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Chapter 1

Construction of Brownian
Motion and first properties

1 Introduction

The aim of this lecture is to construct the stochastic integral. The pri-
mary motivation is to develop an integral and differential calculus capable
of handling computations with random ”noises.” Historically, the concept of
random ”noises” originated from experimental sciences. In probability the-
ory, the most classical example of "noise” is Brownian motion. Brownian
motion was introduced by Robert Brown in 1828 to study the movement
of pollen particles in water. Later, in 1905, Einstein used Brownian motion
to model the trajectories of gas molecules. Additionally, Bachelier applied
Brownian motion to model stock option prices.

Let us give a first definition.
Definition 1.1. Brownian motion (By)i>o is a R? "process” (d > 1) (i.e.

a family of random variables in short r.v. ) such that

1. Vn € N* and to < t; <... <ty the rv.’s By, By, — Byg, ..., By, —
By, are independent (BM is a process with independent increments PIT
in short.)

2. If s <t, By— Bs is a centered Gaussian random vector with covariance
matriz (t — s)Id.

(Bt)i>0 starts from 0 € R? if By = 0, Pa.s.

5



6CHAPTER 1. CONSTRUCTION OF BROWNIAN MOTION AND FIRST PROPERTIES

Remark 1.1. o Ifd=1, Var(B; — Bs;) =1t —s.

e Random vectors from (Q, A, P) to (R?, B(R?), Independence, Gaussian
random vectors are supposed to be known.

e "Sample paths” : Heuristically we fix w € €, and we are interested in
t — By(w) Wiener (1923, 1924), Paley-Zygmund. P almost surely the
sample paths are contnuous and nowhere differentiable.

e If B(t) = (B\(t),...,B%t)), then Vi = 1 to d B'(t) are real valued
Brownian motions and if i # j, B' is independent of B7.

The aim of stochastic calculus is to give a rigorous meaning to (stochas-
tic) differential equations of the type

t .
ytz/o f(ys)Bsds

which have many applications. We will show that the Brownian motion is a
continuous martingale, and that integrals can be defined in this framework.
Another goal is to have a chain rule associated to these integrals. It is called
the It6 formula which claims that Vf € C?(R% R),

f(Bt):f(BO)-i-/O f’(Bs)st—i—;/O f"(By)ds.

Actually one can show if (X;)¢>¢ is real valued process with independent
increments and if the distribution of X; — X, does depend only of ¢ — s,
(stationary increments) with continuous sample paths then X; = Xy + o B;.
More generally one can study PIIS process with stationary independent
increments not with continuous sample paths. Another example of PIIS is
the Poisson process.

Références :

e [. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus.
Springer Verlag, 1988.

e Damien Lamberton and Bernard Lapeyre. Introduction to stochastic
calculus applied to finance. Chapman & Hall/CRC Financial Math-
ematics Series. Chapman & Hall/CRC, Boca Raton, FL, second edi-
tion, 2008.
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e Daniel Revuz and Marc Yor. Continuous martingales and Brow-
nian motion, volume 293 of Grundlehren der mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences]. Springer-
Verlag, Berlin, third edition, 1999.

2 Definition and continuity of Brownian motion

2.1 Distribution of a process

Definition 1.2. Let T' be a set and (E,£) a measurable set. A E val-
ued stochastic process indexed by T is a family (Xi, t € T) of r.v.’s Xy :
(Q,AP)— (E,E).

Reminder : If Y : (2, A, P) — (R, #(R)) is real valued random variable,
the distribution Py of Y is a probability measure on (R, Z(R)). It is the push
forward of the probability P by the measurable function Y. It is defined by
Py(A) =P(Y € A), VA € B(R).

For a process a sample path is associated to every w € Q, t — X;(w).
Hence the distribution of a process is a probability on a set of functions from
T — E which is denoted by ET, and endowed with the cylindrical sigma
field. A Cylinder is indexed by tg < t; < ... < t,, it is a subset of ET,

Cto,h, gty = {f S ET, (f(to),, RN f(tn)) € AO X ... X An, with A; € 5},

where Cy ¢, ...+, actually depends also on A;’s. Then the distribution of
the process is a probability on ET endowed with the smallest sigma field
that contains all cylinders. This sigma field is called the cylindrical sigma

field denoted by £%7.

Definition 1.3. The distribution of a E-valued process is a probability on
ET endowed with the smallest sigma field 2T that contains all cylinders.
It is uniquely defined by

P(X(to) € Ay, ..., X(tn) S An),

Vn e N* andtg <ty <...<ty,.

Example the Brownian motion that starts from 0 :
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If tg <t <...<ty, and f is bounded Borel function (R%)"*! s R, let

pelz) = (27;)‘1/2 exp (-II;;H?) | w
where ||.|| is the Euclidean norm on R?. Then p;_(x)dz is the distribution
of By — Bs, so
Ef(Bt,---, Bt,) /f 20, Tn)dPp, . B,)(T0s-- -, Tn)
/f g, ..., dIP’(Bt()’Btl ~Big. 7Bn_Btn_1)(xO’ X1 — XQy. vy Ty — Tp—1)
/f Z0s -y Tn)Pto(T0)Dty—to (T1 — X0) -+ - Pty—t, 1 (Tn — Tp—1)dxo ... dTy.
Hence

P(B(to) € Ao, ..., B(t,) € Ay)

= / Dto (20)Dty—to (T1 — X0) - - - Ptyy—t, 1 (Tn, — Tn—1)dx0 . . . dTy,
AgX...x A
(1.2)

and

P(B(t(])EAO, ...,B(tn)EAn):P(XQEAo, ey X0+---+XnEAn),

where X @ N(0,t9), X; @ N(0,t; —t;—1) for all i = 1 to n and X;’s are
independent.

Remark 1.2. This remark is also an evercise. If A € B(RY)ER+ then
I(tn)nen and 3B € BRHEN such that

A={f € ®RY)™, (f(tn))nen € B}.
Does exist on (RY)®+ a probability such that

N(CL‘O, t1, .oy tn) = P(B(t()) € AOa cee 7B(tn) € An)?

The answer”yes” is given by a Kolmogorov theorem. Let us first intro-
duce definitions and a necessary condition.
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Definition 1.4. Let T be the set of finite increasing sequencest = (to, ..., ty)
of numbers, where the length n+ 1 of these sequences ranges over the set of
positive integers. Suppose that for each t of length n+ 1, we have a probabil-
ity measure Qg on (R, 2 (R"T) ). Then the collection {Q4},or is called
a family of finite-dimensional distributions. This family is said to be consis-
tent provided that the following condition is satisfied: If t = (to,t1,...,tn)
with n > 1,t" = (to,t1,. .., tn), where t; is missing then Vi < n

QiAo x -+ x Aj1 X Ajp1 X -+ X Ap) = Qy(Ag X - - X R x -+ X Ay).

If we have a probability measure p on (R[O’OO),B(R)®[O’+°°)), then we
can define a family of finite-dimensional distributions by

QuA) = i |w € RO (w (1), (ta)) € 4], (1.3)

where A € Z (R") and t = (¢1,...,t,) € T. This family is easily seen to
be consistent. We are interested in the converse of this fact, because it will
enable us to construct a probability measure P from the finite-dimensional
distributions of Brownian motion.

Theorem 1.1 ( (Daniell (1918), Kolmogorov (1933)). Let {Q} be a con-
sistent family of finite-dimensional distributions. Then there is a probabil-
ity measure P on ((Rd)[o’oo),B(Rd)®[0’+°°)), such that (1.3) holds for every
tefT.

Proof. A proof can be read in p 50 of Karatzas and Shreeve. Omne can
use for instance Carathéodory theorem, that may also be used to construct
Lebesgue measure. O

To verify that we can apply the Theorem to the construction of the
Brownian motion, it is enough to show consistency in this case. Coming
back to (1.2), we are left to check

/Rd pti—t,‘_1 (xz - xi—l)pti+1—ti (mi—‘rl - xl)dmz - pti+1—ti_1 (xi-f—l - xi—l)'

But it is the same as py—¢,_, * Ptipr—t; = Prigi—t;_1s OF N (0,8 — ti1) +
N(0,t;41 — t;) = N(0,t;11 — t;—1) where independence is assumed on the
left hand side.
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2.2 Regularity of BM sample paths

In this section we want to convince ourselves that BM sample paths are
almost surely continuous. We hope that C the set of continuous functions is
of probability 1 under the distribution of BM.

Remark 1.3. Unfortunately C is not measurable in B(R)®®+. Prove this
fact as an ezercise, that uses the previous Remark/exercise.

To circumvent this problem we will show that there exists a process with
almost sure continuous sample paths that has the same distribution as BM.

To clean a bit the situation some definitions are introduced.

Definition 1.5. 1. Processes X and Y have the same finite-dimensional
distributions if, for any integer n > 1, real numbers 0 < t1 < to <
<ty < oo, and A€ B (R”d), we have:

P{(Xy,.... X, ) €A =P[(Yy,...,Y; ) € A].

2.'Y is a modification of X if, for every t > 0, we have P[X; =Y;] = 1.

3. X and Y are called indistinguishable if almost all their sample paths
agree:
PX; =Y;V0<t<oo=1

Exercise 1.1. If X is a modification of X' then the distribution of X and
X' are the same.
If X and X' are indistinguishable then there are modifications of each

other. The converse is false.

Example. Let Q = [0,1], A= 2([0,1]), P = dx the Lebesgue measure. Let
us take Xy(w) = 1(w # t), and Yy = 1. Then

P(X; =Y;) = P(w#1t) = 1.

Hence X is a modification of Y. But P(Vt € [0,1], X; = Y;) = 0. They are
not indistinguishable.

Exercise 1.2. Let Y be a modification of X, and suppose that both processes
have a.s. Tight-continuous sample paths. Then X and Y are indistinguish-

able.
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The next theorem will show that there exits a modification of the BM
with almost sure continuous sample paths.

Theorem 1.2 (Kolmogorov, Centsov (1956)).

Suppose that a process {Xy;0 < ¢t < T} on a probability space (£, #,P)
satisfies the condition

E|X;— XJ|*<Clt—s*?, 0<s,t<T,

for some positive constants «, 3, and C. Then there exists a continuous
modification X = {Xt; 0<t<T } of X, which is locally Holder-continuous
with exponent 7 for every v € (0, 5/a), i.e.,

[Xilw) = X (w)
P (w; sup <d| =1, (1.4)
0<t—s<h(w) ’t - S”Y

5,t€[0,T

where h(w) is an a.s. positive random variable and § > 0 is an appropri-
ate constant.

Proof. For simplicity, we take T'= 1. Much of what follows is a consequence
of the CebysSev inequality. First, for any € > 0, we have

E|X; — X|°
(e

PlIX: — X > ¢] < .

< Ce™ |t — s|'*P,
and so Xy — X in probability as s — t. Second, setting t = k/2",s =

(k—1)/2" and € = 277" (where 0 < v < /a ) in the preceding inequality,
we obtain

P HXk/Q" - X(k—l)/gn’ > 2_7"] < g2~ n(i+B—an)

and consequently,

P Xy o — Xpopyjan| > 277
Lg@J przn = Xp-ny/n| 2 ]

2n
=P !U [Xejon = X(eoyon| 2 2_”"]
k=1

< Conl(B—a),
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The last expression is the general term of a convergent series; by the
Borel-Cantelli lemma, there is a set Q* € % with P (Q*) = 1 such that for
each w € OF,

|Dax | X2 (W) — X (1) 2 ()] <277, Vn>n*(w), (1.5)

where n*(w) is a positive, integer-valued random variable. For each
integer n > 1, let us consider the partition D,, = {(k/2");k =0, 1,...,2"}
of [0,1], and let D = |J>2; D;, be the set of dyadic rationals in [0,1]. We
shall fix w € Q% n > n*(w), and show that for every m > n, we have

m
Xy (w) = Xow)| <2 ) 277 Vts€Dp0<t—s5<2"  (L6)
j=n+1

For m = n+1, we can only have t = (k/2™),s = ((k —1)/2™), and (1.6)
follows from (1.5). Suppose (1.6) is valid for m = n+1,..., M —1. Take s <
t,s,t € Dy, consider the numbers ¢! = max{u € Dy;_1;u <t} and s' =
min {u € Dy;_1;u > s}, and notice the relationships s < s' <t! <t,s'—s5 <
27 M ¢ 1 <27M From (1.5) we have | X 1 (w) — Xs(w)] <27M | Xy(w)—
X (w) €27 and from (1.6) with m = M — 1,

M-1
Xp(w) - Xaw) <2 Y 277,
j=n+1

We obtain (1.6) for m = M.

We can show now that {X;(w);t € D} is uniformly continuous in ¢ for
every w € Q*. For any numbers s,t € D with 0 <t — s < h(w) £ 277" (),
we select n > n*(w) such that 2= <t — 5 < 27", We have from (1.6)

1 Xi(w) = Xow)| <2 Y 277 <6t —s|!, 0<t—s<h(w), (L7)
Jj=n+1

where 6 =2/ (1 —277). This proves the desired uniform continuity. We
define X as follows. For w ¢ QF, set X;(w) = 0,0 <t < 1. For w € Q*
and t € D, set X;(w) = Xy(w). For w € Q* and t € [0,1] N D¢, choose
a sequence {sp} >, C D with s, — t; uniform continuity and the Cauchy
criterion imply that {X, (w)},~, has a limit which depends on ¢t but not
on the particular sequence {s,} - ; C D chosen to converge to ¢, and we set
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X (w) = limg, 4 X, (w). The resulting process X is thereby continuous;
indeed, X satisfies (1.7), so (1.4) is established.

To see that X is a modification of X , observe that X; = X; as. for
t € D; for t € [0,1] N D¢ and {s,},~; € D with s, — t, we have X, — X;
in probability and X, — Xt a.s., so X; = Xy a.s. ]

This long proof is an example of the ”chaining” argument, which is used
in many other proofs.

To show that BM has a continuous modification we still have to show
that the bound on the expectations of the increments of BM that is an
assumption of the Theorem is satisfied

Proposition 1.1. If B is a real valued BM d =1,
Vn € N,Vt € [0,+00), E(B; — By)* = Cplt — s|" (1.8)

There exists a modification of the BM with locally Holder continuous paths
for every exponent 0 < v < %

Proof.
B— B, 2N, |t —s) L V= sIN(0, 1)

Hence E(B; — Bs)? = |t — s| and E(B; — B)?" = Oyt — s|® where C,, =

EX?, X D (0,1). Applying (1.8) for n fixed we get Holder continuity for

—1
v <5 O

Remark 1.4. Further on we always take continuous modifications of BM.

