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Chapter 1

Construction of Brownian
Motion and first properties

1 Introduction

The aim of this lecture is to construct the stochastic integral. The pri-
mary motivation is to develop an integral and differential calculus capable
of handling computations with random ”noises.” Historically, the concept of
random ”noises” originated from experimental sciences. In probability the-
ory, the most classical example of ”noise” is Brownian motion. Brownian
motion was introduced by Robert Brown in 1828 to study the movement
of pollen particles in water. Later, in 1905, Einstein used Brownian motion
to model the trajectories of gas molecules. Additionally, Bachelier applied
Brownian motion to model stock option prices.

Let us give a first definition.

Definition 1.1. Brownian motion (Bt)t≥0 is a Rd ”process” (d ≥ 1) (i.e.
a family of random variables in short r.v. ) such that

1. ∀n ∈ N∗ and t0 < t1 < . . . < tn the r.v.’s Bt0 , Bt1 − Bt0 , . . . , Btn+1 −
Btn are independent (BM is a process with independent increments PII
in short.)

2. If s < t, Bt−Bs is a centered Gaussian random vector with covariance
matrix (t− s)Id.

(Bt)t≥0 starts from 0 ∈ Rd if B0 = 0, Pa.s.
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6CHAPTER 1. CONSTRUCTIONOF BROWNIANMOTION AND FIRST PROPERTIES

Remark 1.1. � If d = 1, Var(Bt −Bs) = t− s.

� Random vectors from (Ω,A, P ) to (Rd,B(Rd), Independence, Gaussian
random vectors are supposed to be known.

� ”Sample paths” : Heuristically we fix ω ∈ Ω, and we are interested in
t 7→ Bt(ω) Wiener (1923, 1924), Paley-Zygmund. P almost surely the
sample paths are contnuous and nowhere differentiable.

� If B(t) = (B1(t), . . . , Bd(t)), then ∀i = 1 to d Bi(t) are real valued
Brownian motions and if i ̸= j, Bi is independent of Bj .

The aim of stochastic calculus is to give a rigorous meaning to (stochas-
tic) differential equations of the type

yt =

∫ t

0
f(ys)Ḃsds

which have many applications. We will show that the Brownian motion is a
continuous martingale, and that integrals can be defined in this framework.
Another goal is to have a chain rule associated to these integrals. It is called
the Itô formula which claims that ∀f ∈ C2(Rd,R),

f(Bt) = f(B0) +

∫ t

0
f ′(Bs)dBs +

1

2

∫ t

0
f ′′(Bs)ds.

Actually one can show if (Xt)t≥0 is real valued process with independent
increments and if the distribution of Xt − Xs does depend only of t − s,
(stationary increments) with continuous sample paths then Xt = X0 + σBt.
More generally one can study PIIS process with stationary independent
increments not with continuous sample paths. Another example of PIIS is
the Poisson process.

Références :

� I. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus.
Springer Verlag, 1988.

� Damien Lamberton and Bernard Lapeyre. Introduction to stochastic
calculus applied to finance. Chapman & Hall/CRC Financial Math-
ematics Series. Chapman & Hall/CRC, Boca Raton, FL, second edi-
tion, 2008.
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� Daniel Revuz and Marc Yor. Continuous martingales and Brow-
nian motion, volume 293 of Grundlehren der mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences]. Springer-
Verlag, Berlin, third edition, 1999.

2 Definition and continuity of Brownian motion

2.1 Distribution of a process

Definition 1.2. Let T be a set and (E, E) a measurable set. A E val-
ued stochastic process indexed by T is a family (Xt, t ∈ T ) of r.v.’s Xt :
(Ω,A,P) 7→ (E, E).

Reminder : If Y : (Ω,A,P) 7→ (R,B(R)) is real valued random variable,
the distribution PY of Y is a probability measure on (R,B(R)). It is the push
forward of the probability P by the measurable function Y. It is defined by
PY (A) = P(Y ∈ A), ∀A ∈ B(R).

For a process a sample path is associated to every ω ∈ Ω, t 7→ Xt(ω).
Hence the distribution of a process is a probability on a set of functions from
T 7→ E which is denoted by ET , and endowed with the cylindrical sigma
field. A Cylinder is indexed by t0 < t1 < . . . < tn, it is a subset of ET ,

Ct0, t1, ..., tn = {f ∈ ET , (f(t0), , . . . , f(tn)) ∈ A0 × . . .×An, with Ai ∈ E},

where Ct0, t1, ..., tn actually depends also on Ai’s. Then the distribution of
the process is a probability on ET endowed with the smallest sigma field
that contains all cylinders. This sigma field is called the cylindrical sigma
field denoted by E⊗T .

Definition 1.3. The distribution of a E-valued process is a probability on
ET endowed with the smallest sigma field E⊗T that contains all cylinders.
It is uniquely defined by

P(X(t0) ∈ A0, . . . , X(tn) ∈ An),

∀n ∈ N∗ and t0 < t1 < . . . < tn.

Example the Brownian motion that starts from 0 :
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If t0 < t1 < . . . < tn, and f is bounded Borel function (Rd)n+1 7→ R, let

pt(x) =
1

(2πt)d/2
exp

(
−∥x∥2

2t

)
, (1.1)

where ∥.∥ is the Euclidean norm on Rd. Then pt−s(x)dx is the distribution
of Bt −Bs, so

Ef(Bt0 , . . . , Btn) =

∫
f(x0, . . . , xn)dP(Bt0 ,..., Btn )

(x0, . . . , xn)

=

∫
f(x0, . . . , xn)dP(Bt0 ,Bt1−Bt0 ,..., Btn−Btn−1 )

(x0, x1 − x0, . . . , xn − xn−1)

=

∫
f(x0, . . . , xn)pt0(x0)pt1−t0(x1 − x0) . . . ptn−tn−1(xn − xn−1)dx0 . . . dxn.

Hence

P(B(t0) ∈ A0, . . . , B(tn) ∈ An)

=

∫
A0×...×An

pt0(x0)pt1−t0(x1 − x0) . . . ptn−tn−1(xn − xn−1)dx0 . . . dxn

(1.2)

and

P(B(t0) ∈ A0, . . . , B(tn) ∈ An) = P(X0 ∈ A0, . . . , , X0 + . . .+Xn ∈ An),

where X0
(d)
= N (0, t0), Xi

(d)
= N (0, ti − ti−1) for all i = 1 to n and Xi’s are

independent.

Remark 1.2. This remark is also an exercise. If A ∈ B(Rd)⊗R+ , then
∃(tn)n∈N and ∃B ∈ B(Rd)⊗N such that

A = {f ∈ (Rd)R+ , (f(tn))n∈N ∈ B}.

Does exist on (Rd)R+ a probability such that

µ(Ct0, t1, ..., tn) = P(B(t0) ∈ A0, . . . , B(tn) ∈ An)?

The answer”yes” is given by a Kolmogorov theorem. Let us first intro-
duce definitions and a necessary condition.
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Definition 1.4. Let T be the set of finite increasing sequences t = (t0, . . . , tn)
of numbers, where the length n+ 1 of these sequences ranges over the set of
positive integers. Suppose that for each t of length n+1, we have a probabil-
ity measure Qt on

(
Rn+1,B

(
Rn+1

)
). Then the collection {Qt}t∈T is called

a family of finite-dimensional distributions. This family is said to be consis-
tent provided that the following condition is satisfied: If t = (t0, t1, . . . , tn)
with n ≥ 1, ti = (t0, t1, . . . , tn), where ti is missing then ∀i ≤ n

Qti(A0 × · · · ×Ai−1 ×Ai+1 × · · · ×An) = Qt(A0 × · · · × R× · · · ×An).

If we have a probability measure µ on
(
R[0,∞),B(R)⊗[0,+∞)

)
, then we

can define a family of finite-dimensional distributions by

Qt(A) = µ
[
ω ∈ R[0,∞); (ω (t1) , . . . , ω (tn)) ∈ A

]
, (1.3)

where A ∈ B (Rn) and t = (t1, . . . , tn) ∈ T . This family is easily seen to
be consistent. We are interested in the converse of this fact, because it will
enable us to construct a probability measure P from the finite-dimensional
distributions of Brownian motion.

Theorem 1.1 ( (Daniell (1918), Kolmogorov (1933)). Let
{
Qt

}
be a con-

sistent family of finite-dimensional distributions. Then there is a probabil-
ity measure P on

(
(Rd)[0,∞),B(Rd)⊗[0,+∞)

)
, such that (1.3) holds for every

t ∈ T .

Proof. A proof can be read in p 50 of Karatzas and Shreeve. One can
use for instance Carathéodory theorem, that may also be used to construct
Lebesgue measure.

To verify that we can apply the Theorem to the construction of the
Brownian motion, it is enough to show consistency in this case. Coming
back to (1.2), we are left to check∫

Rd

pti−ti−1(xi − xi−1)pti+1−ti(xi+1 − xi)dxi = pti+1−ti−1(xi+1 − xi−1).

But it is the same as pti−ti−1 ∗ pti+1−ti = pti+1−ti−1 , or N (0, ti − ti−1) +
N (0, ti+1 − ti) = N (0, ti+1 − ti−1) where independence is assumed on the
left hand side.
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2.2 Regularity of BM sample paths

In this section we want to convince ourselves that BM sample paths are
almost surely continuous. We hope that C the set of continuous functions is
of probability 1 under the distribution of BM.

Remark 1.3. Unfortunately C is not measurable in B(Rd)⊗R+ . Prove this
fact as an exercise, that uses the previous Remark/exercise.

To circumvent this problem we will show that there exists a process with
almost sure continuous sample paths that has the same distribution as BM.

To clean a bit the situation some definitions are introduced.

Definition 1.5. 1. Processes X and Y have the same finite-dimensional
distributions if, for any integer n ≥ 1, real numbers 0 ≤ t1 < t2 <
· · · < tn <∞, and A ∈ B

(
Rnd

)
, we have:

P [(Xt1 , . . . , Xtn) ∈ A] = P [(Yt1 , . . . , Ytn) ∈ A] .

2. Y is a modification of X if, for every t ≥ 0, we have P [Xt = Yt] = 1.

3. X and Y are called indistinguishable if almost all their sample paths
agree:

P [Xt = Yt; ∀0 ≤ t <∞] = 1.

Exercise 1.1. If X is a modification of X ′ then the distribution of X and
X ′ are the same.

If X and X ′ are indistinguishable then there are modifications of each
other. The converse is false.

Example. Let Ω = [0, 1], A = B([0, 1]), P = dx the Lebesgue measure. Let
us take Xt(ω) = 1(ω ̸= t), and Yt = 1. Then

P(Xt = Yt) = P(ω ̸= t) = 1.

Hence X is a modification of Y. But P(∀t ∈ [0, 1], Xt = Yt) = 0. They are
not indistinguishable.

Exercise 1.2. Let Y be a modification of X, and suppose that both processes
have a.s. right-continuous sample paths. Then X and Y are indistinguish-
able.
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The next theorem will show that there exits a modification of the BM
with almost sure continuous sample paths.

Theorem 1.2 (Kolmogorov, Čentsov (1956)).

