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OUTLINE OF THE LECTURE:

Geometric interpretation of the Euler equations for
incompressible fluids after V.I. Arnold 1966.
From combinatorics to generalized
incompressible flows.
Generalized least action principles,
with probability and convexity tools.
(REVIEW: 1989-2012).
What about the initial value problem? (NEW!)
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Euler, 200 BC (*)

BC
(*) Before Christian...
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GEOMETRY OF THE EULER MODEL OF
INCOMPRESSIBLE FLOWS.

According to V.I. Arnold 1966, an incompressible
fluid, confined in a domain D and moving
according to the Euler equations, just follows a
(constant speed) geodesic curve along the
manifold of all possible incompressible maps of D.
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POLAR FACTORIZATION OF A PERIODIC MAP

 

Three maps of the (periodized) square: only one is incompressible.
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From a more concrete and computational
viewpiont, it is worth considering the discrete
version of an incompressible motion inside D:

the permutation of N sub-cells of equal volume.
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From Combinatorics to Fluids (Thanks to Mirko Rokyta, Charles University)!
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Example of a discrete incompressible motion
with 7 time steps and 12 sub-cells (in line)

1 2 3 4 5 6 7 8 9 10 11 12

2 1 4 3 6 5 8 7 10 9 12 11
2 4 1 6 3 8 5 10 7 12 9 11
4 2 6 1 8 3 10 5 12 7 11 9
6 4 8 2 10 1 12 3 11 5 9 7
6 8 4 10 2 12 1 11 3 9 5 7
8 6 10 4 12 2 11 1 9 3 7 5
8 10 6 12 4 11 2 9 1 7 3 5

7 time steps have been performed.
Time is on vertical axis and space on horizontal axis.
The trajectories of 2 selected sub-cells (4 and 5) are drawn in red.
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"transportation cost" to reach the final
permutation

1 2 3 4 5 6 7 8 9 10 11 12

2 1 4 3 6 5 8 7 10 9 12 11
2 4 1 6 3 8 5 10 7 12 9 11
4 2 6 1 8 3 10 5 12 7 11 9
6 4 8 2 10 1 12 3 11 5 9 7
6 8 4 10 2 12 1 11 3 9 5 7
8 6 10 4 12 2 11 1 9 3 7 5
8 10 6 12 4 11 2 9 1 7 3 5

The "cost" is obtained by adding up the squares of all
displacements at all steps. Here: 12+10+12+42+10+12+10=108.
This is the "cost" to reach the final permutation in 7 steps. Notice
that step 4 costs a lot!
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Obviously, there is at least a solution leading to the
final permutation at the lowest possible cost, among

the... (12!)6 ∼ 1052 possible candidates!

This is the discrete version of a minimizing geodesic
along the semi-group of all volume preserving maps.

Presumably, passing to the limit (in the number of
cubes and steps), we should recover the motion of

an incompressible fluid obeying the Euler equations.
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Exercise: let us try to find a discrete geodesic
leading to permutation 12-11-10-9-8-7-6-5-4-3-2-1
using twelve steps

1 2 3 4 5 6 7 8 9 10 11 12

12 11 10 9 8 7 6 5 4 3 2 1
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LET US TRY TO MOVE BY EXCHANGING
NEIGHBORS...

1 2 3 4 5 6 7 8 9 10 11 12
2 1 4 3 6 5 8 7 10 9 12 11
2 4 1 6 3 8 5 10 7 12 9 11

12 11 10 9 8 7 6 5 4 3 2 1
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FINALLY ARRIVED...AFTER 12 STEPS.