3 Quadratic variations of Brownian motions

We may wonder if the previous result is optimal. For instance could it be
that sample paths of Brownian motions are locally Liptschitz continuous ?
Actually elementary definitions of integrals of the type | HsdBg are possible
if the sample paths have almost surely finite variations. Let us first recall
some facts concerning functions with finite variations.
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3.1 Reminder of functions with finite variations

If f :(0,4+00) — R is a non decreasing function, right continuous, we can
associate a measure f on (0, +00) with VO < s <t

p((s,t]) = f(t) = f(s)
and if g is a bounded Borel function one can define

def

/0 g(s)df (s) / 100.0(5)9(5)ds(s).

If fis C! it is equal to fgg(s)f/(s)ds.

Definition 1.6. For t > 0, Let Py be the set of finite subdivisions A of
0,t] : A= (ti)i=1,.n € P, if 0 < t; < ... t, < t. The mesh of A is denoted
by |A] = sup;—y 1 (tiy1 — ti). For f :(0,+00) = R, the variation of f
on [0,t] is denoted by

vi(f) ¢ sup > I (tien) = £(t5)]
ti=1

and is said to have finite variations if ¥Vt > 0, Vi(f) < oc.

Example. o If f is monotone or a difference of non decreasing func-
tions, f has finite variations.

o If f is locally Lipschitz, f has finite variations.
We will admit two facts for Riemmann-Stieljes integral

e Every function f with finite variations is a difference of non decreasing
functions fi, fo, one can write

def

/Otg(S)df(S) = /Otg(s)dfl(s)_/Otg(s)de(s)_

e If g is continuous and (A"),cn a sequence of subdivisions with meshes
|A™ — 0,

[ o) = tim 3= gte st - 5(6)

reAn
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3.2 Quadratic variations

Actually quadratic variations of BM sample paths are almost surely : posi-
tive finite and BM sample paths do not have finite variations.

Definition 1.7. A real valued process X has finite quadratic variations
denoted by (X, X) or (X)) if V(A™)nen sequence of subdivisions of Py such
that [A"] — 0 and A" = (t}')1<i<N(n) with t7 =0 and thny =t and

Proposition 1.2. If B is a Brownian motion (B); =t a.s.

Proof. We prove Tﬁ:] —tin L*(Q). If A" = (t)1<i<N(n)

d d n
By, — By @ N (O, — 17) © /B EN(0,1). Then E((TE)) =
Zt;LeAn E(Bey,, — Bt?)Q = Zt;LeAn tiy —t =t. Hence

E((Tigy —1)?) = Var(Tggy — t)
=Var( Y (B, — Bi)® = (t — 7))

tmeAn
= S Var((Ba, - Bu) — (88, — 1)
treAn
= ) (e — ) Var(N? = 1)
tmeAn
< CIAM Y (e — ) =0,
treA™
where N = AN(0,1). This implies convergence in probability. O

To get almost sure convergence some additional assumptions are needed
for A”...

Proposition 1.3. Almost surely the sample paths of Brownian motion have
infinite variations on every intervals [0,t] for t > 0.

Proof. If w is such that Vi 4(B(w)) < 400 then

> (B, — Bi)* <swp|(By,, — Bl Y |Bi,, — Buyl-
treAn trean
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Since s +— Bg(w) is uniformly continuous on [0,¢] sup By, — Bim| — 0.
Hence the quadratic variations of the sample paths should vanish, which is
true only on a negligible set. O

4  Brownian motion as a Gaussian process

4.1 Elementary properties

Definition 1.8. A real valued process (Xi,t € T) is a Gaussian process
ifVn e N, t1,...,tp € T, (a1,...,a) € R", 3" ; Xy, is a Gaussian
random variable. The process X is centered if ¥t € T, EX; = 0 and

I'(s,t) = Cov(Xs, X¢) is the covariance function.

Remark 1.5. o IfVi=1ton, oy =0 Y1, Xy = 0. It means that
we consider N(0,0) as a generalized degenerated Gaussian random
variable with variance 0. Gaussian processes are generalization of ran-
dom Gaussian vectors (where T is a finite set). (See for instance N.
Bouleau Processus stochastique et applications 1988.)

o If (X1,X29) is a Gaussian vector and Cov(X1,X2) = 0 then X1 and
Xs are independent.

Proposition 1.4. The Brownian motion which starts from 0 is the unique
centered Gaussian process with covariance I'(s,t) = min(s, ).

Proof. The proof relies on the fact that the covariance always characterizes
the distribution of a Gaussian centered process. If X is a Gaussian centered
process and t1,...,t, € T, then (X,..., X, ) Gaussian vector implies the
characteristic function

n
1
Eexp(i Zl a; Xy,) = exp(—i(C’a, a))
1=
where a = (aq,..., apn), {.,.) is The Euclidean scalar product in R", and
Cij = E(Xt,Xy;) = ['(t;, ;). Hence the matrix (I'(#;,t;)) characterizes the
distribution of the finite dimensional margins (X,,..., X,) Vt1,...,t, € T,

and henceforth the distribution of the process X.

Let us compute I'(s,t) for Brownian motion. Let s <t

['(s,t) = E(BsB;) = E(Bs(Bs + B, — Bs)) = E(Bs) + E(Bs)E(B; — Bs) = s.



4. BROWNIAN MOTION AS A GAUSSIAN PROCESS 17

Hence I'(s,t) = min(s, t).

Proposition 1.5. Let (B, t > 0) be a Brownian motion.

1. (Byys — Bs, t>0) is a BM independent of FP = o (B, u<s).
2. (=B, t>0) is a Brownian motion,

3. (Self-similarity) for all X > 0, (Bto‘)
0 is a Brownian motion.

, t> 0) where Blg)‘) = %BM, t>

Proof. Wy = Byys — Bs is a centered Gaussian process such that Wy = 0
a.s. Its covariance

E(W W) = E((Bys — Bs)(Byys — Bs)) = min(t + s, + s) — s = min(t, t).

VUI <... §un < SStl <... Stn (Bul,..., Bun7 Bt1+s_357---7 Bthrs_
B;) is a Gaussian vector and (By,,..., By,) is independent of (B 45 —
By, ..., By, +s — Bs) since Vi, j

E(Bui(Btj+S - By)) =0.

Actually for Gaussian random vectors, a vanishing covariance yields inde-
pendence. Then independence of sigma field is a consequence of indepen-
dence of the random variable that generate them. To prove other parts of
the Proposition, compute covariances. ]

4.2 Brownian bridge

We may condition (By, 0 < t < 1) to the event B; = 0. In this case we
obtain a Brownian bridge.

Definition 1.9. The process X{ = B; — tB; is called a Brownian bridge.

Proposition 1.6. X° is independent of By.

Proof. Y0 <t <1, E(X{ —tB;) = 0. And it is a centered Gaussian process.
Furthermore V0 <t < 1, E(X?B;) = E((B; — tB1)B;) = 0. O

Proposition 1.7. Let X! = B; — tBy + tb. The distribution of X is a
reqular version of the conditional distribution of (B, t < 1) given By = b.
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Proof. Reminder : P(dx,y) is a regular version of the conditional distribu-
tion of X given Y = y if and only if (in short iff) V¢ bounded and measurable

E(p(X)|Y) = / o (x)P(dz, Y)

P almost surely. It can be characterized by V¢, g bounded and measurable
Ble(X)g(¥)) = [ ([ o)z y)at)apy o)

In our case we have to show

Bp(Be 5 < Do(B) = [ Be(XL s < o)== (19)
Let ((f(s), s <1),b) = @((f(s) + sb,s < 1)). Since By = X? + sBy,
Blp(Ber s < 1g(B1) = E@((X0, 5 < 1), B)g(B)
— [ B2 s < 0090) "2
b e‘gdb
— [t s < Do) 2
O

4.3 Wiener integral

In this part the integral [ f(s)dB; is defined for a deterministic function
using the Gaussianity of the Brownian motion. (Later the stochastic integral
is defined for f a stochastic process.) If f is a simple function

f = Zall(a“bl]
=1
for a1 < by <ag <by <...Then
/f(s)st IS 0u(B(bs) — Blas), (1.10)
=1

this random variable is denoted by I(f). It is a centered Gaussian random
variable with variance

E(I(f)Q) = Za?(bi —a;) = Hf”%z((),oo)'
i=1
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Theorem 1.3. There exists a unique map I from L?(0,00) to H the set
that is the closure in L*(2, A,P) of the linear combinations > ., c;(B(b;) —
B(a;)) such that

1. I(1(q,p,)) = B(bi) — B(a).
2. 1 is a linear map

3. I is an isometry i.e. V.f € L?(0,00) ||f||L2(0,oo) = ||I(f)”L2(Q7A7]P>).

Proof. If f € L%(0,00) 3(fn)nen with f, simple functions and lim,, o fr =

fin L?(0,00). Then let I(f) =l lim,, o0 I(fy) in L?(0,00). Please remark
that I(f) does not depend on the sequence (fp)nen since if lim, 00 gn = f
then limy, o0 I(gn) — I(frn) = 0 because of the isometry property. Moreover
we get the uniqueness of I by density of simple functions in L?. O

Remark 1.6. 1. Since I is an isometry Vf, g € L*(0,00),

(fs9) 12(0,00) = L(f): 1(9)) 12(02,.4,P)- (1.11)

If we denote by fooo f(s)dBs = I(f), the so-called Wiener integral this
can be rewritten :

/Ooo f(s)g(s)ds = IE«:?(/OOo #(s)dB, /Ooo 4(5)dBy).

. Conversely if J : L*(0,00) + L%, A,P) is such that J(f) is a

centered Gaussian random variable and
/0 F()g(s)ds = E(J(£)J(9))

then J is a linear map. Moreover J(1(9y) is a real Brownian mo-
tion.  (Since (J(1y), t <0) is a centered Gaussian process and
E(J(10,¢))J (L(0,4) = min(s,t).) If we denote by By = J(1(oy), then J
1s the isometry I associated to the BM B.

The same construction can be generalized to all intervals I' and L*(I'). For
I' =R, the process X; = I(1p4), Yt € R can be obtained from two indepen-
dent real valued Brownian motion X; = B,},Vt <0, and Xy = Bf,Vt > 0.
One can easily check that

E(X; — X)2=|t—s|, Vt <0 <s.
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4.4 Second construction of Brownian motion

If (en)nen is an orthonormal basis (ONB) of L?(0,1) then (I(ey))nen is a se-
quence of Gaussian independent random variables with distribution A (0, 1).
Actually (1, v/2cos(2rks), v/2sin(27ks))ren+ is an ONB of L2(0,1), Vt €
(0,1),
2 [0.9]
Lo,4(s) ren ao(t) + Z ar(t)V2 cos(2mks) + by (t)V2sin(27ks)

=1
L2QA]P’
I(10,4) §0+Zak §k+zbk M

with (&0, &, 77k) iid. Gaussmn random variables with distribution A/(0, 1).
Moreover ag(t fo s)ds =t,Vk > 1

27kt)
\f/ cos(2mks)ds %
m V2rk

_ in(2mkes)ds — (1 — cos(27kt))
—\/i/os@k)d ok

Hence we get a series expansion of BM, a priori in L? sense...

sin(27ks)  ~= (1 — cos(27ks))
+ .
Vark kzzl " ek

Since I(1(g1)) = &o, hence (1.12) can be viewed as tB; plus the expansion
of a Brownian bridge.

I(1(0,) —t§o+25k (1.12)

Theorem 1.4. If (&, &, ni) are i.i.d. Gaussian random variables with
distribution N (0,1)

[e.o]

sin(27kt) (1 — cos(27mkt))
t§0+z&c ok an ok
k=1

almost surely converges to a process (Bt)te(o,l) with the distribution of a BM.

Proof. We may refer to criteria for convergences of random Fourier series in
Kahane Some random series of functions Theorem 2 p 236 second edition,
we get almost surely the uniform (but not normal) convergence of the series.
Since I(1(gy) is a BM we get the distribution of the limit of the series. [

Remark 1.7. With this construction almost sure continuity of the sample
paths is for free !



Chapter 2

Reminder for martingales
indexed by N

To integrate processes Hg(w) against BM "dBg(w)” we will assume that
H : [0,+00) — R, depends is "previsible”. Roughly it means that H(t,.) is
measurable with respect to the sigma-field o(Xs, s < t) of the past. Then
the time dependence of t fg H,dB;, will be achieved so that fg H,dB,
is a martingale. First we recall results for martingales indexed by N espe-
cially convergence results. Then we will extend these results to martingales
indexed by [0, +00). The main issue in this case is that [0, +00) is not de-
numerable.

1 Definitions and first examples

Definition 2.1. A filtration on (Q,F,P) is a non-decreasing sequence of
sub-o-fields of F:

FoCcFHLC---CF,C---CF.
One says that (0, F, (Fn),>0,P) is a filtered probability space.

Example 2.1. Let (Q, F,P) = ([0, 1, B(]0, 1[), A), where X is Lebesgue mea-
sure. The filtration (F,,)n>0 defined by

v+ 1) .
]:n:0'<|:2n,2n[,Z:O,...,Qn—l), nZO

is called the dyadic filtration.

21
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If the parameter n denotes time, then JF, is interpreted as available
information up to time n.

Example 2.2. For a stochastic process (X ),>0, we define its natural fil-
tration FX = (FX),>0 by: for all n >0,

f?i( = U(X0>X1a"' 7Xn)>

which is the smallest o-field such that Xy, ..., X, are measurable.

Definition 2.2. We say that a stochastic process X = (Xp)n>0 is adapted
to the filtration (Fp)n>0, if for alln >0, X,, is F,,-measurable. We say that
a stochastic process (Xp)n>0 is adapted if it is adapted to some filtration.

A stochastic process is obviously adapted to its natural filtration.

Remark 2.1. If (F,,),>0 and (Gy)n>0 are two filtrations such that G, C F,
for all n > 0, and if (X,,)n>0 is adapted to (G, )n>0, then (X, ),>0 is adapted
to (fn)nzo.

Definition 2.3. Let X = (X,,), be an adapted process on filtered probability
space (2, A, (Fpn,n € N),P) such that for all n, X,, is integrable.

The process X is a martingale if for all n,
E[X,i1/Fn] = Xpn, almost surely.
The process X is a sub-martingale if for all integer n n,

E[Xyy1/Fn] > Xpn, almost surely.

The process X is a super martingale if for all integer n,

E[Xpt+1/Fn] < Xy, almost surely.

Examples

(See exercises at the end of the chapter for some proofs of the following
properties are left to the reader.)

1. If X € LY(,A), X,, = E[X/F,] is a martingale.This process is also
uniformly integrable.
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2. (Fundamental example.) Let (Z,,n € N*) be a sequence of in-
dependent and integrable random variables and Xy be an integrable
random variable independent of the sequence (Z,,). (Most of the time,
Xy is constant.) Let X, := Xo + Y.y Z;. Then the filtrations F.\
and F,, = o(Xo, Z1,...,Zy) are equal and for this filtration :

a) if for all integer n, E(Z,) = 0, X is a martingale;

(a)

(b) if for all integer n, E(Z,) > 0, X is a sub martingale;
(c) if for all integer n E(Z,) < 0, X is an super martingale;
)

(d) if all r.v. Z; have same expectation m, X,, — nm is a martingale.