Suppose that a process {Xt; 0 ≤ t ≤ T} on a probability space (Ω,F ,P)
satisfies the condition

E |Xt −Xs|α ≤ C|t− s|1+β, 0 ≤ s, t ≤ T,

for some positive constants α, β, and C. Then there exists a continuous

modification X̃ =
{
X̃t; 0 ≤ t ≤ T

}
of X, which is locally Hölder-continuous

with exponent γ for every γ ∈ (0, β/α), i.e.,

P

ω; sup
0<t−s<h(ω)
s,t∈[0,T ]

∣∣∣X̃t(ω)− X̃s(ω)
∣∣∣

|t− s|γ
≤ δ

 = 1, (1.4)

where h(ω) is an a.s. positive random variable and δ > 0 is an appropri-
ate constant.

Proof. For simplicity, we take T = 1. Much of what follows is a consequence
of the Cebyšev inequality. First, for any ε > 0, we have

P [|Xt −Xs| ≥ ε] ≤ E |Xt −Xs|α

εα
≤ Cε−α|t− s|1+β,

and so Xs → Xt in probability as s → t. Second, setting t = k/2n, s =
(k− 1)/2n, and ε = 2−γn (where 0 < γ < β/α ) in the preceding inequality,
we obtain

P
[∣∣Xk/2n −X(k−1)/2n

∣∣ ≥ 2−γn
]
≤ C2−n(1+β−αγ),

and consequently,

P
[

max
1≤k≤2n

∣∣Xk/2n −X(k−1)/2n
∣∣ ≥ 2−γn

]
= P

[
2n⋃
k=1

∣∣Xk/2n −X(k−1)/2n
∣∣ ≥ 2−γn

]
≤ C2−n(β−αγ).
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The last expression is the general term of a convergent series; by the
Borel-Cantelli lemma, there is a set Ω∗ ∈ F with P (Ω∗) = 1 such that for
each ω ∈ Ω∗,

max
1≤k≤2n

∣∣Xk/22(ω)−X(k−1)/2n(ω)
∣∣ < 2−γn, ∀n ≥ n∗(ω), (1.5)

where n∗(ω) is a positive, integer-valued random variable. For each
integer n ≥ 1, let us consider the partition Dn = {(k/2n) ; k = 0, 1, . . . , 2n}
of [0, 1], and let D =

⋃∞
n=1Dn be the set of dyadic rationals in [0, 1]. We

shall fix ω ∈ Ω∗, n ≥ n∗(ω), and show that for every m > n, we have

|Xt(ω)−Xs(ω)| ≤ 2
m∑

j=n+1

2−γj ; ∀t, s ∈ Dm, 0 < t− s < 2−n. (1.6)

For m = n+1, we can only have t = (k/2m) , s = ((k − 1)/2m), and (1.6)
follows from (1.5). Suppose (1.6) is valid for m = n+1, . . . ,M−1. Take s <
t, s, t ∈ DM , consider the numbers t1 = max {u ∈ DM−1;u ≤ t} and s1 =
min {u ∈ DM−1;u ≥ s}, and notice the relationships s ≤ s1 ≤ t1 ≤ t, s1−s ≤
2−M , t− t1 ≤ 2−M . From (1.5) we have |Xs1(ω)−Xs(ω)| ≤ 2−γM , | Xt(ω)−
Xt1(ω) |≤ 2−γM , and from (1.6) with m =M − 1,

|Xt1(ω)−Xs1(ω)| ≤ 2
M−1∑
j=n+1

2−γj .

We obtain (1.6) for m =M .

We can show now that {Xt(ω); t ∈ D} is uniformly continuous in t for
every ω ∈ Ω∗. For any numbers s, t ∈ D with 0 < t − s < h(ω) ≜ 2−n∗(ω),
we select n ≥ n∗(ω) such that 2−(n+1) ≤ t− s < 2−n. We have from (1.6)

|Xt(ω)−Xs(ω)| ≤ 2

∞∑
j=n+1

2−γj ≤ δ|t− s|γ , 0 < t− s < h(ω), (1.7)

where δ = 2/ (1− 2−γ). This proves the desired uniform continuity. We
define X̃ as follows. For ω /∈ Ω∗, set X̃t(ω) = 0, 0 ≤ t ≤ 1. For ω ∈ Ω∗

and t ∈ D, set X̃t(ω) = Xt(ω). For ω ∈ Ω∗ and t ∈ [0, 1] ∩ Dc, choose
a sequence {sn}∞n=1 ⊆ D with sn → t; uniform continuity and the Cauchy
criterion imply that {Xsn(ω)}

∞
n=1 has a limit which depends on t but not

on the particular sequence {sn}∞n=1 ⊆ D chosen to converge to t, and we set
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X̃t(ω) = limsn→tXsn(ω). The resulting process X̃ is thereby continuous;
indeed, X̃ satisfies (1.7), so (1.4) is established.

To see that X̃ is a modification of X, observe that X̃t = Xt a.s. for
t ∈ D; for t ∈ [0, 1] ∩Dc and {sn}∞n=1 ⊆ D with sn → t, we have Xsn → Xt

in probability and Xsn → X̃t a.s., so X̃t = Xt a.s.

This long proof is an example of the ”chaining” argument, which is used
in many other proofs.

To show that BM has a continuous modification we still have to show
that the bound on the expectations of the increments of BM that is an
assumption of the Theorem is satisfied

Proposition 1.1. If B is a real valued BM d = 1,

∀n ∈ N,∀t ∈ [0,+∞), E(Bt −Bs)
2n = Cn|t− s|n (1.8)

There exists a modification of the BM with locally Hölder continuous paths
for every exponent 0 < γ < 1

2 .

Proof.

Bt −Bs
(d)
= N (0, |t− s|) (d)

=
√
|t− s|N (0, 1)

Hence E(Bt − Bs)
2 = |t − s| and E(Bt − Bs)

2n = Cn|t − s|n where Cn =

EX2n, X
(d)
= N (0, 1). Applying (1.8) for n fixed we get Hölder continuity for

γ < n−1
2n .

Remark 1.4. Further on we always take continuous modifications of BM.

3 Quadratic variations of Brownian motions

We may wonder if the previous result is optimal. For instance could it be
that sample paths of Brownian motions are locally Liptschitz continuous ?
Actually elementary definitions of integrals of the type

∫
HsdBs are possible

if the sample paths have almost surely finite variations. Let us first recall
some facts concerning functions with finite variations.
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3.1 Reminder of functions with finite variations

If f : (0,+∞) 7→ R is a non decreasing function, right continuous, we can
associate a measure µ on (0,+∞) with ∀0 < s < t

µ((s, t]) = f(t)− f(s)

and if g is a bounded Borel function one can define∫ t

0
g(s)df(s)

def
=

∫
1[0,t](s)g(s)dµ(s).

If f is C1 it is equal to
∫ t
0 g(s)f

′(s)ds.

Definition 1.6. For t > 0, Let Pt be the set of finite subdivisions ∆ of
[0, t] : ∆ = (ti)i=1,...,n ∈ Pt, if 0 ≤ t1 ≤ . . . tn ≤ t. The mesh of ∆ is denoted
by |∆| = supi=1,...,n−1(ti+1 − ti). For f : (0,+∞) 7→ R, the variation of f
on [0, t] is denoted by

Vt(f)
def
= sup

∆∈Pt

n∑
i=1

|f(ti+1)− f(ti)|

and is said to have finite variations if ∀t > 0, Vt(f) <∞.

Example. � If f is monotone or a difference of non decreasing func-
tions, f has finite variations.

� If f is locally Lipschitz, f has finite variations.

We will admit two facts for Riemmann-Stieljes integral

� Every function f with finite variations is a difference of non decreasing
functions f1, f2, one can write∫ t

0
g(s)df(s)

def
=

∫ t

0
g(s)df1(s)−

∫ t

0
g(s)df2(s).

� If g is continuous and (∆n)n∈N a sequence of subdivisions with meshes
|∆n| → 0, ∫ t

0
g(s)df(s) = lim

n→∞

∑
tni ∈∆n

g(tni )(f(t
n
i+1)− f(tni )).
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3.2 Quadratic variations

Actually quadratic variations of BM sample paths are almost surely : posi-
tive finite and BM sample paths do not have finite variations.

Definition 1.7. A real valued process X has finite quadratic variations
denoted by ⟨X,X⟩ or (⟨X⟩) if ∀(∆n)n∈N sequence of subdivisions of Pt such
that |∆n| → 0 and ∆n = (tni )1≤i≤N(n) with t

n
1 = 0 and tnN(n) = t and

T∆n

[0,t]

def
=

∑
tni ∈∆n

(Xtni+1
−Xtni

)2
(P )→ ⟨X⟩t.

Proposition 1.2. If B is a Brownian motion ⟨B⟩t = t a.s.

Proof. We prove T∆n

[0,t] → t in L2(Ω). If ∆n = (tni )1≤i≤N(n)

Btni+1
− Btni

(d)
= N (0, tni+1 − tni )

(d)
=
√
tni+1 − tni N (0, 1). Then E((T∆n

[0,t]) =∑
tni ∈∆n E(Btni+1

−Btni
)2 =

∑
tni ∈∆n tni+1 − tni = t. Hence

E((T∆n

[0,t] − t)2) = V ar(T∆n

[0,t] − t)

= V ar(
∑

tni ∈∆n

(Btni+1
−Btni

)2 − (tni+1 − tni ))

=
∑

tni ∈∆n

V ar((Btni+1
−Btni

)2 − (tni+1 − tni ))

=
∑

tni ∈∆n

(tni+1 − tni )
2V ar(N2 − 1)

≤ C|∆n|
∑

tni ∈∆n

(tni+1 − tni ) → 0,

where N = N (0, 1). This implies convergence in probability.

To get almost sure convergence some additional assumptions are needed
for ∆n...

Proposition 1.3. Almost surely the sample paths of Brownian motion have
infinite variations on every intervals [0, t] for t > 0.

Proof. If ω is such that V[0,t](B(ω)) < +∞ then∑
tni ∈∆n

(Btni+1
−Btni

)2 ≤ sup |(Btni+1
−Btni

|
∑

tni ∈∆n

|Btni+1
−Btni

|.
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Since s 7→ Bs(ω) is uniformly continuous on [0, t] sup |Btni+1
− Btni

| → 0.
Hence the quadratic variations of the sample paths should vanish, which is
true only on a negligible set.

4 Brownian motion as a Gaussian process

4.1 Elementary properties

Definition 1.8. A real valued process (Xt, t ∈ T ) is a Gaussian process
if ∀n ∈ N, t1, . . . , tn ∈ T, (α1, . . . , αn) ∈ Rn,

∑n
i=1 αiXti is a Gaussian

random variable. The process X is centered if ∀t ∈ T, EXt = 0 and

Γ(s, t)
def
= Cov(Xs, Xt) is the covariance function.

Remark 1.5. � If ∀i = 1 to n, αi = 0
∑n

i=1 αiXti = 0. It means that
we consider N (0, 0) as a generalized degenerated Gaussian random
variable with variance 0. Gaussian processes are generalization of ran-
dom Gaussian vectors (where T is a finite set). (See for instance N.
Bouleau Processus stochastique et applications 1988.)

