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STATIONARY GAUSSIAN RANDOM FIELDS ON HYPERBOLIC SPACES AND

ON EUCLIDEAN SPHERES ∗, ∗∗

S. Cohen1 and M.A. Lifshits2

Abstract. We recall necessary notions about the geometry and harmonic analysis on a hyperbolic
space and provide lecture notes about homogeneous random functions parameterized by this space.
The general principles are illustrated by construction of numerous examples analogous to Euclidean
case. We also give a brief survey of the fields parameterized by Euclidean spheres. At the end we give
a list of important open questions in hyperbolic case.

Résumé. Cet article rassemble diverses notions utiles pour l’étude des champs stationnaires sur
l’espace hyperbolique. Tout d’abord les outils classiques de la géométrie de ces espaces, puis les
principes de l’analyse harmonique des champs stationnaires ou à accroissements stationnaires sont
rappelés. Ces concepts sont illustrés par la construction de nombreux exemples obtenus par analogie
avec les espaces euclidiens. Une rapide étude des champs paramétrés par les sphères euclidiennes
complète cet exposé. A la fin on évoque quelques questions importantes toujours ouvertes dans le cas
hyperbolique.
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1. Introduction

In this article we would like to give a self-contained introduction to spectral theory of stationary fields
parameterized by hyperbolic spaces. This aim might look surprising for at least two reasons : first, the analytic
theory of such fields is a classical part of harmonic analysis on symmetric spaces and complete references for
this are [8, 12]; second, hyperbolic spaces are not familiar to many probabilists.

Let us give probabilistic motivations for this study.
Fractional fields parameterized by finite-dimensional Euclidean spaces are today very often used in the mod-

elling of images. See for instance [20] or [2,9,13]. Besides a lot of various applications, those fields can be used to
obtain “textures” on flat spaces, but it is obvious even for non-specialist that “textures” exist on curved spaces.
The most popular model for fractional fields is certainly the fractional Brownian field, and, maybe, even before
the fractional Brownian fields, the Lévy Brownian field (which will be rigorously defined in Section 8. These
fields have stationary increments, which means that their distributions are invariant in a certain sense with
respect to the action of the group of translations on the Euclidean space. Hence from the beginning it is quite
obvious that among all manifolds that could parameterize the fields modelling “textures” on curved spaces,
those on which a group of isometries is acting will be nicer than the others. A deeper reason is the fact that
harmonic analysis is a classical topic on symmetric spaces (i.e. heuristically Riemannian manifolds on which
isometries are acting nicely, see [16] for reference on this subject) and will provide us with a spectral analysis of
these fields. However real symmetric spaces include Euclidean spaces, Euclidean spheres, and hyperbolic spaces,
so why should we focus on hyperbolic spaces, when we want to extend the theory of stationary fields to curved
space? Basically because the hyperbolic space is much more similar to the Euclidean space than the sphere for
topological reason : it is not compact. This fundamental fact has a consequence for spectrum of the Laplacian
which is continuous in Euclidean and hyperbolic case but discrete for the sphere.

See [1] for a reference on the geometry of hyperbolic spaces.
The case of stationary fields on Euclidean sphere will be addressed in Section 12 and turns out to be simpler

than the hyperbolic case.
Working on this topic for probabilists and statisticians, no acquainted with geometry is not an easy job : there

are a lot of notations to learn. Hence, although it would be natural to extend this study to general symmetric
spaces, we chose to restrict ourselves to hyperbolic space and Euclidean sphere, to give a short introduction
to useful tools we need in hyperbolic and spherical geometry. On the other side, analysts might think that
harmonic analysis on symmetric space is an old subject and there is nothing new in this probabilistic treatment.
They might be true, but we were surprised to discover that it was not easy at all to associate probabilistic fields
to analytical objects like their covariance or the variance of their increments. As far as we know, the new part
of this article is the integral representation of various canonical stationary fields. We hope that the comparison
between the Euclidean case and the hyperbolic case would be of some interest an will help the reader to better
understand stationary fields on curved spaces.

Just to begin with, here is one surprising fact about fractional Brownian fields on hyperbolic spaces and
on the sphere: they just do exist not over the whole classical range of Hurst exponent 0 < H < 1 as in the
Euclidean case, but only when 0 < H ≤ 1/2. See e.g. [20] on the range of admissible H and more generally
for simulations or applications in statistic. From the point of view of applications, it is a disturbing fact since
H is related not only to spectral properties of fractional fields but also to the regularity of the sample paths.
More precisely, on Euclidean space, H-fractional Brownian fields have H-Hölder sample paths and the Hölder
exponent is linked to the smoothness of “textures”. Therefore there exists a gap for “textures” on sphere and
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hyperbolic spaces, they miss a canonical fractional model with stationary increments. At the beginning of this
work, we hoped that integral representations of fractional Brownian field, or Lévy Brownian field, i.e. H = 1/2
could be the starting point to define a canonical extension of fractional Brownian field to the case H > 1/2.
Unfortunately, by now we only have very partial answers for integral representations of fractional Brownian
field and leave many open questions.

In Section 2 we provide the reader with a reminder of the Euclidean case for sake of comparison.
Section 3 is devoted to the introduction of the disk model of the hyperbolic space in dimension n = 2. We

recall the metric, the group of isometries, horocycles and the Laplace–Beltrami operator in this case. Actually
we are mainly interested in the eigenfunctions of the Laplace–Beltrami operator which will be the basic tools
for the Fourier transform on hyperbolic space. Radial eigenfunctions are called spherical functions.

In the following Section 4 the hyperboloid model for the hyperbolic space is introduced for all n ∈ N and
related to the disk model when n = 2. These two sections are elementary but we believe that they will be useful
for probabilists.

A very important difference between hyperbolic and Euclidean space is the fact that in the first case there
exist a lower part of the spectrum and a upper part of the spectrum. While the upper spectrum looks familiar
to probabilists, because it is related to the Fourier transform on hyperbolic space, the lower spectrum has no
counterpart in the Euclidean case and we provide series and integral representation of the fields corresponding
to the lower spectrum in Section 5.

Sections 6 and 7 use a classical technique to generate stationary fields that goes back to Chentsov [7]. Let
us consider a class C of geometric objects stable with respect to the action of isometries. If one knows how the
isometry is acting on the class C and possesses a measure on C invariant under the action of the isometries,
one can construct a white noise on C and a family of stationary fields on the underlying space associated to
convolutions of L2 functions with this white noise. For instance, for the class of geodesics of the hyperbolic plane,
the stationary fields thus constructed include the Lévy Brownian field. Unfortunately, we do not know how to
deduce the spectral decomposition for homogeneous field based on geodesics. However one can also consider
the class of horocycles, and we get the spectral decomposition for homogeneous field based on horocycles in
Section 6. It is a striking fact that this decomposition uses only the upper spectrum of Laplacian.

In Section 8 we compile all we know about the spectrum of fractional Brownian field. Although the description
is partial, this part yields an explicit formula for the classical Fourier transform of the upper spectrum of Lévy
Brownian field.

In the Euclidean case Ornstein-Uhlenbeck fields are classical stationary fields. We investigate in Section 9
the differences between Ornstein-Uhlenbeck fields on hyperbolic space and on Euclidean space.

Beside fractional Brownian fields, there exists another canonical field with stationary increments in the
Euclidean space for which the variance of the increment is the square of the Euclidean norm. It is a degenerate
field because it can be generated by a primitive white noise of rank n, where n is the dimension of the Euclidean
space. In the hyperbolic case there also exists a quadratic form in a generalized sense due to Gangolli [12], which
is the variance of the increments of a stationary field on the hyperbolic space. In Section 10 we study properties
of this field, which is generated by an infinite-dimensional white noise, and hence is no more degenerate.

The spectral properties of the white noise on hyperbolic space itself are studied in Section 11.
Section 12 is devoted to a short review of the stationary fields on Euclidean spheres.
Open questions are raised in Section 13.

2. A summary for the Euclidean case

Let us recall definitions of stationary fields and fields with stationary increments on Euclidean space. Proofs of
these elementary facts can be found in the general reference [25] for Gaussian fields parameterized by Euclidean
spaces.

Definition 2.1. A centered Gaussian field (X(t))t∈Rn is stationary if there exists a function K such that the

covariance R(t, s)
def
= EXtXs = K(t− s). The function K is called the auto-covariance function of the field X.
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This definition will be generalized to fields parameterized by a space on which a group is operating in
Definition 5.1. Definition 2.1 is a particular instance of Definition 5.1, when the group of translations is acting
on Rn.

Next, it is easy to prove that if K is the auto-covariance function of stationary centered Gaussian field X
then it is a non-negative definite function in the following sense.

Definition 2.2. A real valued function f on Rn is called non-negative definite if for every d ≥ 1, λ1, . . . , λd ∈ C,
t1, . . . , td ∈ Rn

d∑
i,j=1

λiλjf(ti − tj) ≥ 0 .

This definition will be generalized in Subsection 5.1.
Moreover, if K is a non-negative definite function then there exists a stationary centered Gaussian field X

such that K is the auto-covariance function of the field X.
One can show that distributions of stationary centered Gaussian field X satisfy

(X(t+ δ))t∈Rn
(d)
= (X(t))t∈Rn , ∀δ ∈ Rn . (1)

This formula simply means that the distribution of the field is invariant under the action of the translations.
We also recall a spectral characterization of non-negative definite functions called Bochner’s theorem (see [33]

for a proof).

Theorem 2.1. Bochner’s theorem.
Among the continuous real valued functions on Rn, the non-negative definite functions are those functions

that are the Fourier transforms of finite measures.

Definition 2.3. If X is a stationary centered Gaussian field such that the auto-covariance function K is a
continuous, by Bochner theorem 2.1, there exists a unique finite measure µ on Rn such that

K(t) =

∫
Rn
eit.ξµ(dξ). (2)

The measure µ is called the spectral measure of the field X. If µ admits a density with respect to the Lebesgue
measure dξ, this density is called the spectral density of X.

Spectral representation of Gaussian stationary field.
Let Xt, t ∈ Rn be a centered stationary Gaussian field with auto-covariance

K(h) = EXt+hXt .

Assume that K is a continuous function and that the corresponding spectral measure µ(dξ) = f(ξ)dξ. Notice
that K(h) = K(−h), and by Bochner’s theorem K(h) =

∫
Rn e

ih.ξf(ξ)dξ, so f(ξ) = f(−ξ) is a non negative

function in L1(Rn). Let us consider the field defined by

Yt =

∫
Rn

√
f(ξ)eit.ξŴ (dξ) , (3)

where Ŵ (dξ) is an appropriate complex white noise controlled by Lebesgue measure (we refer to [25] for the
definition and basic properties of the white noise).
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Clearly, Y is a centered Gaussian field with auto-covariance function

EYtYs =

∫
Rn
f(ξ)ei(t−s)ξdξ

= K(t− s) .

Hence, Y and X have the same distribution and (3) is called the spectral representation of X.
Let us consider an important sub-class of stationary fields. Namely, let us make an additional assumption

that the distribution of a stationary field X is rotation-invariant. It means that the measure µ in (2) must be
spherically invariant. Hence, (2) writes as

K(t) =

∫ ∞
0

∫
Sn−1

eit.λσ dσ ν(dλ),

where dσ is the unique rotation-invariant unit measure on the sphere Sn−1 and ν is a finite measure on (0,∞).

Definition 2.4. The functions

φλ(t) :=

∫
Sn−1

eit.λσdσ, t ∈ Rn,

are called spherical functions on Rn.

With this definition the previous relation writes simply as

K(t) =

∫ ∞
0

φλ(t)ν(dλ).

It means that any rotation invariant covariance of a stationary field is just a mixture of spherical functions.
This also explains the importance of the latter notion.

Let us mention few properties of spherical functions. It is almost obvious that their values are real and that
φλ(t) is actually determined by ‖t‖. There is a useful self-similarity property

φλ(ct) = φcλ(t), t ∈ Rn, c > 0. (4)

and even more important relation to Laplace operator. Namely, an easy calculation yields

∆φλ(t) = −λ2φλ(t).

Hence, φλ are spherically invariant eigenfunctions of Laplace operator that have negative eigenvalues. This fact
will help us to identify the spherical functions when we will move from Rn to other manifolds.

Let us now consider fields with stationary increments.

Definition 2.5. A field (X(t))t∈Rn such that

(X(t+ δ)−X(s+ δ))t∈Rn
(d)
= (X(t)−X(s))t∈Rn . (5)

for every s, t, and δ in Rn is called a field with stationary increments.