3. A special case of the example 2 comes from the game theory. In this
case the distribution of the r.v. Z,, is the BERNOULLI distribution with
parameter p : P(Z; = 1) = p, P(Z; = —1) = 1 — p. with values +1 et
—1. In this case X, is the fortune of the player after n bets, when its
initial fortune is Xy. The process (M, ), where M,, = X, —n(2p — 1)
is a martingale for its natural filtration FX.

4. In the example 2, if we assume that Elexp(aZ,)] := exp(ry,) exists and
is finite, let R, =ry + -+ 4+ r,. (Here Ry = 0.)

Then M, = exp(aX, — R,,) is a martingale for the natural filtration
FX.

A process X can be a martingale (resp. super, resp sub) with respect to
several filtrations.

Proposition 2.1. If X is a martingale (resp. a super-martingale, a sub-
martingale) with respect to a filtration (F,) and the process X is adapted to
an other filtration (G,) smaller than(F,) (that means for all n, G, C F,),
Then X is a martingale (resp. a super-martingale, a sub-martingale)with
respect to the filtration G,. A martingale (resp. a super-martingale, a sub—
martingale) is a martingale (resp. a super-martingale, a sub—martingale Jwith
respect to its natural filtration .

Proof. Use successive conditioning. . O

We can also increase filtrations by adding to each o fields F,, an inde-
pendent o field:
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Proposition 2.2. Let (X,,) be a martingale (resp. a sub-martingale, an
super-martingale), with respect to a filtration F,. Let B be a o field inde-
pendent of Fso, and let G, = F, V B. Then (X,) is a martingale (resp. a
sub-martingale, an super-martingale) with respect to the filtration G,.

Proof. Left to the reader. O

Notation 2.1. In the sequel
(AX)p = Xp, — Xn1 (2.1)
is the increments process of (Xp).

Proposition 2.3. Let X be a F-martingale. Then

1.Yn >0,k >0, B[Xpir/Fn] = Xn; E[X,] = E[X0).

2. If the martingale is square integrable the increments (AX),, of X are
orthogonal :

n#m — E[(AX),(AX),] =0.
3. If X is a super-martingale, —X 1is a sub-martingale.

4. The set of martingales with respect to a given filtration is a linear
space.

5. If X is a martingale and ¢ is a convex application such that Y, =
d(Xy,) is integrable then , Y, is a sub-martingale.

6. If X is a sub-martingale, and if ¢ is increasing and convex, ¢(X) is a
sub-martingale if ¢(X,,) is integrable.

Proof. The proof is left to the reader.
The point 1 relies on successive conditioning and induction.
The point 2 is obtained by conditioning by F,,—1 for n < m.

The points 3 et 4 are immediate.

The points 5 et 6 rely on JENSEN conditionnal inequality.

For square integrable martingale, we have
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Proposition 2.4. If M, is a square integrable martingale

¥n < p, E[(My — Ma)* = ) E[(AM)].
k=n+1

Proof. Apply the property of orthogonal increments
2 of Proposition 2.3. O

Corollary 2.1. A martingale bounded in L? converges in L?.

Proof. By definition, since the martingale is bounded in L? there exists a
constant C' such that for all n,

E(X?2) < C

Then,
E(X, — Xo)* <4C?,

and Proposition 2.4 allows to prove that the series
> E[(AM)]
k

converges. As a consequence,

lim sup » E[(AM)}] =0.

OO pzg>n T

Using the previous proposition again

lim sup E(M, — M,)* =0,
" pg>n

and the sequence is Cauchy in L? and converges.

2 Doob’s decomposition

Definition 2.4. Let (Ay)n>0 be a process indexed by N, A is predictable
with respect to the sigma field F,, if Yn A, is Fn—1measurable.
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Theorem 2.1. D DOOB ’S DECOMPOSITION : Let X be a sub-martingale ;
there exists a martingale M and a predictable increasing process A, null at
0, unique, such that for all integer n, X, = M, + A,.

The process A is called “compensator” of X.

Proof. Let Ag =0 and My = Xgo. For n > 1, define A,, in the following way
clet A, = E(Xn/Fn—l) — X,_1, and

Ap=A1 4+ A,

MoreoverM,, = X,, — A,. By construction A, is predictable, and since X,
is a sub-martingale, A, > 0, and A, is increasing. Moreover,

E(Mn+1/fn) = E(Xn+1/fn) — An+1 = Xn + An _ An+1 == Mn

and M, is a martingale.

Uniqueness comes from the fact that if such a decomposition exists then

E(Xn+1 — Xn/fn) = An+1 - Anv
This characterize A,, if Ag = 0. O

In the particular case of square integrable martingale we obtain the fol-
lowing.

Proposition 2.5. Let M, be a square integrable martingale. Recall (nota-
tion 2.1) and (AM ), = M, — M,_1 and let

Un = E[(AM)%/ o).

Then M2 —>"3_, Uy is a martingale.

Proof. Tt is the Doob’s decomposition applying to the sub-martingale M2,
since

E[(AM);/Fo-1) = E(My;/Foa] = My_y.
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3 Stopping times

3.1 Definition

Definition 2.5. A random variable T: Q — NU {400} is called a stopping
time (with respect to the filtration (Fy)n>0) if for all n >0,

{T <n} e F,.

Remark 2.2. Since {T' = n} = {T < n}\{T < n -1}, T is a stopping
time if and only if for all n > 0,

{T'=n} e F,.

Remark 2.3. A stopping time is thus a random time, which can be inter-
preted as a stopping rule for deciding whether to continue or stop a process
on the basis of the present information and past events, for instance playing
until you go broke or you break the bank, etc. ..

Example 2.3. 1. If T'=n a.s., then clearly T is a stopping time.

2. Let (X,)n>0 be an adapted stochastic process, and consider the first
time X,, reaches the borel set A:

Ty =inf{n >0|X, € A},

with the convention that inf @ = 4-o00. It is called the hitting time of
A. Then T4 is a stopping time. Indeed,

{TA:n}:{X()QA,Xl QA,...,Xn_l QA,XTLEA}
n—1

= (V{Xk ¢ A} N {X, € A} € F,.
k=0

3. Show that 74 = sup{n > 1| X,, € A} the last passage time in A is not
a stopping time in general.

Recall the notations: x Ay = inf(x,y) and =z V y = max(z,y).

Proposition 2.6. If S and T are two stopping times, then SAT, SVT
and S+ T are also stopping times.
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Proof. Writing
{SAT <n}={S<n}uU{T <n}

and
{SVT <n}={S<n}n{T <n}

gives the result for SAT and SV T. For S+ T, we write:

{S+T<n}=|J{S=KN{T <n-k}eF,,
k<n

since Fj C JF, for all k < n. ]

Remark 2.4. In particular, if T is a stopping time, then for alln > 0, T An
is a bounded stopping time.

Proposition 2.7. If (T;)r is a sequence of stopping times, then infy Ty,
supy, T), liminfy Ty and limsup, Ty are also stopping times.

Proof. Exercise. O

Proposition 2.8. Let T be a stopping time. Then,
Fr={AeF|vn>0,ANn{T =n} € F,}

1s a o-field, called the o-field of T-past.

Remark 2.5. Obviously, T is Fr-measurable.

Proof. 1t is obvious that Q € Fp. If A € Fr, then for all n,
AN{T =n}={T=n}\A={T=n}\ (AN{T =n}) € Fp,

hence A€ € Fr. If (A)y is countable collection of Fr-mesurable set, then

(UAk) N{T =n} = JAn{T =n}) € Fu,
K K

hence |J, Ar € Fr. O

Proposition 2.9. Let S and T be two stopping times such that S < T.
Then, Fs C Fr.
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Proof. Let A € Fg. Then, for all n > 0,

AT =n} = An{S <n}{T =n} = O AN{S =k}n{T =n} € F,. O
k=0

Definition 2.6. Let (X,),>0 be an adapted stochastic process and T a stop-
ping time. If T < 0o a.s., we define the random variable X by

Xr(w) = Xp)(w) = Xp(w)  if T(w) =n.

Note that X is Fp-measurable, since
{XreB}n{T =n}={X, € B}N{T =n} e F,,

for any Borel set B.

4 Martingales transformations

Proposition 2.10. Let (X,,) be an adapted process and (H,,) be a predictable
process such that for all n, the r.v. Hp(X,, — X,—1) is integrable. Let (H.X)
be the process defined by

n
(H.X), = HyXo + Z Hiy( Xy — Xp_1).
k=1

Then, if X is a martingale, (H.X) is a martingale. If X is a super-
(resp. sub-) martingale, and if H is positive, then (H.X) is a(n) super-
(resp. sub-) martingale.

Proof. Using the notation 2.1 , the process (H.X) satisfies
(A(H.X))p = Hy(AX),,.

The proof is then left to the reader. O

In a casino for example, the process H corresponds to a player’s strategy :
according to all observations he has at time n, he bets at time n+1 an Hy, 1,
to earn a gain Hy+1(Xnt1 — Xn).

An important particular case of Proposition 2.10 is the following
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Corollary 2.2. Let (X,) be a martingale (resp. a sub-, an super-mar-
tingale), and let be a T stopping time. Then the process X' defined by
XTI = X7, is a martingale (resp. a sub-, an super-martingale).

Proof. Tt is enough to consider the predictable (right ?) process H = 1jo 7).
In this case the process (H.X) is nothing but X7 :

TAn n
(HX)n =Xy + Z(Xk — Xk—l) =Xy + Z(Xk — Xk—l)lkgT-
k=1 k=1

O

Note that the process T'An is adapted to the filtration G,, = Fpa, smaller
than F,.

Using the predictable process H = 1417 o, for A € Fr, we obtain

Corollary 2.3. IfT is a stopping time, then 1o(Xryn—Xr)) is a martingale
(resp. a sub-, an super-martingale).

5 Stopping theorem :bounded stopping time’s case.

Theorem 2.2. (Stopping theorem.)

Let (X,,,n € N) be a martingale and S and T be two bounded stopping
times (that means there exists an integer m such that SV T < n, almost
surely). Then,

E(Xr/Fs) = Xsar- (2.2)

If X is a sub (resp. an super-)martingale,

Xsar < (resp >) E(Xp/Fs). (2.3)

In particular if (X,,n € N) is a sub-martingale and S and T are two
bounded stopping time, then

E(Xsls<r) < E(X7lg<T). (2.4)

We have the inverse inequality for an super-martingale.
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Proof. We give only the proof for the martingale case.
First, we study the case where
T =n and S < n. The equality (2.2) to obtain can be written as
Xg = E(Xn/]:s)~
By definition,

n
Xg=> Xplg—.
k=0

We know that Xg is Fg measurable; and also integrable as finite linear
combination of integrable variables.

It is enough to prove that for all A € Fg,
E(Xsly) =E(X,14).
This can be written as

D E(Xilangs—ry) = Y E(XnLanis—iy)-
k=0 k=0

But since A € Fg, then AN{S = k} € Fy, and using the martingale property
we obtain, for all £k < N,

E(Xklanis=k}) = E(Xnlan(s=k})-

We now study the general case. Let an integer n such that SV T < n.

Using the previous case for the stopped martingale X', and the stopping
time S. We have Xg = X7 since T' < n, Xg = Xgar. We have

E(X7/Fs) = Xgar.

Note that the variable Xga7 is Fga7 measurable, and as a consequence

Xsnar = E(X7/Fsar).

To obtain inequality (2.4), it is enough to note that inequality (2.3)
means that for all A € Fg

E(Xsarla) < E(X71a).
We apply it to the set A = {S < T'}.
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Corollary 2.4. Let (T},) be an increasing sequence of bounded stopping time,
and X be a martingale (resp. a sub-martingale, an super-martingale) ; then
(X1,,n € N) is a martingale (resp. a sub-martingale, an super-martingale)
for the filtration (Fr,,n € N).

Proof. (on exercise) O

Corollary 2.5. Let X be an integrable r.v., and let (X,,) be the martingale
E(X/F,). If Tis a bounded stopping time then

E(X/Fr) = X7.

If S et T are two bounded stopping time;
E(X/Fs/Fr) = E(X/Fr/Fs) = E(X/Fspr) = Xsar-

Proof. Let N such that TV S < N. Using successive conditioning for the
martingale X,, = E(X/F,) E(X/Fr) = E(Xy/Fr). The stopping theorem
yields E(Xy/Fr) = Xr.

If S and T are two bounded stopping,
E(X7r/Fs) = Xsar = E(X/Fsar)-

6 Finite stopping times

In this section we extend the stopping theorem to the case of finite stopping
times. Its requires some additional integrability conditions on martingales
(resp. sub-martingales, super-martingales).

Proposition 2.11. Let (X,,n € N) be a martingale (resp. a sub-martingale)
and T be S two almost surely finite stopping times.

If the sequences (X7apn) are (Xsan) uniformly integrable, then
XS/\T = E[XT/.FS] (resp. XS/\T S E[XT/./Ts])

This is the case when there exists a r.v. Y € L' such that for alln, | X1an| <
Y ),or when (X,) is uniformly integrable

In particular for the martingale, we have BE(Xp) = E(Xy) for all finite
stopping time which satisfies this assumption.
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Proof. We only study the martingale case.

First note that the r.v. X is integrable, as almost sure limit of uniformly
integrable sequence (X7ap). (Note that 7' is a.s. finite.) It is the same for
Xg. We have to prove that for all bounded variable Z Fg-measurable , we
have

E(XsZ) =E(XrZ).

We can use the monotone class theorem monotones and restrict ourself to
the case where Z is Fgp, measurable using the fact that Fg = V., Fsan-

Let such an n. Using the Stopping Theorem 2.2 for the stopping time
SApand T Ap, and p > n we obtain

E(ZXsnp) = E(ZX10p).

Using uniform integrability we can let n going to infinity.

For the last point, if (X,,) is uniformly integrable, it is enough to note
that Xpa, = E(X,,/Fr). The desired conclusion follows from the fact that a
family of conditional expectation of uniformly integrable family is uniformly
integrable O

7 Inequalities and convergence

7.1 Inequalities

Theorem 2.3. (DOOB’s mazximal inequality.) Let (X,,n € N) be a positive
sub martingale and X\ > 0. let X; = supy_, Xp. Then

Vn € N, AP{X}, > A} SE[X,1{x:>0] < E[Xn].
Proof. Let T = inf{k € N, X}, > A} a stopping time. Then,
(T < n} = {X; > AL
Take S =T A (n + 1),which is a bounded stopping time . We have
A={S<n}={T <n} e Fs.

Using the Stopping Theorem for this sub-martingale, between n and S An.