� If (X1, X2) is a Gaussian vector and Cov(X1, X2) = 0 then X1 and
X2 are independent.

Proposition 1.4. The Brownian motion which starts from 0 is the unique
centered Gaussian process with covariance Γ(s, t) = min(s, t).

Proof. The proof relies on the fact that the covariance always characterizes
the distribution of a Gaussian centered process. If X is a Gaussian centered
process and t1, . . . , tn ∈ T, then (Xt1 , . . . , Xtn) Gaussian vector implies the
characteristic function

E exp(i
n∑

i=1

αiXti) = exp(−1

2
⟨Cα,α⟩)

where α = (α1, . . . , αn), ⟨., .⟩ is The Euclidean scalar product in Rn, and
Ci,j = E(XtiXtj ) = Γ(ti, tj). Hence the matrix (Γ(ti, tj)) characterizes the
distribution of the finite dimensional margins (Xt1 , . . . , Xtn) ∀t1, . . . , tn ∈ T,
and henceforth the distribution of the process X.

Let us compute Γ(s, t) for Brownian motion. Let s ≤ t

Γ(s, t) = E(BsBt) = E(Bs(Bs +Bt −Bs)) = E(B2
s ) +E(Bs)E(Bt −Bs) = s.
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Hence Γ(s, t) = min(s, t).

Proposition 1.5. Let (Bt, t ≥ 0) be a Brownian motion.

1. (Bt+s −Bs, t ≥ 0) is a BM independent of FB
s = σ (Bu, u ≤ s) .

2. (−Bt, t ≥ 0) is a Brownian motion,

3. (Self-similarity) for all λ > 0,
(
B

(λ)
t , t ≥ 0

)
where B

(λ)
t := 1√

λ
Bλt, t ≥

0 is a Brownian motion.

Proof. Wt = Bt+s − Bs is a centered Gaussian process such that W0 = 0
a.s. Its covariance

E(WtWt′) = E((Bt+s−Bs)(Bt′+s−Bs)) = min(t+ s, t′+ s)− s = min(t, t′).

∀u1 ≤ . . . ≤ un ≤ s ≤ t1 ≤ . . . ≤ tn (Bu1 , . . . , Bun , Bt1+s−Bs, . . . , Btn+s−
Bs) is a Gaussian vector and (Bu1 , . . . , Bun) is independent of (Bt1+s −
Bs, . . . , Btn+s −Bs) since ∀i, j

E(Bui(Btj+s −Bs)) = 0.

Actually for Gaussian random vectors, a vanishing covariance yields inde-
pendence. Then independence of sigma field is a consequence of indepen-
dence of the random variable that generate them. To prove other parts of
the Proposition, compute covariances.

4.2 Brownian bridge

We may condition (Bt, 0 ≤ t ≤ 1) to the event B1 = 0. In this case we
obtain a Brownian bridge.

Definition 1.9. The process X0
t = Bt − tB1 is called a Brownian bridge.

Proposition 1.6. X0 is independent of B1.

Proof. ∀0 ≤ t ≤ 1, E(X0
t − tB1) = 0. And it is a centered Gaussian process.

Furthermore ∀0 ≤ t ≤ 1, E(X0
t B1) = E((Bt − tB1)B1) = 0.

Proposition 1.7. Let Xb
t = Bt − tB1 + tb. The distribution of Xb is a

regular version of the conditional distribution of (Bt, t ≤ 1) given B1 = b.
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Proof. Reminder : P(dx, y) is a regular version of the conditional distribu-
tion ofX given Y = y if and only if (in short iff) ∀φ bounded and measurable

E(φ(X)|Y ) =

∫
φ(x)P(dx, Y )

P almost surely. It can be characterized by ∀φ, g bounded and measurable

E(φ(X)g(Y )) =

∫
(

∫
φ(x)P(dx, y))g(y)dPY (y).

In our case we have to show

E(φ(Bs, s ≤ 1)g(B1)) =

∫
E(φ(Xb

s , s ≤ 1)g(b)
e−

b2

2 db√
2π

. (1.9)

Let ψ((f(s), s ≤ 1), b) = φ((f(s) + sb, s ≤ 1)). Since Bs = X0
s + sB1,

E(φ(Bs, s ≤ 1)g(B1)) = E(ψ((X0
s , s ≤ 1), B1)g(B1))

=

∫
E(ψ((X0

s , s ≤ 1), b)g(b))
e−

b2

2 db√
2π

=

∫
E(φ((Xb

s , s ≤ 1))g(b))
e−

b2

2 db√
2π

.

4.3 Wiener integral

In this part the integral
∫
f(s)dBs is defined for a deterministic function

using the Gaussianity of the Brownian motion. (Later the stochastic integral
is defined for f a stochastic process.) If f is a simple function

f =
n∑

i=1

αi1(ai,bi]

for a1 < b1 ≤ a2 < b2 ≤ . . . Then∫
f(s)dBs

def
=

n∑
i=1

αi(B(bi)−B(ai), (1.10)

this random variable is denoted by I(f). It is a centered Gaussian random
variable with variance

E(I(f)2) =
n∑

i=1

α2
i (bi − ai) = ∥f∥2L2(0,∞).
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Theorem 1.3. There exists a unique map I from L2(0,∞) to H the set
that is the closure in L2(Ω,A,P) of the linear combinations

∑n
i=1 αi(B(bi)−

B(ai)) such that

1. I(1(ai,bi]) = B(bi)−B(ai).

2. I is a linear map

3. I is an isometry i.e. ∀f ∈ L2(0,∞) ∥f∥L2(0,∞) = ∥I(f)∥L2(Ω,A,P).

Proof. If f ∈ L2(0,∞) ∃(fn)n∈N with fn simple functions and limn→∞ fn =

f in L2(0,∞). Then let I(f)
def
= limn→∞ I(fn) in L2(0,∞). Please remark

that I(f) does not depend on the sequence (fn)n∈N since if limn→∞ gn = f
then limn→∞ I(gn)− I(fn) = 0 because of the isometry property. Moreover
we get the uniqueness of I by density of simple functions in L2.

Remark 1.6. 1. Since I is an isometry ∀f, g ∈ L2(0,∞),

⟨f, g⟩L2(0,∞) = ⟨I(f), I(g)⟩L2(Ω,A,P). (1.11)

If we denote by
∫∞
0 f(s)dBs = I(f), the so-called Wiener integral this

can be rewritten :∫ ∞

0
f(s)g(s)ds = E(

∫ ∞

0
f(s)dBs

∫ ∞

0
g(s)dBs).

2. Conversely if J : L2(0,∞) 7→ L2(Ω,A,P) is such that J(f) is a
centered Gaussian random variable and∫ ∞

0
f(s)g(s)ds = E(J(f)J(g))

then J is a linear map. Moreover J(1(0,t]) is a real Brownian mo-
tion. (Since (J(1(0,t]), t ≤ 0) is a centered Gaussian process and
E(J(1(0,s])J(1(0,t]) = min(s, t).) If we denote by Bt = J(1(0,t]), then J
is the isometry I associated to the BM B.

The same construction can be generalized to all intervals I ′ and L2(I ′). For
I ′ = R, the process Xt = I(1(0,t]),∀t ∈ R can be obtained from two indepen-
dent real valued Brownian motion Xt = B1

t ,∀t ≤ 0, and Xt = B2
t ,∀t ≥ 0.

One can easily check that

E(Xt −Xs)
2 = |t− s|, ∀t < 0 < s.
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4.4 Second construction of Brownian motion

If (en)n∈N is an orthonormal basis (ONB) of L2(0, 1) then (I(en))n∈N is a se-
quence of Gaussian independent random variables with distribution N (0, 1).
Actually (1,

√
2 cos(2πks),

√
2 sin(2πks))k∈N∗ is an ONB of L2(0, 1), ∀t ∈

(0, 1),

1(0,t](s)
L2(0,1)
= a0(t) +

∞∑
k=1

ak(t)
√
2 cos(2πks) + bk(t)

√
2 sin(2πks)

I(1(0,t])
L2(Ω,A,P)

= a0(t)ξ0 +
∞∑
k=1

ak(t)ξk +
∞∑
k=1

bk(t)ηk,

with (ξ0, ξk, ηk) i.i.d. Gaussian random variables with distribution N (0, 1).
Moreover a0(t) =

∫ 1
0 1(0,t](s)ds = t, ∀k ≥ 1

ak(t) =
√
2

∫ t

0
cos(2πks)ds =

sin(2πkt)√
2πk

bk(t) =
√
2

∫ t

0
sin(2πks)ds =

(1− cos(2πkt))√
2πk

.

Hence we get a series expansion of BM, a priori in L2 sense...

I(1(0,t]) = tξ0 +
∞∑
k=1

ξk
sin(2πks)√

2πk
+

∞∑
k=1

ηk
(1− cos(2πks))√

2πk
. (1.12)

Since I(1(0,1]) = ξ0, hence (1.12) can be viewed as tB1 plus the expansion
of a Brownian bridge.

Theorem 1.4. If (ξ0, ξk, ηk) are i.i.d. Gaussian random variables with
distribution N (0, 1)

tξ0 +
∞∑
k=1

ξk
sin(2πkt)√

2πk
+

∞∑
k=1

ηk
(1− cos(2πkt))√

2πk

almost surely converges to a process (Bt)t∈(0,1) with the distribution of a BM.

Proof. We may refer to criteria for convergences of random Fourier series in
Kahane Some random series of functions Theorem 2 p 236 second edition,
we get almost surely the uniform (but not normal) convergence of the series.
Since I(1(0,t]) is a BM we get the distribution of the limit of the series.

Remark 1.7. With this construction almost sure continuity of the sample
paths is for free !



Chapter 2

Reminder for martingales
indexed by N

To integrate processes Hs(ω) against BM ”dBs(ω)” we will assume that
H : [0,+∞) 7→ R, depends is ”previsible”. Roughly it means that H(t, .) is
measurable with respect to the sigma-field σ(Xs, s < t) of the past. Then
the time dependence of t 7→

∫ t
0 HsdBs, will be achieved so that

∫ t
0 HsdBs

is a martingale. First we recall results for martingales indexed by N espe-
cially convergence results. Then we will extend these results to martingales
indexed by [0,+∞). The main issue in this case is that [0,+∞) is not de-
numerable.

1 Definitions and first examples

Definition 2.1. A filtration on (Ω,F ,P) is a non-decreasing sequence of
sub-σ-fields of F :

F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ · · · ⊂ F .

One says that (Ω,F , (Fn)n≥0 ,P) is a filtered probability space.

Example 2.1. Let (Ω,F ,P) = ([0, 1[,B([0, 1[), λ), where λ is Lebesgue mea-
sure. The filtration (Fn)n≥0 defined by

Fn = σ

([
i

2n
,
i+ 1

2n

[
, i = 0, . . . , 2n − 1

)
, n ≥ 0

is called the dyadic filtration.

21
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If the parameter n denotes time, then Fn is interpreted as available
information up to time n.

Example 2.2. For a stochastic process (Xn)n≥0, we define its natural fil-
tration FX = (FX

n )n≥0 by: for all n ≥ 0,

FX
n = σ(X0, X1, · · · , Xn),

which is the smallest σ-field such that X0, . . . , Xn are measurable.

