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Chapter 1

Construction of Brownian
Motion and first properties

1 Introduction

The aim of this lecture is to construct the stochastic integral. The pri-
mary motivation is to develop an integral and differential calculus capable
of handling computations with random ”noises.” Historically, the concept of
random ”noises” originated from experimental sciences. In probability the-
ory, the most classical example of ”noise” is Brownian motion. Brownian
motion was introduced by Robert Brown in 1828 to study the movement
of pollen particles in water. Later, in 1905, Einstein used Brownian motion
to model the trajectories of gas molecules. Additionally, Bachelier applied
Brownian motion to model stock option prices.

Let us give a first definition.

Definition 1.1. Brownian motion (Bt)t≥0 is a Rd ”process” (d ≥ 1) (i.e.
a family of random variables in short r.v. ) such that

1. ∀n ∈ N∗ and t0 < t1 < . . . < tn the r.v.’s Bt0 , Bt1 − Bt0 , . . . , Btn+1 −
Btn are independent (BM is a process with independent increments PII
in short.)

2. If s < t, Bt−Bs is a centered Gaussian random vector with covariance
matrix (t− s)Id.

(Bt)t≥0 starts from 0 ∈ Rd if B0 = 0, Pa.s.
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Remark 1.1. � If d = 1, Var(Bt −Bs) = t− s.

� Random vectors from (Ω,A, P ) to (Rd,B(Rd), Independence, Gaussian
random vectors are supposed to be known.

� ”Sample paths” : Heuristically we fix ω ∈ Ω, and we are interested in
t 7→ Bt(ω) Wiener (1923, 1924), Paley-Zygmund. P almost surely the
sample paths are contnuous and nowhere differentiable.

� If B(t) = (B1(t), . . . , Bd(t)), then ∀i = 1 to d Bi(t) are real valued
Brownian motions and if i ̸= j, Bi is independent of Bj .

The aim of stochastic calculus is to give a rigorous meaning to (stochas-
tic) differential equations of the type

yt =

∫ t

0
f(ys)Ḃsds

which have many applications. We will show that the Brownian motion is a
continuous martingale, and that integrals can be defined in this framework.
Another goal is to have a chain rule associated to these integrals. It is called
the Itô formula which claims that ∀f ∈ C2(Rd,R),

f(Bt) = f(B0) +

∫ t

0
f ′(Bs)dBs +

1

2

∫ t

0
f ′′(Bs)ds.

Actually one can show if (Xt)t≥0 is real valued process with independent
increments and if the distribution of Xt − Xs does depend only of t − s,
(stationary increments) with continuous sample paths then Xt = X0 + σBt.
More generally one can study PIIS process with stationary independent
increments not with continuous sample paths. Another example of PIIS is
the Poisson process.

Références :

� I. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus.
Springer Verlag, 1988.

� Damien Lamberton and Bernard Lapeyre. Introduction to stochastic
calculus applied to finance. Chapman & Hall/CRC Financial Math-
ematics Series. Chapman & Hall/CRC, Boca Raton, FL, second edi-
tion, 2008.
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� Daniel Revuz and Marc Yor. Continuous martingales and Brow-
nian motion, volume 293 of Grundlehren der mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences]. Springer-
Verlag, Berlin, third edition, 1999.

2 Definition and continuity of Brownian motion

2.1 Distribution of a process

Definition 1.2. Let T be a set and (E, E) a measurable set. A E val-
ued stochastic process indexed by T is a family (Xt, t ∈ T ) of r.v.’s Xt :
(Ω,A,P) 7→ (E, E).

Reminder : If Y : (Ω,A,P) 7→ (R,B(R)) is real valued random variable,
the distribution PY of Y is a probability measure on (R,B(R)). It is the push
forward of the probability P by the measurable function Y. It is defined by
PY (A) = P(Y ∈ A), ∀A ∈ B(R).