1 2 3 4 5 6 7 8 9 10 11 12
2 1 4 3 6 5 8 7 10 9 12 11
2 4 1 6 3 8 5 10 7 12 9 11
4 2 6 1 8 3 10 5 12 7 11 9
4 6 2 8 1 10 3 12 5 11 7 9
6 4 8 2 10 1 12 3 11 5 9 7
6 8 4 10 2 12 1 11 3 9 5 7
8 6 10 4 12 2 11 1 9 3 7 5
8 10 6 12 4 11 2 9 1 7 3 5
10 8 12 6 11 4 9 2 7 1 5 3
10 12 8 11 6 9 4 7 2 5 1 3
12 10 11 8 9 6 7 4 5 2 3 1
12 11 10 9 8 7 6 5 4 3 2 1
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LET US FOLLOW THE TRAJECTORIES OF TWO
NEIGHBOURS: 4 AND 5

1 2 3 4 5 6 7 8 9 10 11 12
2 1 4 3 6 5 8 7 10 9 12 11
2 4 1 6 3 8 5 10 7 12 9 11
4 2 6 1 8 3 10 5 12 7 11 9
4 6 2 8 1 10 3 12 5 11 7 9
6 4 8 2 10 1 12 3 11 5 9 7
6 8 4 10 2 12 1 11 3 9 5 7
8 6 10 4 12 2 11 1 9 3 7 5
8 10 6 12 4 11 2 9 1 7 3 5
10 8 12 6 11 4 9 2 7 1 5 3
10 12 8 11 6 9 4 7 2 5 1 3
12 10 11 8 9 6 7 4 5 2 3 1
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Is it really the lowest possible cost?

◦ ◦ ◦ O O ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ O ◦ ◦ O ◦ ◦ ◦ ◦ ◦ ◦

◦ O ◦ ◦ ◦ ◦ O ◦ ◦ ◦ ◦ ◦

O ◦ ◦ ◦ ◦ ◦ ◦ O ◦ ◦ ◦ ◦

O ◦ ◦ ◦ ◦ ◦ ◦ ◦ O ◦ ◦ ◦

◦ O ◦ ◦ ◦ ◦ ◦ ◦ ◦ O ◦ ◦

◦ ◦ O ◦ ◦ ◦ ◦ ◦ ◦ ◦ O ◦

◦ ◦ ◦ O ◦ ◦ ◦ ◦ ◦ ◦ ◦ O
◦ ◦ ◦ ◦ O ◦ ◦ ◦ ◦ ◦ ◦ O
◦ ◦ ◦ ◦ ◦ O ◦ ◦ ◦ ◦ O ◦

◦ ◦ ◦ ◦ ◦ ◦ O ◦ ◦ O ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ O O ◦ ◦ ◦
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’fort.12’

ANYWAY, IT IS EASY TO "PASS TO THE LIMIT"
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AS A MATTER OF FACT, THIS IS NOT THE BEST
SOLUTION. THE COST CAN BE REDUCED BY
FACTOR π2/12 ∼ 0.8225
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CALCUL APPROCHE AVEC 4000 CUBES ET 16 ETAPES

’fort.10’

NUMERICS WITH 4000 CUBES AND 16 STEPS
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SOLUTION EXACTE

’fort.12’

EXACT SOLUTION (30 AC)
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Incompressible fluids: a probabilist description

A generalized incompressible flow on a compact
domain D is defined as a probability measure µ on
paths t ∈ [0,T ]→ ξt ∈ D, such that:

i) µ has finite energy (*): Eµ
∫ T

0
1
2 |

dξt
dt |

2dt < +∞,
ii) (incompressibility) for each t ∈ [0,T ], the projection
µt is the (normalized) Lebesgue measure LD on D.

(*) Of course, such measures are very different from Wiener measures.
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Generalized solutions to the Euler model

We say that a generalized incompressible flow (GIF) µ
solves the Euler model if there is a scalar field p
defined on ]0,T [×D, sufficiently smooth, such that,
µ−a.s., every path ξ satisfies

d2ξt

dt2 = −(∇p)(t , ξt), ∀t ∈]0,T [.

Of course, each classical solution V (t , x) generates a generalized solution µ by

∀Φ, EµΦ[t → ξt ] =

∫
D

Φ[t → Xt (a)]da; ∂tXt (a) = V (t ,Xt (a)), X0(a) = a, ∀a ∈ D.
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Of course, each classical solution V (t , x) generates a generalized solution µ by

∀Φ, EµΦ[t → ξt ] =

∫
D

Φ[t → Xt (a)]da; ∂tXt (a) = V (t ,Xt (a)), X0(a) = a, ∀a ∈ D.
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The generalized least action principle (31 AC)

Let D be a convex body and (µ,p) be a generalized
solution to the Euler model.
Assume D2

xp(t , x) ≤ rId uniformly for some finite r .