IE()(S/\nlA) S E(anA)
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This can be written

E(X7lr<n) < E(Xplr<y). (2.5)

On the set {T" < n}, X7 > A, hence \P(T' < n) < E(X71l7<y,). Then
AP(T < n) << E(X,1r<y) is the desired inequality. O

Corollary 2.6. If (X,,,n € N) is a martingale, (| X,|,n € N) is a positive
sub-martingale and

Vn €N, )\P{IEI?:Z(‘XH > )\} < E[’Xn’]-maxkgn \Xk\z/\] < EHXnH

Theorem 2.4. Let (X,,n € N) be a positive sub-martingale and p > 1.
Then, if X, € LP,
p
1 Xallp < pleXan

Proof. If X,, € LP then variables Xpcr» for k < n.

Let U be a positive r.v. in LP,

o
E(UP) = p/ tPIP(U > t)dt.
0

Then
[ee]
BICGY) = p [ 0RO 2 0dr
OOO
0 oo
= pE[Xn / P72 x>y dt]
0
P _
= PR Y.
Using Holder inequality
E[Xn (X3P < 1 Xl Xl

Since X is bounded by » ¢ Xy, it belongs to L. The desired result is
obtained by cancellation O

In particular
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Corollary 2.7. Let (X,,) be a positive sub-martingale bounded in L'. Then
the variable X* = sup,, Xy, is finite almost surely. If (X,,) is bounded in LP
(p > 1), then X* belongs to LP. (This last result is false for p = 1.) The
same conclusions hold for martingales (not necessary positive).

Proof. The increasing sequence X converges towards X*. It is enough to
apply DOOB’s inequality and

AP(X; > A) <supE(|X,|) = K < cc.

Letting n going to infinity
AP(X™* > \) <K,
P(X* > \X) — 0 (A — 00). The r.v. X* is finite.

For the second part use the Theorem 2.4.

The case of martingales is obtained by applying the previous result to
the positive sub-martingale | X,,|.

O

7.2 Convergences
Results

The following results are given without any proof.

Proposition 2.12. Let X,, be a martingale, or a sub-martingale, or an
super-martingale, bounded in L'. Then X,, converges almost surely towards
a variable Xs.

Using Fatou’s lemma, M, the limit of a bounded in L' martingale M,
is integrable. In general M, # E(My/F,).

It is the case for uniformly integrable martingales .

Proposition 2.13. let M,, be a bounded martingale in L', and let M, the
limit of M,, when n — oco. The following statements are equivalent

1. M, converges in L' towards My .
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2. Myis uniformly integrable.
3. M, = E[Ms/F,].

4. There exists an integrable r.v. M such that M, = E[M/F,]. Moreover
in this case , My = E[M/Fx)].

(Here Foo = Vi J.)

Proof. For a sequence of r.v. which converges almost surely, it is equivalent
to converge in L! or to be uniformly integrable. For all integrable r.v. M,
the set of the r.v. E(M/B), where B is running in all sub o fields of A is an
uniformly integrable family. It is enough to prove the following points:

1. If (M,,) is uniformly integrable, then M, = E(Ms/Fp);
2. If M is an integrable r.v., the martingale M, = E(M/F,) converges
towards E(M/F).

For the first point note that for p > n M, = E(M,/F,),letting p going
to infinity using the fact that the expectation is continuous in L', and that
M, converges towards My, in L' by assumption. We get the desired result.

For the second point, note that M, is Fo, measurable by construction.
It is enough to show that, for a A € Fo, we have E(My14) = E(M14).
This is true when A belongs to sub o fields of F,, since

E(M14) =E(M,14) =E(Mx1y4).

The desired identity is then, true for all element of U,,F,,, and for all element
o -field generated by U,F, using a monotone class theorem argument. The
desired inequality is true for F. O

Remarks

1. A similar statement as in Proposition 2.13 is true for sub-and super-
martingales; the proof is left to the reader.

2. A bounded martingale LP for p > 1, is dominated by an LP variable
and converges in LP.

We now are in position to enunciate the Stopping theorem for general
stopping-times.
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Theorem 2.5. (Stopping Theorem.) Let M, be a uniformly integrable
martingale and let T be a stopping time (not necessarily finite). Then for
Mp = My, on {T = oo}, we have

1. My =E(Mx/Fr).
2. The set (Mry), where T is a stopping time is uniformly integrable.

8. If S and T are two stopping time, we have

E(Mrp/Fs) = Mgpr.

4. Let M be a A-measurable integrable r.v. and M, = E(M/F,), then
My = E(M/Fr).

Proof. For the first point, it is enough to write the proof of Stopping theorem
in this case. If A belongs to Fr, then

E(Mrly) = Z E(Mp14nir=k})
keN oo
= ) EMwlapr=ry) = E(Mwla).
keN oo

The family My is contained in the family E(My/B), where B is running
in the subo fields of A. This last family is uniformly integrable.

The stopping martingale M7 is uniformly integrable. Using the Stopping
theorem at time .S, we obtain

E(Mr/Fs) = Mgar.

It is enough to write

E(M/Fr) = E(E(M/Foo)/Fr) = E(Moo/Fr) = Mr.

8 Exercises

1. Prove the claim 2 of examples 1 in section 1.
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2. Recall a definition of uniform integrability (U.L.) that claims that X;
is U.L if sup; E|X;| < oo and if a property sometimes called equiinte-
grability (to be recalled) is fulfilled.

3. Prove the claim 1 of examples 1 in section 1.

4. Show that M, in the claim 3 of examples 1 in section 1 is square
integrable. What is the Doob decomposition of M2 ?



Chapter 3

Martingales in continuous
time

1 Filtrations in continuous time

The definition of filtrations in continuous time is given under the usual
conditions. Those conditions are assumed to avoid nasty technical problems
related to the fact that (0, +00) is not denumerable and therefore there exist
obstructions to measurabilty.

Definition 3.1. A family of sigma fields (Fi)o<t<+oo all included in the
sigma field F associated to a probability space (2, F, P) is a filtration if
Vs <t, Fs C Fy. It satisfies the usual conditions if

1. Fo contains all negligible sets of F (it is complete)

2. Ft = Ng=tFs, Yt > 0, (it is right continuous.)

In this lecture all filtrations satisfy the usual condition.

We introduce a measurability assumption for processes that states that
the process depends only on the past of the filtration.

Definition 3.2. The stochastic process X is adapted to the filtration { %}
if, for each t > 0, X; is an Fi-measurable random variable.

Obviously, every process X is adapted to {9"}){ } = 0(Xs,0 < s < ).
Moreover, if X is adapted to {.%;} and Y is a modification of X, then Y is

39
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also adapted to {.#;} provided that .%, contains all the P-negligible sets in
F.

Definition 3.3. The stochastic process X 1is called progressively measurable
with respect to the filtration { %} if, for each t > 0 and A € ,%’(Rd),
the set {(s,w);0 < s <t,we Q, Xs(w) € A} belongs to the product o-field
A([0,t]))® F; in other words, if the mapping

(s,w) = Xs(w) : ([0,¢] x Q,A([0,1]) @ %) — (Rd"%) (Rd>>

18 measurable, for each t > 0.

Proposition 3.1. If the stochastic process X is adapted to the filtration
{F} and every sample path is right-continuous or else every sample path
is left continuous, then X is also progressively measurable with respect to

{Fi}.

Proof. We treat the case of right-continuity. With ¢ > 0,n > 1,k = 0,1,
...,2" =1, and 0 < s < t, we define:

kt k+1
XM(w) = Xkg1ye/on (W) for  — < s < + t,

5 2n A

as well as Xén) (w) = Xop(w). The so-constructed map (s, w) — x{M (w) from
[0,2]x€2 into R? is demonstrably %([0, t])®.%;-measurable. Besides, by right-
continuity we have: lim,, x{M (w) = Xs(w),¥(s,w) € [0,t]xQ. Therefore,
the (limit) map (s,w) — Xs(w) is also Z([0, t]) ® .#-measurable. O

2 Stopping times in continuous time

Definition 3.4. Let us consider a measurable space (0, .F) equipped with a
filtration {%#}. A random variable T : Q — [0,400] is a stopping time of
the filtration, if the event {T < t} belongs to the o-field F, for everyt > 0.

Proposition 3.2. Show that ¥t > 0, {T < t} belongs to the o-field % is
equivalent to T is a stopping time.

Proof. The proof is based on the observation {T" < t} = oo {T < t —
(1/n)} € F, because if T is a stopping time, then {T" < t — (1/n)} €
Fi—(iym) © F¢ for n > 1. For the converse, suppose that V¢ > 0, {T' <
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t} € % of the right-continuous filtration {.%#;}. Since for every positive
integer m, we have {T" < t} = (22, {T < ¢t + (1/n)}, we deduce that
{T <t} € F1i1/m); whence {T' <t} € NesyFs = Fi. O

Consider a subset A € £ (Rd) of the state space of the process, and
define the hitting time

Dj(w) =inf{t > 0; X;(w) € A}

and
Ty(w) =inf {t > 0; X;(w) € A}.

Remark 3.1. By convention we set inf(()) = +oo0.
IfXo ¢ A, Dy =Tha.

Proposition 3.3. 1. If X is right continuous and adapted and A is open
then T's is a stopping time.

2. If the process X is continuous, adapted and A is closed then Dy is a
stopping time.

Proof. Let us prove the second claim.

1
{DA < t} = Mpen* USGQ, 0<s<t {d(XS, A) < ﬁ}

Let us first show that the set on the left is included in the set on the right.
Since X is continuous and A closed Xp, € A. Moreover there exists a
sequence s, € Q such that it is increasing to D4(w) and d(X,, Xp,) < L.
Then d(Xs,,A) < d(Xs,,Xp,). The inclusion is proved, let us prove the
inclusion the other way around.

Vn € N* 3s,, <t and d(Xs,,A) < %, We consider a susbsequence s,, —
t' < t, then d(Xy,A) = 0 by continuity of X and of x + d(x, A). This
implies D4 < #. Since {d(X,, A) < 1} € F; the proof is finished.

Let us prove the first claim. Because of the Proposition 3.2 it is enough
to show that {T4 < t} € F;.

{Ty <t} ={w, Is < t, Xs(w) € A}
={w, Is<t,s € Q Xs(w) € A}
since A is open and X right continuous. Then
{Ta <t} = Usctsenfw, Xs(w) € A}

and each of the set in the last union belongs to ;. O
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Exercise 3.1. If S and T are two stopping times, then SAT, SVT, T+ S
are also stopping times. (The last one is more difficult).

Proposition 3.4. Every stopping time is the limit of a nonincreasing se-
quence of stopping times that take only a finite number of values.

Proof. Let us denote by T the stopping time and let us define for n € N*
and 1 < k < 227,
k

oo
if % < T < 2% and T, = 4oo if T' > 2™ On can check that T}, is a
nonincreasing sequence converging to 7. Moreover

T (w)

L=y =ir< op\r<""Lyer,.
Ift >0,
(Tn <1} = Upmard T = o)
then T, is a stopping time. O

Definition 3.5. Let T be a stopping time of the filtration {#;}. The o-
field Fr of events determined prior to the stopping time T consists of those
events A € F for which AN{T <t} € % for everyt > 0.

Exercise 3.2. Verify that Zr is actually a o-field and T is Fp-measurable.
Show that if T(w) = t for some constant t > 0 and every w € ), then
Fr = Fy.

Proposition 3.5. If X is progressively measurable valued in (E,E) and T
is a stopping time then Xp1(T < o) is Fr-measurable.

We set X71(T < 00) =0 if T' = 0.

Proof. Let us suppose T' < 4oc0. For a fixed ¢t > 0, let us set
Q= {w|T(w) <t}

endowed with the sigma field F; restricted to Q that is ]:,;Q =l Fen{T < t}.
The map
Q +— [0,1] (3.1)
w— T(w) (3.2)
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is measurable from .7-"? on B([0,¢t]) because for s <t {T < s} € Fs. Then ®
defined by

Q= [0,t] x Q (3.3)
wi (T(w),w) (3.4)

is measurable if we endow [0, t] x © with the sigma field B([0, ¢]) ® F;. Since
X is progressively measurable X7 = X o ®(w) is F;* measurable i.e. VA €
E {w| Xy € A} N{w|T(w) <t} € Fy, {w|T'(w) < o0} is Fr measurable
hence X71(T < c0) also.

Exercise 3.3. 1. Show that Fr = o(Xr, Xprogressively measurable).
The previous Proposition yields one inclusion out of two...

2. Show that if S, T stopping times and S < T a.s. Fg C Fr.

3 Martingale in continuous time

In this section we shall consider exclusively real-valued processes X = {X;;0 <t < oo}
on a probability space (2, .#,P), adapted to a given filtration {.#;} and such
that E | X| < oo holds for every ¢ > 0.

Definition 3.6. The process { Xy, #;0 < t < 0o} is said to be a submartin-
gale (respectively, a supermartingale) if, for every 0 < s <t < oo, we have,
a.s. Py BE(X; | %) > X (respectively, E (X, | Fs) < X5 ).

We shall say that {X;, Z;0 <t < oo} is a martingale if it is both a
submartingale and a supermartingale.

Example. 1. If (B;)t>0 is a Brownian Motion (BM) we consider the
natural filtration FP = o(Bs, s <t) and F; = o(FP,N), where N is
the set of negligible sets. We take for granted that Fy is right continu-
ous and hence satisfies the usual conditions. B; is a F; martingale
since for 0 < s <t

E(B¢|Fs) = E(B; — Bs + Bs|Fs) = E(B: — Bs) + Bs.

2. (Btz—t)tzo 18 a Fy martingale. Actually 0 < s <t we have to show that
E(B? — t|Fs) = B2 — s, which is equivalent to E(B? — B2|Fs) =t — s.
Observe that B((Bs + By — Bs)? — B2|Fs) = E(2Bs(B; — Bs) + (By —
Bs)?|Fs) =t —s.
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3. YA € C, My(t) = e)‘Bi_ét is a Fy martingale. (It is important to
allow A to be complex valued since we will take A = iu where u € R
which is related to the characteristic function Ee™PBt: the definition
of complex valued martingales just amounts to say that the real part
and the imaginary part of the process are martingales.) To ensure
integrability of M (t) we recall that the Laplace transform of Gaussian

random variables is always finite. Let us show that E(Aﬂﬁg?) |Fs) = 1.

E(e,\(Bths)f§(H) IFy) = E(eA(BthS))ef§(H)
=1.

Let X = {X};0 <t < oo} be a real-valued stochastic process. Consider
two numbers « < 8 and a finite subset F of [0,00). We define the number
of upcrossings Up(«, §; X (w)) of the interval [, 5] by the restricted sample
path {X;;t € F'} as follows. Set

71(w) = min{t € F; Xy(w) < a},

and define recursively for j = 1,2, ...

oj(w) =min{t € F;t > 7j(w), X¢(w) > 5}
Tiv1(w) =min{t € F;t > 0j(w), Xi(w) < a}

The convention here is that the minimum of empty set is 400, and we

denote by Up(«, 3; X(w)) the largest integer j for which oj(w) < oco. If
I C [0,00) is not necessarily finite, we define

Ur(a, B; X (w)) = sup{Ur(a, B; X (w)); F C I, F is finite }

The number of downcrossings Dj(«, 5; X (w)) is defined similarly.