For a process a sample path is associated to every ω ∈ Ω, t 7→ Xt(ω).
Hence the distribution of a process is a probability on a set of functions from
T 7→ E which is denoted by ET , and endowed with the cylindrical sigma
field. A Cylinder is indexed by t0 < t1 < . . . < tn, it is a subset of ET ,

Ct0, t1, ..., tn = {f ∈ ET , (f(t0), , . . . , f(tn)) ∈ A0 × . . .×An, with Ai ∈ E},

where Ct0, t1, ..., tn actually depends also on Ai’s. Then the distribution of
the process is a probability on ET endowed with the smallest sigma field
that contains all cylinders. This sigma field is called the cylindrical sigma
field denoted by E⊗T .

Definition 1.3. The distribution of a E-valued process is a probability on
ET endowed with the smallest sigma field E⊗T that contains all cylinders.
It is uniquely defined by

P(X(t0) ∈ A0, . . . , X(tn) ∈ An),

∀n ∈ N∗ and t0 < t1 < . . . < tn.

Example the Brownian motion that starts from 0 :
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If t0 < t1 < . . . < tn, and f is bounded Borel function (Rd)n+1 7→ R, let

pt(x) =
1

(2πt)d/2
exp

(
−∥x∥2

2t

)
, (1.1)

where ∥.∥ is the Euclidean norm on Rd. Then pt−s(x)dx is the distribution
of Bt −Bs, so

Ef(Bt0 , . . . , Btn) =

∫
f(x0, . . . , xn)dP(Bt0 ,..., Btn )

(x0, . . . , xn)

=

∫
f(x0, . . . , xn)dP(Bt0 ,Bt1−Bt0 ,..., Btn−Btn−1 )

(x0, x1 − x0, . . . , xn − xn−1)

=

∫
f(x0, . . . , xn)pt0(x0)pt1−t0(x1 − x0) . . . ptn−tn−1(xn − xn−1)dx0 . . . dxn.

Hence

P(B(t0) ∈ A0, . . . , B(tn) ∈ An)

=

∫
A0×...×An

pt0(x0)pt1−t0(x1 − x0) . . . ptn−tn−1(xn − xn−1)dx0 . . . dxn

(1.2)

and

P(B(t0) ∈ A0, . . . , B(tn) ∈ An) = P(X0 ∈ A0, . . . , , X0 + . . .+Xn ∈ An),

where X0
(d)
= N (0, t0), Xi

(d)
= N (0, ti − ti−1) for all i = 1 to n and Xi’s are

independent.

Remark 1.2. This remark is also an exercise. If A ∈ B(Rd)⊗R+ , then
∃(tn)n∈N and ∃B ∈ B(Rd)⊗N such that

A = {f ∈ (Rd)R+ , (f(tn))n∈N ∈ B}.

Does exist on (Rd)R+ a probability such that

µ(Ct0, t1, ..., tn) = P(B(t0) ∈ A0, . . . , B(tn) ∈ An)?

The answer”yes” is given by a Kolmogorov theorem. Let us first intro-
duce definitions and a necessary condition.
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Definition 1.4. Let T be the set of finite increasing sequences t = (t0, . . . , tn)
of numbers, where the length n+ 1 of these sequences ranges over the set of
positive integers. Suppose that for each t of length n+1, we have a probabil-
ity measure Qt on

(
Rn+1,B

(
Rn+1

)
). Then the collection {Qt}t∈T is called

a family of finite-dimensional distributions. This family is said to be consis-
tent provided that the following condition is satisfied: If t = (t0, t1, . . . , tn)
with n ≥ 1, ti = (t0, t1, . . . , tn), where ti is missing then ∀i ≤ n

Qti(A0 × · · · ×Ai−1 ×Ai+1 × · · · ×An) = Qt(A0 × · · · × R× · · · ×An).

If we have a probability measure µ on
(
R[0,∞),B(R)⊗[0,+∞)

)
, then we

can define a family of finite-dimensional distributions by

Qt(A) = µ
[
ω ∈ R[0,∞); (ω (t1) , . . . , ω (tn)) ∈ A

]
, (1.3)

where A ∈ B (Rn) and t = (t1, . . . , tn) ∈ T . This family is easily seen to
be consistent. We are interested in the converse of this fact, because it will
enable us to construct a probability measure P from the finite-dimensional
distributions of Brownian motion.