Definition 2.2. We say that a stochastic process X = (Xn)n≥0 is adapted
to the filtration (Fn)n≥0, if for all n ≥ 0, Xn is Fn-measurable. We say that
a stochastic process (Xn)n≥0 is adapted if it is adapted to some filtration.

A stochastic process is obviously adapted to its natural filtration.

Remark 2.1. If (Fn)n≥0 and (Gn)n≥0 are two filtrations such that Gn ⊂ Fn

for all n ≥ 0, and if (Xn)n≥0 is adapted to (Gn)n≥0, then (Xn)n≥0 is adapted
to (Fn)n≥0.

Definition 2.3. Let X = (Xn)n be an adapted process on filtered probability
space (Ω,A, (Fn, n ∈ N),P) such that for all n, Xn is integrable.

The process X is a martingale if for all n,

E[Xn+1/Fn] = Xn, almost surely.

The process Xis a sub-martingale if for all integer n n,

E[Xn+1/Fn] ≥ Xn, almost surely.

The process X is a super martingale if for all integer n,

E[Xn+1/Fn] ≤ Xn, almost surely.

Examples

(See exercises at the end of the chapter for some proofs of the following
properties are left to the reader.)

1. If X ∈ L1(Ω,A), Xn = E[X/Fn] is a martingale.This process is also
uniformly integrable.
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2. (Fundamental example.) Let (Zn, n ∈ N∗) be a sequence of in-
dependent and integrable random variables and X0 be an integrable
random variable independent of the sequence (Zn). (Most of the time,
X0 is constant.) Let Xn := X0 +

∑n
i=1 Zi. Then the filtrations FX

n

and Fn = σ(X0, Z1, . . . , Zn) are equal and for this filtration :

(a) if for all integer n, E(Zn) = 0, X is a martingale;

(b) if for all integer n, E(Zn) ≥ 0, X is a sub martingale;

(c) if for all integer n E(Zn) ≤ 0, X is an super martingale;

(d) if all r.v. Zi have same expectation m, Xn − nm is a martingale.

3. A special case of the example 2 comes from the game theory. In this
case the distribution of the r.v. Zn is the Bernoulli distribution with
parameter p : P(Zi = 1) = p, P(Zi = −1) = 1− p. with values +1 et
−1. In this case Xn is the fortune of the player after n bets, when its
initial fortune is X0. The process (Mn)n where Mn = Xn − n(2p− 1)
is a martingale for its natural filtration FX .

4. In the example 2, if we assume that E[exp(aZn)] := exp(rn) exists and
is finite, let Rn = r1 + · · ·+ rn. (Here R0 = 0.)

Then Mn = exp(aXn − Rn) is a martingale for the natural filtration
FX .

A process X can be a martingale (resp. super, resp sub) with respect to
several filtrations.

Proposition 2.1. If X is a martingale (resp. a super-martingale, a sub-
martingale) with respect to a filtration (Fn) and the process X is adapted to
an other filtration (Gn) smaller than(Fn) (that means for all n, Gn ⊂ Fn),
Then X is a martingale (resp. a super-martingale, a sub-martingale)with
respect to the filtration Gn. A martingale (resp. a super-martingale, a sub–
martingale) is a martingale (resp. a super-martingale, a sub–martingale)with
respect to its natural filtration .

Proof. Use successive conditioning. .

We can also increase filtrations by adding to each σ fields Fn an inde-
pendent σ field:
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Proposition 2.2. Let (Xn) be a martingale (resp. a sub-martingale, an
super-martingale), with respect to a filtration Fn. Let B be a σ field inde-
pendent of F∞, and let Gn = Fn ∨ B. Then (Xn) is a martingale (resp. a
sub-martingale, an super-martingale) with respect to the filtration Gn.

Proof. Left to the reader.

Notation 2.1. In the sequel

(∆X)n := Xn −Xn−1 (2.1)

is the increments process of (Xn).

Proposition 2.3. Let X be a F-martingale. Then

1. ∀n ≥ 0, ∀k ≥ 0, E[Xn+k/Fn] = Xn; E[Xn] = E[X0].

2. If the martingale is square integrable the increments (∆X)n of X are
orthogonal :

n ̸= m =⇒ E[(∆X)n(∆X)m] = 0.

3. If X is a super-martingale, −X is a sub-martingale.

4. The set of martingales with respect to a given filtration is a linear
space.

5. If X is a martingale and ϕ is a convex application such that Yn =
ϕ(Xn) is integrable then , Yn is a sub-martingale.

6. If X is a sub-martingale, and if ϕ is increasing and convex, ϕ(X) is a
sub-martingale if ϕ(Xn) is integrable.

Proof. The proof is left to the reader.

The point 1 relies on successive conditioning and induction.

The point 2 is obtained by conditioning by Fm−1 for n < m.

The points 3 et 4 are immediate.

The points 5 et 6 rely on Jensen conditionnal inequality.

For square integrable martingale, we have
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Proposition 2.4. If Mn is a square integrable martingale

∀n ≤ p, E[(Mp −Mn)
2] =

p∑
k=n+1

E[(∆M)2k].

Proof. Apply the property of orthogonal increments

2 of Proposition 2.3.

Corollary 2.1. A martingale bounded in L2 converges in L2.

Proof. By definition, since the martingale is bounded in L2 there exists a
constant C such that for all n,

E(X2
n) ≤ C2.

Then,

E(Xn −X0)
2 ≤ 4C2,

and Proposition 2.4 allows to prove that the series∑
k

E[(∆M)2k]

converges. As a consequence,

lim
n→∞

sup
p≥q≥n

p∑
q

E[(∆M)2k] = 0.

Using the previous proposition again

lim
n

sup
p,q≥n

E(Mp −Mq)
2 = 0,

and the sequence is Cauchy in L2 and converges.

2 Doob’s decomposition

Definition 2.4. Let (An)n≥0 be a process indexed by N, A is predictable
with respect to the sigma field Fn if ∀n An is Fn−1measurable.
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Theorem 2.1. D Doob ’s decomposition : Let X be a sub-martingale ;
there exists a martingale M and a predictable increasing process A, null at
0, unique, such that for all integer n, Xn =Mn +An.

The process A is called “compensator” of X.

Proof. Let A0 = 0 and M0 = X0. For n ≥ 1, define An in the following way
: let ∆n = E(Xn/Fn−1)−Xn−1, and

An = ∆1 + · · ·+∆n.

MoreoverMn = Xn − An. By construction An is predictable, and since Xn

is a sub-martingale, ∆n ≥ 0, and An is increasing. Moreover,

E(Mn+1/Fn) = E(Xn+1/Fn)−An+1 = Xn +∆n −An+1 =Mn.

and Mn is a martingale.

Uniqueness comes from the fact that if such a decomposition exists then

E(Xn+1 −Xn/Fn) = An+1 −An,

This characterize An if A0 = 0.

In the particular case of square integrable martingale we obtain the fol-
lowing.

Proposition 2.5. Let Mn be a square integrable martingale. Recall (nota-
tion 2.1) and (∆M)n =Mn −Mn−1 and let

Un = E[(∆M)2n/Fn−1).

Then M2
n −

∑n
k=1 Uk is a martingale.

Proof. It is the Doob’s decomposition applying to the sub-martingale M2
n,

since

E[(∆M)2n/Fn−1) = E(M2
n/Fn−1]−M2

n−1.
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3 Stopping times

3.1 Definition

Definition 2.5. A random variable T : Ω → N∪ {+∞} is called a stopping
time (with respect to the filtration (Fn)n≥0) if for all n ≥ 0,

{T ≤ n} ∈ Fn.

Remark 2.2. Since {T = n} = {T ≤ n} \ {T ≤ n − 1}, T is a stopping
time if and only if for all n ≥ 0,

{T = n} ∈ Fn.

Remark 2.3. A stopping time is thus a random time, which can be inter-
preted as a stopping rule for deciding whether to continue or stop a process
on the basis of the present information and past events, for instance playing
until you go broke or you break the bank, etc. . .

Example 2.3. 1. If T = n a.s., then clearly T is a stopping time.

2. Let (Xn)n≥0 be an adapted stochastic process, and consider the first
time Xn reaches the borel set A:

TA = inf{n ≥ 0 |Xn ∈ A},

with the convention that inf ∅ = +∞. It is called the hitting time of
A. Then TA is a stopping time. Indeed,

{TA = n} = {X0 ̸∈ A,X1 ̸∈ A, . . . ,Xn−1 ̸∈ A,Xn ∈ A}

=
n−1⋂
k=0

{Xk ̸∈ A} ∩ {Xn ∈ A} ∈ Fn.

3. Show that τA = sup{n ≥ 1 |Xn ∈ A} the last passage time in A is not
a stopping time in general.

Recall the notations: x ∧ y = inf(x, y) and x ∨ y = max(x, y).

Proposition 2.6. If S and T are two stopping times, then S ∧ T , S ∨ T
and S + T are also stopping times.
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Proof. Writing

{S ∧ T ≤ n} = {S ≤ n} ∪ {T ≤ n}

and

{S ∨ T ≤ n} = {S ≤ n} ∩ {T ≤ n}

gives the result for S ∧ T and S ∨ T . For S + T , we write:

{S + T ≤ n} =
⋃
k≤n

{S = k} ∩ {T ≤ n− k} ∈ Fn,

since Fk ⊂ Fn for all k ≤ n.

Remark 2.4. In particular, if T is a stopping time, then for all n ≥ 0, T ∧n
is a bounded stopping time.

Proposition 2.7. If (Tk)k is a sequence of stopping times, then infk Tk,
supk Tk, lim infk Tk and lim supk Tk are also stopping times.

Proof. Exercise.

Proposition 2.8. Let T be a stopping time. Then,

FT = {A ∈ F | ∀n ≥ 0, A ∩ {T = n} ∈ Fn}

is a σ-field, called the σ-field of T -past.

Remark 2.5. Obviously, T is FT -measurable.

Proof. It is obvious that Ω ∈ FT . If A ∈ FT , then for all n,

Ac ∩ {T = n} = {T = n} \A = {T = n} \ (A ∩ {T = n}) ∈ Fn,

hence Ac ∈ FT . If (Ak)k is countable collection of FT -mesurable set, then(⋃
k

Ak

)
∩ {T = n} =

⋃
k

(Ak ∩ {T = n}) ∈ Fn,

hence
⋃

k Ak ∈ FT .

Proposition 2.9. Let S and T be two stopping times such that S ≤ T .
Then, FS ⊂ FT .
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Proof. Let A ∈ FS . Then, for all n ≥ 0,

A∩{T = n} = A∩{S ≤ n}∩{T = n} =

n⋃
k=0

A∩{S = k}∩{T = n} ∈ Fn.

Definition 2.6. Let (Xn)n≥0 be an adapted stochastic process and T a stop-
ping time. If T <∞ a.s., we define the random variable XT by

XT (ω) = XT (ω)(ω) = Xn(ω) if T (ω) = n.