The following theorem extends to the continuous-time case results of
discrete martingales.

Theorem 3.1. Let {X;, #,;0 <t < oo} be a submartingale whose every
path is right-continuous, let [o, 7] be a subinterval of [0,00), and let a <
B, > 0 be real numbers. We have the following results:
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1. Submartingale inequality:

)\-]P’[Sup th)\] <E(X?).

o<t<T

2. Upcrossings and downcrossings inequalities:

E(XT) + el

E(X, —a)"
B—a '

EU[U,T](ayﬁ;X(w)) < ,B —a

ED[O’,T] (Oé, /8; X(w>) <

3. Doob’s mazximal inequality:

p p p
E<sup Xt> s() E(X?), p>1
o<t<rt p—1

provided X; > 0 a.s. P for every t > 0, and E (X?) < oo.

There exist modifications of martingales, which are right continuous.

Theorem 3.2. If X; is a F; (with the usual conditions) sub-martingale
there exists a modification of Xy with right continuous paths iff t — EX; is
right continuous. Moreover this modification has paths with left limits and
it is a sub-martingale.

Corollary 3.1. If X; is a F; (with the usual conditions) martingale there
exists a modification of Xy with r.c.l.l. right continuous left limits paths and
it is a martingale

The proof of the Theorem 3.2 can be found in Karatzas and Shreeve. It
uses the upcrossings inequality and the backward martingales that I did not
recalled.

We have convergence results for martingales in continuous time similar
to those in discrete time. We always use the right continuous modification.

Theorem 3.3. 1. If X; is a F; sub-martingale and sup E(X,") < oo then
limy—s 400 Xt = Xoo emists a.s. and E|X | < oo.

2. If Xy is a Fy martingale the following properties are equivalent.

(a) X; converges in L' towards X.
(b) X is uniformly integrable.
(¢) X € L' and Xy = E[ X/ F).
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Under any of this hypothesis we have also a.s. convergence of X; when
t — oo.

Please remark the slightly different assumption for the first part of the
theorem, when it is compared to the result for martingales indexed by N.
This assumption works also for martingales indexed by N.

4 Stopping time theorems

Let us generalize the stopping time theorems already obtained for martin-
gales indexed by N to martingales in continuous time. Here we consider the
case when X; is uniformly integrable.

Definition 3.7. If X, is a martingale uniformly integrable and T a stopping
time, let us define X7(w) = Xoo(w) if T(w) = 00 and Xr(w) = X7 (w) if
T(w) < 0.

Theorem 3.4. If X; is a martingale uniformly integrable then the family

of (Xg) where S is any stopping time is also uniformly integrable. If S <T
are two stopping times Xg = E(X7|Fs) = E(Xoo|Fs).

Proof. Let us first show
X5 = E(Xoo| Fs)- (3.5)

For the first step I assume that S only takes a finite number of values
{s1 < ... < sp}, and add by convention sy = —oo. Let Y, = X, for k <n
and Y, 11 = Xo. Then Y is a martingale for F,, and Y}, = E(X|Fs, ). Let
A€ Fg,ie. AN{S<t}eF

n+1

Xsla=> Yil{s_gna
k=1

= Z Yi(lis<sina — lis<s, 13na) + Yor11l{sss,3na-
k=1
Hence

n+1
E(Xs14) = ZE(XOO(l{Sgsk}ﬂA —1is<s,_13na) T E(Xoolis>s,3na)
k=1

= E(Xoola).
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In the general case S is the limit of a non increasing sequence of stopping
times S, that take a finite number of values and Vn € N, Xg = E(X|Fs,)-
Since X is right continuous, Xg = lim, ;. Xg,. Moreover Fgs, , C Fg,
hence Xg, is a backward martingale and we admit that every backward

martingale converges in L'. So

Xg= lim E(Xs| N, Fs,)
N—oo

in L. Since Fg Cc NM_, Fs, ,

Xg = E( lim E(Xso| MY, Fs.)|Fs)

N—o0

= Jim E(E(Xo| Mply Fs,)[Fs) = lim E(Xoo|Fs) = E(Xoo| Fs)-

n
N—oo

Since E(X|Fs) is uniformly integrable so the family of (Xg) where S
is any stopping time is also uniformly integrable. Moreover, if S < T,

E(X7|Fs) = E(E(Xoo|F1)|Fs) = E(Xoo| Fs) = Xs
because Fg C Fr. O
Corollary 3.2. If X is a martingale and S < T bounded stopping times
then E(XT|,F5) = Xs.

Proof. Let M > 0 such that 0 < S(w) < T(w) < M a.s. Let us define Y; =
Xian, Vt > 0. Then Y, = E(Yy|F), it is uniformly integrable and we apply
the previous theorem. Then E(Y7|Fs) = Yg which is also E(Xpan|Fs) =
Xsan- Hence E(X7|Fg) = Xg since 0 < S(w) < T(w) < M. O

Remark 3.2. But, if X is not uniformly integrable, one cannot only suppose
that S < T finite a.s.

Exercise 3.4. Let By, t > 0 be a BM starting from 0 and for a > 0
T, = inf{t > 0, By = a}. Here we assume that T, < oo a.s. Compute
E(e=#1a) for u > 0. Deduce that ET, = +o0.

Solution :

2
Let M*(t) = *Br=%t be the exponential martingale for A > 0. The
stopping time t A T, is bounded. Since s AT, <t ATy, then

E(Mjhr,|Font,) = Mixr, -
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Hence Mt)‘ATa is a martingale. So IEMtAATa =EMg =1.In

E(ABema— (1AT0)) — 1

)

we let t — 400, use Ty < co. a.s. and a dominated convergence argument,

2
so that E(e)‘BTa_%T“) = 1. Then we remark that By, = a and we get
A7 —Aa
E(e”2"e) =e

Let us take p = )‘72, then E(e#Te) = ¢~V21e We have the Laplace trans-
form of the positive random variable T,. Classically ET, is obtained as the
derivative of this Laplace transform for p = 0 which is here +o0o. Hence
ET, = +o0.

Theorem 3.5. If X; is a non-negative supermartingale and S < T are two
stopping times Xg > E(X7|Fs).

Remark 3.3. We know that the lim; 400 Xt = Xoo exists a.s. so we don’t
need to have the stopping time a.s. finite in this case.

We admit the proof.



Chapter 4

Stochastic integral

The results for martingales are used to build X; = fot H,dMs where H is
progressively measurable and M is a martingale. Because of the martin-
gale transform in the discrete case we expect X; to be a martingale. But
the real life is more complicated for integrability reasons... Hence we are
forced to define local martingale associated to a sequence of stopping times
i.e. we assume that there is a non decreasing sequence of stopping times
T,, such that X;s7, is a martingale uniformly integrable. Our basic tool
will be quadratic variations that we will generalize from Brownian motion
to continuous martingales. In this part we assume the processes are a.s.
continuous.

1 Quadratic variations

Using Riemmann Stieljes integral we know how to integrate with respect
to processes A with finite variations. We will show that we can define an
integral with respect to local martingales M. Once we have done that we
will be able to define integrals with respect to processes of the form M + A...
That is the goal of the chapter. Let us come back to a technical question
”Do the martingales have finite variations ?”. First we show that a process
cannot be a continuous martingale and with finite variations unless it is
trivial.

Proposition 4.1. Every continuous martingale with finite variations is con-
stant.

49
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Proof. Let A be a subdivision of [0,¢] and

n
Vi(M) = sup » [My,, — My
AEP; ; i

where M is a continuous martingale with finite variations. Let T}, = inf{¢t >
0, Vi > nor |My| > n}. As a hitting time T, is a stopping time and we can
show by contradiction that T}, almost surely converges to +o0o0. We denote
by MtT" = M1, the stopped martingale : it is a bounded by n continuous
process. It is also a martingale because of the stopping time theorem for
bounded stopping time. If s <t¢, sAT, <tAT,

E(Miat, | Fsat,) = Msat, -

Hence we can assume without a loss of generality that M is a bounded
continuous martingale with bounded variations. If A € P, by orthogonality
of the increments of L? martingales

E(M; — M,)? = Z E(M;,,, — My,)?
t; €A
< E(V; sup [My,,, — My]).
t;EA

i+1
Since M is uniformly continuous on [0,t] My = My a.s. O

We have checked that B? —t is martingale, we will show that M2— (M, M)
is a martingale. In this chapter we consider A with an infinite number of

. . . d
points t; such that lim;_ .. t; = +0o and rewrite T[ét] lef ZtieA(thuth —
Xiint)?

Theorem 4.1. A continuous and bounded martingale M is of finite quadratic
variation and (M, M) is the unique continuous non decreasing adapted pro-
cess vanishing at zero such that M? — (M, M) is a martingale.

Proof. Uniqueness is an easy consequence of Proposition 4.1, since if there
were two such processes A and B, then A — B would be a continuous mar-
tingale vanishing at zero with finite variations.

To prove the existence of (M, M), we first observe that since for t; <
§ < tit1,

B [(Mi,, = My)* | F| = B [(May, — M) | 7] + (M, = M, )?

i+1
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it is easily proved that

E [TAM) - TA(M) | #,] = E [(M; - M,)* | 7]
=E[M} - M?| Z,] (4.1)
As a result, M? — T/ (M) is a continuous martingale. In the sequel, we
write T/ instead of T2 (M).

We now fix a > 0 and we are going to prove that if {A,} is a sequence
of subdivisions of [0, a] such that |A,| goes to zero, then {7/} converges
in L2,

If A and A’ are two subdivisions we call AA’ the subdivision obtained
by taking all the points of A and A’. By (4.1) the process X = TA —TA
is a martingale and, by (4.1) again, applied to X instead of M, we have

/ 2 !
E[X2 =E [(TaA A ) ] —E [TaAA (X)}
Because (z + y)? < 2 (2% + y?) for any pair (z,y) of real numbers,
TAN (X)) < 2 {TaAA’ (T2) + TA% (TA'> }

and to prove our claim, it is enough to show that E [TGAA, (TA)} con-
verges to 0 as |A] + |A/| goes to zero.

Let then s be in AA’ and ¢; be the rightmost point of A such that
t < s < Spy1 < ti41; we have

TS, - T8 = (M

Sk+1 Sk+1

- Mtl)z - (Msk - Mtl>2
= (M, — My,) (My,,, + My, — 2My,)

and consequently,

a

TAN (T) < <s%p | My, + My, — 2M,, \2> TAA

By Schwarz’s inequality,
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, REE 21172
E [TCLAA (TA)} <E [sgp‘MskH + M, — 2My,| ] E [(TQAA) ]

Whenever |A| + |A’] tends to zero, the first factor goes to zero because
M is continuous; it is therefore enough to prove that the second factor is
bounded by a constant independent of A and A’. To this end, we write with
a = tn7

Because of (4.1), we have F [TaA — th | F,]
and consequently

E (Mo = My)* | -7,

n

sl oS (272

+ kzn:E [(Mtk - Mtk71)4:|

<FE [(2 sup | M, — Mtk|2 + sup ‘Mtk — M, ‘2> TaA}
k k

Let C be a constant such that |M| < C; by (4.1), it is easily seen that
E [T2] < 4C? and therefore

B[(12)°] < 12028 18] < 45C*.

We have thus proved that for any sequence {A,,} such that |A,,| — 0, the
sequence {TaA"} has a limit (M, M), in L? hence in probability. It remains
to prove that (M, M), may be chosen within its equivalence class in such a
way that the resulting process (M, M) has the required properties.
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Let {A,,} be as above; by Doob’s inequality applied to the martingale
TAn— TAm,

2
E [Sup TAw TtAm’ } < 4E [(TaA" - TaAm)Q] .
t<a

Since, from a sequence converging in L2, one can extract a subsequence

converging a.s., there is a subsequence {A,, } such that TtAek converges a.s.
uniformly on [0, a] to a limit (M, M), which perforce is a.s. continuous.
Moreover, the original sequence might have been chosen such that A,
be a refinement of A, and (J,, An be dense in [0,a]. For any pair (s,t) in
U,, Ap such that s < ¢, there is an ng such that s and ¢ belong to A,, for any
n > ng. We then have T2» < TtA" and as a result (M, M) is non decreasing
on |J,, Ay; as it is continuous, it is increasing everywhere (although the TAn
are not necessarily non decreasing).

Finally, that M? — (M, M) is a martingale follows upon passing to the
limit in (4.1). The proof is thus complete. O

To enlarge the scope of the above result we will need the

Proposition 4.2. Under the assumptions of the previous theorem, for every
stopping time T,
(M, M) = (M, M)"

Much as it is interesting, Theorem 4.1 is not sufficient for our purposes; it
does not cover, for instance, the case of the Brownian motion B which is not
a bounded martingale. Nonetheless, we have seen that B has a ”quadratic
variation”, namely ¢, and that B? — t is a martingale exactly as in Theo-
rem 4.1. We now show how to subsume the case of BM and the case of
bounded martingales in a single result by using the fecund idea of localiza-
tion.

Definition 4.1. An adapted, right-continuous process X is an (%, P)-local
martingale if there exist stopping times T,,,n > 1, such that

1. the sequence {T,} is increasing and lim, T,, = +00 a.s.

2. for every mn, the process XTnl[Tn>o] is a uniformly integrable (F;,P)-
martingale.
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We will drop (.%;,P) when there is no risk of ambiguity.

In condition 2. we can drop the uniform integrability and ask only that
X Tnl[Tn>0} be a martingale; indeed, one can always replace T}, by T, An to
obtain a u.i. martingale.

Likewise, if X is continuous as will nearly always be in this book, by
setting S,, = inf {¢ : | X¢| = n} and replacing T}, by T, A S, we may assume
the martingales in 2. to be bounded. This will be used extensively in the
sequel.

We further say that the stopping time T reduces X if X Tl[T>O} is a u.i.
martingale.

This property can be decomposed in two parts if one introduces the
process Y; = Xy — Xg : T reduces X if and only if

i) Xy is integrable on {T" > 0};
ii) Y7 is a u.i. martingale.

A common situation however is that in which X is constant this explains
why in the sequel we will often drop the qualifying 1[7~q. As an exercise,
the reader will show the following simple properties :

Exercise 4.1. i) if T reduces X and S < T, then S reduces X;
i) the sum of two local martingales is a local martingale;

i) if Z is a Fo-measurable r.v. and X is a local martingale then, so is
Z X ; in particular, the set of local martingales is a vector space;

i) a stopped local martingale is a local martingale;

v) a positive local martingale is a supermartingale.

We can now extend the quadratic variations to local martingales.