There exists also a spectral representation of the covariance of fields with stationary increments, which is
similar to Bochner’s theorem. Let us assume that X is a centered Gaussian field with stationary increments.
Moreover, if X0 = 0 a.s. and the covariance is continuous, then there exists a sigma-finite measure µ on Rn
satisfying ∫

Rn
min(1, ‖ξ‖2)µ(dξ) < +∞
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and a symmetric non-negative definite matrix Σ such that

R(t, s) =

∫
Rn

(eit.ξ − 1)(e−is.ξ − 1)µ(dξ) + t.Σs. (6)

(See a discussion concerning this result in [40] and the references therein.) On can also deduce from this result
an integral representation for Gaussian fields with stationary increments.

Let us consider a centered Gaussian field X with stationary increments such that X0 = 0 a.s. Let us assume
that its covariance function is continuous, and that the spectral measure µ(dξ) = f(ξ)dξ. As in the stationary
case, f is called the spectral density of X. Then

Xt
(d)
=

∫
Rn

(eit.ξ − 1)
√
f(ξ) Ŵ (dξ) + t.N (7)

where Ŵ (dξ) is the white noise controlled by Lebesgue measure and where N is a centered Gaussian random

vector with covariance Σ independent of Ŵ . Note that
∫
Rn(eit.ξ − 1)

√
f(ξ) Ŵ (dξ) and N are independent for

all t.
Again, let us consider a sub-class of rotation invariant fields with stationary increments. In this case the

spectral measure µ in (6) is spherically invariant and Σ is the unit matrix up to a positive constant. Therefore,
(6) writes as

R(t, s) =

∫ ∞
0

∫
Sn−1

(eit.λσ − 1)(e−is.λσ − 1)dσ dν(λ) + a t.s,

where a ≥ 0 and ν is a measure on (0,∞) satisfying∫ ∞
0

min(1, λ2)ν(dλ) < +∞. (8)

Actually, all properties of X are defined by the structure function

R(t, t) =

∫ ∞
0

∫
Sn−1

∣∣eit.λσ − 1
∣∣2 dσ ν(dλ) + a ‖t‖2

= 2

∫ ∞
0

(1− φλ(t))ν(dλ) + a ‖t‖2. (9)

Notice that the quadratic term is directly related to the behavior of spherical functions with small parameter
λ. Namely, by expanding the exponential function we readily obtain

lim
λ→0

1− φλ(t)

λ2
=
‖t‖2

2n
.

Two important examples could be mentioned at this stage. First, let X1, . . . , Xn be a sequence of i.i.d. standard
normal random variables. Let a finite rank field with stationary increments (X(t))t∈Rn , be defined by

X(t) =

n∑
j=1

tjXj .

Then R(t, t) =
∑n
j=1 t

2
j = ‖t‖2 which clearly corresponds to the quadratic term in the expression for the

structure function. Notice that in our future investigation the similar generalized quadratic terms will appear
and they will be still related to the behavior of the spherical function of small parameter. However, the
corresponding random fields will not be so degenerate as X.
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Second, the formula

R(t, t) = ‖t‖2H , 0 < H < 1,

defines a family of rotationally invariant Gaussian fields with stationary increments WH called H-fractional
Lévy Brownian fields. The classical case H = 1/2 was considered by P.Lévy [22]. By using property (4), it is
easy to see that the spectral measures

νH(dλ) =
cH,ndλ

λ2H+1
, 0 < λ <∞,

with appropriate choice of constants cH,n , correspond to WH . Notice that νH satisfies the integrability
condition (8) exactly when H ∈ (0, 1).

3. Disk model of hyperbolic space

3.1. The space and its transformations

In this section we only consider the real hyperbolic space of dimension 2. The disk model (or Poincaré model)
for this space is a unit disk D = {z ∈ C, |z| < 1} on the complex plane. The space can be endowed with a
Riemannian structure, from which we only need, so far, the distance [17], p.30,

d(z1, z2) :=
1

2
log
|1− z̄1z2|+ |z2 − z1|
|1− z̄1z2| − |z2 − z1|

. (10)

In particular,

d(0, z) :=
1

2
log

1 + |z|
1− |z|

, z ∈ D. (11)

Conversely, if d(0, z) = r, then

|z| = er − e−r

er + e−r
= tanh(r). (12)

Consider a group of isometries indexed by the matrix group

SU(1, 1) =

{(
α β
β̄ ᾱ

)
: |α|2 − |β|2 = 1

}
Every g ∈ SU(1, 1) acts on D as

g(z) =
αz + β

β̄z + ᾱ
(13)

and we identify the matrix g with this mapping. One can show that g is an isometry with respect to the distance
d.

Consider some important subgroups of SU(1, 1).
Example 1. Subgroup of rotations

SO(2) =

{
ρ =

(
eiφ 0
0 e−iφ

)
, 0 ≤ φ ≤ 2π

}
.

Of course, ρ(z) = e2iφz is a simple rotation. It is obvious that SO(2) = {g : g(0) = 0}. Moreover, if
g1(0) = g2(0), then there exists a rotation ρ ∈ SO(2) such that g1 = g2ρ. In other words, D can be identified
with the quotient space SU(1, 1)/SO(2) and thus considered as a symmetric space. It is worthwhile to mention
that more generally all symmetric spaces are isomorphic to the group G of their isometries quotioned by the
subgroup of isometries that fix a particular point, denoted by K. In the case of D, K = SO(2).



8 TITLE WILL BE SET BY THE PUBLISHER

Example 2. Translation subgroup

A =

{
at =

(
cosh(t) sinh(t)
sinh(t) cosh(t)

)
,−∞ < t <∞

}
.

Since at is a real matrix, it maps the diameter (−1,+1) onto itself. An easy calculation shows the translation
property

d̃(0, atz) = d̃(0, z) + t, z ∈ (−1,+1), (14)

where we let

d̃(0, z) :=

{
d(0, z), 0 ≤ z < 1,

−d(0, z), −1 < z ≤ 0.

Example 3. Orthogonal shift subgroup

N =

{
nu =

(
1 + iu −iu
iu 1− iu

)
,−∞ < u <∞

}
.

Note that any g ∈ SU(1, 1) also acts on the boundary B = {z ∈ C, |z| = 1} of D. Indeed, we have g(1) = α+β
β̄+ᾱ

,

hence |g(1)| = 1. Next, remark that any element of B writes as ρ(1) for some rotation ρ ∈ SU(1, 1). Finally,
we have g(ρ(1)) = (gρ)(1) ∈ B.

Any point in D can be achieved from 0 by using a unique combination of shifts z = nuat(0). Therefore, one
can consider (u, t) as coordinates of z called Iwasawa coordinates , see Figure 1.

One can establish commutation rule [17], p.36, nuat = atnue−2t .
Actually there are other coordinates on D, and we fix some notation :

• Euclidean coordinates z = x+ iy,
• polar Euclidean coordinates z = ρeiθ with θ ∈ [0, 2π),
• polar hyperbolic coordinates z = tanh(r)eiθ,

where r = d(z, 0) as deduced from (12).

3.2. Invariant measure

There exists an infinite measure which is invariant with respect to all g ∈ SU(1, 1). It is unique up to a
constant that we denote by the same c in the following formula. In Euclidean coordinates this measure writes
as

dz = c (1− x2 − y2)−2dxdy =
c |z|

(1− |z|2)2
d|z|dθ .

By (12), we can write in polar hyperbolic coordinates

dz = c sinh(2r)drdθ.

It follows easily that the measure of the ball of radius r (in hyperbolic distance) is V (r) = c cosh2(r). On the
other hand, in Iwasawa coordinates [17],p.37

dz = c e−2tdudt.

3.3. Laplace–Beltrami operator

One may wonder why we chose the distance d in (10) on D. Actually D is a Riemannian manifold and d is
very natural from this point of view, as a Riemann distance.

On any Riemannian manifold there exists a Laplace–Beltrami operator, which is of particular interest for
spectral studies. For Euclidean space, Laplace–Beltrami operator is just the classical Laplace operator. Let us
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recall that Laplace–Beltrami operator on hyperbolic plane [17],p.38, acts on smooth functions in polar hyperbolic
coordinates f = f(r, θ) on D as

∆f =
d2

dr2
f + 2 coth(2r)

d

dr
f +

4

sinh2(2r)

d2

dθ2
f

where r denotes hyperbolic distance from 0. In particular, for spherically invariant functions, f = f(r),

∆f =
d2

dr2
f + 2 coth(2r)

d

dr
f. (15)

3.4. Horocycles and the outer product

We now introduce an outer product 〈z, b〉 for z ∈ D, b ∈ B. In some respects it is similar to the scalar product
in Euclidean space.

Let us be more precise and recall that B denotes the boundary of the disk D. Any Euclidean circle touching
B and belonging to D except for this touching point is called horocycle. We will denote H the two-dimensional
space of all horocycles.

at = 〈z, 1〉

D

0 1

z
nu

Figure 1. Horocycle

For any b ∈ B and z ∈ D consider the unique horocycle h that contains both b and z. Denote the outer
product

〈z, b〉 :=

{
+dist(0, h), if 0 is outside of h,

−dist(0, h), if 0 is inside of h,
(16)

where
dist(0, h) = inf

ζ∈h
d(0, ζ)

More explicitly, [17],p.34,

〈z, b〉 =
1

2
log

1− |z|2

|z − b|2
. (17)

All horocycles are the sets of the form {z ∈ D, 〈z, b〉 = c} thus providing a counterpart to hyperplanes in
Euclidean space.
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We start with some elementary properties of this outer product.

Proposition 3.1. We have the following.

• For all b ∈ B it is true that 〈0, b〉 = 0 .
• For any rotation ρ we have 〈ρ(z), ρ(b)〉 = 〈z, b〉. In particular, 〈 − z,−b〉 = 〈z, b〉. However, in general

we have 〈 − z, b〉 6= −〈z, b〉 and 〈z,−b〉 6= −〈z, b〉. The corresponding equalities are only true when z
belongs to the diameter (−b,+b).

• There is a ”magic formula”,

〈g(z), g(b)〉 = 〈z, b〉+ 〈g(0), g(b)〉. (18)

• We have
〈g(0), g(b)〉 = −〈g−1(0), b〉. (19)

• Using (19), we can write the derivative of the boundary action [17], p.45, as

dg(b)

db
= e2〈g−1(0),b〉 = e−2〈g(0),g(b)〉. (20)

Proof of (18): Let b = 1. Represent g = ρnuat. Then

〈g(z), g(b)〉 = 〈ρnuat(z), ρnuat(b)〉 = 〈nuat(z), nuat(b)〉
= 〈 nuat(z), 1〉 = 〈 at(z), 1〉 = 〈 z, 1〉+ t.

Putting here z = 0 we have 〈g(0), g(b)〉 = t and (18) holds. For general b ∈ B, we represent it as a result of
rotation b = ρ(1) and obtain

〈g(z), g(b)〉 = 〈gρρ−1(z), gρ(1)〉
= 〈ρ−1(z), 1〉+ 〈gρ(0), gρ(1)〉 = 〈z, b〉+ 〈g(0), g(b)〉.

Proof of (19) : putting z = g−1(0) in (18) we get

0 = 〈0, g(b)〉 = 〈gg−1(0), g(b)〉 = 〈g−1(0), b〉+ 〈g(0), g(b)〉. �

Let now h be a horocycle containing b ∈ B. Since the value r = 〈z, b〉 is the same for all z ∈ h, we can identify
the horocycle h with the pair (r, b). Hence,

H = {(r, b), r ∈ R, b ∈ B} . (21)

It is instructive to see that any g ∈ SU(1, 1) transforms horocycles in horocycles. Indeed, let b = 1. Then,
for any rotation ρ ∈ SU(1, 1) we have ρ(r, 1) = (r, ρ(b)), for any translation at we have at(r, 1) = (r+ t, 1), and
for any orthogonal shift nu we have nu(r, 1) = (r, 1).

Since any g ∈ SU(1, 1) can be represented 1 as g = ρnuat, we get g(1) = ρ(1),

〈g(0), g(1)〉 = 〈ρnuat(0), ρ(1)〉 = 〈 nuat(0), 1〉 = 〈at(0), 1〉 = t,

hence

g(r, 1) = ρnuat(r, 1) = ρ(r + t, 1) = (r + t, ρ(1))
= (r + 〈g(0), g(1)〉, g(1)).

1More precisely, find u, t such that g−1(0) = nuat(0), then there is a rotation ρ such that g−1 = nuatρ−1, hence g = ρa−tn−u.
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More generally, we have
g(r, b) = (r + 〈g(0), g(b)〉, g(b)), ∀r ∈ R, b ∈ B. (22)

This formula explains the action of SU(1, 1) on H. It is now easy to establish the existence of the unique (up
to a constant) invariant measure of H which is

dh = e2rdrdb, (23)

where db is the Haar measure on B.
We will need the following important result for the white noise representation of the random fields. The next

formula is the counterpart in hyperbolic geometry of the classical functional equations for exponential functions
in Euclidean geometry : eitξeisξ = ei(t+s)ξ.

