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Chapter 1

Reminder for martingales
indexed by N

To integrate processes Hs(ω) against BM ”dBs(ω)” we will assume that
H : [0,+∞) 7→ R, depends is ”previsible”. Roughly it means that H(t, .) is
measurable with respect to the sigma-field σ(Xs, s < t) of the past. Then
the time dependence of t 7→

∫ t
0 HsdBs, will be achieved so that

∫ t
0 HsdBs

is a martingale. First we recall results for martingales indexed by N espe-
cially convergence results. Then we will extend these results to martingales
indexed by [0,+∞). The main issue in this case is that [0,+∞) is not de-
numerable.

1 Definitions and first examples

Definition 1.1. A filtration on (Ω,F ,P) is a non-decreasing sequence of
sub-σ-fields of F :

F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ · · · ⊂ F .

One says that (Ω,F , (Fn)n≥0 ,P) is a filtered probability space.

Example 1.1. Let (Ω,F ,P) = ([0, 1[,B([0, 1[), λ), where λ is Lebesgue mea-
sure. The filtration (Fn)n≥0 defined by

Fn = σ

([
i

2n
,
i+ 1

2n

[
, i = 0, . . . , 2n − 1

)
, n ≥ 0

is called the dyadic filtration.
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If the parameter n denotes time, then Fn is interpreted as available
information up to time n.

Example 1.2. For a stochastic process (Xn)n≥0, we define its natural fil-
tration FX = (FX

n )n≥0 by: for all n ≥ 0,

FX
n = σ(X0, X1, · · · , Xn),

which is the smallest σ-field such that X0, . . . , Xn are measurable.

Definition 1.2. We say that a stochastic process X = (Xn)n≥0 is adapted
to the filtration (Fn)n≥0, if for all n ≥ 0, Xn is Fn-measurable. We say that
a stochastic process (Xn)n≥0 is adapted if it is adapted to some filtration.

A stochastic process is obviously adapted to its natural filtration.

Remark 1.1. If (Fn)n≥0 and (Gn)n≥0 are two filtrations such that Gn ⊂ Fn

for all n ≥ 0, and if (Xn)n≥0 is adapted to (Gn)n≥0, then (Xn)n≥0 is adapted
to (Fn)n≥0.

Definition 1.3. A filtration on (Ω,F ,P) is a non-decreasing sequence of
sub-σ-fields of F :

F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ · · · ⊂ F .

One says that (Ω,F , (Fn)n≥0 ,P) is a filtered probability space.

Example 1.3. For a stochastic process (Xn)n≥0, we define its natural fil-
tration FX = (FX

n )n≥0 by: for all n ≥ 0,

FX
n = σ(X0, X1, · · · , Xn),

which is the smallest σ-field such that X0, . . . , Xn are measurable.

Definition 1.4. We say that a stochastic process X = (Xn)n≥0 is adapted
to the filtration (Fn)n≥0, if for all n ≥ 0, Xn is Fn-measurable. We say that
a stochastic process (Xn)n≥0 is adapted if it is adapted to some filtration.

A stochastic process is obviously adapted to its natural filtration.

Remark 1.2. If (Fn)n≥0 and (Gn)n≥0 are two filtrations such that Gn ⊂ Fn

for all n ≥ 0, and if (Xn)n≥0 is adapted to (Gn)n≥0, then (Xn)n≥0 is adapted
to (Fn)n≥0.
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Definition 1.5. Let X = (Xn)n be an adapted process on filtered probability
space (Ω,A, (Fn, n ∈ N),P) such that for all n, Xn is integrable.

The process X is a martingale if for all n,

E[Xn+1/Fn] = Xn, almost surely.

The process Xis a sub-martingale if for all integer n n,

E[Xn+1/Fn] ≥ Xn, almost surely.

The process X is a upper martingale if for all integer n,

E[Xn+1/Fn] ≤ Xn, almost surely.

Examples

(See exercises at the end of the chapter for some proofs of the following
properties are left to the reader.)