Theorem 4.2. If M is a continuous local martingale, there exists a unique
increasing continuous process (M, M), vanishing at zero, such that M? —
(M, M) is a continuous local martingale. Moreover, for every t and for any
sequence {A,} of subdivisions of [0,t] such that |A,| — 0, the r.v.’s

converge to zero in probability.
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Proof. Let {T,} be a sequence of stopping times increasing to +o0o and such
that X;, = M T"l[Tn>0] is a bounded martingale. By Theorem 4.1, there is,
for each n, a continuous process A,, with finite variations vanishing at zero
and such that X2 — A, is a martingale. Now, (XgJrl — An+1)T" L7, >0 is @
ni
Theorem 4.1, we have Ag’jrl = A, on [T,, > 0] and we may therefore define
unambiguously a process (M, M) by setting it equal to A, on [T,, > 0].
Obviously, (M T")2 Lz, >0 — (M, M )T is a martingale and therefore (M, M)
is the sought-after process. The uniqueness follows from the uniqueness on
each interval [0, T,,].

martingale and is equal to X2 — A i1, >0]- By the uniqueness property in

To prove the second statement, let §, > 0 and ¢ be fixed. One can find
a stopping time S such that M51[5>0] is bounded and P[S < t] < 4. Since
TA(M) and (M, M) coincide with T2 (M¥) and (M*®, M%) on [0, 5], we
have

P sup‘TsA(M) — (M, M)| >€] < 6+P {sup‘TsA (MS) — <MS,MS>S‘ >¢€

s<t s<t

and the last term goes to zero as |A| tends to zero. O

Theorem 4.2 may still be further extended by polarization.

Theorem 4.3. If M and N are two continuous local martingales, there
exists a unique continuous process (M, N) in t , with finite variations, van-
ishing at zero and such that MN — (M, N) is a local martingale. Moreover,
for any t and any sequence {A,} of subdivisions of [0,t] such that |A,| — 0,

TsAn_<M’N>S

lim sup
n—oo s<t

= ()7
i probability,

where TsAn = EtieAn (MtsiJrl - Mi) (NtSiH N Ni)

Proof. The uniqueness follows again from Proposition 4.1 after suitable stop-
pings. Moreover the process

(M,N):%[<M+N,M+N>—<M—N,M—N>]

is easily seen to have the desired properties. ]
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Definition 4.2. The process (M, N) is called the bracket of M and N,
the process (M, M) the increasing process associated with M or simply the
increasing process of M.

Proposition 4.3. If T is a stopping time,

(MT,NTy = (M,NT) = (M, N)”

Proof. This is an obvious consequence of the last part of Theorem 4.3.
As an exercise, the reader may also observe that MTNT — (M, N)” and
MT (N — NT) are local martingales, hence by difference, so is MTN —
(M, N)T.

O]

The properties of the bracket operation are reminiscent of those of a
scalar product. The map (M,N) — (M, N) is bilinear, symmetric and
(M, M) > 05 it is also non-degenerate as is shown by the following

Proposition 4.4. (M, M) = 0 if and only if M is constant, that is My = M
a.s. for everyt.

Proof. By Proposition 4.3, it is enough to consider the case of a bounded M
and then by Theorem 4.1, F [(Mt — MO)Q} = E[(M, M)]; the result follows
immediately. O

This property may be extended in the following way.

Proposition 4.5. The intervals of constancy are the same for M and for
(M, M), that is to say, for almost all w ’s, My(w) = My(w) for a <t <bif
and only if (M, M)p(w) = (M, M)q(w)

The following inequality will be very useful in defining stochastic inte-
grals. It shows in particular that d(M,N) is absolutely continuous with
respect to d(M, M).

Definition 4.3. A real-valued process H is said to be measurable if the map
(w,t) = Hi(w) is Foo @ B (Ry)-measurable.

The class of measurable processes is obviously larger than the class of
progressively measurable processes.
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Proposition 4.6. For any two continuous local martingales M and N and
measurable processes H and K, the inequality

/ LK) 401, N, < ( / (0, M>s)1/2 ( / K2d(N, N>s>

holds a.s. fort < occ.

1/2

Proof. By taking increasing limits, it is enough to prove the inequality for
t < oo and for bounded H and K. Moreover, it is enough to prove the
inequality where the left-hand side has been replaced by

t
/ H;Ksd{M,N),
0

indeed, if Js is a density of d(M, N),/|d(M, N)|s with values in {—1,1}
and we replace H by HJsgn(HK) in this expression, we get the left-hand
side of the statement.

By a density argument, it is enough to prove that for those K ’s which
may be written

K= K()]_{()} + Kl]-]O,tl] +...+ Kn].}

]tnflﬂtn]

for a finite subdivision {to =0 < t; < ... < t, =t} of [0, ] and bounded
measurable r.v. K; ’s. By another density argument, we can also take H of
the same form and with the same subdivision. O

If we now define (M, N). = (M, N); — (M, N)s, we have

(M, NYL) < (0, )22 (v, ) 2
Indeed, almost surely, the quantity

(M, M)t 4 2r(M,N). +2(N, N)t = (M 4+ rN, M +rN)’

is non-negative for every r € Q, hence by continuity for every r € R, and
our claim follows from the usual quadratic form reasoning.
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As a result

(M, N)§+!

t
/ H K d(M,N),
0

< |HK||
< Z \H,| | K| (<M, M>§§“)1/2 (<N, N>Z“)1/2

and using the Cauchy-Schwarz inequality for the summation over 4, this
is still less than

1/2 1/2
(Z H} (M, M >§3“) (Z K2(N, N>§§+1>

% 7

( /0 t H2d(M, M>s> v ( /0 t K2d(N, N>S>

which completes the proof.

1/2

Corollary 4.1 (Kunita-Watanabe inequality). For every p > 1 and p~ '+
-1
¢ =1

EMﬂmWQWMNM

(/Ooo H2d(M, M>S> v H (/OOO KZ2d(N, N>S) v

Proof. Straightforward application of Holder’s inequality. O

<

q

We now introduce a fundamental class of processes of finite quadratic
variation.

Definition 4.4. A continuous (F;, P)-semimartingale is a continuous pro-
cess X which can be written X = M + A where M is a continuous (F, P)-
local martingale and A a continuous adapted process of finite variation.

As usual, we will often drop (%, P) and we will use the abbreviation
cont. semi. mart. The decomposition into a local martingale and a finite
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variation process is unique as follows readily from Proposition 4.1; however,
if a process X is a continuous semimartingale in two different filtrations (%)
and (%), the decompositions may be different even if .%; C % for each t.

Proposition 4.7. A continuous semimartingale X = M + A has a finite
quadratic variation and (X, X) = (M, M).

Proof. If A is a subdivision of [0,t],

S <Sup ‘Mt,‘+1 - Mt,’
(]

Z (Mi,, = My;) (A, — Ay > Var:(A)

)

where Vari(A) is the variation of A on [0,t], and this converges to zero
when |A| tends to zero because of the continuity of M. Likewise

2
iy 3 (A = 4)° =0

141

Fundamental remark. Since the process (X, X) is the limit in probability
of the sums T%7(X), it does not change if we replace (%) by another
filtration for which X is still a semimartingale and likewise if we change P for
a probability measure ) such that ) < P and X is still a (Q-semimartingale.

Definition 4.5. If X = M + A and Y = N + B are two continuous semi-
martingales, we define the bracket of X and Y by

(X,Y)=(M,N)=-[(X+Y,X +Y)— (X - Y, X —Y)]

1
4

Obviously, (X,Y )¢ is the limit in probability of Y-, (X
and more generally, if H is left-continuous and adapted,

i+1 i+1

S
ZHti (X;i+l o XZ) (Y;5§+1 - Yﬁ) _/O Hyd(X,Y)y| =0

7

lim sup
|A|=0 s<t

in probability.

The proof of which is left to the reader as an exercise.
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Finally, between the class of local martingales and that of bounded mar-
tingales, there are several interesting classes of processes among which the
following ones will be particularly important. We will indulge in the usual
confusion between processes and classes of indistinguishable processes in
order to get norms and not merely semi-norms in the discussion below.

Definition 4.6. We denote by H? the space of L?-bounded martingales, i.e.
the space of (%, P)-martingales M such that

sup E/ [Mf] < 400
t

We denote by H? the subset of L?>-bounded continuous martingales, and
Hg the subset of elements of H? vanishing at zero.

An (.%;)-Brownian motion is not in H?, but it is when suitably stopped,
for instance at a constant time. Bounded martingales are in H?. Moreover,
by Doob’s inequality, MZ = sup,|M;| is in L? if M € H?; hence M is
wi. and M; = E[My | %] with My, € L?. This sets up a one to one
correspondence between H? and L? (2, %, P), and we have the

Proposition 4.8. The space H? is a Hilbert space for the norm

lim B [M2]"*

- t—o00

Mg = E [MZ]"?
and the set H? is closed in H2.

Proof. The first statement is obvious; to prove the second, we consider a
sequence {M™"} in H? converging to M in H2. By Doob’s inequality,

E

2
<sup M- Mt\) ] < 4| M — M|
t

as a result, one can extract a subsequence for which sup, |[M;"* — M|
converges to zero a.s. which proves that M € H2. O

1/2
The mapping M — ||MZ ||, = F [(supt |Mt|)2] is also a norm on H?;
it is equivalent to || ||g2 since obviously ||M| g2 < ||MZ |, and by Doob’s
inequality ||MZ ||, < 2||M]| g2, but it is no longer a Hilbert space norm.

We now study the quadratic variation of the elements of H?2.
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Proposition 4.9. A continuous local martingale M is in H? if and only if
the following two conditions hold

Z) My € L2;
ii) (M, M) is integrable i.e. E[(M,M)x] < co.
In that case, M2 — (M, M) is uniformly integrable and for any pair S < T

of stopping times
E[Mf - M| Fs] =E [(MT — Mg)? | 95] = E [(M,M)§ | Zs]
Proof. Let {T,,} be a sequence of stopping times increasing to +o0o and such

that M T"l[Tn>o] is bounded; we have

E [MZ, nLir,s0] — E [((M, M), pml (g, 50 = E [M3L7, 0]

If M is in H? then obviously i) holds and, since M € L?, we may also pass
to the limit in the above equality to get

E [M] = E[(M, M)o] = E [M]

which proves that ii) holds. If, conversely, i) and ii) hold, the same
equality yields

E [M%n/\ll[Tn>0}] < E[(M,M)s]|+E [Mg] =K <o
and by Fatou’s lemma
E [M?] <liminf E [M7, 17, 50] < K
n

which proves that the family of r.v.’s M; is bounded in L?. Furthermore,
the same inequality shows that the set of r.v.’s M, AT, >0] 18 bounded in
L?, hence uniformly integrable, which allows to pass to the limit in the
equality

E [Mt/\Tn]‘[Tn>0] ’ LO%\S] - MS/\Tnl[Tn>O}



62 CHAPTER 4. STOCHASTIC INTEGRAL

to get E [M; | #s] = M. The process M is a L?-bounded martingale.
To prove that M? — (M, M) is u.i., we observe that

sup |ME — (M, M) < (M2)* + (M, M)

which is an integrable r.v. The last equalities derive immediately from
the stopping theorem. ]

Corollary 4.2. If M € HZ,
1Ml = || a1, 32| = B, M)oc] 2

Proof. If My = 0, we have E [M2] = E[(M, M))] as is seen in the last
proof. ]

We could have worked in exactly the same way on [0, ¢] instead of [0, o0]
to get the

Corollary 4.3. If M is a continuous local martingale, the following two
conditions are equivalent i) Mo € L? and E [(M, M);] < oo; i) {Ms,s <t}
is an L?-bounded martingale.

We notice that for M € H? simultaneously (M, M) is in L' and
lim; o My exists a.s. This is generalized in the following

Proposition 4.10. A continuous local martingale M converges a.s. as t
goes to infinity, on the set {{M, M) < c0}.

Proof. Without loss of generality, we may assume My = 0. Then, if T,, =
inf {t : (M, M); > n}, the local martingale M’" is bounded in L? as fol-
lows from Proposition 4.9. As a result, lim;_ MtT" exists a.s. But on
{{M, M)~ < oo} the stopping times T,, are a.s. infinite from some n on,
which completes the proof. O

Remark 4.1. The converse statement that (M, M)~ < oo on the set where
My converges a.s. s also true.
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2 Stochastic integral

For several reasons, it is necessary to define an integral with respect to the
paths of BM. The natural idea is to consider the ”Riemann sums”

ZKW (Bti+1 - Bti)

where K is the process to integrate and w; is a point in [¢;, t;4+1]. But it
is known from integration theory that these sums do not converge pathwise
because the paths of B are a.s. not of bounded variation. We will prove
that the convergence holds in probability, but in a first stage we use L>-
convergence and define integration with respect to the elements of H2. The
class of integrands is the object of the following

Definition 4.7. If M € H?, we call £*(M) the space of progressively
measurable processes K such that

\KI% = E [ | w2 M>5] < too

If, for any T € # (R}) @ F, we set

Py(l)=F [/OOO Ir(s,w)d{M, M)s(w)]

we define a bounded measure Py; on B (Ry)®.F o and the space £?*(M)
18 nothing else than the space of Pyr-square integrable, progressively measur-
able functions. As usual, L?(M) will denote the space of equivalence classes
of elements of £*(M); it is of course a Hilbert space for the norm || - ||as.

Since those are the processes we are going to integrate, it is worth recall-
ing that they include all the bounded and left (or right)-continuous adapted
processes and, in particular, the bounded continuous adapted processes.

Theorem 4.4. Let M € H?; for each K € L?>(M), there is a unique element
of H2, denoted by K - M, such that

(K-M,N)=K-(M,N)
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for every N € H?. The map K — K - M is an isometry from L?(M)
mto Hg.

Proof. a) Uniqueness.

If L and L' are two martingales of H3 such that (L, N) = (L', N) for every
N € H?, then in particular (L — L', L — L') = 0 which by Proposition 4.4
implies that L — L’ is constant, hence L = L'.

b) Existence.

Suppose first that M is in Hg. By the Kunita-Watanabe inequality and
Corollary 4.2, for every N in Hg we have

’E [/OOOst<M,N>S]

the map N — E[(K - (M, N))s] is thus a linear and continuous form
on the Hilbert space HO2 and, consequently, there is an element K - M in Hg
such that

< Kl a [N 2

E[(K - M)ooNoo] = E[(K - (M, N))o] (4.2)

for every N € Hg. Let T be a stopping time; the martingales of H?
being u.i., we may write

E[(K-M)rN7|=FE[E[(K-M)s | 1] Nr] = E[(K - M)oo NT]
(K- M)oNL] = E[(K-(M,NT))_]
N

(
(K- (M,N)T) ] = E[(K - (M,N))r]

E
E
E

which proves that (K- M)N — K - (M, N) is a martingale. Furthermore,
by (4.2),

I - M[Fe = E[(K - M)Z] = B [(K?- (M, M))_] = K3

which proves that the map K — K -M is an isometry. If N € H? instead
of HZ, then we still have (K - M, N) = K - (M, N) because the bracket of a
martingale with a constant martingale is zero.
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Finally, if M € H? weset K- M = K - (M — M) and it is easily checked
that the properties of the statement carry over to that case.