Theorem 1.1 ( (Daniell (1918), Kolmogorov (1933)). Let
{
Qt

}
be a con-

sistent family of finite-dimensional distributions. Then there is a probabil-
ity measure P on

(
(Rd)[0,∞),B(Rd)⊗[0,+∞)

)
, such that (1.3) holds for every

t ∈ T .

Proof. A proof can be read in p 50 of Karatzas and Shreeve. One can
use for instance Carathéodory theorem, that may also be used to construct
Lebesgue measure.

To verify that we can apply the Theorem to the construction of the
Brownian motion, it is enough to show consistency in this case. Coming
back to (1.2), we are left to check∫

Rd

pti−ti−1(xi − xi−1)pti+1−ti(xi+1 − xi)dxi = pti+1−ti−1(xi+1 − xi−1).

But it is the same as pti−ti−1 ∗ pti+1−ti = pti+1−ti−1 , or N (0, ti − ti−1) +
N (0, ti+1 − ti) = N (0, ti+1 − ti−1) where independence is assumed on the
left hand side.
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2.2 Regularity of BM sample paths

In this section we want to convince ourselves that BM sample paths are
almost surely continuous. We hope that C the set of continuous functions is
of probability 1 under the distribution of BM.

Remark 1.3. Unfortunately C is not measurable in B(Rd)⊗R+ . Prove this
fact as an exercise, that uses the previous Remark/exercise.

To circumvent this problem we will show that there exists a process with
almost sure continuous sample paths that has the same distribution as BM.

To clean a bit the situation some definitions are introduced.

Definition 1.5. 1. Processes X and Y have the same finite-dimensional
distributions if, for any integer n ≥ 1, real numbers 0 ≤ t1 < t2 <
· · · < tn <∞, and A ∈ B

(
Rnd

)
, we have:

P [(Xt1 , . . . , Xtn) ∈ A] = P [(Yt1 , . . . , Ytn) ∈ A] .

2. Y is a modification of X if, for every t ≥ 0, we have P [Xt = Yt] = 1.

3. X and Y are called indistinguishable if almost all their sample paths
agree:

P [Xt = Yt; ∀0 ≤ t <∞] = 1.

Exercise 1.1. If X is a modification of X ′ then the distribution of X and
X ′ are the same.

If X and X ′ are indistinguishable then there are modifications of each
other. The converse is false.

Example. Let Ω = [0, 1], A = B([0, 1]), P = dx the Lebesgue measure. Let
us take Xt(ω) = 1(ω ̸= t), and Yt = 1. Then

P(Xt = Yt) = P(ω ̸= t) = 1.

Hence X is a modification of Y. But P(∀t ∈ [0, 1], Xt = Yt) = 0. They are
not indistinguishable.

Exercise 1.2. Let Y be a modification of X, and suppose that both processes
have a.s. right-continuous sample paths. Then X and Y are indistinguish-
able.
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The next theorem will show that there exits a modification of the BM
with almost sure continuous sample paths.

Theorem 1.2 (Kolmogorov, Čentsov (1956)).

Suppose that a process {Xt; 0 ≤ t ≤ T} on a probability space (Ω,F ,P)
satisfies the condition

E |Xt −Xs|α ≤ C|t− s|1+β, 0 ≤ s, t ≤ T,

for some positive constants α, β, and C. Then there exists a continuous

modification X̃ =
{
X̃t; 0 ≤ t ≤ T

}
of X, which is locally Hölder-continuous

with exponent γ for every γ ∈ (0, β/α), i.e.,

P

ω; sup
0<t−s<h(ω)
s,t∈[0,T ]

∣∣∣X̃t(ω)− X̃s(ω)
∣∣∣

|t− s|γ
≤ δ

 = 1, (1.4)

where h(ω) is an a.s. positive random variable and δ > 0 is an appropri-
ate constant.