1. If X ∈ L1(Ω,A), Xn = E[X/Fn] is a martingale.This process is also
uniformly integrable.

2. (Fundamental example.) Let (Zn, n ∈ N∗) be a sequence of in-
dependent and integrable random variables and X0 be an integrable
random variable independent of the sequence (Zn). (Most of the time,
X0 is constant.) Let Xn := X0 +

∑n
i=1 Zi. Then the filtrations FX

n

and Fn = σ(X0, Z1, . . . , Zn) are equal and for this filtration :

(a) if for all integer n, E(Zn) = 0, X is a martingale;

(b) if for all integer n, E(Zn) ≥ 0, X is a sub martingale;

(c) if for all integer n E(Zn) ≤ 0, X is an upper martingale;

(d) if all r.v. Zi have same expectation m, Xn − nm is a martingale.

3. A special case of the example 2 comes from the game theory. In this
case the distribution of the r.v. Zn is the Bernoulli distribution with
parameter p : P(Zi = 1) = p, P(Zi = −1) = 1− p. with values +1 et
−1. In this case Xn is the fortune of the player after n bets, when its
initial fortune is X0. The process (Mn)n where Mn = Xn − n(2p− 1)
is a martingale for its natural filtration FX .
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4. In the example 2, if we assume that E[exp(aZn)] := exp(rn) exists and
is finite, let Rn = r1 + · · ·+ rn. (Here R0 = 0.)

Then Mn = exp(aXn − Rn) is a martingale for the natural filtration
FX .

A process X can be a martingale (resp. upper, resp sub) with respect
to several filtrations.

Proposition 1.1. If X is a martingale (resp. a upper-martingale, a sub-
martingale) with respect to a filtration (Fn) and the process X is adapted to
an other filtration (Gn) smaller than(Fn) (that means for all n, Gn ⊂ Fn),
Then X is a martingale (resp. a upper-martingale, a sub-martingale)with
respect to the filtration Gn. A martingale (resp. a upper-martingale, a sub–
martingale) is a martingale (resp. a upper-martingale, a sub–martingale)with
respect to its natural filtration .

Proof. Use successive conditioning. .

We can also increase filtrations by adding to each σ fields Fn an inde-
pendent σ field:

Proposition 1.2. Let (Xn) be a martingale (resp. a sub-martingale, an
upper-martingale), with respect to a filtration Fn. Let B be a σ field inde-
pendent of F∞, and let Gn = Fn ∨ B. Then (Xn) is a martingale (resp. a
sub-martingale, an upper-martingale) with respect to the filtration Gn.

Proof. Left to the reader.

Notation 1.1. In the sequel

(∆X)n := Xn −Xn−1 (1.1)

is the increments process of (Xn).

Proposition 1.3. Let X be a F-martingale. Then

1. ∀n ≥ 0, ∀k ≥ 0, E[Xn+k/Fn] = Xn; E[Xn] = E[X0].

2. If the martingale is square integrable the increments (∆X)n of X are
orthogonal :

n ̸= m =⇒ E[(∆X)n(∆X)m] = 0.
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3. If X is a upper-martingale, −X is a sub-martingale.

4. The set of martingales with respect to a given filtration is a linear
space.

5. If X is a martingale and ϕ is a convex application such that Yn =
ϕ(Xn) is integrable then , Yn is a sub-martingale.

6. If X is a sub-martingale, and if ϕ is increasing and convex, ϕ(X) is a
sub-martingale if ϕ(Xn) is integrable.

Proof. The proof is left to the reader.

The point 1 relies on successive conditioning and induction.

The point 2 is obtained by conditioning by Fm−1 for n < m.

The points 3 et 4 are immediate.

The points 5 et 6 rely on Jensen conditionnal inequality.

For square integrable martingale, we have

Proposition 1.4. If Mn is a square integrable martingale

∀n ≤ p, E[(Mp −Mn)
2] =

p∑
k=n+1

E[(∆M)2k].

Proof. Apply the property of orthogonal increments

2 of Proposition 1.3.