O]

Definition 4.8. The martingale K - M 1is called the stochastic integral of K
with respect to M and is also denoted by

/KSdMS
0

It is also called the It6 integral to distinguish it from other integrals.
The It6 integral is the only one among them for which the resulting process
is a martingale.

We stress the fact that the stochastic integral K - M vanishes at 0 .

The reasons for calling K - M a stochastic integral will become clearer in
the sequel; here is one of them. We shall denote by & the space of elementary
processes that is the processes which can be written

K = K_ll{ﬂ} + ZKil]ti,ti+l]
[

where 0 = tp < t1 < to < ...,lim;¢; = 400, and the r.v.’s K; are .%#,-
measurable and uniformly bounded and K_; € %#;. The space & is con-
tained in L?(M). For K € &, we define the so-called elementary stochastic
integral K - M by

n—1
(K-M),=> K; (M, — M) + K, (M; — My,)
=0

whenever t, <t < t,41. It is easily seen that K - M € Hg; moreover,
considering subdivisions A including the ¢; ’s, it can be proved using the
definition of the brackets, that for any N € H?, we have (K - M,N) =
K -(M,N).

As aresult, the elementary stochastic integral coincides with the stochas-
tic integral constructed in Theorem 4.4. This will be important later to
prove a property of convergence of Riemann sums which will lead to explicit
computations of stochastic integrals.



66 CHAPTER 4. STOCHASTIC INTEGRAL

We now review some properties of the stochastic integral. The first is
known as the property of associativity.

Proposition 4.11. If K € L>(M) and H € L*(K - M) then HK € L*(M)
and

(HK)-M = H - (K - M)

Proof. Since (K - M, K - M) = K% - (M, M), it is clear that HK belongs to
L?*(M). For N € H?, we further have

(HK)-M,N)=HEK - (M,N) = H - (K - (M, N))

because of the obvious associativity of Stieltjes integrals, and this is equal
to

the uniqueness in Theorem 4.4 ends the proof. O
The next result shows how stochastic integration behaves with respect

to stopping; this will be all important to enlarge the scope of its definition
to local martingales.

Proposition 4.12. If T is a stopping time,
K-M"=Klgp-M=(K-M)T"
Proof. Let us first observe that M7 = Lio,7) - M; indeed, for N € H 2,

(MY, N) = (M,N)" =17y - (M,N) = (Ljo7)- M,N)

Thus, by the preceding proposition, we have on the one hand
K-M"=K-(loq-M)=Klggp- M

and on the other hand

(K-M)" =1jq- (K-M)=1pK-M
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which completes the proof.

O]

Since the Brownian motion stopped at a fixed time ¢ is in H?, if K is a
process which satisfies

t
E {/ des} <oo, forallt
0

we can define fot KydB; for each t hence on the whole positive half-line
and the resulting process is a martingale although not an element of H?2.
This idea can of course be used for all continuous local martingales.

Definition 4.9. If M is a continuous local martingale, we call LIQOC(M)
the space of classes of progressively measurable processes K for which there

exists a sequence (T,,) of stopping times increasing to infinity and such that
Tn
E[ K2d(M, M>s} < +o0
0

Observe that L2

ioc (M) consists of all the progressive processes K such
that

t
/ K2d(M, M), < 0o for every t
0

Proposition 4.13. For any K € L% (M), there exists a unique continuous
local martingale vanishing at 0 denoted K - M such that for any continuous

local martingale N

(K -M,N)=K - (M,N)

Proof. One can choose stopping times 7T;, increasing to infinity and such
that M is in H? and K™ € L? (M T"). Thus, for each n, we can define
the stochastic integral X®) = gTn . pfTn But, by Proposition 4.12, X (n+1)
coincides with X on [0,T,]; therefore, one can define unambiguously a
process K - M by stipulating that it is equal to X () on [0,T},]. This process
is obviously a continuous local martingale and, by localization, it is easily
seen that (K - M, N) = K - (M, N) for every local martingale N. O
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Remark 4.2. To prove that a continuous local martingale L is equal to
K - M, it is enough to check the equality (L, N) = K- (M, N) for all bounded
N s.

Again, K - M is called the stochastic integral of K with respect to M
and is alternatively written
/ KodM;
0

Plainly, Propositions 4.11 and 4.12 carry over to the general case after
the obvious changes. Also again if K € & this stochastic integral will co-
incide with the elementary stochastic integral. Stieltjes pathwise integrals
having been previously mentioned, it is now easy to extend the definition of
stochastic integrals to semimartingales.

Definition 4.10. A progressively measurable process K is locally bounded
if there exists a sequence (T, ) of stopping times increasing to infinity and
constants C,, such that ‘KT”‘ < C,.

All continuous adapted processes K are seen to be locally bounded by
taking T,, = inf {¢ : |K;| > n}. Locally bounded processes are in L% (M)
for every continuous local martingale M.

Definition 4.11. If K is locally bounded and X = M + A is a continu-
ous semimartingale, the stochastic integral of K with respect to X is the
continuous semimartingale

K- X=K-M+K-A

where K - M is the integral of Proposition 4.13and K - A is the pathwise
Stieltjes integral with respect to dA. The semimartingale K- X is also written

/KSdXS
0

Proposition 4.14. The map K — K - X enjoys the following properties:
i) H-(K-X)=(HK)-X for any pair H, K of locally bounded processes;
i) (K- X)T = (KI[O,T]) X =K -X7T for every stopping time T;

i11) if X is a local martingale or a process of finite variation, so is K- X;
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w) if K € &, then if t, <t < tni1

n
(K- X) =) Ki (X, — Xy,) + Kn (X — X3,)
=0

Proof. Straightforward. O

Proposition 4.15. For almost every w, the function (K -X).(w) is constant
on any interval [a,b] on which either K (w) =0 or X.(w) = X4(w).

Proof. Only the case where X is a local martingale has to be proved and it
is then an immediate consequence of Proposition 4.5 since K2 (X, X) hence
K - X are then constant on these intervals.

As a result, for K and K locally bounded and predictable processes and
X and X semimartingales we have (K -X); — (K- X), = (K-X);— (K- X),
a.s. on any interval [a,b] on which K = K and X. — X, = X. — X,; this
follows from the equality

K X-K-X=K- (X-X)+(K-K)-X
O

We now turn to a very important property of stochastic integrals, namely
the counterpart of the Lebesgue dominated convergence theorem.

Theorem 4.5. Let X be a continuous semimartingale. If (K™) is a sequence
of locally bounded processes converging to zero pointwise and if there exists
a locally bounded process K such that |K™| < K for every n, then (K™ - X)
converges to zero in probability, uniformly on every compact interval.

Proof. The convergence property which can be stated

P — lim sup |(K" - X)

n—oo s<t

=0

ol

is clear if X is a process of finite variation. If X is a local martingale and
if T reduces X, then (K™)" converges to zero in L2 (XT) and by Theorem 4.4
(K" X )T converges to zero in H2. The desired convergence is then easily
established by the same argument as in Theoren 4.2.
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O]

The next result on ”Riemann sums” is crucial in the following section.

Proposition 4.16. If K is left-continuous and locally bounded, and ( A™)
is a sequence of subdivisions of [0,t] such that |A™| — 0, then

t
/O KdXs =P — lim tEZM Ky, (Xe, — Xt,)

Proof. If K is bounded, the right-hand side sums are the stochastic integrals
of the elementary processes ) Ky 1, ) which converge pointwise to K
and are bounded by || K||; therefore, the result follows from the preceding
theorem. The general case is obtained by the use of localization. O

3 Ito Formula

This section is fundamental. It is devoted to a ”change of variables” formula
for stochastic integrals which makes them easy to handle and thus leads to
explicit computations.

Another way of viewing this formula is to say that we are looking for
functions which operate on the class of continuous semimartingales, that is,

functions F' such that F'(X;) is a continuous semimartingale whatever the

continuous semimartingale X is. We begin with the special case F(x) = .

Proposition 4.17 (Integration by parts formula). If X and Y are two
continuous semimartingales, then

t t
X,Y; = Xo¥o + / X.dY, + / Y.dX, + (X,Y),
0 0
In particular,
t
X} =X2+ 2/ XodXs+ (X, X)
0

Proof. 1t is enough to prove the particular case which implies the general
one by polarization. If A is a subdivision of [0, ], we have
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ST (Ko, — X0) = X2 - X2 -2 X, (Xpyy, — X))
%

)

letting |A| tend to zero and using, on one hand the definition of (X, X),
on the other hand Proposition 4.16, we get the desired result. ]

If X and Y are of finite variation, this formula boils down to the ordinary
integration by parts formula for Stieltjes integrals. The same will be true
for the following change of variables formula. Let us also observe that if M
is a local martingale, we have, as a result of the above formula,

t
M2 — (M, M) = M2 + 2/ MdM,
0

we already knew that M? — (M, M) is a local martingale but the above

formula gives us an explicit expression of this local martingale. In the case
of BM, we have

t
Btz—t:2/ B,dB,
0

which can also be seen as giving us an explicit value for the stochastic
integral in the right member. The reader will observe the difference with
the ordinary integrals in the appearance of the term ¢t. This is due to the
quadratic variation.

All this is generalized in the following theorem. We first lay down the

Definition 4.12. A d-dimensional vector local martingale (resp. wvector
continuous semimartingale) is a R*-valued process X = (Xl, - ,Xd) such
that each X" is a local martingale (resp. cont. semimart.). A complex local
martingale (resp. complex cont. semimart.) is a C-valued process whose
real and imaginary parts are local martingales (resp. cont. semimarts.).

Theorem 4.6 (Ito’s formula). Let X = (X',..., X%) be a continuous vec-
tor semimartingale and F € C? (Rd,R) ; then, F(X) is a continuous semi-
martingale and

7 ? J
F(X;) = F (Xo) +Z/ 5, (X)X Z/ (‘%szax] X,)d{X", X7)
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Proof. If F' is a function for which the result is true, then for any ¢, the
result is true for G (x1,...,24) = x;F (x1,...,x4); this is a straightforward
consequence of the integration by parts formula. The result is thus true
for polynomial functions. By stopping, it is enough to prove the result
when X takes its values in a compact set K of R?. But on K, any F in
Cc? (Rd, R) is the limit in C2(K, R) of polynomial functions. By the ordinary
and stochastic dominated convergence theorems (Theorem 4.5), the theorem
is established.

O

Remark 4.3. 1. The differentiability properties of F' may be somewhat

relaxed. For instance, if some of the X' ’s are of finite variation, F
needs only be of class C' in the corresponding coordinates; the proof
goes through just the same. In particular, if X is a continuous semi-
martingale and A has finite variations, and if 0*F/0x? and OF/dy

exist and are continuous, then

t t
F (X4, Ay) =F (Xo, Ao) + or (X5, As)dXs + or (Xs, Ag) dAs
o Oz o 9y

1 [tO%F
——— (X, Ag) d(X, X))
2 ), (%2( ) d( )

2. One gets another obvious extension when F' is defined only on an open
set but X takes a.s. its values in this set. We leave the details to the
reader as an exercise.

3. Ito’s formula may be written in ”differential” form

OF -1 0*F o
% - g J

dF (Xy) =
More generally, if X is a vector semimartingale, dY; =), HidX} will
mean .
Vi=Yo+) / H!dX!
— Jo
(2

In this setting, Ito’s formula may be read as “the chain rule for stochas-
tic differentials”.
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4. Ité’s formula shows precisely that the class of semimartingales is in-
variant under composition with C?-functions, which gives another rea-
son for the introduction of semimartingales. If M is a local martingale,
or even a martingale, F(M) is usually not a local martingale but only
a semimartingale.

5. Let ¢ be a C'-function with compact support in |0,1[. It is of finite
variation, hence may be looked upon as a semimartingale and the in-
tegration by parts formula yields

1 1
X16(1) = Xo(0) + /0 o(s)dX, + /0 X, (s)ds + (X, o)1

which reduces to

/0 ' o(s)dX, = - /0 Xl (5)ds.

In the following proposition, we introduce the class of exponential local
martingales which turns out to be very important. For the time being, they
provide us with many new examples of local martingales.

Proposition 4.18. If f is a complex valued function, defined on R x R,
2 2

and such that % and g—f exist, are continuous and satisfy % + %% =0,

then for any cont. local mart. M, the process f (M, (M,M);) is a local

martingale. In particular for any X\ € C, the process

ENM); = exp {AMt - )\22<M, M>t}

is a local martingale. For A = 1, we write simply &(M) and speak of the
exponential of M.

Proof. This follows at once by making A = (M, M) in the first remark below
Theorem 4.6. U

Another application of the Itd formula is the following

Theorem 4.7 (P. Lévy’s characterization theorem). For a (%#;)-adapted
continuous d-dimensional process X vanishing at 0, the following three con-
ditions are equivalent:
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i) X is an #-Brownian motion;

i1) X is a continuous local martingale and <Xi,Xj>t = 0t for every
1<4, 5 <d;

iii) X is a continuous local martingale and for every d-uple f = (f1,..., fa)
of functions in L? (R.), the process

i ‘ t 1 t
o e sX [ tnaxt+ }3° [ oo

is a complex martingale.

Proof. That i) implies ii) has already been seen. Furthermore if ii) holds,
Proposition 4.18 applied with A =i and M; = ), fg fr(s)dXF implies that
&' is a local martingale; since it is bounded, it is a complex martingale.

Let us finally assume that iii) holds. Then, if f = {1jg 7} for an arbitrary
€1in R? and T > 0, the process

i = ew {6 Xum) + D)}

is a martingale. For A € %, s <t < T, we get

Elaexp{i({, X: — Xs)}] = P(A) exp (—(t — s))

(Here, and below, we use the notation (z,y) for the Euclidean scalar
product of z and y in R?, and |z|? = (x,2).)

Since this is true for any ¢ € R, the increment X; — X, is independent
of .Z, and has a Gaussian distribution with variance (¢ — s); hence i) holds.

O]



Chapter 5

Stochastic Differential
Equation

1 Introduction

Let us recall the Markov property.

Definition 5.1. Let d be a positive integer. A d-dimensional Markov family
is an adapted process X = { Xy, #;t > 0} on some (2, F), together with a
family of probability measures {P*}__pa on (2,.%), such that

(a) for each F € F, the mapping x — P*(F) is universally measurable;
(See Karatzas and Shreeve p 73 for a formal definition.)

(b) P*[Xo =] =1,Yz € R
(c) forx € R, 5,6t >0 and T € B (RY),
Px[Xt_FSEF’gZS]:PI[Xt+5€F|XS], P* —as

(d) forx € R% s,t >0 and T Eﬂ(Rd),

PP [Xps €T | Xy =y|=PY[X, €T], P"X.;'-ae y.

We remark that Brownian motions are Markovian.

Theorem 5.1. A d-dimensional Brownian motion is a Markov process. A
d-dimensional Brownian family is a Markov family.

