  Compute the ERM    on the union of models 

with  D parameters  
2.  Use theory to guess the shape of the 

penalty pen(D), typically pen(D)=λD (but 
λD(2+ln(n/D)) is another possibility) 

3.  Estimate λ from the data by multiplying by 
2 the smallest value for which the 
penalized criterion explodes. 

  ŝD

« Recipe »  

Theoretical validation in Birgé and M. (’07) for 
some Gaussian model selection issues. 

Implemented by Lebarbier (‘05) for multiple 
change points detection.  

 



Celeux, Martin, Maugis  

Adjustment of the slope Comparison  

•  Gene expression data: 1020 genes and 20 experiments 

•  Mixture models   
 

•  Choice of K ?  Slope heuristics: K=17    BIC: K=17    ICL: K=15 



Mathematical results 



Birgé, M. (‘07) 

One of the results that we proved for 
Gaussian model selection is that for a 
family of nested linear models taking a 
penalty of the form                  , if   is 
below the critical value     
 
then the criterion « explodes » while the 
choice           leads to some optimal 
oracle inequality (asymptotically). 
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Concentration inequalities 
The proofs in the Gaussian case relie on 
concentration inequalities for chi-square 
distributions that are sharp enough to capture 
the behavior of the empirical excess loss when 
the dimension becomes large. 
In particular, the explosion phenomenon 
derives from lower tails inequalities. 
In the general case such inequalities are much 
more difficult to establish. 

 



Crucial issue: behavior of the excess losses 
Concentration of the empirical excess loss:  
connected to empirical processes theory because 
 
 
Difficult problem: Talagrand’s inequality does not 
make directly the job (the        rate is hard to gain).  
The main task (Boucheron and M. PTRF ‘11): prove 
that the empirical excess loss concentrates around its 
expectation at a rate which is of order of the 
variance of                      at point            
(typically smaller than the maximal variance). 
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Let         be some independent copy of       . Defining                                        
                               and setting 
 
 
Efron-Stein’s inequality asserts that   
 
  
A Burkholder-type inequality (BBLM, AOP2005) 
 For every         such that      is integrable, one has  
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•  Concentration tools 
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   Illustration  
In the (bounded) regression case. If we consider  
the regressogram estimator on some partition  
with      pieces, it can be proved that 
 
 
In this case                   can be shown to be   
approximately proportional to    .  
Application to model selection with adaptive  
penalties: Arlot and M., JMLR 2009.  
. 
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Saumard (EJS ‘13) 

Extension to piecewise polynomials: 
linear expansion+control of the remainder 
term via empirical process technics 
(Koltchinskii and Giné (2006)). 
Conclusion: empirical excess loss and 
expected loss are of the same order and 
(approximately) proportional to dimension.  



Selection of linear estimators 



Arlot and Bach (2011) 

Gaussian fixed design regression 
 
(example: the    -nearest neighbours 
estimator). It is still relevent to consider 
the penalized least square criterion to 
select among some collection of such 
estimators by minimizing 
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One can extend the above analysis in this 
context. This time the minimal penalty writes 
 
 
 

 
 
 

  
penmin m( ) = σ 2

n
2Tr Am

T Am( )−Tr Am( )( )

  
penopt m( ) = 2σ 2

n
Tr Am( )

while the optimal penalty has a possibly different 
shape 



For projection estimators one recovers the same 
formulas as before 
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And the same holds true for    -nearest neighbours 
estimators if one sets Dm = n /m

But of course, it may perfectly happen (for ridge 
regression for instance) that the optimal and 
minimal penalties are no longer linked within a 
factor 2. 

 m



Nevertheless one can still use the explosion property 
of selection criterion 
 
 
 
below the critical level                   , to estimate  
     from the data by     and finally use as a penalty   
 

 
 

  
penλ m( ) = λ 2Tr Am

T Am( )−Tr Am( )( )

  pen m( ) = λ̂Tr Am( )

λ* =σ 2 / n
λ*  λ̂



Lepski’s method 

Lepski’s method is an alternative selection 
method to penalized empirical risk minimization. 
It has the advantage to be usable whatever the 
loss function. Several versions are available, 
here is one due to Goldensluger and Lepski. 
Assume the collection to be ordered and define 
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and then select     minimizing 
 
 
 
Is the concept of minimal penalty still relevent 
for this method? 
 
An answer can be provided in the context 
which widely used by Lepski and his co-
authors: kernel density estimation 
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   Kernel density estimation  
Let us consider the density (with respect to  
Lebesgue measure on the real line) estimation 
framework. Given some convolution « kernel »  
    on the real line and some collection (grid) of  
bandwidths                     the corresponding  
collection of kernel density estimators is defined  
by 
 
 
with  
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Joint work with Claire Lacour (SPA‘15). For 
bandwith selection of kernel density 
estimators, for the squared     -loss, we can 
prove that a minimal penalty does exist 
 
 
 
The existence of an optimal penalty is not that 
clear and we decided to shift to some close in 
spirit but different method. 
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PCO: A new selection method 

In the process of understanding how to calibrate 
Goldenshluger-Lepski’s method we discovered 
that it can be much simplified. Assume that 
there exists some « worse/best » estimator     as 
far as the « variance/bias » trade off is 
concerned and consider this time 
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We introduce the Penalized Comparison to 
Overfitting which consists of selecting      
minimizing 
 
 
We have been able to show (joint work with C. 
Lacour and V. Rivoirard (Sankhya’17)) that for 
bandwith selection of kernel density 
estimators, for the square      -loss, taking the 
penalty as 

m̂

  B m( ) + pen m( )

L2

  
penλ m( ) = λ

Khm 2

2

n
−

KhN
− Khm 2

2

n



leads to a minimal penalty for the critical 
value          , while the value          
corresponds to an optimal choice of the 
penalty. Simulations are confirming the theory 
(which remains valid in the multivariate case). 

 λ = 0  λ = 1



Open problems 



§  Several algorithms (CART, stepwise 
variable selection, Lasso) have been 
designed to oversome this difficulty, 
leading to the natural issue of selecting 
a model among a data dependent list. 
Empirical studies indicate that the 
slope heuristics behaves well (Thesis: 
Meynet (2012), Devijver (2015)). 

§  We do not know yet what are the 
limitations of PCO (different loss 
functions, different kind of estimators). 