Corollary 1.1. A martingale bounded in L2 converges in L2.

Proof. By definition, since the martingale is bounded in L2 there exists a
constant C such that for all n,

E(X2
n) ≤ C2.

Then,

E(Xn −X0)
2 ≤ 4C2,
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and Proposition 1.4 allows to prove that the series∑
k

E[(∆M)2k]

converges. As a consequence,

lim
n→∞

sup
p≥q≥n

p∑
q

E[(∆M)2k] = 0.

Using the previous proposition again

lim
n

sup
p,q≥n

E(Mp −Mq)
2 = 0,

and the sequence is Cauchy in L2 and converges.

2 Doob’s decomposition

Definition 1.6. Let (An)n≥0 be a process indexed by N, A is predictable
with respect to the sigma field Fn if ∀n An is Fn−1measurable.

Theorem 1.1. D Doob ’s decomposition : Let X be a sub-martingale ;
there exists a martingale M and a predictable increasing process A, null at
0, unique, such that for all integer n, Xn = Mn +An.

The process A is called “compensator” of X.

Proof. Let A0 = 0 and M0 = X0. For n ≥ 1, define An in the following way
: let ∆n = E(Xn/Fn−1)−Xn−1, and

An = ∆1 + · · ·+∆n.

MoreoverMn = Xn − An. By construction An is predictable, and since Xn

is a sub-martingale, ∆n ≥ 0, and An is increasing. Moreover,

E(Mn+1/Fn) = E(Xn+1/Fn)−An+1 = Xn +∆n −An+1 = Mn.

and Mn is a martingale.
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Uniqueness comes from the fact that if such a decomposition exists then

E(Xn+1 −Xn/Fn) = An+1 −An,

This characterize An if A0 = 0.

In the particular case of square integrable martingale we obtain the fol-
lowing.

Proposition 1.5. Let Mn be a square integrable martingale. Recall (nota-
tion 1.1) and (∆M)n = Mn −Mn−1 and let

Un = E[(∆M)2n/Fn−1).

Then M2
n −

∑n
k=1 Uk is a martingale.

Proof. It is the Doob’s decomposition applying to the sub-martingale M2
n,

since

E[(∆M)2n/Fn−1) = E(M2
n/Fn−1]−M2

n−1.

3 Stopping times

3.1 Definition

Definition 1.7. A random variable T : Ω → N∪ {+∞} is called a stopping
time (with respect to the filtration (Fn)n≥0) if for all n ≥ 0,

{T ≤ n} ∈ Fn.

Remark 1.3. Since {T = n} = {T ≤ n} \ {T ≤ n − 1}, T is a stopping
time if and only if for all n ≥ 0,

{T = n} ∈ Fn.

Remark 1.4. A stopping time is thus a random time, which can be inter-
preted as a stopping rule for deciding whether to continue or stop a process
on the basis of the present information and past events, for instance playing
until you go broke or you break the bank, etc. . .
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Example 1.4. 1. If T = n a.s., then clearly T is a stopping time.

2. Let (Xn)n≥0 be an adapted stochastic process, and consider the first
time Xn reaches the borel set A:

TA = inf{n ≥ 0 |Xn ∈ A},

with the convention that inf ∅ = +∞. It is called the hitting time of
A. Then TA is a stopping time. Indeed,

{TA = n} = {X0 ̸∈ A,X1 ̸∈ A, . . . ,Xn−1 ̸∈ A,Xn ∈ A}

=

n−1⋂
k=0

{Xk ̸∈ A} ∩ {Xn ∈ A} ∈ Fn.

3. Show that τA = sup{n ≥ 1 |Xn ∈ A} the last passage time in A is not
a stopping time in general.

Recall the notations: x ∧ y = inf(x, y) and x ∨ y = max(x, y).

Proposition 1.6. If S and T are two stopping times, then S ∧ T , S ∨ T
and S + T are also stopping times.