Proof. For simplicity, we take T = 1. Much of what follows is a consequence
of the Cebyšev inequality. First, for any ε > 0, we have

P [|Xt −Xs| ≥ ε] ≤ E |Xt −Xs|α

εα
≤ Cε−α|t− s|1+β,

and so Xs → Xt in probability as s → t. Second, setting t = k/2n, s =
(k− 1)/2n, and ε = 2−γn (where 0 < γ < β/α ) in the preceding inequality,
we obtain

P
[∣∣Xk/2n −X(k−1)/2n

∣∣ ≥ 2−γn
]
≤ C2−n(1+β−αγ),

and consequently,

P
[

max
1≤k≤2n

∣∣Xk/2n −X(k−1)/2n
∣∣ ≥ 2−γn

]
= P

[
2n⋃
k=1

∣∣Xk/2n −X(k−1)/2n
∣∣ ≥ 2−γn

]
≤ C2−n(β−αγ).
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The last expression is the general term of a convergent series; by the
Borel-Cantelli lemma, there is a set Ω∗ ∈ F with P (Ω∗) = 1 such that for
each ω ∈ Ω∗,

max
1≤k≤2n

∣∣Xk/22(ω)−X(k−1)/2n(ω)
∣∣ < 2−γn, ∀n ≥ n∗(ω), (1.5)

where n∗(ω) is a positive, integer-valued random variable. For each
integer n ≥ 1, let us consider the partition Dn = {(k/2n) ; k = 0, 1, . . . , 2n}
of [0, 1], and let D =

⋃∞
n=1Dn be the set of dyadic rationals in [0, 1]. We

shall fix ω ∈ Ω∗, n ≥ n∗(ω), and show that for every m > n, we have

|Xt(ω)−Xs(ω)| ≤ 2
m∑

j=n+1

2−γj ; ∀t, s ∈ Dm, 0 < t− s < 2−n. (1.6)

For m = n+1, we can only have t = (k/2m) , s = ((k − 1)/2m), and (1.6)
follows from (1.5). Suppose (1.6) is valid for m = n+1, . . . ,M−1. Take s <
t, s, t ∈ DM , consider the numbers t1 = max {u ∈ DM−1;u ≤ t} and s1 =
min {u ∈ DM−1;u ≥ s}, and notice the relationships s ≤ s1 ≤ t1 ≤ t, s1−s ≤
2−M , t− t1 ≤ 2−M . From (1.5) we have |Xs1(ω)−Xs(ω)| ≤ 2−γM , | Xt(ω)−
Xt1(ω) |≤ 2−γM , and from (1.6) with m =M − 1,

|Xt1(ω)−Xs1(ω)| ≤ 2
M−1∑
j=n+1

2−γj .

We obtain (1.6) for m =M .

We can show now that {Xt(ω); t ∈ D} is uniformly continuous in t for
every ω ∈ Ω∗. For any numbers s, t ∈ D with 0 < t − s < h(ω) ≜ 2−n∗(ω),
we select n ≥ n∗(ω) such that 2−(n+1) ≤ t− s < 2−n. We have from (1.6)

|Xt(ω)−Xs(ω)| ≤ 2

∞∑
j=n+1

2−γj ≤ δ|t− s|γ , 0 < t− s < h(ω), (1.7)

where δ = 2/ (1− 2−γ). This proves the desired uniform continuity. We
define X̃ as follows. For ω /∈ Ω∗, set X̃t(ω) = 0, 0 ≤ t ≤ 1. For ω ∈ Ω∗

and t ∈ D, set X̃t(ω) = Xt(ω). For ω ∈ Ω∗ and t ∈ [0, 1] ∩ Dc, choose
a sequence {sn}∞n=1 ⊆ D with sn → t; uniform continuity and the Cauchy
criterion imply that {Xsn(ω)}

∞
n=1 has a limit which depends on t but not

on the particular sequence {sn}∞n=1 ⊆ D chosen to converge to t, and we set
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X̃t(ω) = limsn→tXsn(ω). The resulting process X̃ is thereby continuous;
indeed, X̃ satisfies (1.7), so (1.4) is established.