Lemma 3.2. Let g1, g2 ∈ SU(1, 1) and λ ∈ R. Then∫
B

e(iλ+1)〈g1(0),b〉 e(iλ+1)〈g2(0),b〉 db =

∫
B

e(iλ+1)〈g−1
2 g1(0),b〉 db. (24)

Proof: Make the variable change b = g2y so that, according to (20),

dy = exp{2〈g2(0), b〉}db.

We see that the left hand side of the identity to be proved equals∫
B

e(iλ+1)〈g1(0),b〉 e−(iλ+1)〈g2(0),b〉 dy =

∫
B

e(iλ+1)(〈g1(0),b〉−〈g2(0),b〉) dy.

Notice that by (18)

〈g1(0), b〉 − 〈g2(0), b〉 = 〈g1(0), g2(y)〉 − 〈g2(0), g2(y)〉
= 〈g2g

−1
2 g1(0), g2(y)〉 − 〈g2(0), g2(y)〉 = 〈g−1

2 g1(0), y〉,

as required. �
Notice that

e2〈z,b〉 =
1− |z|2

|z − b|2
(25)

is nothing but the classical Poisson kernel. Recall that for any harmonic function F (i.e. ∆F = 0) on D one has

F (z) =

∫
B

e2〈z,b〉F (b)db.

In particular, by letting F ≡ 1, we get ∫
B

e2〈z,b〉db = 1, ∀z ∈ D. (26)

One can also get the same formula by using Lemma 3.2 with λ = 0 and g1(0) = g2(0) = z.

3.5. Spherical functions

For any λ ∈ R we define spherical functions (see [17], p.38)

ϕλ(z) =

∫
B

e(iλ+1)〈z,b〉 db. (27)
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Obviously, ϕλ(0) = 1 and, we see that ϕλ(·) is rotation-invariant by rotation invariance of 〈·, ·〉, cf. Proposition
3.1. It follows from (26) that |ϕλ(z)| ≤ 1. We shall see later that ϕλ(·) is non-negative definite on D.

Notice that ϕλ(z) = ϕ−λ(z). Indeed, let g2(0) = z, g1 = id in (24). We see that

ϕ−λ(z) =

∫
B

e(iλ+1)〈g2(0),b〉 db =

∫
B

e(iλ+1)〈g−1
2 (0),b〉 db

= ϕλ(g−1
2 (0)).

Next, since g2 is an isometry, we have d(g−1
2 (0), 0) = d(0, g2(0)). It follows that there exists a rotation ρ such

that ρg−1
2 (0) = g2(0). By rotation invariance of ϕλ, we obtain ϕλ(g−1

2 (0)) = ϕλ(ρg−1
2 (0)) = ϕλ(g2(0)) = ϕλ(z),

which concludes the computations.
Since obviously ϕ−λ = ϕλ, we can also conclude that the values of ϕλ actually are real.
The importance of these functions comes from the fact that they are eigenfunctions of Laplace–Beltrami

operator defined in (15). Namely,
∆ϕλ = −(1 + λ2)ϕλ. (28)

3.6. Fourier transform

At this point, we have introduced all we need to recall from [17] , p.33 the Fourier transform on the hyperbolic

disk, which is an isometry f 7→ f̃

L2(D)→ L2

(
R×B, λ tanh(πλ/2)

2π
dλ db

)
given (when the involved integrals are well defined) by

f̃(λ, b) =

∫
D
f(z) e(−iλ+1)〈z,b〉dz (29)

and its inverse

f(z) =
1

4π

∫
R

∫
B

f̃(λ, b)e(iλ+1)〈z,b〉 λ tanh(πλ/2) db dλ. (30)

For any radial function f the Fourier transform f̃(λ, b) is also radial (does not depend on the argument b).
Hence,

f̃(λ) := f̃(λ, b) =

∫
B

f̃(λ, b)db

=

∫
B

∫
D
f(z)e(−iλ+1)〈z,b〉dzdb =

∫
D
f(z)

∫
B

e(−iλ+1)〈z,b〉dbdz

=

∫
D
f(z)ϕ−λ(z)dz =

∫
D
f(z)ϕλ(z)dz.

Inversion formula (30) yields

f(z) =
1

4π

∫
B

∫
R
f̃(λ, b)e(iλ+1)〈z,b〉 λ tanh(πλ/2) dλdb

=
1

4π

∫
R
f̃(λ) λ tanh(πλ/2)

∫
B

e(iλ+1)〈z,b〉dbdλ

=
1

4π

∫
R
f̃(λ) λ tanh(πλ/2) ϕλ(z)dλ

=
1

2π

∫ ∞
0

f̃(λ) λ tanh(πλ/2) ϕλ(z)dλ. (31)
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The strange tanh expression comes from the asymptotic behavior of spherical functions via Harish-Chandra
function (see (64) below).

4. Hyperboloid model

4.1. Main objects

In this section we consider the real n-dimensional hyperbolic space represented as a connected component of
a hyperboloid in Rn+1. For n = 2, we show the connection with the disk model considered in Section 3.

Consider the part of hyperboloid Ln ⊂ Rn+1 defined as

Ln =
{
η = (τ, η1, . . . , ηn) ∈ Rn+1, τ > 0, τ2 −

∑
η2
j = 1

}
.

We will consider the point 0̄ = (1, 0, . . . , 0) as the center of Ln.
We will also need a kind of boundary

B̄ =
{
b̄ = (1, b1, . . . , bn) ∈ Rn+1,

∑
b2j = 1

}
= {b̄ = (1, b), b ∈ Sn−1}.

Notice that B̄ does not belong to Ln. For any x, y ∈ Rn+1 we set

[x, y] := x1y1 −
n+1∑
j=2

xjyj .

This bilinear form will be used in three different contexts:

• for x, y ∈ Ln as an inner product, to define the hyperbolic distance;
• for x ∈ Ln, y ∈ B̄ as an outer product;
• for x, y ∈ B̄.

The distance dn(·, ·) on Ln is defined by the formula

cosh dn(η, η′) := [η, η′] = ττ ′ −
∑

ηjη
′
j . (32)

Notice that [η, η] = 1, hence dn(η, η) = 0. Furthermore,

[η, η′] ≥ ττ ′ −

∑
j

η2
j

1/2∑
j

(η′j)
2

1/2

≥ ττ ′ −
√
τ2 − 1

√
τ ′2 − 1 ≥ 1

hence (32) is well defined. We have, in particular,

coshdn(η, 0̄) = τ (33)

and ∑
j

η2
j = τ2 − 1 = cosh2dn(η, 0̄)− 1 = sinh2dn(η, 0̄).

Finally, recall what is invariant measure in Ln. According to [17], p. 153, the surface measure A(r) of the
sphere of radius r is given by

A(r) = c (sinh r)n−1. (34)

Hence the radial representation of invariant measure is

dη = c (sinh r)n−1drdθ.
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4.2. Spherical functions on Ln
For any b ∈ B = Sn−1 we write b̄ = (1, b) ∈ B̄ and define the family of spherical functions indexed by s ∈ C,

as

ωs(η) =

∫
B

[η, b̄]−s db, η ∈ Ln. (35)

Recall that

[η, b̄] = τ −
∑
j

ηjbj = cosh r − sinh r cos θ, (36)

where r = dn(η, 0̄) and θ the angle between vectors η and b.
The related Laplace–Beltrami operator (restricted to the class of spherically symmetric functions) can be

defined as [11], p.200,

∆f =
d2

dr2
f +

A′(r)

A(r)

d

dr
f

where A is defined in (34). Since A′(r)
A(r) = (n− 1) coth(r), we get

∆f =
d2

dr2
f + (n− 1) coth(r)

d

dr
f . (37)

All spherical functions are eigenfunctions of Laplace-Beltrami operator with eigenvalues −λs = −s(n − 1 − s)
but we are only interested in those corresponding to the negative eigenvalues (i.e. positive λ’s). This leads to
two connected families:

• Upper spectrum: s = n−1
2 +νi, ν ∈ R. The corresponding λ’s are λs = (n−1)2

4 +ν2 and ν,−ν provide the
same spherical function. Therefore, it is sufficient to keep ν ≥ 0. From the point of view of operators
in Hilbert spaces, the Laplace Beltrami operator is a non-positive symmetric operator on L2(Ln). Since
these spherical functions are in the L2(Ln), they are eigenfunctions of the Laplace-Beltrami operator in
this sense.

• Lower spectrum: 0 < s ≤ n − 1. The corresponding λ’s are λs = s(n − 1 − s) ∈
[
0, (n−1)2

4

)
and again

it is sufficient to keep the half-interval [0, n−1
2 ] in view of the repetitions.

Notice that s = n−1
2 belongs to both spectra.

For n = 2, we have the upper spectrum ( 1
2 + νi, ν ≥ 0), and the lower spectrum (0, 1

2 ].
We can give the following more explicit representation for spherical functions. Clearly, ωs(η) depends only

on the value of
∑
j η

2
j . More precisely, let r = dn(η, 0̄). Recall that cosh r = [η, 0̄] = τ and

∑
j η

2
j = sinh2r.

By letting θ denote the angle between (η1, . . . , ηn) and (b1, . . . , bn), we get [11],p.207,

ωs(η) =

∫
B

(
τ −

∑
j

ηjbj
)−s

db =

∫
B

(cosh r − sinh r · cos θ)
−s
db (38)

= Cn

∫ π

0

(cosh r − sinh r · cos θ)
−s

sinn−2 θdθ, (39)

where

Cn =
Γ(n/2)√

πΓ((n− 1)/2)
. (40)

We will also need a limiting function

Q(η) = lim
s→0

s−1[1− ωs(η)] = Cn

∫ π

0

log (cosh r − sinh r · cos θ) sinn−2 θdθ (41)
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called generalized quadratic form. The function Q thus emerges at the point s = 0 in the spectrum. Notice that
ω0(η) ≡ 1 and

∆Q(η) = lim
s→0

s−1[0−∆ωs(η)] = lim
s→0

s−1s(n− 1− s)ωs(η) = (n− 1)ω0(η) = n− 1 (42)

For small dimensions one can calculate some of these integrals, e.g. for n = 2 and r = dn(η, 0̄),

Q(η) = 2 log cosh(r/2) (43)

and for n = 3 (the most convenient for calculation)

Q(η) = r coth r − 1, (44)

ωs(η) =
sinh((s− 1)r)

(s− 1) sinh r
. (45)

Remark: One can find explicit but more complicated formulas for Q in arbitrary dimension in [28]. The
expressions are different for odd and even dimensions.
Remark: When applying the limiting procedure analogous to (41) to Euclidean spherical functions from
Section 2, we obtain for any t ∈ Rn

Q̂(t) = lim
s→0

s−2[1− φs(t)] =
1

2

∫
Sn−1

(t.σ)2dσ =
||t||2

2n
,

which justifies the name of generalized quadratic form for Q. Both Q and Q̂ play the role of degenerate term
in respective spectral representations for the fields with stationary increments, see (9) above and (87) below.

The quadratic form Q̂ also appears as a degenerate term in the Lévy-Khinchin formula for infinite-divisible
distributions in Rn where it corresponds to Gaussian distribution. We have no similar role for Q in hyperbolic
case.

Notice that all ωs(·) are bounded functions (they are actually non-negative definite) while Q has a linear
growth in r, as r →∞. We will consider the asymptotic behavior more carefully later.

Now we just mention one useful non-asymptotic inequality. Namely [11], p.210

ωs(η) ≥ 1−Q(η)s ≥ 1− rs, ∀η ∈ Ln, s ∈
(

0,
n− 1

2

]
. (46)

Proof: by (35),

ωs(η) =

∫
B

[η, b̄]−s db =

∫
B

e−s log[η,b̄] db

≥
∫
B

(
1− s log[η, b̄]

)
db = 1−Q(η)s.

On the other hand, it is clear from (41) that

Q(η) ≤ log cosh(r) ≤ r,

and we are done.
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4.3. Relation between the disk and hyperboloid models

4.3.1. Isometry of Riemannian manifolds

When n = 2, we have introduced two models for the hyperbolic plane. We now describe the correspondence
between those models. Towards this aim, we recall some elementary facts on Riemannian manifolds, from which
we get a complete dictionary. We refer the reader to [16] to fill the gaps in this brief presentation.