Proof. Writing

{S ∧ T ≤ n} = {S ≤ n} ∪ {T ≤ n}

and

{S ∨ T ≤ n} = {S ≤ n} ∩ {T ≤ n}

gives the result for S ∧ T and S ∨ T . For S + T , we write:

{S + T ≤ n} =
⋃
k≤n

{S = k} ∩ {T ≤ n− k} ∈ Fn,

since Fk ⊂ Fn for all k ≤ n.

Remark 1.5. In particular, if T is a stopping time, then for all n ≥ 0, T ∧n
is a bounded stopping time.

Proposition 1.7. If (Tk)k is a sequence of stopping times, then infk Tk,
supk Tk, lim infk Tk and lim supk Tk are also stopping times.

Proof. Exercise.
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Proposition 1.8. Let T be a stopping time. Then,

FT = {A ∈ F | ∀n ≥ 0, A ∩ {T = n} ∈ Fn}

is a σ-field, called the σ-field of T -past.

Remark 1.6. Obviously, T is FT -measurable.

Proof. It is obvious that Ω ∈ FT . If A ∈ FT , then for all n,

Ac ∩ {T = n} = {T = n} \A = {T = n} \ (A ∩ {T = n}) ∈ Fn,

hence Ac ∈ FT . If (Ak)k is countable collection of FT -mesurable set, then(⋃
k

Ak

)
∩ {T = n} =

⋃
k

(Ak ∩ {T = n}) ∈ Fn,

hence
⋃

k Ak ∈ FT .

Proposition 1.9. Let S and T be two stopping times such that S ≤ T .
Then, FS ⊂ FT .

Proof. Let A ∈ FS . Then, for all n ≥ 0,

A∩{T = n} = A∩{S ≤ n}∩{T = n} =
n⋃

k=0

A∩{S = k}∩{T = n} ∈ Fn.

Definition 1.8. Let (Xn)n≥0 be an adapted stochastic process and T a stop-
ping time. If T < ∞ a.s., we define the random variable XT by

XT (ω) = XT (ω)(ω) = Xn(ω) if T (ω) = n.

Note that XT is FT -measurable, since

{XT ∈ B} ∩ {T = n} = {Xn ∈ B} ∩ {T = n} ∈ Fn,

for any Borel set B.



12 CHAPTER 1. REMINDER FOR MARTINGALES INDEXED BY N

4 Martingales transformations

Proposition 1.10. Let (Xn) be an adapted process and (Hn) be a predictable
process such that for all n, the r.v. Hn(Xn−Xn−1) is integrable. Let (H.X)
be the process defined by

(H.X)n = H0X0 +
n∑

k=1

Hk(Xk −Xk−1).

Then, if X is a martingale, (H.X) is a martingale. If X is a upper-
(resp. sub-) martingale, and if H is positive, then (H.X) is a(n) upper-
(resp. sub-) martingale.

Proof. Using the notation 1.1 , the process (H.X) satisfies

(∆(H.X))n = Hn(∆X)n.

The proof is then left to the reader.

In a casino for example, the processH corresponds to a player’s strategy :
according to all observations he has at time n, he bets at time n+1 an Hn+1,
to earn a gain Hn+1(Xn+1 −Xn).

An important particular case of Proposition 1.10 is the following

Corollary 1.2. Let (Xn) be a martingale (resp. a sub-, an upper-mar-
tingale), and let be a T stopping time. Then the process XT defined by
XT

n = XT∧n is a martingale (resp. a sub-, an upper-martingale).

Proof. It is enough to consider the predictable (right ?) process H = 1[0,T ].

In this case the process (H.X) is nothing but XT :

(H.X)n = X0 +

T∧n∑
k=1

(Xk −Xk−1) = X0 +

n∑
k=1

(Xk −Xk−1)1k≤T .

Note that the process T∧n is adapted to the filtration Gn = FT∧n smaller
than Fn.

Using the predictable process H = 1A1[T,∞[, for A ∈ FT , we obtain

Corollary 1.3. If T is a stopping time, then 1A(XT∨n−XT )) is a martingale
(resp. a sub-, an upper-martingale).
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5 Stopping theorem :bounded stopping time’s case.