To see that X̃ is a modification of X, observe that X̃t = Xt a.s. for
t ∈ D; for t ∈ [0, 1] ∩Dc and {sn}∞n=1 ⊆ D with sn → t, we have Xsn → Xt

in probability and Xsn → X̃t a.s., so X̃t = Xt a.s.

This long proof is an example of the ”chaining” argument, which is used
in many other proofs.

To show that BM has a continuous modification we still have to show
that the bound on the expectations of the increments of BM that is an
assumption of the Theorem is satisfied

Proposition 1.1. If B is a real valued BM d = 1,

∀n ∈ N,∀t ∈ [0,+∞), E(Bt −Bs)
2n = Cn|t− s|n (1.8)

There exists a modification of the BM with locally Hölder continuous paths
for every exponent 0 < γ < 1

2 .

Proof.

Bt −Bs
(d)
= N (0, |t− s|) (d)

=
√
|t− s|N (0, 1)

Hence E(Bt − Bs)
2 = |t − s| and E(Bt − Bs)

2n = Cn|t − s|n where Cn =

EX2n, X
(d)
= N (0, 1). Applying (1.8) for n fixed we get Hölder continuity for

γ < n−1
2n .

Remark 1.4. Further on we always take continuous modifications of BM.

3 Quadratic variations of Brownian motions

We may wonder if the previous result is optimal. For instance could it be
that sample paths of Brownian motions are locally Liptschitz continuous ?
Actually elementary definitions of integrals of the type

∫
HsdBs are possible

if the sample paths have almost surely finite variations. Let us first recall
some facts concerning functions with finite variations.
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3.1 Reminder of functions with finite variations

If f : (0,+∞) 7→ R is a non decreasing function, right continuous, we can
associate a measure µ on (0,+∞) with ∀0 < s < t

µ((s, t]) = f(t)− f(s)

and if g is a bounded Borel function one can define∫ t

0
g(s)df(s)

def
=

∫
1[0,t](s)g(s)dµ(s).

If f is C1 it is equal to
∫ t
0 g(s)f

′(s)ds.

Definition 1.6. For t > 0, Let Pt be the set of finite subdivisions ∆ of
[0, t] : ∆ = (ti)i=1,...,n ∈ Pt, if 0 ≤ t1 ≤ . . . tn ≤ t. The mesh of ∆ is denoted
by |∆| = supi=1,...,n−1(ti+1 − ti). For f : (0,+∞) 7→ R, the variation of f
on [0, t] is denoted by

Vt(f)
def
= sup

∆∈Pt

n∑
i=1

|f(ti+1)− f(ti)|

and is said to have finite variations if ∀t > 0, Vt(f) <∞.

Example. � If f is monotone or a difference of non decreasing func-
tions, f has finite variations.

� If f is locally Lipschitz, f has finite variations.

We will admit two facts for Riemmann-Stieljes integral

� Every function f with finite variations is a difference of non decreasing
functions f1, f2, one can write∫ t

0
g(s)df(s)

def
=

∫ t

0
g(s)df1(s)−

∫ t

0
g(s)df2(s).

� If g is continuous and (∆n)n∈N a sequence of subdivisions with meshes
|∆n| → 0, ∫ t

0
g(s)df(s) = lim

n→∞

∑
tni ∈∆n

g(tni )(f(t
n
i+1)− f(tni )).
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3.2 Quadratic variations

Actually quadratic variations of BM sample paths are almost surely : posi-
tive finite and BM sample paths do not have finite variations.

Definition 1.7. A real valued process X has finite quadratic variations
denoted by ⟨X,X⟩ or (⟨X⟩) if ∀(∆n)n∈N sequence of subdivisions of Pt such
that |∆n| → 0 and ∆n = (tni )1≤i≤N(n) with t

n
1 = 0 and tnN(n) = t and

T∆n

[0,t]

def
=

∑
tni ∈∆n

(Xtni+1
−Xtni

)2
(P )→ ⟨X⟩t.

Proposition 1.2. If B is a Brownian motion ⟨B⟩t = t a.s.