In our case a manifold is a surface embedded in some Rm. For instance L2 is the surface in R3 defined by
L2 = {(τ, η1, η2) ∈ R3, 1 = τ2 − η2

1 − η2
2}. For every point η = (τ, η1, η2) ∈ L2, one can equip the tangent space

at point η denoted by TηL2 with a scalar product inherited from the Euclidean scalar product in R3. Since
L2 = F−1(1) for F (τ, η1, η2) = τ2 − η2

1 − η2
2 , V = (θ, v1, v2) ∈ TηL2 if and only if dF (η)(V ) = 0 i.e.

τθ = η1v1 + η2v2 = (η̄, v)R2 , (47)

where we denote by η̄ = (η1, η2), by v = (v1, v2), and by (·, ·)R2 the Euclidean scalar product on R2. If
V, V ′ = (θ′, v′1, v

′
2) ∈ TηL2 we set by definition

(V, V ′)TηL2 :=
1

4
(θθ′ + v1v

′
1 + v2v

′
2), (48)

which can be rewritten as

(V, V ′)TηL2 =
1

4

(
(v, v′)− (η̄, v)R2(η̄, v′)R2

τ2

)
. (49)

in view of (47). We call L2 equipped with this family of scalar products a Riemannian manifold. We can also
consider D as a Riemannian manifold embedded in R2. First, it is an open set in C which is identified with R2.
Next, the tangent space TzD at point z, which is identified with R2, is equipped (see [17], p.29) with the scalar
product

(u1, u2)TzD =
(u1, u2)R2

(1− |z|2)2
. (50)

Now we introduce a one to one map I between L2 and D by associating η with I(η) = z = z1 + iz2 where

zj =
ηj√

1 + η2
1 + η2

2 + 1
, (51)

for j = 1, 2. The inverse of I is then given by

τ =
1 + |z|2

1− |z|2
, ηj =

2zj
1− |z|2

, (52)

for j = 1, 2. Then the inner product transposed to D is

[z, z′] := [η, η′] = ττ ′ − (η1η
′
1 + η2η

′
2) =

(1 + |z|2)(1 + |z′|2)− 4(z1z
′
1 + z2z

′
2)

(1− |z|2)(1− |z′|2)
. (53)

We will now prove that I is a Riemannian isometry. Namely, we check the equality of the corresponding
Riemann structures. We fix η ∈ L2 and I(η) = z ∈ D and verify that the scalar product in the tangent space
TηL2 is mapped to the scalar product of TzD, by the differential of I.

Thus we have to define and compute this differential.
Let u be a tangent vector at point z ∈ D. Let zδ = z+δu for δ small enough and (τδ, ηδ) be the corresponding

point in L2. By definition,

τδ =
1 + |zδ|2

1− |zδ|2
.
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It is easy to see that d|zδ|2
dδ = 2zū, where we have identified u ∈ TzD with the complex number u = u1 + iu2.

Hence,

θ :=
dτδ
dδ

=
4zū

(1− |z|2)2
,

Next, ηδ = 2zδ
1−|zδ|2 . By differentiating this, we get

v :=
dηδ
dδ

=
4(z, u)R2

z
(1− |z|2)2 +

2u

1− |z|2
= θz +

2u

1− |z|2
.

The relation u → (θ, v) given by the formula above defines the differential dI−1. The differential is easily
invertible: we get

2u

1− |z|2
= v − θz = v − (η̄, v)R2

τ
,

hence,

u =
1− |z|2

2

(
v − (η̄, v)R2

τ
z

)
, (54)

and we denote the map thus defined dIη. We can now check that if I(η) = z, V, V ′ ∈ TηL2

(dIη(V ), dIη(V ′))TzD = (V, V ′)TηL2
. (55)

If V1 = (θ1, v1), V2 = (θ2, v2) and u1 = d(I)(ηV1, u2 = d(I)ηV2

(u1, u2)TzD =
(u1, u2)R2

(1− |z|2)2

=
1

4

(
v1 −

(η̄, v1)R2

τ
z, v2 −

(η̄, v2)R2

τ
z

)
R2

because of (54). Hence,

(u1, u2)TzD =
1

4

(
v1

(η̄, v1)R2

τ

η̄

τ + 1
, v2

(η̄, v2)R2

τ

η̄

τ + 1

)
R2

=
1

4

(
(v1, v2)R2 − (η̄, v1)R2(η̄, v2)R2

τ2

[
2τ

τ + 1
−
‖η̄‖2R2

(τ + 1)2

])
=

1

4

(
(v1, v2)R2 − (η̄, v1)R2(η̄, v2)R2

τ2

[
2τ

τ + 1
− τ2 − 1

(τ + 1)2

])
=

1

4

(
(v1, v2)R2 − (η̄, v1)R2(η̄, v2)R2

τ2

)
= (V1, V2)TηL2

and we see that the two scalar products coincide.

4.3.2. Isometry of metric spaces

We will now check that I is an isometry between the metric spaces (L2,
1
2d2), where d2 is defined in (32) for

n = 2, and (D, d), where d is defined in (10). Actually it is a straightforward consequence of the facts that 1
2d2

is the geodesic distance associated with the Riemannian structure (48) of L2 and d is the associated geodesic
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distance with the Riemannian structure (50). We briefly recall what is a geodesic distance on a Riemannian
manifold. If γ : (−1, 1) 7→M is a C1 curve on a Riemannian manifold, the length of γ is defined by :

L(γ) :=

∫ 1

−1

(
d

dt
γ(t),

d

dt
γ(t)

) 1
2

Tγ(t)M

dt.

Then the geodesic distance between two points m,m′ ∈ M is the minimum of the length of curves such that
γ(−1) = m, γ(1) = m′. Hence it is obvious that a Riemannian isometry is also an isometry for the associated
geodesic distance. See [17], p.60, for further results. It is classical that the geodesic distance on D is given
by (10) (see [17], p.30) and one can check that 1

2d2 is the geodesic distance on L2.
Since the just given proof is implicit, some further example would be instructive. In particular, for z′ = 0

and any z ∈ D, we derive from (53)

[z, 0] =
1 + |z|2

1− |z|2

which is to be successfully compared to (11)

cosh(2d(z, 0)) =
1

2

[
1 + |z|
1− |z|

+
1− |z|
1 + |z|

]
=

1 + |z|2

1− |z|2
.

We see that d2(η, 0̄) = 2d(z, 0).

4.3.3. Relation between Laplace operators

Once a Riemannian structure is defined on a manifold, there is general construction of Laplace–Beltrami
operator (see [17], p.31). Hence, the existence of a simple correspondence between Laplace–Beltrami operator
on L2 and on D is not a surprise. Although it is quite obvious, there is factor two in the correspondence, which
we try to make explicit in the following paragraph.

Since the distance in D is twice shorter than the one in L2, the radial derivative d
dr is twice bigger in D.

Therefore Helgason’s Laplace–Beltrami operator in (15) is 4 times bigger that its L2 analogue in (37) when
n = 2.

Let us explain this more precisely. For η ∈ L2 we have a corresponding z ∈ D. For any function f : L2 → R
we can define fD : D→ R by letting fD(z) = f(η). Fix for a while η and z. Let η′ and z′ be the corresponding
points approaching to η, resp. z along radial geodesic lines from the side opposite to zero. Then the radial
derivatives are

dL
dr
f(η) = lim

η′→η

f(η′)− f(η)

d2(η′, η)
,

dD
dr
fD(z) = lim

z′→z

fD(z′)− fD(z)

d(z′, z)
.

Since f(η′) − f(η) = fD(z′) − fD(z) and d2(η′, η) = 2d(z′, z), we have dD
dr fD(z) = 2dLdr f(η). By iterating this

argument, we have
d2D
dr2 fD(z) = 4

d2L
dr2 f(η). Now comparing Laplace–Beltrami operators in (15) and (37) is

straightforward:

∆DfD(z) =
d2
D

dr2
fD(z) + 2 coth(2d(z, 0))

dD
dr
f(z)

= 4
d2
L

dr2
f(η) + 4 coth(d2(η, 0))

dL
dr
f(η)

= 4∆Lf(η).
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4.3.4. Relation between spherical functions

Write Helgason expression (27) as

ϕλ(z) =

∫
B

e(iλ+1)〈z,b〉db

=

∫
B

[e−2〈z,b〉]−(iλ+1)/2db

=

∫
B

[
|z − b|2

1− |z|2

]−(iλ+1)/2

db.

We express now the fraction as a function of r = d(z, 0) and of θ – the angle between z and b, as we did for
Faraut spherical functions. Recall that |z| = tanh r, see (12) Hence, 1− |z|2 = cosh−2r. On the other hand,

|z − b|2 = |z|2 + 1− 2|z| cos θ = tanh2 r + 1− 2 tanh r cos θ.

We get

|z − b|2

1− |z|2
= cosh2r

[
tanh2 r + 1− 2 tanh r cos θ

]
= sinh2r + cosh2r − 2cosh r sinh r cos θ
= cosh(2r)− sinh(2r) cos θ

= [η, b̄]. (56)

The latter equality follows from (36) by using 2r = 2d(z, 0) = d2(η, 0̄). We conclude that Helgason spherical
functions reproduce Faraut’s spherical functions from upper spectrum. Namely, if z ∈ D and η ∈ L2 are chosen
as above, so that d2(η, 0̄) = 2d(z, 0), then

ϕλ(z) = ω1/2+iλ/2(η). (57)

4.4. Asymptotic behavior of spherical functions

We consider the behavior of functions (39) and (41) at zero and infinity giving special attention to the case

n = 2. Note that C2 = Γ(1)√
πΓ(1/2)

= π−1 and we get from (39) and (41) for n = 2

ωs(η) = π−1

∫ π

0

(cosh r − sinh r · cos θ)
−s
dθ,

Q(η) = π−1

∫ π

0

log (coshr − sinhr · cos θ) dθ.

4.4.1. Behavior at infinity

The study of the asymptotic behavior of spherical functions is again a classical topic in harmonic analysis.
Since it uses tools familiar to probabilists, we briefly recall results.

Proposition 4.1. For any 0 < s < n−1
2 , it is true that

ωs(η) = C(s, n)e−sr
(

1 +O(e−2r) +O(e−2r(n−1
2 −s))

)
, r →∞, (58)

with

C(s, n) = Cn2s
∫ π

0

(1− cos θ)
−s

sinn−2 θ dθ. (59)
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For s = n−1
2 which is the boundary between upper and lower spectrum we have

ωs(η) = C(n−1
2 , n) e−

(n−1)r
2 (r +O(1)) , r →∞. (60)

For the upper spectrum we have the same uniform bound, since

|ωn−1
2 +iλ(η)| ≤ ωn−1

2
(η), (61)

which can be used along with (60).

Proof.
Since for fixed θ

cosh r − sinh r · cos θ =
er

2

(
1− cos θ + e−2r(1 + cos θ)

)
,

ωs(η) = Cne
−sr2s

∫ π

0

(
1− cos θ + e−2r(1 + cos θ)

)−s
sinn−2 θ dθ

= Cne
−sr2s

∫ π

0

(1− cos θ)
−s

sinn−2 θ dθ
(

1 +O(e−2r) +O(e−2r(n−1
2 −s))

)
.

Note that the integral converges exactly for s < n−1
2 . We have thus (58).

By using (40) and a formula from [8], p.361,∫ π

0

(1− cos θ)
−s

sinn−2 θ dθ = 2n−2−s Γ(n−1
2 − s)Γ(n−1

2 )

Γ(n− 1− s)
,

we obtain

C(s, n) = 2n−2 Γ(n2 )Γ(n−1
2 − s)√

π Γ(n− 1− s)
, 0 < s <

n− 1

2
.

In particular case n = 2,

C(s, 2) =
Γ( 1

2 − s)√
π Γ(1− s)

, 0 < s <
1

2
. (62)

We come to critical case s = n−1
2 . Just split the integral in two parts (0, e−r)] and (e−r, π] and obtain (60).

To obtain (61), it is enough to write

|ωn−1
2 +iλ(η)| ≤

∫
B

∣∣[η, b̄]−s∣∣ db =

∫
B

[η, b̄]−
n−1
2 db = ωn−1

2
(η). �

In Theorem 4.5 of [16] the following asymptotic behavior is proved for n = 2 in terms of the disk model:

ϕλ(z) ∼ e−r eiλrc(λ), r = d(z, 0)→∞, if <(iλ) > 0, (63)

where

c(λ) =
Γ(iλ/2)

π1/2Γ((iλ+ 1)/2)
. (64)

is Harish-Chandra function. Notice that standard formulas |Γ(iy)|2 = π
y sinh(πy) and |Γ(1/2 + iy)|2 = π

cosh(πy)

yield

|c(λ)|−2 =

[
2 cosh(πλ/2)

πλ sinh(πλ/2)

]−1

=
πλ tanh(πλ/2)

2
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which somehow explains the tanh in Fourier transform.
By applying (63) to λ = (2s − 1)i, and moving to hyperboloid model, we see that (63) yields exactly the

same asymptotics as (58) with the constant (62).