Theorem 1.2. (Stopping theorem.)

Let (Xn, n ∈ N) be a martingale and S and T be two bounded stopping
times (that means there exists an integer n such that S ∨ T ≤ n, almost
surely). Then,

E(XT /FS) = XS∧T . (1.2)

If X is a sub (resp. an upper-)martingale,

XS∧T ≤ (resp ≥) E(XT /FS). (1.3)

In particular if (Xn, n ∈ N) is a sub-martingale and S and T are two
bounded stopping time, then

E(XS1S≤T ) ≤ E(XT1S≤T ). (1.4)

We have the inverse inequality for an upper-martingale.

Proof. We give only the proof for the martingale case.

First, we study the case where

T = n and S ≤ n. The equality (1.2) to obtain can be written as

XS = E(Xn/FS).

By definition,

XS =
n∑

k=0

Xk1S=k.

We know that XS is FS measurable; and also integrable as finite linear
combination of integrable variables.

It is enough to prove that for all A ∈ FS ,

E(XS1A) = E(Xn1A).

This can be written as

n∑
k=0

E(Xk1A∩{S=k}) =
n∑

k=0

E(Xn1A∩{S=k}).
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But since A ∈ FS , then A∩{S = k} ∈ Fk, and using the martingale property
we obtain, for all k ≤ N ,

E(Xk1A∩{S=k}) = E(Xn1A∩{S=k}).

We now study the general case. Let an integer n such that S ∨ T ≤ n.

Using the previous case for the stopped martingale XT , and the stopping
time S. We have XT

n = XT since T ≤ n, XT
S = XS∧T . We have

E(XT /FS) = XS∧T .

Note that the variable XS∧T is FS∧T measurable, and as a consequence

XS∧T = E(XT /FS∧T ).

To obtain inequality (1.4), it is enough to note that inequality (1.3)
means that for all A ∈ FS

E(XS∧T1A) ≤ E(XT1A).

We apply it to the set A = {S ≤ T}.

Corollary 1.4. Let (Tn) be an increasing sequence of bounded stopping time,
and X be a martingale (resp. a sub-martingale, an upper-martingale) ; then
(XTn , n ∈ N) is a martingale (resp. a sub-martingale, an upper-martingale)
for the filtration (FTn , n ∈ N).

Proof. (on exercise)

Corollary 1.5. Let X be an integrable r.v., and let (Xn) be the martingale
E(X/Fn). If T is a bounded stopping time then

E(X/FT ) = XT .

If S et T are two bounded stopping time;

E(X/FS/FT ) = E(X/FT /FS) = E(X/FS∧T ) = XS∧T .
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Proof. Let N such that T ∨ S ≤ N. Using successive conditioning for the
martingale Xn = E(X/Fn) E(X/FT ) = E(XN/FT ). The stopping theorem
yields E(XN/FT ) = XT .

If S and T are two bounded stopping,

E(XT /FS) = XS∧T = E(X/FS∧T ).

6 Finite stopping times

In this section we extend the stopping theorem to the case of finite stopping
times. Its requires some additional integrability conditions on martingales
(resp. sub-martingales, upper-martingales).

Proposition 1.11. Let (Xn, n ∈ N) be a martingale (resp. a sub-martingale)
and T be S two almost surely finite stopping times.

If the sequences (XT∧n) are (XS∧n) uniformly integrable, then

XS∧T = E[XT /FS ]. (resp. XS∧T ≤ E[XT /FS ]).

This is the case when there exists a r.v. Y ∈ L1 such that for all n, |XT∧n| ≤
Y ),or when (Xn) is uniformly integrable

In particular for the martingale, we have E(XT ) = E(X0) for all finite
stopping time which satisfies this assumption.

Proof. We only study the martingale case.

First note that the r.v. XT is integrable, as almost sure limit of uniformly
integrable sequence (XT∧n). (Note that T is a.s. finite.) It is the same for
XS . We have to prove that for all bounded variable Z FS-measurable , we
have

E(XSZ) = E(XTZ).