Proof. We prove T∆n

[0,t] → t in L2(Ω). If ∆n = (tni )1≤i≤N(n)

Btni+1
− Btni

(d)
= N (0, tni+1 − tni )

(d)
=

√
tni+1 − tni N (0, 1). Then E((T∆n

[0,t]) =∑
tni ∈∆n E(Btni+1

−Btni
)2 =

∑
tni ∈∆n tni+1 − tni = t. Hence

E((T∆n

[0,t] − t)2) = V ar(T∆n

[0,t] − t)

= V ar(
∑

tni ∈∆n

(Btni+1
−Btni

)2 − (tni+1 − tni ))

=
∑

tni ∈∆n

V ar((Btni+1
−Btni

)2 − (tni+1 − tni ))

=
∑

tni ∈∆n

(tni+1 − tni )
2V ar(N2 − 1)

≤ C|∆n|
∑

tni ∈∆n

(tni+1 − tni ) → 0,

where N = N (0, 1). This implies convergence in probability.

To get almost sure convergence some additional assumptions are needed
for ∆n...

Proposition 1.3. Almost surely the sample paths of Brownian motion have
infinite variations on every intervals [0, t] for t > 0.

Proof. If ω is such that V[0,t](B(ω)) < +∞ then∑
tni ∈∆n

(Btni+1
−Btni

)2 ≤ sup |(Btni+1
−Btni

|
∑

tni ∈∆n

|Btni+1
−Btni

|.
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Since s 7→ Bs(ω) is uniformly continuous on [0, t] sup |Btni+1
− Btni

| → 0.
Hence the quadratic variations of the sample paths should vanish, which is
true only on a negligible set.

4 Brownian motion as a Gaussian process

4.1 Elementary properties

Definition 1.8. A real valued process (Xt, t ∈ T ) is a Gaussian process
if ∀n ∈ N, t1, . . . , tn ∈ T, (α1, . . . , αn) ∈ Rn,

∑n
i=1 αiXti is a Gaussian

random variable. The process X is centered if ∀t ∈ T, EXt = 0 and

Γ(s, t)
def
= Cov(Xs, Xt) is the covariance function.

Remark 1.5. � If ∀i = 1 to n, αi = 0
∑n

i=1 αiXti = 0. It means that
we consider N (0, 0) as a generalized degenerated Gaussian random
variable with variance 0. Gaussian processes are generalization of ran-
dom Gaussian vectors (where T is a finite set). (See for instance N.
Bouleau Processus stochastique et applications 1988.)

� If (X1, X2) is a Gaussian vector and Cov(X1, X2) = 0 then X1 and
X2 are independent.

Proposition 1.4. The Brownian motion which starts from 0 is the unique
centered Gaussian process with covariance Γ(s, t) = min(s, t).

Proof. The proof relies on the fact that the covariance always characterizes
the distribution of a Gaussian centered process. If X is a Gaussian centered
process and t1, . . . , tn ∈ T, then (Xt1 , . . . , Xtn) Gaussian vector implies the
characteristic function

E exp(i
n∑

i=1

αiXti) = exp(−1

2
⟨Cα,α⟩)

where α = (α1, . . . , αn), ⟨., .⟩ is The Euclidean scalar product in Rn, and
Ci,j = E(XtiXtj ) = Γ(ti, tj). Hence the matrix (Γ(ti, tj)) characterizes the
distribution of the finite dimensional margins (Xt1 , . . . , Xtn) ∀t1, . . . , tn ∈ T,
and henceforth the distribution of the process X.

Let us compute Γ(s, t) for Brownian motion. Let s ≤ t

Γ(s, t) = E(BsBt) = E(Bs(Bs +Bt −Bs)) = E(B2
s ) +E(Bs)E(Bt −Bs) = s.
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Hence Γ(s, t) = min(s, t).

Proposition 1.5. Let (Bt, t ≥ 0) be a Brownian motion.

1. (Bt+s −Bs, t ≥ 0) is a BM independent of FB
s = σ (Bu, u ≤ s) .

2. (−Bt, t ≥ 0) is a Brownian motion,

3. (Self-similarity) for all λ > 0,
(
B

(λ)
t , t ≥ 0

)
where B

(λ)
t := 1√

λ
Bλt, t ≥

0 is a Brownian motion.

