M2R Examination A8 Novembre the 28 th 2024,

No document allowed,

Please turn the page to see the end of the examination .

3 hours examination.

You can write in French or in English.

Exercice 1 (8 points)

Let $\left(X_{t}^{H}\right)_{t\in\mathbb{R}}$ be a Gaussian process such that

$$\mathbb{E}\left(\mathbf{X}_{s}^{H}\mathbf{X}_{t}^{H}\right) = 1/2\left\{|s|^{2H} + |t|^{2H} - |t - s|^{2H}\right\}$$

 $\text{for } 0 < H < 1 \text{ and } \forall t \in \mathbb{R}, \quad \mathbb{E}X_t^H = 0.$

- 1. Show that $\forall a > 0$, $\left(\mathbf{X}_{at}^{H}\right)_{t \in \mathbb{R}} \stackrel{(d)}{=} a^{H} \left(\mathbf{X}_{t}^{H}\right)_{t \in \mathbb{R}}$ where $\stackrel{(d)}{=}$ is the equality of the distribution of the processes.
 - 2. Show that $\mathbf{E} \left(\mathbf{X}_s^H X_t^H \right)^2 = |t s|^{2H}$.
- 3. Show that if $H > \frac{1}{2}$ \mathbb{P} a.s. there exists a modification of $(X_t^H)_{0 \le t \le T}$ which is locally Hölder with exponent $\gamma < H 1/2$.
 - 4. Show that

$$E(X_s^H - X_t^H)^{2n} = C_n |t - s|^{2Hn}$$

where $C_n = \mathbf{E} N^{2n}$ and N is a standard centered Gaussian random variable. Deduce from this fact that we can improve the result from 3. so that $\gamma < H$.

Exercise 2 (8 points)

Let $B = (B_t, t \ge 0)$ be a Brownian motion for a filtration $\mathcal{F} = (\mathcal{F}_t, t \ge 0)$ which satisfies the usual conditions. Let

$$M_t = \frac{e^{-B_t^2/2(1-t)}}{\sqrt{1-t}} \quad t \in [0,1[.$$

1. Show that almost surely $\lim_{t\to 1^-} M_t = 0$.

- 2. Show that $(M_t, 0 \le t < 1)$ is a local martingale.
- 3. Compute $\langle M, M \rangle_t$ pour t < 1. Deduce that $(M_t, 0 \le t < 1)$ is a martingale.
- 4. Deduce that $\mathbb{E}\left[\sup_{0 \leq t < 1} M_t\right] = +\infty$. (You can argue by contradiction)

Exercise 3 (8 points)

Let $(X_t)_{t\geq 0}$ be a standard Brownian motion starting from 0. Let

$$A_n(K,N) = \left\{ \omega, \exists s \in \left[0, N - N/2^{n-1} \left[\text{ such that } |t - s| \le N/2^{n-1} \right] \right\} \right\} + \left| X_t(\omega) - X_s(\omega) \right| \le K|t - s| \right\}, \quad (1)$$

for K, N positive integers and n an integer such that $n \geq 2$.

1. Show that $\forall N \in \mathbb{N}^*$,

$$\{\omega, \exists t_0 \in [0, N \mid \text{ such that } X_t(\omega) \text{ is differentiable at } t_0\}$$

$$\subset \bigcup_{K=1}^{+\infty} \limsup_{n \to +\infty} A_n(K, N). \quad (2)$$

Let us consider that differentiable at 0 means right differentiable at 0. Let us fix K et N and shorten $A_n(K, N)$ in A_n in what follows.

2. Let
$$Y_{n,k} = \max_{l=0,1,2} \left| X_{(k+l)N/2^n} - X_{(k+l-1)N/2^n} \right|$$
 for $k=1,\ldots,2^n-2$, and for $k=0$ let $Y_{n,0} = \max_{l=1,2} \left| X_{lN/2^n} - X_{(l-1)N/2^n} \right|$.

Let us define $B_n = \bigcup_{k=0}^{2^n-2} \{Y_{n,k} \leq 4KN/2^n\}$ for $n \geq 2$. Show that $A_n \subset B_n$.

- 3. Let $a_n = \mathbf{P}(|X_{N/2^n}| \le 4KN/2^n)$. Show that $\mathbf{P}(B_n) \le a_n^2 + (2^n 2)a_n^3$ for $n \ge 2$.
 - 4. Show that $a_n \leq 8K(N/2^n)^{1/2}(2\pi)^{-1/2}$.
 - 5. Show that $\sum_{n=2}^{\infty} \mathbf{P}(B_n) < +\infty$.
 - 6. Deduce that $\mathbf{P}\left(\limsup_{n\to+\infty} B_n\right) = 0$.
- 7. Deduce that the sample paths of a standard Brownian motion starting from zero are almost surely nowhere differentiable.