Then, for all 0 ≤ t0 < t1 ≤ T , µ uniquely minimizes

Eµ
∫ t1

t0

1
2
|dξt

dt
|2dt ,

among all generalized incompressible flows (GIF) µ̃
with same end-points: µ̃t0,t1 = µt0,t1, as (t1 − t0)2r < π2.
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The converse part of the action principle (35 AC)

Let µ0,T be a probability measure on D × D such that
µ0 = µT = LD. Then, µ0,T is always achieved by a
generalized incompressible flow µ of minimal energy
and there is a unique distribution ∇p(t , x) such that

Eµ
∫ T

0

(
dξt

dt
∂tA(t , ξt ) + (

dξt

dt
⊗ dξt

dt
) · ∇A(t , ξt )

)
dt =< ∇p,A >, ∀A ∈ D(int([0,T ]× D)).

NB. There is no such result in the classical framework (Shnirelman1985).

Proof: treat the problem as a continuous multi-marginal Monge-Kantorovich problem.
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Euler, Monge, Kantorovich
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Regularity of the pressure gradient (41-54 AC)

In the proof, the existence of a unique ∇p requires
special efforts (with respect to more standard optimal
transport or MFG problems).
Main open question: is p semi-concave? So far, we
only know (*) ∇p ∈ L2

loc(Mloc) and we have example
where p is not better than locally semi-concave.
(*) after Y.B. CPAM 1999, square integrability in time due to Ambrosio-Figalli 2008.
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What about the initial value problem?
A priori, convex minimization techniques are hopeless
for the initial value problem (IVP).
For a generalized incompressible flow (GIF) µ with finite energy Eµ

∫ T
0

1
2 |

dξt
dt |

2dt < +∞,

it does not make sense to prescribe the initial velocity dξt
dt |t=0 for µ−a.e. paths ξ.

However, we are going to see that the initial bulk
velocity makes sense for a GIF of minimal energy.
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Initial bulk velocity of a GIF of minimal energy
For a GIF µ of minimal energy, we already know

Eµ
∫ T

0

(
dξt

dt
∂tA(t , ξt ) + (

dξt

dt
⊗ dξt

dt
) · ∇A(t , ξt )

)
dt =< ∇p,A > ∀A ∈ D(int([0,T ]× D)).

This suggests to define the initial bulk velocity V0 by

< V0,A(0, ·) >= Eµ
∫ T

0

(
dξt

dt
∂tA(t , ξt ) + (

dξt

dt
⊗ dξt

dt
) · ∇A(t , ξt )

)
dt ,

where A are test fields chosen to be divergence-free
(in order to kill the pressure term) without vanishing at
t = 0 (to be able to "feel" V0).
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A minimization problem for the IVP (59 AC)
Given a divergence-free velocity field V0, we look for a
GIF µ of minimal energy with initial bulk velocity V0.

This reads as the saddle-point problem:

inf
µ≥0

sup
A,ϕ

< V0,A(0, ·) > +

Eµ
∫ T

0
(
1
2
|dξt

dt
|2 − (

dξt

dt
⊗ dξt

dt
) · B(t , ξt)−

dξt

dt
· E(t , ξt))dt

where E = ∂tA +∇ϕ, B = 1
2 (∇A +∇AT ), subject to ∇ · A = 0, A(T , ·) = 0 (to take

care of V0), while ϕ enforces the incompressibility condition.
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The dual (convex) minimization problem

inf
(E ,B)

∫
[0,T ]×D

E · (2Id + 4B)−1 · E + V0 · E

subject to B(t = T , ·) = 0, ∂tBij =
1
2

(∂jEi + ∂iEj ) + ∂i∂j (−4)−1∂k Ek .

is always solvable, uniquely recovers smooth classical
solutions to the Euler equations for short enough T ,
and looks similar to the MK2 optimal transport problem

inf
ρ,Q

∫
[0,T ]×D

Q · ρ−1 ·Q, subject to ∂tρ+ ∂iQ i = 0, ρ prescribed at t = 0,T .
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