Proof. Wt = Bt+s − Bs is a centered Gaussian process such that W0 = 0
a.s. Its covariance

E(WtWt′) = E((Bt+s−Bs)(Bt′+s−Bs)) = min(t+ s, t′+ s)− s = min(t, t′).

∀u1 ≤ . . . ≤ un ≤ s ≤ t1 ≤ . . . ≤ tn (Bu1 , . . . , Bun , Bt1+s−Bs, . . . , Btn+s−
Bs) is a Gaussian vector and (Bu1 , . . . , Bun) is independent of (Bt1+s −
Bs, . . . , Btn+s −Bs) since ∀i, j

E(Bui(Btj+s −Bs)) = 0.

Actually for Gaussian random vectors, a vanishing covariance yields inde-
pendence. Then independence of sigma field is a consequence of indepen-
dence of the random variable that generate them. To prove other parts of
the Proposition, compute covariances.

4.2 Brownian bridge

We may condition (Bt, 0 ≤ t ≤ 1) to the event B1 = 0. In this case we
obtain a Brownian bridge.

Definition 1.9. The process X0
t = Bt − tB1 is called a Brownian bridge.

Proposition 1.6. X0 is independent of B1.

Proof. ∀0 ≤ t ≤ 1, E(X0
t − tB1) = 0. And it is a centered Gaussian process.

Furthermore ∀0 ≤ t ≤ 1, E(X0
t B1) = E((Bt − tB1)B1) = 0.

Proposition 1.7. Let Xb
t = Bt − tB1 + tb. The distribution of Xb is a

regular version of the conditional distribution of (Bt, t ≤ 1) given B1 = b.
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Proof. Reminder : P(dx, y) is a regular version of the conditional distribu-
tion ofX given Y = y if and only if (in short iff) ∀φ bounded and measurable

E(φ(X)|Y ) =

∫
φ(x)P(dx, Y )

P almost surely. It can be characterized by ∀φ, g bounded and measurable

E(φ(X)g(Y )) =

∫
(

∫
φ(x)P(dx, y))g(y)dPY (y).

In our case we have to show

E(φ(Bs, s ≤ 1)g(B1)) =

∫
E(φ(Xb

s , s ≤ 1)g(b)
e−

b2

2 db√
2π

. (1.9)

Let ψ((f(s), s ≤ 1), b) = φ((f(s) + sb, s ≤ 1)). Since Bs = X0
s + sB1,

E(φ(Bs, s ≤ 1)g(B1)) = E(ψ((X0
s , s ≤ 1), B1)g(B1))

=

∫
E(ψ((X0

s , s ≤ 1), b)g(b))
e−

b2

2 db√
2π

=

∫
E(φ((Xb

s , s ≤ 1))g(b))
e−

b2

2 db√
2π

.

4.3 Wiener integral

In this part the integral
∫
f(s)dBs is defined for a deterministic function

using the Gaussianity of the Brownian motion. (Later the stochastic integral
is defined for f a stochastic process.) If f is a simple function

f =
n∑

i=1

αi1(ai,bi]

for a1 < b1 ≤ a2 < b2 ≤ . . . Then∫
f(s)dBs

def
=

n∑
i=1

αi(B(bi)−B(ai), (1.10)

this random variable is denoted by I(f). It is a centered Gaussian random
variable with variance

E(I(f)2) =
n∑

i=1

α2
i (bi − ai) = ∥f∥2L2(0,∞).
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Theorem 1.3. There exists a unique map I from L2(0,∞) to H the set
that is the closure in L2(Ω,A,P) of the linear combinations

∑n
i=1 αi(B(bi)−

B(ai)) such that

1. I(1(ai,bi]) = B(bi)−B(ai).

2. I is a linear map

3. I is an isometry i.e. ∀f ∈ L2(0,∞) ∥f∥L2(0,∞) = ∥I(f)∥L2(Ω,A,P).

Proof. If f ∈ L2(0,∞) ∃(fn)n∈N with fn simple functions and limn→∞ fn =

f in L2(0,∞). Then let I(f)
def
= limn→∞ I(fn) in L2(0,∞). Please remark

that I(f) does not depend on the sequence (fn)n∈N since if limn→∞ gn = f
then limn→∞ I(gn)− I(fn) = 0 because of the isometry property. Moreover
we get the uniqueness of I by density of simple functions in L2.