We can use the monotone class theorem monotones and restrict ourself to
the case where Z is FS∧n measurable using the fact that FS = ∨nFS∧n.

Let such an n. Using the Stopping Theorem 1.2 for the stopping time
S ∧ p and T ∧ p, and p ≥ n we obtain

E(ZXS∧p) = E(ZXT∧p).
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Using uniform integrability we can let n going to infinity.

For the last point, if (Xn) is uniformly integrable, it is enough to note
that XT∧n = E(Xn/FT ). The desired conclusion follows from the fact that a
family of conditional expectation of uniformly integrable family is uniformly
integrable

7 Inequalities and convergence

7.1 Inequalities

Theorem 1.3. (Doob’s maximal inequality.) Let (Xn, n ∈ N) be a positive
sub martingale and λ ≥ 0. let X∗

n = supnk=0Xk. Then

∀n ∈ N, λP{X∗
n ≥ λ} ≤ E[Xn1{X∗

n≥λ}] ≤ E[Xn].

Proof. Let T = inf{k ∈ N, Xk ≥ λ} a stopping time. Then,

{T ≤ n} = {X∗
n ≥ λ}.

Take S = T ∧ (n+ 1),which is a bounded stopping time . We have

A = {S ≤ n} = {T ≤ n} ∈ FS .

Using the Stopping Theorem for this sub-martingale, between n and S ∧n.

E(XS∧n1A) ≤ E(Xn1A).

This can be written

E(XT1T≤n) ≤ E(Xn1T≤n). (1.5)

On the set {T ≤ n}, XT ≥ λ, hence λP(T ≤ n) ≤ E(XT1T≤n). Then
λP(T ≤ n) ≤≤ E(Xn1T≤n) is the desired inequality.

Corollary 1.6. If (Xn, n ∈ N) is a martingale, (|Xn|, n ∈ N) is a positive
sub-martingale and

∀n ∈ N, λP{max
k≤n

|Xk| ≥ λ} ≤ E[|Xn|1maxk≤n |Xk|≥λ] ≤ E[|Xn|].
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Theorem 1.4. Let (Xn, n ∈ N) be a positive sub-martingale and p > 1.
Then, if Xn ∈ Lp,

∥X∗
n∥p ≤

p

p− 1
∥Xn∥p.

Proof. If Xn ∈ Lp then variables Xk∈Lp for k ≤ n.

Let U be a positive r.v. in Lp,

E(Up) = p

∫ ∞

0
tp−1P(U ≥ t)dt.

Then

E[(X∗
n)

p] = p

∫ ∞

0
tp−1P(X∗

n ≥ t)dt

≤ p

∫ ∞

0
tp−2E[Xn1{X∗

n≥t}]dt

= pE[Xn

∫ ∞

0
tp−21{X∗

n≥t}dt]

=
p

p− 1
E[Xn(X

∗
n)

p−1].

Using Hölder inequality

E[Xn(X
∗
n)

p−1] ≤ ∥Xn∥p∥X∗
n∥p−1

p .

Since X∗
n is bounded by

∑n
0 Xk, it belongs to Lp. The desired result is

obtained by cancellation

In particular

Corollary 1.7. Let (Xn) be a positive sub-martingale bounded in L1. Then
the variable X∗ = supnXn is finite almost surely. If (Xn) is bounded in Lp

(p > 1), then X∗ belongs to Lp. (This last result is false for p = 1.) The
same conclusions hold for martingales (not necessary positive).

Proof. The increasing sequence X∗
n converges towards X∗. It is enough to

apply Doob’s inequality and

λP(X∗
n > λ) ≤ sup

n
E(|Xn|) = K < ∞.

Letting n going to infinity

λP(X∗ > λ) ≤ K,
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P(X∗ > λ) → 0 (λ → ∞). The r.v. X∗ is finite.

For the second part use the Theorem 1.4.