75
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Some ideas for the proof of the Theorem.

Let us suppose now that we observe a Brownian motion with initial
distribution yg up to time s,0 < s < t. In particular, we see the value of By,
which we call y. Conditioned on these observations, what is the probability
that B; is in some set I' € A (Rd) ? Now B; = (B; — Bs) + Bs, and the
increment By — By is independent of the observations up to time s and is
distributed just as By_, is under P°. On the other hand, By does depend
on the observations; indeed, we are conditioning on By = y. It follows that
the sum (B; — Bs) + By is distributed as B;_s is under PY. Two points then
become clear. First, knowledge of the whole past up to time s provides no
more useful information about B; than knowing the value of By; in other
words,

PH[B, el | #, = P*[B, T | By, O§s<t,F€%’(Rd).

Second, conditioned on By = y, B; is distributed as B;_g is under PY;
ie.,

PMB, €T |By=y]=PY[B,_, €T, 0§s<t,F€%’(Rd>.

2 Diffusion

We explore in this chapter questions of existence and uniqueness for solutions
to stochastic differential equations and offer a study of their properties. This
endeavor is really a study of diffusion processes. Loosely speaking, the term
diffusion is attributed to a Markov process which has continuous sample
paths and can be characterized in terms of its infinitesimal generator.

In order to fix ideas, let us consider a d-dimensional Markov family X =
{Xt, 71,0 <t < o0}, (Q,.F),{P*} ,cpa» and assume that X has continuous
paths. We suppose, further, that the relation

liw ; [B7F (X0) - f(@)] = (f)(a); Vo€ R (5.1)

holds for every f in a suitable subclass of the space C? (Rd) of real-
valued, twice continuously differentiable functions on R%; the operator < f
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in (5.1) is given by

A

d d
Of(x
D) DL LTS SEL (C eSS

i=1 k=1 =1

[\D\H

for suitable Borel-measurable functions b;,a;; : RY — R, 1 < 4,k < d.
The left hand side of (5.1) is the infinitesimal generator of the Markov family,
applied to the test function f. On the other hand, the operator in (5.2) is
called the second order differential operator associated with the drift vector
b= (b1,...,bq) and the diffusion matrix a = {ax},<; <4 Which is assumed
to be symmetric and nonnegative-definite for every z € R%.

The drift and diffusion coefficients can be interpreted heuristically in the
following manner: fix z € R? and let f;(y) £ vi, fie(y) 2 (yi — z3) (yx — 71);

y € RZ. Assuming that holds (5.1) for these test functions, we obtain

B [X(i) _ } = thi(z) + o(t) (5.3)

E* {(Xi(i) - 931) (Xi(k) - xk)} = ta;k(z) + o(t) (5.4)

ast |0, for 1 <i,k <d. In other words, the drift vector b(x) measures
locally the mean velocity of the random motion modeled by X, and a(z)
approximates the rate of change in the covariance matrix of the vector X;—uz,
for small values of ¢ > 0.

Definition 5.2. Let X = {X;, ;0 <t < oo}, (Q,.7),{P"},cpa be ad
dimensional Markov family, such that

(i) X has continuous sample paths;

(it) relation(5.1) holds for every f € C* (RY) which is bounded and has
bounded first- and second-order derivatives;

(iii) relations (5.3), (5.4) hold for every x € R?; and
(iv) X is a strong Markov Family.
Then X s called a (Kolmogorov-Feller) diffusion process.

The methodology of stochastic differential equations was suggested by
P. Lévy as an ”alternative,” probabilistic approach to diffusions and was
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carried out in a masterly way by K. It6. Suppose that we have a continuous,
adapted d-dimensional process X = { Xy, .%;;0 < t < oo} which satisfies, for
every x € R, the stochastic integral equation

Xi(i):xl / ds—{—Z/ oij (X W(J) 0<t<oo,1<i<d

(5.5)

on a probability space (2, #, P¥), where W = {W,;, ;0 <t < 0o} is a
Brownian motion in R" and the coefficients b;, 0;; : R 5 R:1<i<d 1<
j < r are Borel-measurable. Then it is reasonable to expect that, under
certain conditions, (5.1) - (5.4) will indeed be valid, with

azk Z UZ] Uk]

We leave the verification of the following fact as an exercise for the reader.

Assume that the coefficients b;, 0;; are bounded and continuous, and the
RY-valued process X satisfies (5.5). Show that (5.3) , (5.4) hold for every
z € R? and that (5.1) holds for every f € C? (R?) which is bounded and
has bounded first- and second-order derivatives.

3 Strong solutions

In this section we introduce the concept of a stochastic differential equation
with respect to Brownian motion and its solution in the so-called strong
sense. We discuss the questions of existence and uniqueness of such solutions,
as well as some of their elementary properties.

Let us start with Borel-measurable functions b;(t, x), 04 (t,x);1 <1 < d,
1 <j <, from [0,00)xR?into R, and define the (dx 1) drift vector b(t, z) =

{bi(t,2)}<;<q and the (d x r) dispersion matrix o(t,z) = {04;(t,z)}1<i<a-
1<;<r
The intent is to assign a meaning to the stochastic differential equation

dX; =10 (t, Xt) dt +o (t, Xt) AW,
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written componentwise as

ax!? = b; (¢, X;) dt + > 0 (t, Xy) awl; 1<i<d, (5.6)
j=1

where W = {W;;0 <t < oo} is an r-dimensional Brownian motion and
X ={X};0 <t < oo} is a suitable stochastic process with continuous sample
paths and values in R?, the ”solution” of the equation. The drift vector

b(t,z) and the dispersion matrix o(t, z) are the coefficients of this equation;
the (d x d) matrix a(t,z) = o(t,xz)o’ (t,r) with elements

'
aip(t, ) = Zaij(t,x)okj(t, x); 1<ik<d
j=1

will be called the diffusion matrix.

In order to develop the concept of strong solution, we choose a proba-
bility space (£, %, P) as well as an r-dimensional Brownian motion W =
{Wt, ﬁtW; 0 <t < oo} on it. We assume also that this space is rich enough
to accommodate a random vector ¢ taking values in R?, independent of .ZY
and with given distribution

ul)=PlceT); TeB (Rd) .
We consider the left-continuous filtration

GLo@QVF =0 Wi0<s<t); 0<t< oo,

as well as the collection of null sets

N 2 {N CQ;3G € Y, with N C G and P(G) = 0},

and create the augmented filtration

Fr2o(GUN), 0<t<os; Fo20o||JFA]. (5.7)
t>0
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Obviously, {W,%;; 0 < t < oo} is an r-dimensional Brownian motion,
and then so is {Wy, #; 0 <t < co}. It follows also, that the filtration {.%;}
satisfies the usual conditions.

Definition 5.3. A strong solution of the stochastic differential equation (5.6),
on the given probability space (0, %, P) and with respect to the fized Brow-

nian motion W and initial condition &, is a process X = {X4;0 <t < oo}

with continuous sample paths and with the following properties:

(i) X is adapted to the filtration {F} of (5.7),

(ii) P[Xo =& =1,

(iii) P [fot {]bZ (s, Xs)| + UZ-QJ- (S,XS)} ds < oo} = 1 holds for every 1 <
1<d,1<j<rand0<t<oo, and

(iv) the integral version of (5.6)

t t
Xt:XO—F/ b(s,XS)ds+/ o(s,Xg)dWs; 0<t< o0, (5.8)
0 0

or equivalently,

x = X(gi) + f; bi (s, Xs)ds + 375, fot oij (5, Xs) awl?

i . (5.9)
0<t<o0,1<i<d

holds almost surely.

Remark 5.1. Above the drift and the diffusion depends on (t,x). But one
can also write

dX; = F(Xy)dZ,,
where Zy = (t,Wy), and consider Z as a semi-martingale. It is the point of
view in the book by Protter.

The processes defined in Definition 5.3 are called Ité processes.

Definition 5.4. Let the drift vector b(t,x) and dispersion matriz o(t,x) be
given. Suppose that, whenever W is an r-dimensional Brownian motion on
some (Q, #, P),{ is an independent, d-dimensional random vector, {F;}
is gwen by (5.7), and X, X are two strong solutions of (5.6) relative to W
with initial condition &, then P |X; = X;0<t< oo} = 1. Under these

conditions, we say that strong uniqueness holds for the pair (b, o).
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We sometimes abuse the terminology by saying that strong uniqueness
holds for equation (5.6), even though the condition of strong uniqueness
requires us to consider every r-dimensional Brownian motion, not just a
particular one.

Theorem 5.2. Suppose that the coefficients b(t,x),o(t,x) are locally Lip-
schitz continuous in the space variable; i.e., for every integer n > 1 there
exists a constant K, > 0 such that for every t > 0,||z|| <n and ||y|| <n :

16Ct, ) = b(t, y)l + llo(t, z) — ot y)|| < Knllz = yll. (5.10)

Then strong uniqueness holds for equation (5.6).

Remark 5.2. We use the following notation. For every (d X r) matriz o,
we write

d r
loll* = > > o

i=1 j=1

Proof. Let us suppose that X and X are both strong solutions, defined
for all £ > 0, of (5.6) relative to the same Brownian motion W and the
same initial condition £, on some (2,.%, P). We define the stopping times
T, = inf{t > 0; || X¢|| > n} for n > 1, as well as their tilded counterparts,
and we set s, 2 7, A 7. Clearly lim,_o S, = 00, a.s. P, and

Xine, — Xins, = /0 e {b (4, X) — b (u Xu) } du
[ o wx) o (n ) faw,
0

Using the vector inequality |[vg 4 - - - + vg||* < k2 (||1)1||2 +- ||vk\|2),

the Holder inequality for Lebesgue integrals and (5.6), we may write for
0<t<T:
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E HXt/\sn - Xt/\sn

2 tASn 2
) <4F [/ ‘du]
0
+ 4Ei Zr: /(;t/\s" (O'ij (u, Xu) — 04j (U,XU>> szsj)
i=1 | j=1

tASn
<4tE /
0

tASh
+4F /
0

t
AT+ DK [ B Xuns, ~ Tuns,
0

b(u, Xy) — b <uXu>

2
‘du

b(u,Xy)—0b (u, Xu)

2
‘du

o(u,Xy)—o (u,Xu>

2
‘du

2

We now apply Gronwall inequality with g(t) £ F HXtAsn — Xmsn to

conclude that {Xirs,;0 <t < oo} and {XMS”; 0 <t < ooy are modifica-
tions of one another, and thus are indistinguishable. Letting n — 0o, we see
that the same is true for {X;;0 <t < oo} and {Xt;O <t< oo}. O

Theorem 5.3. Suppose that the coefficients b(t,x),o(t,z) satisfy the global
Lipschitz and linear growth conditions

16(t; ) = b(t, )l + llo(t, x) —a(t, y)|| < Kllz -y (5.11)
ot 2)II* + llo(t, 2)I* < K2 (1+ ||z]?) (5.12)

for every 0 < t < oo,z € R% y € RY, where K is a positive constant. On
some probability space (Q,.F, P), let € be an R%-valued random vector, inde-
pendent of the r-dimensional Brownian motion W = {Wt, ﬂtW; 0<t< oo},
and with finite second moment:

Bli¢)* < oo

Let {#} be as in (5.7). Then there exists a continuous, adapted process
X ={Xy, ;0 <t < oo} which is a strong solution of equation (5.6) relative
to W, with initial condition €. Moreover, this process is square-integrable:
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for every T > 0, there exists a constant C, depending only on K and T,
such that

E|X|?<C1+E[E)*) e’ 0<t<T. (5.13)

The idea of the proof is to mimic the deterministic situation and to
construct recursively, by a Picard iteration, a sequence of successive approx-
imations by setting Xt(o) = ¢ and

t t
Xt(k+1)é§+/o b(s,Xs(k)) ds+/0 a(s,Xs(’“)) dWy; 0<t<oo (5.14)

for £ > 0. These processes are obviously continuous and adapted to the
filtration {.#;}. The hope is that the sequence {X (k)}zozl will converge to
a solution of equation (5.6).

Let us start with the observation which will ultimately lead to (5.13).

For every T' > 0, there exists a positive constant C' depending only on
K and T, such that for the iterations in (5.14) we have

E HXt(k)HZ <CO+E|EP) e 0<t<T, k>0 (5.15)

Proof. We have Xt(kH) - Xt(k) = B; + M; from (5.14) where

p [ {o(sx®) b (s, x00) }as,
w2 [ (5.X0) — g (s.x00) b,

Thanks to the inequalities (5.12) and (5.15), the process {Mt = (Mt(l), . ,Mt(d)) ,

F1;0 <t < oo} is seen to be a vector of square-integrable martingales
such that 30 < A1 <
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E [max 1M ] <A1E/ o (5, x89) o (5, x¢* )H (5.16)

0<s<

§A1K2E/ ”Xs(k)—Xs(k‘l)" ds (5.17)
0

2
where we have used that (M), = f(f HO’ <S,X§k)) -0 (s,X§k71)> H ds and
Doob inequality.

2 9, [t (k) (k—1)||?
On the other hand, we have E ||B:||” < K*t [, E HXS — X5 H ds,

and therefore, with L = 4K2 (A +T),

2 t 2
E [max HXS(“I) - Xs(k)H } < L/ E ng’” - Xs(’H)H ds; 0<t<T
0<s<t 0
(5.18)
Inequality (5.18) can be iterated to yield the successive upper bounds

(Lt)*

o 0<t<T (5.19)

B | [ - x| < o

2
, a finite quantity because of (5.15).

where C* = maxo<;<7 E HXt(l) -

Relation (5.19) and the Cebysev inequality now give

k
< 4o BT

2k+1]— A k=1,2,...

P [max HXt(kH) k)H >
0<t<T

and this upper bound is the general term in a convergent series. From
the Borel-Cantelli lemma, we conclude that there exists an event Q* € #
with P (22*) = 1 and an integer-valued random variable N(w) such that for
every w € QF : maxoStSTHXt(kH)(w) —Xt(k)(w)H < 270D g > N(w).

Consequently,

Jnax HXt(IHm)(w) - Xt(k)(w)H <27%  ¥m>1k>N(w)



3. STRONG SOLUTIONS 85

[e.9]

We see then that the sequence of sample paths {Xt(k) (w);0<t< T}k .

is convergent in the supremum norm on continuous functions, from which
follows the existence of a continuous limit {X;(w);0 <t <T'} for all w € Q*.
Since T is arbitrary, we have the existence of a continuous process X =
{X¢; 0 <t < oo} with the property that for P-a.e. w, the sample paths
{X'(k) (w)}zozl converge to X.(w), uniformly on compact subsets of [0, o).
Inequality (5.13) is a consequence of (5.15) and Fatou’s lemma. From (5.13)
and (5.12) we have condition (iii) of Definition 5.3. Conditions (i) and (ii)

are also clearly satisfied by X. We can check that the X, e limg_ oo Xt(k)
satisfies the requirement (iv) of Definition 5.3.
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