Now we move to the behavior of the generalized quadratic form at infinity.

Proposition 4.2. Let us define qn by the formula

qn(η) := Q(η)− r + C̃n, (65)

where C̃n = log 2− Cn
∫ π

0
log (1− cos θ) sinn−2 θ dθ.

Then, as r = dn(η, 0)→∞,

qn(η) =


O (e−r) n = 2,

O
(
r e−2r

)
n = 3,

O
(
e−2r

)
n > 3.

(66)

Proof. One can write

Q(η) = r − log 2 + Cn

∫ π

0

log
(
1 + e−2r − (1− e−2r) cos θ

)
sinn−2 θ dθ

= r − log 2 + Cn

∫ π

0

log (1− cos θ) sinn−2 θ dθ

+Cn

∫ π

0

log

(
1 +

e−2r(1 + cos θ)

1− cos θ

)
sinn−2 θ dθ

= r − C̃n + qn(η).

To see (66), for n = 2 and n = 3 the easiest way is to look at explicit formulas (43) and (44). For n > 3 we
simply use the elementary bound

1− cos θ = 2 sin2(θ/2) ≥ 2

(
θ/2

π/2

)2

=
2θ2

π2
, 0 ≤ θ ≤ π,

and have

qn(η) ≤ e−2rCn

∫ π

0

2

1− cos θ
θn−2 dθ ≤ e−2rCnπ

2

∫ π

0

θn−4 dθ := c e−2r. �

Remark: For n = 2, we find in the tables of integrals∫ π

0

log (1− cos θ) dθ =

∫ π/2

0

log (1− cos θ) dθ +

∫ π/2

0

log (1 + cos θ) dθ = −π log 2

Hence,

Q(η) = r − 2 log 2 + O
(
e−r
)
, r →∞

in accordance with (43).

4.4.2. Behavior at zero

When r → 0, we have

cosh r − sinh r · cos θ = 1 +
r2

2
− r cos θ +O(r3).
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Hence,

log(cosh r − sinh r · cos θ) =
r2

2
− r cos θ − r2 cos2 θ

2
+O(r3)

= −r cos θ +
r2 sin2 θ

2
+O(r3).

By integrating we get

Q(η) = Cn

∫ π

0

(
−r cos θ +

r2 sin2 θ

2

)
sinn−2 θ dθ +O(r3)

= Cnr
2

∫ π

0

sinn θ

2
dθ +O(r3)

=
Cn

2 Cn+2
r2 +O(r3) =

(n− 1)r2

2n
+O(r3), r → 0.

Similarly

ωs(η)− 1 = Cn

∫ π

0

(exp{−s log(cosh r − sinh r · cos θ)} − 1) dθ

= −Cns
∫ π

0

log(cosh r − sinh r · cos θ) sinn−2 θ dθ

+ Cn
s2

2

∫ π

0

log2(cosh r − sinh r · cos θ) sinn−2 θ dθ +O(r3)

=
−s(n− 1)r2

2n
+ Cn

s2r2

2

∫ π

0

cos2 θ sinn−2 θ dθ +O(r3)

=
−s(n− 1)r2

2n
+
s2r2

2

(
1− Cn

Cn+2

)
+O(r3)

=
−s(n− 1)r2

2n
+
s2r2

2

(
1− n− 1

n

)
+O(r3)

=
−((n− 1)s− s2)

2n
r2 +O(r3), r → 0.

For example, n = 3 yields ωs(η) = 1− 2s−s2
6 r2 +O(r3), in accordance with (45).

Remark: For more detailed and general information about the behavior of spherical functions see [35].

5. Homogeneous fields

In this section we consider the following framework. Let G be a group acting transitively on a space T with
a marked point o. Let G0 = {ρ ∈ G : ρo = o}. Then we can identify T with G/G0.

We say that the action of G is rotationally transitive if there is a G-invariant metrics d(·, ·) on T and for any
t1, t2 ∈ T such that d(t1, o) = d(t2, o) there exists ρ ∈ G0 such that ρt1 = t2.

5.1. Stationary fields

Definition 5.1. We say that a complex-valued Gaussian random field {Xt, t ∈ T} is a stationary field if
∀t1, t2 ∈ T, g ∈ G it is true that EXt1 = EXt2 and cov(Xgt1 , Xgt2) = cov(Xt1 , Xt2). In the following we assume
that EXt = 0 for all t ∈ T .
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One can extend the definition 2.2 of non-negative definite functions to the framework of this section.

Definition 5.2. A real valued function f on T is called non-negative definite if for every d ≥ 1, λ1, . . . , λd ∈ C,
t1, . . . , td ∈ T

d∑
i,j=1

λiλjf(ti, tj) ≥ 0 .

Similarly one can define non-negative definite functions on G.

Definition 5.3. A real valued function f on G is called non-negative definite if F : G × G 7→ C defined by
F (g1, g2) = f(g−1

2 g1) is non-negative definite on G as in the sense of Definition 5.2.

Covariance function of X is defined as K : T → C by K(t) = cov(Xt, Xo). We can also define its version

K̃ : G→ C by K̃(g) = K(go). Then K̃ is a non-negative definite function, since

∑
i,j

cic̄j K̃(g−1
j gi) = E

∣∣∣∣∣∣
∑
j

cjXgj

∣∣∣∣∣∣
2

≥ 0.

Notice also that K̃ is G0-bi-invariant since for any g ∈ G, ρ ∈ G0

K̃(gρ) = K(gρo) = K(go) = K̃(g),

K̃(ρg) = K(ρgo) = cov(Xρgo , Xρo) = cov(Xgo , Xo) = K̃(g).

We always have the symmetry

K̃(g−1) = cov(Xg−1o , Xo) = cov(Xo , Xgo) = cov(Xgo , Xo) = K̃(g).

Moreover, if the action of G is rotationally transitive, we have d(g−1o, o) = d(o, go), hence there exists ρ ∈ G0

such that g−1o = ρgo and, by G0-invariance,

K̃(g−1) = K̃(g).

By comparing this with general symmetry, we conclude that in this case covariance is always real.
Rather strangely, the covariance function K̃ depends on the choice of the marked point. Indeed, if we take

any g′ ∈ G and pass from o to o′ := g′o, we get for any g ∈ G,

K̃ ′(g) := cov(Xgo′ , Xo′) = cov(Xgg′o , Xg′o)

= cov(X(g′)−1gg′o , Xo) = K̃((g′)−1gg′).

We see that K̃ ′ = K̃ if G is a commutative group (in particular, for the classical setting of translations in
Euclidean space).

In the sequel, we apply this to the case G = SU(1, 1), G0 subgroup of rotations, G/G0 = D.
Bochner theorems enable to select the ”basic” covariances and represent arbitrary covariance function as

a mixture of the primary ones. For the case T = Ln, G being the group of linear transformations of Rn+1

preserving the quadratic form [·, ·] (and actually for a much more general case) the following Godement’s
theorem accomplishes this task by using the spherical functions as the primary ones [11],p.182, [14]. Recall that
the set of non-negatively definite spherical functions is {ωs, s ∈ S}, where

S =

(
0,
n− 1

2

)
∪
{
n− 1

2
+ iλ, λ ≥ 0

}
.
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Theorem 5.1. Let K : Ln → C be a covariance function of a stochastically continuous stationary field. Then
there exists a unique finite measure ν on S such that

K(η) =

∫
S
ωs(η)ν(ds), η ∈ Ln. (67)

Conversely, any function of type (67) is a covariance function of a stationary field.

The measure ν is called spectral measure for any field with covariance K.
Remark: When we compare Bochner Theorem for hyperbolic space and (2) on Euclidean space, there is a
minor difference. In (2), the spectral measure is an arbitrary measure on Rn, but if we let G be the group of all
isometries on Rn, and not only translations, then stationary Gaussian fields in the sense of Definition 5.1 are

stationary as in Definition 2.1 and isotropic because (Xρt)t∈Rn
(d)
= (Xt)t∈Rn for every rotation ρ. Hence starting

from (2) and using a polar decomposition of µ, which is rotationally invariant as ν(ds)× σ(dξ), where σ(dξ) is
the Lebesgue surface measure on the sphere Sn−1, we get

r(t) =

∫
Rn
eit.ξµ(dξ)

=

∫ +∞

0

ωs(‖t‖)ν(ds),

where ωs(‖t‖) =
∫
Sn−1 e

it.ξdσ(ξ). Note that in the Euclidean case ωs are Bessel functions.

5.2. Stationary fields related to upper spectrum

The basic examples of stationary fields are those with degenerated spectral measure concentrated in one
point. It means that the covariance of such field coincides with one of spherical functions. We start with n = 2
and upper spectrum of hyperbolic space D as suggested by F. Baudoin.

Let W be a white noise defined on the boundary circle B. Fix λ ∈ R and define a field {Xλ
z , z ∈ D} by

Xλ
z :=

∫
B

e(iλ+1)〈z,b〉W (db).

Let us first prove that Xλ is stationary. Indeed, take any h1, h2, g ∈ SU(1, 1), set z1 = h1(0), z2 = h2(0) and
write, by using Lemma 3.2

cov(Xλ
gz1 , X

λ
gz2) =

∫
B

e(iλ+1)〈gh1(0),b〉 e(iλ+1)〈gh2(0),b〉 db

=

∫
B

e(iλ+1)〈(gh2)−1gh1(0),b〉 db

=

∫
B

e(iλ+1)〈h−1
2 h1(0),b〉 db

= cov(Xλ
z1 , X

λ
z2).

By specifying here z2 = 0 we find the covariance function

Kλ(z) = cov(Xλ
z , X

λ
0 ) =

∫
B

e(iλ+1)〈z,b〉 db = ϕλ(z). (68)
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Moreover, we can mix the above fields as we wish. Take a finite measure ν on R+, take a white noise W on
R+ ×B controlled by the measure ν(dλ)db and construct a process

Xν
z :=

∫ ∞
0

∫
B

e(iλ+1)〈z,b〉W (dbdλ). (69)

It is clear that Xν is a stationary field with covariance

Kν(z) = cov(Xν
z , X

ν
0 ) =

∫ ∞
0

ϕλ(z)ν(dλ). (70)

We will see a construction of Xν , when ν admits a density in Section 6.2. Now we move to arbitrary n where
we use hyperboloid model. The analytic background of this part (and the next one) follows [8], p.359–362.
Take s ∈ (0, n− 1]∪ (n−1

2 + iR). Recall that this set parameterizes the spectrum of Laplace–Beltrami operator
and the points s and n − 1 − s correspond to the same spherical function ωs. Recall that the corresponding
covariance is defined as follows: if η2 = gη1, then Ks(η1, η2) = ωs(g0̄). Define Poisson kernel

Ps(η, b̄) = [η, b̄]−s, η ∈ Ln, b̄ ∈ B̄. (71)

According to [8], the covariance associated to spherical function ωs given in (35) admits the following represen-
tation

Ks(η1, η2) =

∫
B̄

Ps(η1, b̄)Pn−1−s(η2, b̄)db̄ =

∫
B̄

[η1, b̄]
−s[η2, b̄]

−(n−1−s)db̄. (72)

For the upper spectrum, we have s = (n− 1 + iλ)/2, n− 1− s = (n− 1− iλ)/2 and we get

Ks(η1, η2) =

∫
B̄

[η1, b̄]
−(n−1+iλ)/2[η2, b̄]

−((n−1−iλ)/2)db̄.

=

∫
B̄

[η1, b̄]
−(n−1+iλ)/2[η2, b̄]−((n−1+iλ)/2)db̄.

We have thus an integral representation

Xλ(η) :=

∫
B̄

[η, b̄]−(n−1+iλ)/2W (db̄).

Recall that for n = 2 this expression reduces to (68) due to (56).

5.3. Stationary fields related to the lower spectrum

5.3.1. Covariance representation

Now we pass to the basic fields related to the spherical functions of lower spectrum. Take s ∈ (0, n − 1].
Recall that this interval parameterizes the lower spectrum and the points s and n − 1 − s correspond to the
same spherical function ωs. Recall that the corresponding covariance is defined as follows: if η2 = gη1, then
Ks(η1, η2) = ωs(g(0̄)).