Note that XT is FT -measurable, since

{XT ∈ B} ∩ {T = n} = {Xn ∈ B} ∩ {T = n} ∈ Fn,

for any Borel set B.

4 Martingales transformations

Proposition 2.10. Let (Xn) be an adapted process and (Hn) be a predictable
process such that for all n, the r.v. Hn(Xn−Xn−1) is integrable. Let (H.X)
be the process defined by

(H.X)n = H0X0 +

n∑
k=1

Hk(Xk −Xk−1).

Then, if X is a martingale, (H.X) is a martingale. If X is a super-
(resp. sub-) martingale, and if H is positive, then (H.X) is a(n) super-
(resp. sub-) martingale.

Proof. Using the notation 2.1 , the process (H.X) satisfies

(∆(H.X))n = Hn(∆X)n.

The proof is then left to the reader.

In a casino for example, the processH corresponds to a player’s strategy :
according to all observations he has at time n, he bets at time n+1 an Hn+1,
to earn a gain Hn+1(Xn+1 −Xn).

An important particular case of Proposition 2.10 is the following
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Corollary 2.2. Let (Xn) be a martingale (resp. a sub-, an super-mar-
tingale), and let be a T stopping time. Then the process XT defined by
XT

n = XT∧n is a martingale (resp. a sub-, an super-martingale).

Proof. It is enough to consider the predictable (right ?) process H = 1[0,T ].

In this case the process (H.X) is nothing but XT :

(H.X)n = X0 +
T∧n∑
k=1

(Xk −Xk−1) = X0 +
n∑

k=1

(Xk −Xk−1)1k≤T .

Note that the process T∧n is adapted to the filtration Gn = FT∧n smaller
than Fn.

Using the predictable process H = 1A1[T,∞[, for A ∈ FT , we obtain

Corollary 2.3. If T is a stopping time, then 1A(XT∨n−XT )) is a martingale
(resp. a sub-, an super-martingale).

5 Stopping theorem :bounded stopping time’s case.

Theorem 2.2. (Stopping theorem.)

Let (Xn, n ∈ N) be a martingale and S and T be two bounded stopping
times (that means there exists an integer n such that S ∨ T ≤ n, almost
surely). Then,

E(XT /FS) = XS∧T . (2.2)

If X is a sub (resp. an super-)martingale,

XS∧T ≤ (resp ≥) E(XT /FS). (2.3)

In particular if (Xn, n ∈ N) is a sub-martingale and S and T are two
bounded stopping time, then

E(XS1S≤T ) ≤ E(XT1S≤T ). (2.4)

We have the inverse inequality for an super-martingale.



5. STOPPING THEOREM :BOUNDED STOPPING TIME’S CASE. 31

Proof. We give only the proof for the martingale case.

First, we study the case where

T = n and S ≤ n. The equality (2.2) to obtain can be written as

XS = E(Xn/FS).

By definition,

XS =
n∑

k=0

Xk1S=k.

We know that XS is FS measurable; and also integrable as finite linear
combination of integrable variables.

It is enough to prove that for all A ∈ FS ,

E(XS1A) = E(Xn1A).

This can be written as
n∑

k=0

E(Xk1A∩{S=k}) =

n∑
k=0

E(Xn1A∩{S=k}).

But since A ∈ FS , then A∩{S = k} ∈ Fk, and using the martingale property
we obtain, for all k ≤ N ,

E(Xk1A∩{S=k}) = E(Xn1A∩{S=k}).

We now study the general case. Let an integer n such that S ∨ T ≤ n.

Using the previous case for the stopped martingale XT , and the stopping
time S. We have XT

n = XT since T ≤ n, XT
S = XS∧T . We have

E(XT /FS) = XS∧T .

Note that the variable XS∧T is FS∧T measurable, and as a consequence

XS∧T = E(XT /FS∧T ).

To obtain inequality (2.4), it is enough to note that inequality (2.3)
means that for all A ∈ FS

E(XS∧T1A) ≤ E(XT1A).

We apply it to the set A = {S ≤ T}.
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Corollary 2.4. Let (Tn) be an increasing sequence of bounded stopping time,
and X be a martingale (resp. a sub-martingale, an super-martingale) ; then
(XTn , n ∈ N) is a martingale (resp. a sub-martingale, an super-martingale)
for the filtration (FTn , n ∈ N).

Proof. (on exercise)

Corollary 2.5. Let X be an integrable r.v., and let (Xn) be the martingale
E(X/Fn). If T is a bounded stopping time then

E(X/FT ) = XT .

If S et T are two bounded stopping time;

E(X/FS/FT ) = E(X/FT /FS) = E(X/FS∧T ) = XS∧T .

Proof. Let N such that T ∨ S ≤ N. Using successive conditioning for the
martingale Xn = E(X/Fn) E(X/FT ) = E(XN/FT ). The stopping theorem
yields E(XN/FT ) = XT .

If S and T are two bounded stopping,

E(XT /FS) = XS∧T = E(X/FS∧T ).

6 Finite stopping times

In this section we extend the stopping theorem to the case of finite stopping
times. Its requires some additional integrability conditions on martingales
(resp. sub-martingales, super-martingales).

Proposition 2.11. Let (Xn, n ∈ N) be a martingale (resp. a sub-martingale)
and T be S two almost surely finite stopping times.

If the sequences (XT∧n) are (XS∧n) uniformly integrable, then

XS∧T = E[XT /FS ]. (resp. XS∧T ≤ E[XT /FS ]).

This is the case when there exists a r.v. Y ∈ L1 such that for all n, |XT∧n| ≤
Y ),or when (Xn) is uniformly integrable

In particular for the martingale, we have E(XT ) = E(X0) for all finite
stopping time which satisfies this assumption.
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Proof. We only study the martingale case.

First note that the r.v. XT is integrable, as almost sure limit of uniformly
integrable sequence (XT∧n). (Note that T is a.s. finite.) It is the same for
XS . We have to prove that for all bounded variable Z FS-measurable , we
have

E(XSZ) = E(XTZ).

We can use the monotone class theorem monotones and restrict ourself to
the case where Z is FS∧n measurable using the fact that FS = ∨nFS∧n.

Let such an n. Using the Stopping Theorem 2.2 for the stopping time
S ∧ p and T ∧ p, and p ≥ n we obtain

E(ZXS∧p) = E(ZXT∧p).

Using uniform integrability we can let n going to infinity.

For the last point, if (Xn) is uniformly integrable, it is enough to note
that XT∧n = E(Xn/FT ). The desired conclusion follows from the fact that a
family of conditional expectation of uniformly integrable family is uniformly
integrable

7 Inequalities and convergence

7.1 Inequalities

Theorem 2.3. (Doob’s maximal inequality.) Let (Xn, n ∈ N) be a positive
sub martingale and λ ≥ 0. let X∗

n = supnk=0Xk. Then

∀n ∈ N, λP{X∗
n ≥ λ} ≤ E[Xn1{X∗

n≥λ}] ≤ E[Xn].

Proof. Let T = inf{k ∈ N, Xk ≥ λ} a stopping time. Then,

{T ≤ n} = {X∗
n ≥ λ}.

Take S = T ∧ (n+ 1),which is a bounded stopping time . We have

A = {S ≤ n} = {T ≤ n} ∈ FS .

Using the Stopping Theorem for this sub-martingale, between n and S ∧n.

E(XS∧n1A) ≤ E(Xn1A).
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This can be written

E(XT1T≤n) ≤ E(Xn1T≤n). (2.5)

On the set {T ≤ n}, XT ≥ λ, hence λP(T ≤ n) ≤ E(XT1T≤n). Then
λP(T ≤ n) ≤≤ E(Xn1T≤n) is the desired inequality.

Corollary 2.6. If (Xn, n ∈ N) is a martingale, (|Xn|, n ∈ N) is a positive
sub-martingale and

∀n ∈ N, λP{max
k≤n

|Xk| ≥ λ} ≤ E[|Xn|1maxk≤n |Xk|≥λ] ≤ E[|Xn|].

Theorem 2.4. Let (Xn, n ∈ N) be a positive sub-martingale and p > 1.
Then, if Xn ∈ Lp,

∥X∗
n∥p ≤

p

p− 1
∥Xn∥p.

Proof. If Xn ∈ Lp then variables Xk∈Lp for k ≤ n.

Let U be a positive r.v. in Lp,

E(Up) = p

∫ ∞

0
tp−1P(U ≥ t)dt.

Then

E[(X∗
n)

p] = p

∫ ∞

0
tp−1P(X∗

n ≥ t)dt

≤ p

∫ ∞

0
tp−2E[Xn1{X∗

n≥t}]dt

= pE[Xn

∫ ∞

0
tp−21{X∗

n≥t}dt]

=
p

p− 1
E[Xn(X

∗
n)

p−1].

Using Hölder inequality

E[Xn(X
∗
n)

p−1] ≤ ∥Xn∥p∥X∗
n∥p−1

p .

Since X∗
n is bounded by

∑n
0 Xk, it belongs to Lp. The desired result is

obtained by cancellation

In particular
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Corollary 2.7. Let (Xn) be a positive sub-martingale bounded in L1. Then
the variable X∗ = supnXn is finite almost surely. If (Xn) is bounded in Lp

(p > 1), then X∗ belongs to Lp. (This last result is false for p = 1.) The
same conclusions hold for martingales (not necessary positive).

Proof. The increasing sequence X∗
n converges towards X∗. It is enough to

apply Doob’s inequality and

λP(X∗
n > λ) ≤ sup

n
E(|Xn|) = K <∞.

Letting n going to infinity

λP(X∗ > λ) ≤ K,

P(X∗ > λ) → 0 (λ→ ∞). The r.v. X∗ is finite.

For the second part use the Theorem 2.4.

The case of martingales is obtained by applying the previous result to
the positive sub-martingale |Xn|.

7.2 Convergences

Results

The following results are given without any proof.

Proposition 2.12. Let Xn be a martingale, or a sub-martingale, or an
super-martingale, bounded in L1. Then Xn converges almost surely towards
a variable X∞.

Using Fatou’s lemma, M∞ the limit of a bounded in L1 martingale Mn

is integrable. In general Mn ̸= E(M∞/Fn).

It is the case for uniformly integrable martingales .

Proposition 2.13. let Mn be a bounded martingale in L1, and let M∞ the
limit of Mn when n→ ∞. The following statements are equivalent

1. Mn converges in L1 towards M∞.
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2. Mnis uniformly integrable.

3. Mn = E[M∞/Fn].

4. There exists an integrable r.v. M such that Mn = E[M/Fn]. Moreover
in this case , M∞ = E[M/F∞].

(Here F∞ = ∨nFn.)

Proof. For a sequence of r.v. which converges almost surely, it is equivalent
to converge in L1 or to be uniformly integrable. For all integrable r.v. M ,
the set of the r.v. E(M/B), where B is running in all sub σ fields of A is an
uniformly integrable family. It is enough to prove the following points:

1. If (Mn) is uniformly integrable, then Mn = E(M∞/Fn);

2. If M is an integrable r.v., the martingale Mn = E(M/Fn) converges
towards E(M/F∞).

For the first point note that for p ≥ n Mn = E(Mp/Fn),letting p going
to infinity using the fact that the expectation is continuous in L1, and that
Mp converges towards M∞ in L1 by assumption. We get the desired result.