Remark 1.6. 1. Since I is an isometry ∀f, g ∈ L2(0,∞),

⟨f, g⟩L2(0,∞) = ⟨I(f), I(g)⟩L2(Ω,A,P). (1.11)

If we denote by
∫∞
0 f(s)dBs = I(f), the so-called Wiener integral this

can be rewritten :∫ ∞

0
f(s)g(s)ds = E(

∫ ∞

0
f(s)dBs

∫ ∞

0
g(s)dBs).

2. Conversely if J : L2(0,∞) 7→ L2(Ω,A,P) is such that J(f) is a
centered Gaussian random variable and∫ ∞

0
f(s)g(s)ds = E(J(f)J(g))

then J is a linear map. Moreover J(1(0,t]) is a real Brownian mo-
tion. (Since (J(1(0,t]), t ≤ 0) is a centered Gaussian process and
E(J(1(0,s])J(1(0,t]) = min(s, t).) If we denote by Bt = J(1(0,t]), then J
is the isometry I associated to the BM B.

The same construction can be generalized to all intervals I ′ and L2(I ′). For
I ′ = R, the process Xt = I(1(0,t]),∀t ∈ R can be obtained from two indepen-
dent real valued Brownian motion Xt = B1

t ,∀t ≤ 0, and Xt = B2
t ,∀t ≥ 0.

One can easily check that

E(Xt −Xs)
2 = |t− s|, ∀t < 0 < s.
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4.4 Second construction of Brownian motion

If (en)n∈N is an orthonormal basis (ONB) of L2(0, 1) then (I(en))n∈N is a se-
quence of Gaussian independent random variables with distribution N (0, 1).
Actually (1,

√
2 cos(2πks),

√
2 sin(2πks))k∈N∗ is an ONB of L2(0, 1), ∀t ∈

(0, 1),

1(0,t](s)
L2(0,1)
= a0(t) +

∞∑
k=1

ak(t)
√
2 cos(2πks) + bk(t)

√
2 sin(2πks)

I(1(0,t])
L2(Ω,A,P)

= a0(t)ξ0 +
∞∑
k=1

ak(t)ξk +
∞∑
k=1

bk(t)ηk,

with (ξ0, ξk, ηk) i.i.d. Gaussian random variables with distribution N (0, 1).
Moreover a0(t) =

∫ 1
0 1(0,t](s)ds = t, ∀k ≥ 1

ak(t) =
√
2

∫ t

0
cos(2πks)ds =

sin(2πkt)√
2πk

bk(t) =
√
2

∫ t

0
sin(2πks)ds =

(1− cos(2πkt))√
2πk

.

Hence we get a series expansion of BM, a priori in L2 sense...

I(1(0,t]) = tξ0 +
∞∑
k=1

ξk
sin(2πks)√

2πk
+

∞∑
k=1

ηk
(1− cos(2πks))√

2πk
. (1.12)

Since I(1(0,1]) = ξ0, hence (1.12) can be viewed as tB1 plus the expansion
of a Brownian bridge.

Theorem 1.4. If (ξ0, ξk, ηk) are i.i.d. Gaussian random variables with
distribution N (0, 1)

tξ0 +
∞∑
k=1

ξk
sin(2πkt)√

2πk
+

∞∑
k=1

ηk
(1− cos(2πkt))√

2πk

almost surely converges to a process (Bt)t∈(0,1) with the distribution of a BM.

Proof. We may refer to criteria for convergences of random Fourier series in
Kahane Some random series of functions Theorem 2 p 236 second edition,
we get almost surely the uniform (but not normal) convergence of the series.
Since I(1(0,t]) is a BM we get the distribution of the limit of the series.

Remark 1.7. With this construction almost sure continuity of the sample
paths is for free !