We use Poisson kernel (71). There is a formula in [8] that links Ps and Pn−1−s: for 0 < s < n−1
2 ,

Ps(η1, b̄) = γ−1(s, n)

∫
B̄

Pn−1−s(η1, b̄1)[b̄1, b̄]
−sdb̄1 = γ−1(s, n)

∫
B̄

[η1, b̄]
−(n−1−s)[b̄1, b̄]

−sdb̄1.

Here

γ(s, n) = 2n−1−s Γ(n/2)Γ(n−1
2 − s)√

π Γ(n− 1− s)
.
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By combining this formula with (72) we get

Ks(η1, η2) = γ−1(s, n)

∫
B̄

∫
B̄

[η1, b̄1]−(n−1−s)[η2, b̄2]−(n−1−s)[b̄1, b̄2]−sdb̄1db̄2. (73)

Since by definition

[b̄1, b̄2] = 1−
n∑
j=1

(b̄1)j (b̄2)j =
1

2
||b̄1 − b̄2||2,

we get

Ks(η1, η2) = (2γ(s, n))−1

∫
B̄

∫
B̄

[η1, b̄1]−(n−1−s)[η2, b̄2]−(n−1−s)||b̄1 − b̄2||−2sdb̄1db̄2. (74)

5.3.2. Series representation

From (74) we can deduce a series representation for X, at least for n = 2. Let

am,s =

∫ 2π

0

e−imθ||eiθ − 1||−2sdθ, 0 < s < 1/2.

Consider a bilinear form

Is(f1, f2) =

∫ 2π

0

∫ 2π

0

f1(eiθ1)f2(eiθ2)||eiθ1 − eiθ2 ||−2sdθ1dθ2

For f1 = eim1θ, f2 = eim2θ we have

Is(f1, f2) =

∫ 2π

0

∫ 2π

0

eim1θ1−im2θ2 ||eiθ1 − eiθ2 ||−2sdθ1dθ2

=

∫ 2π

0

ei(m1−m2)θ1

∫ 2π

0

e−im2(θ2−θ1)||eiθ1 − eiθ2 ||−2sdθ2dθ1

=

∫ 2π

0

ei(m1−m2)θ1am,sdθ1 = 2πam,s1{m1=m2}.

Hence, for all trigonometric polynomials f1 =
∑
m f̂1me

imθ, f2 =
∑
m f̂2me

imθ we have

Is(f1, f2) = 2π
∑
m∈Z

am,sf̂1mf̂1m .

The latter formula remains true for all sufficiently smooth functions f1, f2. By taking η1, η2 ∈ L2 and considering
for j = 1, 2 the smooth functions fj = [ηj , e

iθ]−(1−s) we obtain from (73

Ks(η1, η2) = πγ(s, 2)−1
∑
m∈Z

am,sf̂1mf̂2m .

One can easily obtain a field with such covariance by letting

Xη = π1/2γ(s, 2)−1/2
∑
m∈Z

a1/2
m,s f̂m(η) ξm,

where ξm are non-correlated variables and

f̂m(η) =
1

2π

∫ 2π

0

e−imθ[η, eiθ]−(1−s)dθ.
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5.3.3. Integral representation

In this subsection, we give an integral representation of a process Xs with covariance (74).
Following [23], Section 4.4, we introduce a stereographic projection, which is the inverse of the following map

P : Rn−1 → Sn−1 ⊂ Rn

by

sj =
2xj

1 + ||x||2
, 1 ≤ j ≤ n− 1, sn =

1− ||x||2

1 + ||x||2
.

The Jacobian of P is

JP(x) =

(
2

1 + ||x||2

)n−1

.

Let s ∈ (0, n−1
2 ). Then 2− 2s

n−1 ∈ (1, 2) and q := 2
(

2− 2s
n−1

)−1

∈ (1, 2). Define the stereographic projection of

functions
Pq : Lq(Sn−1)→ Lq(Rn−1)

by
[PqF ] (x) = JP(x)1/qF (P(x)).

Then ||PqF ||q = ||F ||q but, most importantly, as shown in [23], Section 4.5,∫
Sn−1

∫
Sn−1

F1(b1)F2(b2)||b1 − b2||−2sdb1db2 =

∫
Rn−1

∫
Rn−1

[PqF1] (x1) [PqF2] (x2)||x1 − x2||−2sdx1dx2 .

It is important that the distance on the sphere is the Euclidean one. Apply the identity to Fj(b) = [ηj , b̄]
−(n−1−s),

j = 1, 2. We obtain

Ks(η1, η2) = (2γ(s, n))−1

∫
Rn−1

∫
Rn−1

JP(x1)1/q[η1,P(x1)]−(n−1−s)JP(x2)1/q[η2,P(x2)]−(n−1−s)||x1−x2||−2sdx1dx2 .

(75)
Next, let α = n−1

2 + s ∈ (n−1
2 , n− 1) and write the classical identity

||x1 − x2||−2s = ||x1 − x2||n−1−2α = Z

∫
Rn−1

||x− x1||−α||x− x2||−αdx,

where

Z = Z(s, n) =
Γ(n−1

2 − s) Γ(n−1
4 + s

2 )2

Γ(s)Γ(n−1
4 −

s
2 )2π

n−1
2

.

(Note that the integral on the right hand side converges exactly for α ∈ (n−1
2 , n− 1)), plug it in the formula for

Ks and apply Fubini theorem (all functions are positive). 2 We get

Ks(η1, η2) =

∫
Rn−1

mη1(x)mη2(x) dx,

2 By taking Fourier transforms and using formulas from Lieb and Loss ̂|| · ||−β =
cn−1−β
cβ

|| · ||β−(n−1), we get the equation for

the constants:
cn−1−2s

c2s
= Z

c2
(n−1)/2−s

c2
(n−1)/2+s

.

where cβ =
Γ(β/2)

πβ/2
. It follows

Z =
cn−1−2sc2(n−1)/2+s

c2sc2(n−1)/2−s
=

Γ(n−1
2
− s)Γ(n−1

4
+ s

2
)2

Γ(s)Γ(n−1
4
− s

2
)2π

n−1
2

.
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where

mη(x) = (2γ(s, n))−1/2Z1/2

∫
Rn−1

||x− x1||
1−n
2 −sJP(x1)1/q[η,P(x1)]−(n−1−s)dx1. (76)

Although it is not obvious from this expression, whether mη(·) ∈ L2(Rn−1), we know that∫
Rn−1

m2
η(x)dx = Ks(η, η) <∞.

Therefore, we obtain a white noise integral representation of our stationary field with covariance Ks, as
presented in (74),

Xs(η) =

∫
Rn−1

mη(x)W (dx). (77)

We are extremely grateful to A.I. Nazarov for idea to use stereographic projection in this context.
Remark: We refer to Chapter 6 of [25] for a general concept of model of a random function which is behind
the representation (77).

5.3.4. Integral representation for hyperbolic plane

Let us be more specific for dimension n = 2. First recall the model of the Poincaré half plane and consider the
map P̄ : ζ 7→ ζ−i

ζ+i , which is one to one map from P = {ζ ∈ C, =(ζ) > 0} onto D. One can define a Riemannian

metric on P such that P is isometric to D, and hence is another model for the hyperbolic space in dimension
n = 2. Moreover the boundary ∂P = {ζ ∈ C, =(ζ) = 0} of P is mapped by the inverse of the stereographic
projection, still denoted by P̄, on the boundary of D, which is S1.

Please note that in this case the isometry group of P is related to SL(2,R). See chapter 6 in [1] for more
details. Many problems of hyperbolic geometry can be recast in terms of representations of SL(n,R). See the
chapter by Takahashi in [8].

Let us now translate the previous formula, with the new notations. Recall (56)

[η, b̄] =
|z − b|2

1− |z|2
.

If ζ ∈ P is such that P̄(ζ) = I(η) = z ∈ D and t ∈ R such that P̄(t) = b, then

[η, b̄] =
| ζ−iζ+i −

t−i
t+i |

2

1− | ζ−iζ+i |2

=
|ζ − t|2

=ζ(1 + t2)
. (78)

In dimension n = 2, we have q = 1
1−s and the Jacobian can be rewritten as JP(t) = 2

1+t2 . Then we obtain from

(75), for ζ1, ζ2 ∈ P,

Ks(ζ1, ζ2) =

∫
R×R

(
2

1 + t21

)1−s( |ζ1 − t1|2
=ζ1(1 + t21)

)s−1(
2

1 + t22

)1−s( |ζ2 − t2|2
=ζ2(1 + t22)

)s−1

|t1 − t2|−2s dt1dt2
2γ(s, 2)

=
2−s
√
πΓ(1− s)

Γ( 1
2 − s)

(=ζ1)1−s(=ζ2)1−s
∫
R

∫
R
|ζ1 − t1|2(s−1)|ζ2 − t2|2(s−1)|t1 − t2|−2sdt1dt2. (79)

In this case we can write the kernel in (76), for ζ ∈ P, x ∈ R

mζ(x) =

(
2−s
√
πΓ(1− s)

Γ(1/2− s)

)1/2

Z1/2(=ζ)1−s
∫
R
|x− t|−1/2−s|ζ − t|2(s−1)dt. (80)
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Actually there are many integral representations of X. We will just mention the one with respect to the white
noise in the Fourier domain Ŵ (du), because it is slightly more explicit. Let us first define Ŵ (du) by∫

f(u)Ŵ (du) :=

∫
f̂(x)W (dx), ∀f ∈ L2(R) such thatf(−u) = f(u),

where

f̂(u) =

∫
Rn
e−2πi(u,x)f(x)dx, (81)

in any dimension n. Then

Xs(ζ) =

∫
R
m̂ζ(u)Ŵ (du),

where

m̂ζ(u) =

(
2−s
√
πΓ(1− s)

Γ(1/2− s)

)1/2

Z1/2(=ζ)1−s ̂| · |−(1/2+s)(u) · ̂((<ζ − t)2 + =(ζ)2)
s−1

(u). (82)

Indeed, mζ is defined in (80) by a convolution, which corresponds to a product in (82).
By using

̂| · |−(1/2+s)(u) =
Γ(1/4− s/2)π1/4+s/2

Γ(1/4 + s/2)π1/4−s/2 |u|
s−1/2 =

Γ(1/4− s/2)πs

Γ(1/4 + s/2)
|u|s−1/2,

and plugging in

Z = Z(s, 2) =
Γ(1/2− s)Γ(1/4 + s/2)2

Γ(s)Γ(1/4− s/2)2π1/2
,

we obtain

m̂ζ(u) =

(
2−s
√
πΓ(1− s)

Γ(1/2− s)

)1/2

Z1/2(=ζ)1−s Γ(1/4− s/2)πs

Γ(1/4 + s/2)
|u|s−1/2 ̂((<ζ − t)2 + =(ζ)2)

s−1
(u)

=

(
π2sΓ(1− s)

2s Γ(s)

)1/2

(=ζ)1−s |u|s−1/2 ̂((<ζ − t)2 + =(ζ)2)
s−1

(u). (83)

Next, one can express the Fourier transform ̂((<ζ − t)2 + =(ζ)2)
s−1

(u) via modified Bessel functions of the
second kind K. First,

̂((<ζ − t)2 + =(ζ)2)
s−1

(u) = e−2πi<ζu(=ζ)2s−1 ̂(t2 + 1)
s−1

(=ζu).

The expression for the remaining Fourier transform easily follows from the classical representation of the Mod-
ified Bessel function of the second kind Kν . See 8.432 1., p. 907 of [15].

Kν(z) =
Γ(ν + 1/2)(2z)ν√

π

∫ ∞
0

cos t dt

(t2 + z2)ν+1
,

which is clearly equivalent to

̂
(t2 + 1)

−(ν+1/2)
(u) =

2
√
π

Γ(ν + 1/2)
(π|u|)νKν(2π|u|).

By letting ν = 1/2− s , we get

̂(t2 + 1)
s−1

(u) =
2
√
π

Γ(1− s)
(π|u|)1/2−sK1/2−s(2π|u|).
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Hence we get from (83)

m̂ζ(u)

=

(
π2sΓ(1− s)

2s Γ(s)

)1/2

(=ζ)1−s |u|s−1/2 · e−2πi<ζu(=ζ)2s−1 · 2
√
π

Γ(1− s)
(π=ζ|u|)1/2−sK1/2−s(2π=ζ|u|)

=

(
22−sπ2

Γ(s)Γ(1− s)

)1/2

(=ζ)
1
2 e−2πi<ζuK 1

2−s
(2π=ζ|u|).