For the second point, note that M∞ is F∞ measurable by construction.
It is enough to show that, for a A ∈ F∞, we have E(M∞1A) = E(M1A).
This is true when A belongs to sub σ fields of Fn,since

E(M1A) = E(Mn1A) = E(M∞1A).

The desired identity is then, true for all element of ∪nFn, and for all element
σ -field generated by ∪nFn using a monotone class theorem argument. The
desired inequality is true for F∞.

Remarks

1. A similar statement as in Proposition 2.13 is true for sub-and super-
martingales; the proof is left to the reader.

2. A bounded martingale Lp for p > 1, is dominated by an Lp variable
and converges in Lp.

We now are in position to enunciate the Stopping theorem for general
stopping-times.
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Theorem 2.5. (Stopping Theorem.) Let Mn be a uniformly integrable
martingale and let T be a stopping time (not necessarily finite). Then for
MT =M∞ on {T = ∞},we have

1. MT = E(M∞/FT ).

2. The set (MT ), where T is a stopping time is uniformly integrable.

3. If S and T are two stopping time, we have

E(MT /FS) =MS∧T .

4. Let M be a A-measurable integrable r.v. and Mn = E(M/Fn), then
MT = E(M/FT ).

Proof. For the first point, it is enough to write the proof of Stopping theorem
in this case. If A belongs to FT , then

E(MT1A) =
∑

k∈N
⋃

∞

E(Mk1A
⋂
{T=k})

=
∑

k∈N
⋃

∞

E(M∞1A
⋂
{T=k}) = E(M∞1A).

The family MT is contained in the family E(M∞/B), where B is running
in the subσ fields of A. This last family is uniformly integrable.

The stopping martingaleMT is uniformly integrable. Using the Stopping
theorem at time S, we obtain

E(MT /FS) =MS∧T .

It is enough to write

E(M/FT ) = E(E(M/F∞)/FT ) = E(M∞/FT ) =MT .

8 Exercises

1. Prove the claim 2 of examples 1 in section 1.
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2. Recall a definition of uniform integrability (U.I.) that claims that Xi

is U.I. if supi E|Xi| < ∞ and if a property sometimes called equiinte-
grability (to be recalled) is fulfilled.

3. Prove the claim 1 of examples 1 in section 1.

4. Show that Mn in the claim 3 of examples 1 in section 1 is square
integrable. What is the Doob decomposition of M2

n ?



Chapter 3

Martingales in continuous
time

1 Filtrations in continuous time

The definition of filtrations in continuous time is given under the usual
conditions. Those conditions are assumed to avoid nasty technical problems
related to the fact that (0,+∞) is not denumerable and therefore there exist
obstructions to measurabilty.

Definition 3.1. A family of sigma fields (Ft)0≤t≤+∞ all included in the
sigma field F associated to a probability space (Ω, F , P) is a filtration if
∀s ≤ t, Fs ⊂ Ft. It satisfies the usual conditions if

1. F0 contains all negligible sets of F (it is complete)

2. Ft = ∩s>tFs, ∀t ≥ 0, (it is right continuous.)

In this lecture all filtrations satisfy the usual condition.

We introduce a measurability assumption for processes that states that
the process depends only on the past of the filtration.

Definition 3.2. The stochastic process X is adapted to the filtration {Ft}
if, for each t ≥ 0, Xt is an Ft-measurable random variable.

Obviously, every process X is adapted to
{
FX

t

} def
= σ(Xs, 0 ≤ s ≤ t).

Moreover, if X is adapted to {Ft} and Y is a modification of X, then Y is

39
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also adapted to {Ft} provided that F0 contains all the P -negligible sets in
F .

Definition 3.3. The stochastic process X is called progressively measurable
with respect to the filtration {Ft} if, for each t ≥ 0 and A ∈ B

(
Rd
)
,

the set {(s, ω); 0 ≤ s ≤ t, ω ∈ Ω, Xs(ω) ∈ A} belongs to the product σ-field
B([0, t])⊗ Ft; in other words, if the mapping

(s, ω) 7→ Xs(ω) : ([0, t]× Ω,B([0, t])⊗ Ft) →
(
Rd,B

(
Rd
))

is measurable, for each t ≥ 0.

Proposition 3.1. If the stochastic process X is adapted to the filtration
{Ft} and every sample path is right-continuous or else every sample path
is left continuous, then X is also progressively measurable with respect to
{Ft}.

Proof. We treat the case of right-continuity. With t > 0, n ≥ 1, k = 0, 1,
. . . , 2n − 1, and 0 ≤ s ≤ t, we define:

X(n)
s (ω) = X(k+1)t/2n(ω) for

kt

2n
< s ≤ k + 1

2n
t,

as well as X
(n)
0 (ω) = X0(ω). The so-constructed map (s, ω) 7→ X

(n)
s (ω) from

[0, t]×Ω into Rd is demonstrably B([0, t])⊗Ft-measurable. Besides, by right-

continuity we have: limn→∞X
(n)
s (ω) = Xs(ω), ∀(s, ω) ∈ [0, t]×Ω. Therefore,

the (limit) map (s, ω) 7→ Xs(ω) is also B([0, t])⊗ Ft-measurable.

2 Stopping times in continuous time

Definition 3.4. Let us consider a measurable space (Ω,F ) equipped with a
filtration {Ft}. A random variable T : Ω 7→ [0,+∞] is a stopping time of
the filtration, if the event {T ≤ t} belongs to the σ-field Ft, for every t ≥ 0.

Proposition 3.2. Show that ∀t ≥ 0, {T < t} belongs to the σ-field Ft is
equivalent to T is a stopping time.

Proof. The proof is based on the observation {T < t} =
⋃∞

n=1{T ≤ t −
(1/n)} ∈ Ft, because if T is a stopping time, then {T ≤ t − (1/n)} ∈
Ft−(1/n) ⊆ Ft for n ≥ 1. For the converse, suppose that ∀t ≥ 0, {T <
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t} ∈ Ft of the right-continuous filtration {Ft}. Since for every positive
integer m, we have {T ≤ t} =

⋂∞
n=m{T < t + (1/n)}, we deduce that

{T ≤ t} ∈ Ft+(1/m); whence {T ≤ t} ∈ ∩s>tFs = Ft.

Consider a subset A ∈ B
(
Rd
)
of the state space of the process, and

define the hitting time

DA(ω) = inf {t ≥ 0;Xt(ω) ∈ A}

and
TA(ω) = inf {t > 0;Xt(ω) ∈ A} .

Remark 3.1. By convention we set inf(∅) = +∞.

If X0 /∈ A, DA = TA.

Proposition 3.3. 1. If X is right continuous and adapted and A is open
then TA is a stopping time.

2. If the process X is continuous, adapted and A is closed then DA is a
stopping time.

Proof. Let us prove the second claim.

{DA ≤ t} = ∩n∈N∗ ∪s∈Q, 0<s≤t {d(Xs, A) <
1

n
}.

Let us first show that the set on the left is included in the set on the right.
Since X is continuous and A closed XDA

∈ A. Moreover there exists a
sequence sn ∈ Q such that it is increasing to DA(ω) and d(Xsn , XDA

) < 1
n .

Then d(Xsn , A) ≤ d(Xsn , XDA
). The inclusion is proved, let us prove the

inclusion the other way around.

∀n ∈ N∗ ∃sn ≤ t and d(Xsn , A) <
1
n , We consider a susbsequence snk

→
t′ ≤ t, then d(Xt′ , A) = 0 by continuity of X and of x 7→ d(x,A). This
implies DA ≤ t′. Since {d(Xs, A) <

1
n} ∈ Fs the proof is finished.

Let us prove the first claim. Because of the Proposition 3.2 it is enough
to show that {TA < t} ∈ Ft.

{TA < t} = {ω, ∃s < t, Xs(ω) ∈ A}
= {ω, ∃s < t, s ∈ Q Xs(ω) ∈ A}

since A is open and X right continuous. Then

{TA < t} = ∪s<t,s∈Q{ω,Xs(ω) ∈ A}

and each of the set in the last union belongs to Ft.
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Exercise 3.1. If S and T are two stopping times, then S ∧T , S ∨T , T +S
are also stopping times. (The last one is more difficult).

Proposition 3.4. Every stopping time is the limit of a nonincreasing se-
quence of stopping times that take only a finite number of values.

Proof. Let us denote by T the stopping time and let us define for n ∈ N∗

and 1 ≤ k ≤ 22n,

Tn(ω) =
k

2n

if k−1
2n < T ≤ k

2n and Tn = +∞ if T > 2n. On can check that Tn is a
nonincreasing sequence converging to T. Moreover

{Tn =
k

2n
} = {T ≤ k

2n
} \ {T ≤ k − 1

2n
} ∈ F k

2n
.

If t ≥ 0,

{Tn ≤ t} = ∪ k/2n≤t{Tn =
k

2n
}

then Tn is a stopping time.

Definition 3.5. Let T be a stopping time of the filtration {Ft}. The σ-
field FT of events determined prior to the stopping time T consists of those
events A ∈ F for which A ∩ {T ≤ t} ∈ Ft for every t ≥ 0.

Exercise 3.2. Verify that FT is actually a σ-field and T is FT -measurable.
Show that if T (ω) = t for some constant t ≥ 0 and every ω ∈ Ω, then
FT = Ft.

Proposition 3.5. If X is progressively measurable valued in (E, E) and T
is a stopping time then XT1(T <∞) is FT -measurable.

We set XT1(T <∞) = 0 if T = ∞.

Proof. Let us suppose T < +∞. For a fixed t ≥ 0, let us set

Ω̃ = {ω|T (ω) ≤ t}

endowed with the sigma field Ft restricted to Ω̃ that is F Ω̃
t

def
= Ft∩{T ≤ t}.

The map

Ω̃ 7→ [0, t] (3.1)

ω 7→ T (ω) (3.2)
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is measurable from F Ω̃
t on B([0, t]) because for s ≤ t {T ≤ s} ∈ Fs. Then Φ

defined by

Ω̃ 7→ [0, t]× Ω (3.3)

ω 7→ (T (ω), ω) (3.4)

is measurable if we endow [0, t]×Ω with the sigma field B([0, t])⊗Ft. Since

X is progressively measurable XT = X ◦ Φ(ω) is F Ω̃
t measurable i.e. ∀A ∈

E , {ω|XT (ω) ∈ A} ∩ {ω|T (ω) ≤ t} ∈ Ft, {ω|T (ω) < +∞} is FT measurable
hence XT1(T <∞) also.

Exercise 3.3. 1. Show that FT = σ(XT , Xprogressively measurable).
The previous Proposition yields one inclusion out of two...

2. Show that if S, T stopping times and S ≤ T a.s. FS ⊂ FT .

3 Martingale in continuous time

In this section we shall consider exclusively real-valued processesX = {Xt; 0 ≤ t <∞}
on a probability space (Ω,F ,P), adapted to a given filtration {Ft} and such
that E |Xt| <∞ holds for every t ≥ 0.