The case of martingales is obtained by applying the previous result to
the positive sub-martingale |Xn|.

7.2 Convergences

Results

The following results are given without any proof.

Proposition 1.12. Let Xn be a martingale, or a sub-martingale, or an
upper-martingale, bounded in L1. Then Xn converges almost surely towards
a variable X∞.

Using Fatou’s lemma, M∞ the limit of a bounded in L1 martingale Mn

is integrable. In general Mn ̸= E(M∞/Fn).

It is the case for uniformly integrable martingales .

Proposition 1.13. let Mn be a bounded martingale in L1, and let M∞ the
limit of Mn when n → ∞. The following statements are equivalent

1. Mn converges in L1 towards M∞.

2. Mnis uniformly integrable.

3. Mn = E[M∞/Fn].

4. There exists an integrable r.v. M such that Mn = E[M/Fn]. Moreover
in this case , M∞ = E[M/F∞].

(Here F∞ = ∨nFn.)

Proof. For a sequence of r.v. which converges almost surely, it is equivalent
to converge in L1 or to be uniformly integrable. For all integrable r.v. M ,
the set of the r.v. E(M/B), where B is running in all sub σ fields of A is an
uniformly integrable family. It is enough to prove the following points:
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1. If (Mn) is uniformly integrable, then Mn = E(M∞/Fn);

2. If M is an integrable r.v., the martingale Mn = E(M/Fn) converges
towards E(M/F∞).

For the first point note that for p ≥ n Mn = E(Mp/Fn),letting p going
to infinity using the fact that the expectation is continuous in L1, and that
Mp converges towards M∞ in L1 by assumption. We get the desired result.

For the second point, note that M∞ is F∞ measurable by construction.
It is enough to show that, for a A ∈ F∞, we have E(M∞1A) = E(M1A).
This is true when A belongs to sub σ fields of Fn,since

E(M1A) = E(Mn1A) = E(M∞1A).

The desired identity is then, true for all element of ∪nFn, and for all element
σ -field generated by ∪nFn using a monotone class theorem argument. The
desired inequality is true for F∞.

Remarks

1. A similar statement as in Proposition 1.13 is true for sub-and upper-
martingales; the proof is left to the reader.

2. A bounded martingale Lp for p > 1, is dominated by an Lp variable
and converges in Lp.

We now are in position to enunciate the Stopping theorem for general
stopping-times.

Theorem 1.5. (Stopping Theorem.) Let Mn be a uniformly integrable
martingale and let T be a stopping time (not necessarily finite). Then for
MT = M∞ on {T = ∞},we have

1. MT = E(M∞/FT ).

2. The set (MT ), where T is a stopping time is uniformly integrable.

3. If S and T are two stopping time, we have

E(MT /FS) = MS∧T .

4. Let M be a A-measurable integrable r.v. and Mn = E(M/Fn), then
MT = E(M/FT ).
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Proof. For the first point, it is enough to write the proof of Stopping theorem
in this case. If A belongs to FT , then

E(MT1A) =
∑

k∈N
⋃

∞

E(Mk1A
⋂
{T=k})

=
∑

k∈N
⋃

∞

E(M∞1A
⋂
{T=k}) = E(M∞1A).

The family MT is contained in the family E(M∞/B), where B is running
in the subσ fields of A. This last family is uniformly integrable.

The stopping martingaleMT is uniformly integrable. Using the Stopping
theorem at time S, we obtain

E(MT /FS) = MS∧T .

It is enough to write

E(M/FT ) = E(E(M/F∞)/FT ) = E(M∞/FT ) = MT .

8 Exercises

1. Prove the claim 2 of examples 1 in section 1.

2. Recall a definition of uniform integrability (U.I.) that claims that Xi

is U.I. if supi E|Xi| < ∞ and if a property sometimes called equiinte-
grability (to be recalled) is fulfilled.

3. Prove the claim 1 of examples 1 in section 1.

4. Show that Mn in the claim 3 of examples 1 in section 1 is square
integrable. What is the Doob decomposition of Mn ?