5.4. Fields with stationary increments

Let us come back to general results and use notations of the beginning of Section 5. We say that a complex
valued random field {Xt, t ∈ T} is a process with stationary increments in a wide sense starting at o if Xo = 0,
EXt = 0 for all t ∈ T and ∀t1, t2 ∈ T, g ∈ G

cov(Xgt1 −Xgo , Xgt2 −Xgo) = cov(Xt1 , Xt2). (84)

In particular, we have
E|Xgt1 −Xgt2 |2 = E|Xt1 −Xt2 |2. (85)

The structure function of X is defined as D : T → R+ by

D(t) = E|Xt|2

or D̃ : G→ R+ as D̃(g) = D(go).
Structure functions have a special property: they are of negative type. Recall that a function φ : T × T 7→ R

is of negative types if ∀t1, t2 ∈ T, φ(t1, t2) = φ(t2, t1); φ(t1, t1) = 0; ∀t1, . . . , tn ∈ T, ∀c1, . . . , cn ∈ R such that∑n
i=1 ci = 0,

n∑
i=1

cicj φ(ti, tj) ≤ 0.

Moreover, a function ψ : G 7→ R is said to be of negative type if φ(g1, g2) := ψ(g−1
2 g1) is of negative type with

the previous definition.
The function D̃ has negative type since by (85)

E|Xg1o −Xg2o |2 = E|Xg1o −Xg1(g−1
1 g2)o |

2 = E|Xo −Xg−1
1 g2o

|2

= E|Xg−1
1 g2o

|2 = D̃(g−1
1 g2).

The function D̃ is also G0-bi-invariant, since for any g ∈ G, ρ ∈ G0

D̃(gρ) = D(gρo) = D(go) = D̃(g),

D̃(ρg) = E|Xρgo −Xo |2 = E|Xgo −Xo |2 = D̃(g).

If the action of G is rotationally transitive, then D(t) only depends on d(t, o), since if d(t1, o) = d(t2, o), ρt1 = t2,

D(t2) = E|Xt2 |2 = E|Xρt1 −Xρo |2 = E|Xt1 −Xo |2 = D(t1).

Recall now that any stationary field {Yt, t ∈ T} generates a field with stationary increments Xt := Yt − Yo ,
since

cov(Xgt1 −Xgo , Xgt2 −Xgo) = cov(Ygt1 − Ygo , Ygt2 − Ygo)
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= cov(Yt1 − Yo , Yt2 − Yo) = cov(Xt1 , Xt2).

If K(·), the covariance of Y , is real, we get for the structure function of X,

D(t) = E|Yt − Yo |2 = 2[K(o)−K(t)]. (86)

The structure function of X is bounded, thus any field with stationary increments and unbounded structure
function can not be generated in this way.

Lévy-Khinchin-kind theorems enable to select the ”basic” structure functions and represent arbitrary struc-
ture function as a mixture of the primary ones. For the case T = Ln, G being the group of linear transformations
of Rn+1 preserving the quadratic form [·, ·] (and actually for a much more general case) the following Faraut-
Harzallah theorem accomplishes this task by using the spherical functions and the generalized quadratic form
Q defined in (41) as the primary ones [11], p.184, p.208.

Theorem 5.2. Let D : Ln → R+ be a structure function of a stochastically continuous field with stationary
increments. Then there exists a unique measure ν on the spectral set S and c ≥ 0 such that

D(η) = cQ(η) +

∫
S

[1− ωs(η)]ν(ds), η ∈ Ln, (87)

and ∫
S

(|s| ∧ 1) ν(ds) <∞. (88)

Conversely, any function of type (87) is a structure function of a field with stationary increments.

The measure ν is called spectral measure for any field with structure function D.
The second term in (87) corresponds to a mixture of fields arising from the stationary fields related to the

covariances ωs.
We will now show that in asymptotic setting, as η goes to infinity, the Q-term, with its linear growth, is

always dominating. We state this as a proposition.

Proposition 5.3. Let ν be a measure on S satisfying assumption (88). Then

lim
r=dn(η,0)→∞

r−1

∫
S

[1− ωs(η)]ν(ds) = 0. (89)

Proof. Since the measure ν is finite on {s ∈ S : |s| > (n− 1)/2}, it is clear that

r−1

∫
|s|>(n−1)/2

[1− ωs(η)]ν(ds) ≤ r−1ν{s ∈ S : |s| > (n− 1)/2} → 0.

Consider the remaining part. By using (46), for any k > 0 and r > 2k
n−1 we have∫ (n−1)/2

0

[1− ωs(η)]ν(ds) ≤
∫ k/r

0

rsν(ds) +

∫ (n−1)/2

k/r

1ν(ds)

≤ r

∫ k/r

0

sν(ds) +

∫ (n−1)/2

k/r

s

k/r
ν(ds)

≤ r

∫ k/r

0

sν(ds) +
r

k

∫ (n−1)/2

0

sν(ds).

It follows that

lim
r→∞

r−1

∫ (n−1)/2

0

[1− ωs(η)]ν(ds) ≤ 1

k

∫ (n−1)/2

0

sν(ds)
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and we are done by letting k →∞. �

We finish this section by describing some transformations of the structure functions, see [11], p.179. Define
Bernstein function as

F (u) = cu+

∫ ∞
0

(1− e−su)µ(ds)

where c ≥ 0 and µ is a measure on (0,∞) such that
∫

(s ∧ 1)µ(ds) <∞.
The main examples of Bernstein functions are

F (u) = uα =
α

Γ(1− α)

∫ ∞
0

(1− e−su)
ds

s1+α

for 0 < α < 1 and

F (u) = log(1 + u) =

∫ ∞
0

(1− e−su)
e−sds

s
.

The main property of Bernstein functions is the following: If F is such a function and D(·) is the structure
function of a field with stationary increments, then there exists a field with stationary increments and structure
function F (D(·)).

6. Homogeneous fields based on horocycles

Assume now that G acts on a space T and let G0 be a subgroup of G. Assume that there is a G-invariant
measure Λ on T . Take a white noise W on T controlled by Λ and any f ∈ L2(T,Λ) which is G0-invariant, that
is f(ρt) = f(t) for all t ∈ T, ρ ∈ G0. Define a field {Xf

z , z ∈ G/G0} by letting for g ∈ z ∈ G/G0

Xf
z =

∫
T

f(g−1t)W (dt). (90)

This is correct, since g1, g2 ∈ z implies g1 = g2ρ for some ρ ∈ G0, hence g−1
1 = ρ−1g−1

2 and f(g−1
1 t) =

f(ρ−1g−1
2 t) = f(g−1

2 t).
Moreover, Xf

z is a stationary process. Indeed, for any g1 ∈ z1,g2 ∈ z2 and g ∈ G, the invariance of Λ yields

cov(Xf
gz1 , X

f
gz2) =

∫
T

f((gg1)−1t)f̄((gg2)−1t)Λ( dt)

=

∫
T

f(g−1
1 g−1t)f̄(g−1

2 g−1t)Λ( dt)

=

∫
T

f(g−1
1 u)f̄(g−1

2 u)Λ( du)

= cov(Xf
z1 , X

f
z2).

6.1. Definitions and basic example

We will now specify the general framework of (90) to the particular case of the group G = SU(1, 1) acting
on the horocycle space H parameterized according to (21). Recall that the action is described in (22) and the
invariant measure is given in (23). Take any function f ∈ L2(R, e2rdr) and identify it with the function on
H, f(r, b) = f(r). This function will be rotation invariant, since the action of any rotation ρ on H preserves
the first coordinate: ρ(r, b) = (r, ρ(b)). According to the general theory, we can construct a stationary field
{Xf

z , z ∈ D} by taking a stationary white noise W controlled by invariant measure dh and letting

Xf
g(0) =

∫
H
f(g−1h)W (dh). (91)
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Let z = g(0). Since by (19) we have 〈g−1(0), g−1(b)〉 = −〈g(0), b〉 = −〈z, b〉, it is true that

Xf
z =

∫
H
f(r + 〈g−1(0), g−1(b)〉)W (dh) =

∫
H
f(r − 〈z, b〉)W (dh). (92)

Therefore, the corresponding covariance is

cov(Xf
z , X

f
0 ) =

∫
B

∫ ∞
−∞

f(r − 〈z, b〉)f̄(r)e2rdrdb. (93)

One of the most interesting examples is stationary Chentsov horocycle process Vz associated with the function
f(r) = 1r≤0. We have

cov(Vz, V0) =

∫
B

∫ min{0,〈z,b〉}

−∞
e2rdrdb =

1

2

∫
B

exp{2 min{0, 〈z, b〉}}db. (94)

It is not very difficult to calculate the covariance explicitly. Indeed, take a real z ∈ [0, 1). By using (26) and
(25) we get ∫

B

exp{2 min{0, 〈z, b〉}}db =

∫
〈z,b〉<0

exp{2〈z, b〉} db+

∫
〈z,b〉>0

1 db

= 1 +

∫
〈z,b〉>0

(1− exp{2〈z, b〉}) db = 1 +

∫
cos b>z

(1− exp{2〈z, b〉}) db

= 1 +

∫
cos b>z

(
1− 1− z2

|z − b|2

)
db = 1 +

2

2π

∫ β

0

(
1− 1− z2

|z − eiϕ|2

)
dϕ

= 1 +
β

π
− (1− z2)

π

∫ β

0

dϕ

|z − eiϕ|2
,

where β = arccos z. Next,∫ β

0

dϕ

|z − eiϕ|2
=

∫ β

0

dϕ

(z − cosϕ)2 + sin2 ϕ

=

∫ β

0

dϕ

(z2 + 1)− 2z cosϕ
=

∫ β

0

dϕ

(1− z)2 cos(ϕ/2) + (1 + z)2 sin2(ϕ/2)

= 2

∫ β

0

d tan(ϕ/2)

(1− z)2 + (1 + z)2 tan2(ϕ/2)
= 2

∫ tan(β/2)

0

dt

(1− z)2 + (1 + z)2t2

=
2

1− z2
arctan

(
(1 + z) tan(β/2)

1− z

)
.

Since tan(β/2) =
√

1−z
1+z , we have arctan

√
1+z
1−z = π

2 −
β
2 and we obtain

∫ β

0

dϕ

|z − eiϕ|2
=

2

1− z2
arctan

√
1 + z

1− z
=

2

1− z2

(
π

2
− β

2

)
=
π − β
1− z2

.

We end up with a strikingly simple formula

cov(Vz, V0) =
1

2

[
1 +

β

π
− (1− z2)

π

π − β
1− z2

]
=
β

π
=

arccos z

π
.
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For arbitrary z ∈ D we have

cov(Vz, V0) =
arccos |z|

π
. (95)

The Chentsov horocycle field with stationary increments WH(z) := Vz−V0 has a particularly clear geometric
meaning. Indeed, let z ∈ D. Then by the definition,

WH(z) =

∫
B

∫ ∞
−∞

(
1r≤〈z,b〉 − 1r≤0

)
W (dh) = W (A+

z )−W (A−z ),

where the sets A+
z = {(r, b) : 0 < r ≤ 〈z, b〉}, A−z = {(r, b) : 〈z, b〉 < r ≤ 0} ⊂ H are disjoint and Az := A+

z ∪A−z
is exactly the set of horocycles separating the points 0 and z. This is of course an exact equivalent to Chentsov’s
construction of Lévy’s Brownian field in Rn, [6], with horocycles instead of hyperplanes.

Finally, note that the structure function of WH is fairly simple: it follows from (95) that

D(z) = E|WH|2 = E|Vz − V0|2 = 2(E|V0|2 − cov(Vz, V0)) =
2

π
(1− arccos |z|).

This is a bounded function. Thus WH is not a Lévy Brownian field on D, which is defined in Section 8.

6.2. Spectral representation

We will now give a spectral representation of arbitrary stationary field based on horocycles. Take a function
f ∈ L2(R, e2rdr) as above and consider the associated classical Fourier transform of f(r)er

F (λ) =
1√
2π

∫ ∞
−∞

f(r)ereiλrdr.

By Plancherel formula,∫ ∞
−∞

f(r − 〈z, b〉)f̄(r)e2rdr = e〈z,b〉
∫ ∞
−∞

er−〈z,b〉f(r − 〈z, b〉)f̄(r)erdr

= e〈z,b〉
∫ ∞
−∞

F (λ)eiλ〈z,b〉F̄ (λ)dλ

= e〈z,b〉
∫ ∞
−∞
|F (λ)|2 eiλ〈z,b〉dλ.

Hence,

cov(Xf
z , X

f
0 ) =

∫
B

e〈z,b〉
∫ ∞
−∞
|F (λ)|2 eiλ〈z,b〉dλdb

=

∫ ∞
−∞
|F (λ)|2

∫
B

e(1+iλ)〈z,b〉dbdλ

=

∫ ∞
−∞
|F (λ)|2ϕλ(z)dλ.