Definition 3.6. The process {Xt,Ft; 0 ≤ t <∞} is said to be a submartin-
gale (respectively, a supermartingale) if, for every 0 ≤ s < t <∞, we have,
a.s. P; E (Xt | Fs) ≥ Xs (respectively, E (Xt | Fs) ≤ Xs ).

We shall say that {Xt,Ft; 0 ≤ t <∞} is a martingale if it is both a
submartingale and a supermartingale.

Example. 1. If (Bt)t≥0 is a Brownian Motion (BM) we consider the
natural filtration FB

t = σ(Bs, s ≤ t) and Ft = σ(FB
t ,N ), where N is

the set of negligible sets. We take for granted that Ft is right continu-
ous and hence satisfies the usual conditions. Bt is a Ft martingale
since for 0 ≤ s ≤ t

E(Bt|Fs) = E(Bt −Bs +Bs|Fs) = E(Bt −Bs) +Bs.

2. (B2
t −t)t≥0 is a Ft martingale. Actually 0 ≤ s ≤ t we have to show that

E(B2
t − t|Fs) = B2

s − s, which is equivalent to E(B2
t −B2

s |Fs) = t− s.
Observe that E((Bs + Bt − Bs)

2 − B2
s |Fs) = E(2Bs(Bt − Bs) + (Bt −

Bs)
2|Fs) = t− s.
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3. ∀λ ∈ C, Mλ(t) = eλBt−λ2

2
t is a Ft martingale. (It is important to

allow λ to be complex valued since we will take λ = iu where u ∈ R
which is related to the characteristic function EeiuBt ; the definition
of complex valued martingales just amounts to say that the real part
and the imaginary part of the process are martingales.) To ensure
integrability of Mλ(t) we recall that the Laplace transform of Gaussian

random variables is always finite. Let us show that E(Mλ(t)
Mλ(s)

|Fs) = 1.

E(eλ(Bt−Bs)−λ2

2
(t−s)|Fs) = E(eλ(Bt−Bs))e−

λ2

2
(t−s)

= 1.

Let X = {Xt; 0 ≤ t <∞} be a real-valued stochastic process. Consider
two numbers α < β and a finite subset F of [0,∞). We define the number
of upcrossings UF (α, β;X(ω)) of the interval [α, β] by the restricted sample
path {Xi; t ∈ F} as follows. Set

τ1(ω) = min {t ∈ F ;Xt(ω) ≤ α} ,

and define recursively for j = 1, 2, . . .

σj(ω) = min {t ∈ F ; t ≥ τj(ω), Xt(ω) > β}
τj+1(ω) = min {t ∈ F ; t ≥ σj(ω), Xt(ω) < α}

The convention here is that the minimum of empty set is +∞, and we
denote by UF (α, β;X(ω)) the largest integer j for which σj(ω) < ∞. If
I ⊂ [0,∞) is not necessarily finite, we define

UI(α, β;X(ω)) = sup {UF (α, β;X(ω));F ⊆ I, F is finite }

The number of downcrossings DI(α, β;X(ω)) is defined similarly.

The following theorem extends to the continuous-time case results of
discrete martingales.

Theorem 3.1. Let {Xt,Ft; 0 ≤ t <∞} be a submartingale whose every
path is right-continuous, let [σ, τ ] be a subinterval of [0,∞), and let α <
β, λ > 0 be real numbers. We have the following results:
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1. Submartingale inequality:

λ · P
[
sup

σ≤t≤τ
Xt ≥ λ

]
≤ E

(
X+

τ

)
.

2. Upcrossings and downcrossings inequalities:

EU[σ,τ ](α, β;X(ω)) ≤ E (X+
τ ) + |α|
β − α

, ED[σ,τ ](α, β;X(ω)) ≤ E (Xτ − α)+

β − α
.

3. Doob’s maximal inequality:

E
(

sup
σ≤t≤τ

Xt

)p

≤
(

p

p− 1

)p

E (Xp
τ ) , p > 1

provided Xt ≥ 0 a.s. P for every t ≥ 0, and E (Xp
τ ) <∞.

There exist modifications of martingales, which are right continuous.

Theorem 3.2. If Xt is a Ft (with the usual conditions) sub-martingale
there exists a modification of Xt with right continuous paths iff t 7→ EXt is
right continuous. Moreover this modification has paths with left limits and
it is a sub-martingale.

Corollary 3.1. If Xt is a Ft (with the usual conditions) martingale there
exists a modification of Xt with r.c.l.l. right continuous left limits paths and
it is a martingale

The proof of the Theorem 3.2 can be found in Karatzas and Shreeve. It
uses the upcrossings inequality and the backward martingales that I did not
recalled.

We have convergence results for martingales in continuous time similar
to those in discrete time. We always use the right continuous modification.

Theorem 3.3. 1. If Xt is a Ft sub-martingale and supE(X+
t ) <∞ then

limt→+∞Xt = X∞ exists a.s. and E|X∞| <∞.

2. If Xt is a Ft martingale the following properties are equivalent.

(a) Xt converges in L1 towards X∞.

(b) Xt is uniformly integrable.

(c) ∃X∞ ∈ L1 and Xt = E[X∞/Ft].
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Under any of this hypothesis we have also a.s. convergence of Xt when
t→ ∞.

Please remark the slightly different assumption for the first part of the
theorem, when it is compared to the result for martingales indexed by N.
This assumption works also for martingales indexed by N.

4 Stopping time theorems

Let us generalize the stopping time theorems already obtained for martin-
gales indexed by N to martingales in continuous time. Here we consider the
case when Xt is uniformly integrable.

Definition 3.7. If Xt is a martingale uniformly integrable and T a stopping
time, let us define XT (ω) = X∞(ω) if T (ω) = ∞ and XT (ω) = XT (ω)(ω) if
T (ω) <∞.

Theorem 3.4. If Xt is a martingale uniformly integrable then the family
of (XS) where S is any stopping time is also uniformly integrable. If S ≤ T
are two stopping times XS = E(XT |FS) = E(X∞|FS).

Proof. Let us first show
XS = E(X∞|FS). (3.5)

For the first step I assume that S only takes a finite number of values
{s1 < . . . < sn}, and add by convention s0 = −∞. Let Yk = Xsk for k ≤ n
and Yn+1 = X∞. Then Y is a martingale for Fsk and Yk = E(X∞|Fsk). Let
A ∈ FS , i.e. A ∩ {S ≤ t} ∈ Ft

XS1A =
n+1∑
k=1

Yk1{S=sk}∩A

=
n∑

k=1

Yk(1{S≤sk}∩A − 1{S≤sk−1}∩A) + Yn+11{S>sn}∩A.

Hence

E(XS1A) =
n+1∑
k=1

E(X∞(1{S≤sk}∩A − 1{S≤sk−1}∩A)) + E(X∞1{S>sn}∩A)

= E(X∞1A).
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In the general case S is the limit of a non increasing sequence of stopping
times Sn that take a finite number of values and ∀n ∈ N, XSn = E(X∞|FSn).
Since X is right continuous, XS = limn→∞XSn . Moreover FSn+1 ⊂ FSn

hence XSn is a backward martingale and we admit that every backward
martingale converges in L1. So

XS = lim
N→∞

E(X∞| ∩N
n=1 FSn)

in L1. Since FS ⊂ ∩N
n=1FSn ,

XS = E( lim
N→∞

E(X∞| ∩N
n=1 FSn)|FS)

= lim
N→∞

E(E(X∞| ∩N
n=1 FSn)|FS) = lim

N→∞
E(X∞|FS) = E(X∞|FS).

Since E(X∞|FS) is uniformly integrable so the family of (XS) where S
is any stopping time is also uniformly integrable. Moreover, if S ≤ T,

E(XT |FS) = E(E(X∞|FT )|FS) = E(X∞|FS) = XS

because FS ⊂ FT .

Corollary 3.2. If X is a martingale and S ≤ T bounded stopping times
then E(XT |FS) = XS .

Proof. Let M > 0 such that 0 ≤ S(ω) ≤ T (ω) ≤ M a.s. Let us define Yt =
Xt∧M ,∀t ≥ 0. Then Yt = E(YM |Ft), it is uniformly integrable and we apply
the previous theorem. Then E(YT |FS) = YS which is also E(XT∧M |FS) =
XS∧M . Hence E(XT |FS) = XS since 0 ≤ S(ω) ≤ T (ω) ≤M.

Remark 3.2. But, if X is not uniformly integrable, one cannot only suppose
that S ≤ T finite a.s.

Exercise 3.4. Let Bt, t ≥ 0 be a BM starting from 0 and for a > 0
Ta = inf{t > 0, BT = a}. Here we assume that Ta < ∞ a.s. Compute
E(e−µTa) for µ ≥ 0. Deduce that ETa = +∞.

Solution :

Let Mλ(t) = eλBt−λ2

2
t be the exponential martingale for λ ≥ 0. The

stopping time t ∧ Ta is bounded. Since s ∧ Ta ≤ t ∧ Ta, then

E(Mλ
t∧Ta

|Fs∧Ta) =Mλ
s∧Ta

.
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Hence Mλ
t∧Ta

is a martingale. So EMλ
t∧Ta

= EMλ
0 = 1. In

E(eλBt∧Ta−
λ2

2
(t∧Ta)) = 1,

we let t → +∞, use Ta < ∞. a.s. and a dominated convergence argument,

so that E(eλBTa−
λ2

2
Ta) = 1. Then we remark that BTa = a and we get

E(e−
λ2

2
Ta) = e−λa.

Let us take µ = λ2

2 , then E(e−µTa) = e−
√
2µa. We have the Laplace trans-

form of the positive random variable Ta. Classically ETa is obtained as the
derivative of this Laplace transform for µ = 0 which is here +∞. Hence
ETa = +∞.

Theorem 3.5. If Xt is a non-negative supermartingale and S ≤ T are two
stopping times XS ≥ E(XT |FS).

Remark 3.3. We know that the limt→+∞Xt = X∞ exists a.s. so we don’t
need to have the stopping time a.s. finite in this case.

We admit the proof.



Chapter 4

Stochastic integral

The results for martingales are used to build Xt =
∫ t
0 HsdMs where H is

progressively measurable and M is a martingale. Because of the martin-
gale transform in the discrete case we expect Xt to be a martingale. But
the real life is more complicated for integrability reasons... Hence we are
forced to define local martingale associated to a sequence of stopping times
i.e. we assume that there is a non decreasing sequence of stopping times
Tn such that Xt∧Tn is a martingale uniformly integrable. Our basic tool
will be quadratic variations that we will generalize from Brownian motion
to continuous martingales. In this part we assume the processes are a.s.
continuous.

1 Quadratic variations

Using Riemmann Stieljes integral we know how to integrate with respect
to processes A with finite variations. We will show that we can define an
integral with respect to local martingales M. Once we have done that we
will be able to define integrals with respect to processes of the formM+A...
That is the goal of the chapter. Let us come back to a technical question
”Do the martingales have finite variations ?”. First we show that a process
cannot be a continuous martingale and with finite variations unless it is
trivial.

Proposition 4.1. Every continuous martingale with finite variations is con-
stant.

49
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Proof. Let ∆ be a subdivision of [0, t] and

Vt(M) = sup
∆∈Pt

n∑
i=1

|Mti+1 −Mti |

whereM is a continuous martingale with finite variations. Let Tn = inf{t ≥
0, Vt ≥ n or |Mt| ≥ n}. As a hitting time Tn is a stopping time and we can
show by contradiction that Tn almost surely converges to +∞. We denote
by MTn

t =Mt∧Tn the stopped martingale : it is a bounded by n continuous
process. It is also a martingale because of the stopping time theorem for
bounded stopping time. If s ≤ t, s ∧ Tn ≤ t ∧ Tn

E(Mt∧Tn |Fs∧Tn) =Ms∧Tn .

Hence we can assume without a loss of generality that M is a bounded
continuous martingale with bounded variations. If ∆ ∈ Pt, by orthogonality
of the increments of L2 martingales

E(Mt −Ms)
2 =

∑
ti∈∆

E(Mti+1 −Mti)
2

≤ E(Vt sup
ti∈∆

|Mti+1 −Mti |).

Since M is uniformly continuous on [0, t] Mt =M0 a.s.

We have checked thatB2
t−t is martingale, we will show thatM2−⟨M,M⟩

is a martingale. In this chapter we consider ∆ with an infinite number of

points ti such that limi→∞ ti = +∞ and rewrite T∆
[0,t]

def
=
∑

ti∈∆(Xti+1∧t −
Xti∧t)

2.

Theorem 4.1. A continuous and bounded martingaleM is of finite quadratic
variation and ⟨M,M⟩ is the unique continuous non decreasing adapted pro-
cess vanishing at zero such that M2 − ⟨M,M⟩ is a martingale.

Proof. Uniqueness is an easy consequence of Proposition 4.1, since if there
were two such processes A and B, then A−B would be a continuous mar-
tingale vanishing at zero with finite variations.

To prove the existence of ⟨M,M⟩, we first observe that since for ti <
s < ti+1,

E
[(
Mti+1 −Mti

)2 | Fs

]
= E

[(
Mti+1 −Ms

)2 | Fs

]
+ (Ms −Mti)

2
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it is easily proved that

E
[
T∆
t (M)− T∆

s (M) | Fs

]
= E

[
(Mt −Ms)

2 | Fs

]
= E

[
M2

t −M2
s | Fs

]
(4.1)

As a result, M2
t − T∆

t (M) is a continuous martingale. In the sequel, we
write T∆

t instead of T∆
t (M).

We now fix a > 0 and we are going to prove that if {∆n} is a sequence
of subdivisions of [0, a] such that |∆n| goes to zero, then

{
T∆n
a

}
converges

in L2.

If ∆ and ∆′ are two subdivisions we call ∆∆′ the subdivision obtained
by taking all the points of ∆ and ∆′. By (4.1) the process X = T∆ − T∆′

is a martingale and, by (4.1) again, applied to X instead of M , we have

E
[
X2

a

]
= E

[(
T∆
a − T∆′

a

)2]
= E

[
T∆∆′
a (X)

]
Because (x+ y)2 ≤ 2

(
x2 + y2

)
for any pair (x, y) of real numbers,

T∆∆′
a (X) ≤ 2

{
T∆∆′
a

(
T∆
)
+ T∆∆′

a

(
T∆′

)}
and to prove our claim, it is enough to show that E

[
T∆∆′
a

(
T∆
)]

con-

verges to 0 as |∆|+ |∆′| goes to zero.

Let then sk be in ∆∆′ and tl be the rightmost point of ∆ such that
tl ≤ sk < sk+1 ≤ tl+1; we have

T∆
sk+1

− T∆
sk

=
(
Msk+1

−Mtl

)2 − (Msk −Mtl)
2

=
(
Msk+1

−Msk

) (
Msk+1

+Msk − 2Mtl

)
and consequently,

T∆∆′
a

(
T∆
)
≤
(
sup
k

∣∣Msk+1
+Msk − 2Mtt

∣∣2)T∆∆′
a

By Schwarz’s inequality,



52 CHAPTER 4. STOCHASTIC INTEGRAL

E
[
T∆∆′
a

(
T∆
)]

≤ E

[
sup
k

∣∣Msk+1
+Msk − 2Mtl

∣∣4]1/2E [(T∆∆′
a

)2]1/2
Whenever |∆|+ |∆′| tends to zero, the first factor goes to zero because

M is continuous; it is therefore enough to prove that the second factor is
bounded by a constant independent of ∆ and ∆′. To this end, we write with
a = tn,

(
T∆
a

)2
=

(
n∑

k=1

(
Mtk −Mtk−1

)2)2

= 2

n∑
k=1

(
T∆
a − T∆

tk

) (
T∆
tk

− T∆
tk−1

)
+

n∑
k=1

(
Mtk −Mtk−1

)4
Because of (4.1), we have E

[
T∆
a − T∆

tk
| Ftk

]
= E

[
(Ma −Mtk)

2 | ·Ftk

]
and consequently

E
[(
T∆
a

)2]
=2

n∑
k=1

E
[
(Ma −Mtk)

2
(
T∆
tk

− T∆
tk−1

)]
+

n∑
k=1

E
[(
Mtk −Mtk−1

)4]
≤E

[(
2 sup

k
|Ma −Mtk |

2 + sup
k

∣∣Mtk −Mtk−1

∣∣2)T∆
a

]

Let C be a constant such that |M | ≤ C; by (4.1), it is easily seen that
E
[
T∆
a

]
≤ 4C2 and therefore

E
[(
T∆
a

)2] ≤ 12C2E
[
T∆
a

]
≤ 48C4.

We have thus proved that for any sequence {∆n} such that |∆n| → 0, the
sequence

{
T∆n
a

}
has a limit ⟨M,M⟩a in L2 hence in probability. It remains

to prove that ⟨M,M⟩a may be chosen within its equivalence class in such a
way that the resulting process ⟨M,M⟩ has the required properties.
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Let {∆n} be as above; by Doob’s inequality applied to the martingale
T∆n− T∆m ,

E

[
sup
t≤a

∣∣∣T∆n
t − T∆m

t

∣∣∣2] ≤ 4E
[(
T∆n
a − T∆m

a

)2]
.

Since, from a sequence converging in L2, one can extract a subsequence

converging a.s., there is a subsequence {∆nk
} such that T

∆ek
t converges a.s.

uniformly on [0, a] to a limit ⟨M,M⟩t which perforce is a.s. continuous.
Moreover, the original sequence might have been chosen such that ∆n+1

be a refinement of ∆n and
⋃

n∆n be dense in [0, a]. For any pair (s, t) in⋃
n∆n such that s < t, there is an n0 such that s and t belong to ∆n for any

n ≥ n0. We then have T∆n
s ≤ T∆n

t and as a result ⟨M,M⟩ is non decreasing
on
⋃

n∆n; as it is continuous, it is increasing everywhere (although the T∆n

are not necessarily non decreasing).

Finally, that M2 − ⟨M,M⟩ is a martingale follows upon passing to the
limit in (4.1). The proof is thus complete.

To enlarge the scope of the above result we will need the

Proposition 4.2. Under the assumptions of the previous theorem, for every
stopping time T , 〈

MT ,MT
〉
= ⟨M,M⟩T

Much as it is interesting, Theorem 4.1 is not sufficient for our purposes; it
does not cover, for instance, the case of the Brownian motion B which is not
a bounded martingale. Nonetheless, we have seen that B has a ”quadratic
variation”, namely t, and that B2

t − t is a martingale exactly as in Theo-
rem 4.1. We now show how to subsume the case of BM and the case of
bounded martingales in a single result by using the fecund idea of localiza-
tion.

Definition 4.1. An adapted, right-continuous process X is an (Ft,P)-local
martingale if there exist stopping times Tn, n ≥ 1, such that

1. the sequence {Tn} is increasing and limn Tn = +∞ a.s.

2. for every n, the process XTn1[Tn>0] is a uniformly integrable (Ft,P)-
martingale.
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We will drop (Ft,P) when there is no risk of ambiguity.

In condition 2. we can drop the uniform integrability and ask only that
XTn1[Tn>0] be a martingale; indeed, one can always replace Tn by Tn ∧ n to
obtain a u.i. martingale.

Likewise, if X is continuous as will nearly always be in this book, by
setting Sn = inf {t : |Xt| = n} and replacing Tn by Tn ∧ Sn, we may assume
the martingales in 2. to be bounded. This will be used extensively in the
sequel.

We further say that the stopping time T reduces X if XT 1[T>0] is a u.i.
martingale.

This property can be decomposed in two parts if one introduces the
process Yt = Xt −X0 : T reduces X if and only if

i) X0 is integrable on {T > 0};

ii) Y T is a u.i. martingale.

A common situation however is that in whichX0 is constant this explains
why in the sequel we will often drop the qualifying 1[T>0]. As an exercise,
the reader will show the following simple properties :

Exercise 4.1. i) if T reduces X and S ≤ T , then S reduces X;

ii) the sum of two local martingales is a local martingale;

iii) if Z is a F0-measurable r.v. and X is a local martingale then, so is
ZX; in particular, the set of local martingales is a vector space;

iv) a stopped local martingale is a local martingale;

v) a positive local martingale is a supermartingale.

We can now extend the quadratic variations to local martingales.

Theorem 4.2. If M is a continuous local martingale, there exists a unique
increasing continuous process ⟨M,M⟩, vanishing at zero, such that M2 −
⟨M,M⟩ is a continuous local martingale. Moreover, for every t and for any
sequence {∆n} of subdivisions of [0, t] such that |∆n| → 0, the r.v.’s

sup
s≤t

∣∣T∆n
s (M)− ⟨M,M⟩s

∣∣
converge to zero in probability.



1. QUADRATIC VARIATIONS 55

Proof. Let {Tn} be a sequence of stopping times increasing to +∞ and such
that Xn = MTn1[Tn>0] is a bounded martingale. By Theorem 4.1, there is,
for each n, a continuous process An with finite variations vanishing at zero

and such that X2
n −An is a martingale. Now,

(
X2

n+1 −An+1

)Tn 1[Tn>0] is a

martingale and is equal to X2
n−A

Tn
n+11[Tn>0]. By the uniqueness property in

Theorem 4.1, we have ATn
n+1 = An on [Tn > 0] and we may therefore define

unambiguously a process ⟨M,M⟩ by setting it equal to An on [Tn > 0].

Obviously,
(
MTn

)2
1[Tn>0]−⟨M,M⟩Tn is a martingale and therefore ⟨M,M⟩

is the sought-after process. The uniqueness follows from the uniqueness on
each interval [0, Tn].

To prove the second statement, let δ, ε > 0 and t be fixed. One can find
a stopping time S such that MS1[S>0] is bounded and P [S ≤ t] ≤ δ. Since

T∆(M) and ⟨M,M⟩ coincide with T∆
(
MS

)
and

〈
MS ,MS

〉
on [0, S], we

have

P

[
sup
s≤t

∣∣T∆
s (M)− ⟨M,M⟩s

∣∣ > ε

]
≤ δ+P

[
sup
s≤t

∣∣T∆
s

(
MS

)
−
〈
MS ,MS

〉
s

∣∣ > ε

]
and the last term goes to zero as |∆| tends to zero.