We see that ν(dλ) = 2|F (λ)|2dλ is the spectral measure for the field Xf . Any absolutely continuous spectral
measure can be obtained in this way. Yet the singular spectral measures are unavailable.

In the particular case of Chentsov horocycle field we have

F (λ) =
1√
2π

∫ 0

−∞
e(1+iλ)rdr =

1√
2π

(1 + iλ)−1.
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Hence the spectral measure

ν(dλ) =
1

π
(1 + λ2)−1dλ

is just Cauchy measure, exactly as for the classical Ornstein-Uhlenbeck process.

7. Homogeneous fields based on geodesics

7.1. Basic geometry of geodesic lines

We consider the two-dimensional hyperbolic space D. Let G denote the set of all geodesic lines in D. Recall
that any ` ∈ G is the intersection of D with an Euclidean circle crossing the boundary B orthogonally. As a
limiting case, any diameter of D also is a geodesic line.

There exist different ways to parameterize the two-dimensional set G. Let ` = S ∩ D ∈ G where S is an
Euclidean circle generating `. Let r denote the radius of S and R denote the Euclidean distance between 0 and
the center of S. Finally, let {b1, b2} = S ∩B. We can always write

b1 = ei(ψ+ϕ), b2 = ei(ψ−ϕ), (96)

where ψ = ψ(`) ∈ [0, 2π) determines the ”direction” of the geodesic ` and ϕ = ϕ(`) ∈ [0, π/2] determines its
”Euclidean size”.

It is easy to see that the following relations are true:

r = tanϕ, R =
√
r2 + 1 =

1

cosϕ
. (97)

The Euclidean distance between 0 and ` is

R− r =
1

cosϕ
− tanϕ =

1− sinϕ

cosϕ
= tan(π/4− ϕ/2). (98)

One can parameterize G either with pairs (b1, b2) or (ϕ,ψ). We will mainly prefer the last option.

7.2. Separation condition

It will be important for us in the sequel to know which geodesic lines separate two given points. Let
z = (x, y) ∈ D be fixed. Let us find out which geodesics separate z from 0. To begin with, consider a geodesic
line ` with ψ = 0. It means that ` is a part of the circle of radius r centered at the point (R, 0). The equation
of the circle is y2 + (x−R)2 = r2, hence the separation condition is y2 + (x−R)2 < r2 which is equivalent to

|z|2 +R2 − 2xR < r2.

By using (97) this reduces to

|z|2 + 1− 2x

cosϕ
< 0. (99)

For general geodesic line (with arbitrary ψ), x should be replaced with respective coordinate of z, that is with
x cosψ + y sinψ. We arrive at separation condition

|z|2 + 1− 2x cosψ + 2y sinψ

cosϕ
< 0. (100)

In particular, for real z = x we have y = 0 and separation condition becomes

cosϕ <
2x

x2 + 1
cosψ. (101)
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7.3. Invariant measure

Obviously, the group of isometries SU(1, 1) acts on G. It is therefore important to find an invariant measure
of this action. We refer to [34] for other methods to find invariant measures for n = 2 and generalization for
n ≥ 3. In view of rotation invariance, the invariant measure Λ should have the form

Λ( d`) = p(ϕ) dϕdψ

and we just need to find the density p(·). The direct calculation is tedious but the following trick helps. For
u ∈ (0, 1) let Gu denote the set of geodesic lines crossing the Euclidean ball of radius u centered at 0. Then by
(98)

Gu = {` = (ϕ,ψ) : tan(π/4− ϕ/2) ≤ u}
= {` : π/4− ϕ/2 ≤ arctanu}
= {` : π/2 ≥ ϕ ≥ π/2− 2 arctanu} .

By integral geometry reasons Λ(Gu) should be proportional to the length of the boundary of ball calculated
with the Riemann metrics of D. By [17], p.29, this length is equal to∫ 2π

0

(1− u2)−1
(
u2 sin2 ϕ+ u2 cos2 ϕ

)1/2
dϕ =

2π u

1− u2
.

We obtain the equation ∫ π/2

π/2−2 arctanu

p(ϕ) dϕ =
cu

1− u2
.

Now easy calculation yields p(ϕ) = c
2 sin2 ϕ

. Indeed,∫ π/2

π/2−2 arctanu

dϕ

sin2 ϕ
=

∫ 2 arctanu

0

dϕ

cos2 ϕ
= tan(2 arctanu)

=
sin(2 arctanu)

cos(2 arctanu)
=

2 sin(arctanu) cos(arctanu)

cos2(arctanu)− sin2(arctanu)

=
2 tan(arctanu)

1− tan2(arctanu)
=

2u

1− u2
,

as required. We have obtained

Λ( d`) =
c dϕdψ

sin2 ϕ
. (102)

It is instructive to calculate the measure of geodesics separating given points. Take a real z = x ∈ D and set
β = 2x

x2+1 . According to (101), calculate∫
G

1cosϕ<β cosψ Λ( d`) =

∫ 2π

0

∫ π/2

0

1cosϕ<β cosψ
c dϕdψ

sin2 ϕ

= 2c

∫ π/2

0

∫ π/2

arccos(β cosψ)

dϕ

sin2 ϕ
dψ = 2c

∫ π/2

0

cot(arccos(β cosψ)) dψ

= 2c

∫ π/2

0

β cosψ√
1− β2 cos2 ψ

dψ = 2c

∫ π/2

0

β cosψ√
(1− β2) + β2 sin2 ψ

dψ

= 2c

∫ 1

0

β ds√
(1− β2) + β2s2

= 2c

∫ 1

0

ds√
a2 + s2

,
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where

a2 =
1− β2

β2
=

1

β2
− 1 =

(x2 + 1)2

4x2
− 1 =

(1− x2)2

4x2
,

hence a = 1−x2

2x and, by using (11),∫
G

1cosϕ<β cosψ Λ( d`) = 2c

∫ 1/a

0

dv√
1 + v2

= 2c log

(
1

a
+

√
1

a2
+ 1

)
= 2c log

(
1 +
√
a2 + 1

a

)

= 2c log

(
1 + 1/β

a

)
= 2c log

(
β + 1

βa

)
= 2c log

1 + x

1− x
= 4c d(0, z). (103)

We see that the measure of separating set is proportional to the distance between the separated points. By
transitivity of the action this conclusion remains true for any pair of points in D.

7.4. Action of isometries

Any isometry g acts in a natural way on G since the image of a geodesic line is again a geodesic line. We
need a parametric interpretation for this action. We start with fixing an isometry g and a geodesic line ` with
endpoints b1, b2 as stated in (96). Then g(`) is a geodesic line with endpoints

b̃1 = g(b1) := ei(ψ̃+ϕ̃), b̃2 = g(b2) := ei(ψ̃−ϕ̃), (104)

By using differentiation formula (20) we see that the Jacobian of the map (b1, b2)→ (g(b1), g(b2)) is

J(b1, b2) = exp {−2〈g(0), g(b1)〉 − 2〈g(0), g(b2)〉} .

By using the expression of invariant measure (102) we have

1

sin2 ϕ̃
=

1

sin2 ϕ
|J(b1, b2)|−1 =

1

sin2 ϕ
exp {2〈g(0), g(b1)〉+ 2〈g(0), g(b2)〉} .

We rewrite this as
sin2 ϕ = sin2 ϕ̃ exp {2〈g(0), g(b1)〉+ 2〈g(0), g(b2)〉} . (105)

7.5. Stationary fields based on geodesics lines

According to general rule (90), we can define a stationary field by

Xf
g(0) =

∫
G
f(g−1`)W (d`). (106)

Since f must be rotation invariant, we have

f(`) = f(ϕ,ψ) = f(ϕ) := F (sin2 ϕ)

Giving a noise a coordinate form, our field becomes

XF
g(0) =

∫ 2π

0

∫ π/2

0

F (sin2 ϕ0(g, ϕ, ψ))W (dϕdψ)
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where ϕ0(g, ϕ, ψ) is the ϕ-coordinate of the geodesic line g−1(`). It follows from (105) that

sin2 ϕ0(g, ϕ, ψ) = sin2 ϕ exp {2〈g(0), b1〉+ 2〈g(0), b2〉} .

Hence, for z = g(0),

XF
z =

∫ 2π

0

∫ π/2

0

F
(
sin2 ϕ exp {2〈z, b1〉+ 2〈z, b2〉}

)
W (dϕdψ).

Recall that the control measure for the white noise is given by (102). Therefore, the field is well defined iff∫ π/2

0

|F
(
sin2 ϕ

)
|2 dϕ

sin2 ϕ
<∞⇔

∫ 1

0

|F (v)|2dv
v3/2(1− v)1/2

<∞.

Finally, for covariance we get

cov
(
XF
z , X

F
0

)
= c2

∫ 2π

0

∫ π/2

0

F
(
sin2 ϕ exp {2〈z, b1〉+ 2〈z, b2〉}

)
F (sin2 ϕ)

dϕdψ

sin2 ϕ
.

A nice example is given by F (v) = vβ when β > 1/4. Then

cov
(
XF
z , X

F
0

)
= c2

∫ 2π

0

∫ π/2

0

sin4β−2 ϕ exp {2β〈z, b1〉+ 2β〈z, b2〉} dϕdψ .

8. Lévy Brownian field and fractional Brownian fields

8.1. General definitions

Let (T, d) be a metric space with a marked point o. A centered real Gaussian field {Wt, t ∈ T} is called Lévy
Brownian field if

cov(Wt1 ,Wt2) =
1

2
(d(t1, o) + d(t2, o)− d(t1, t2))

which is equivalent to Wo = 0 and
E(Wt1 −Wt2)2 = d(t1, t2).

We refer to [4] and [24] for more information about Lévy Brownian fields on normed spaces.
More generally, given H > 0, a centered real Gaussian field {WH

t , t ∈ T} is called H-fractional Lévy Brownian
field if

cov(WH
t1 ,W

H
t2 ) =

1

2

(
d(t1, o)2H + d(t2, o)2H − d(t1, t2)2H

)
which is equivalent to WH

o = 0 and
E(WH

t1 −W
H
t2 )2 = d(t1, t2)2H .

The existence of such fields is a hard problem depending on the properties of T . In general, by using Bernstein
function F (u) = uα, α < 1, we can only say that the existence of WH implies the existence of WH′ for all
0 < H ′ < H.

For example, it is known that for T = Rn the fractional Lévy Brownian field exists whenever 0 < H ≤ 1.
For further discussions and examples on this topic see [18], [19]

In the following, we consider the hyperbolic case T = Ln and d = dn being invariant metrics, as defined in
(32). Lévy Brownian field for hyperbolic case was considered in [37], [28], [29], [30]. Moreover, it is easily seen
that in this case WH should be a field with stationary increments and structure function

D(η) = E|WH
η |2 = d(η, 0̄)2H .
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As we see from (65) and Proposition 5.3 no structure function can increase faster than d(η, 0̄). Therefore, WH

does not exist on hyperbolic space when H > 1/2. Conversely, Faraut [11], p.205, proves that Lévy Brownian
field does exist. Therefore, fractional Lévy Brownian field exists iff 0 < H ≤ 1/2.

Recall Chentsov representation for Lévy Brownian field. Consider again the set of all geodesic lines G
equipped with invariant measure Λ from (102) and let W be a white noise controlled by Λ, as considered in
(106). For z1, z2 ∈ D, let Gz1,z2 ⊂ G be the set of all geodesic lines separating z1 from z2. We know from (103)
that Λ(Gz1,z2) = 4c d(z1, z2). Consider a random field

Xz = (4c)−1/2W (Gz,0), z ∈ D.

Then
E|Xz1 −Xz2 |2 = (4c)−1Λ(Gz1,0∆Gz2,0) = (4c)−1Λ(Gz1,z2) = d(z1, z2).

Hence, X is a Lévy Brownian field.
A similar construction is available in higher dimensions n > 2. One only has to replace separating geodesic

lines with appropriate surfaces of codimension one. The details are given in [32], along with a discussion
of problems arising when one tries to extend the Chentsov construction to complex hyperbolic spaces or to
projective spaces.

In Euclidean case, Chentsov construction also works via separating points by straight lines (or hyperplanes,
if n > 2). Moreover, Takenaka [38] gave a similar construction for fractional Lévy Brownian field on Rn by
using separating hyperspheres. We do not know how to extend his construction to the sphere or to hyperbolic
space.

8.2. Spectral properties

Let us now consider the spectral decompositions. For Lévy Brownian field write

r := d(0, η) = cQ(η) +

∫
S

[1− ωs(η)]ν(ds), η ∈ Ln. (107)

By using (65) and Proposition 5.3 we see that

1 = c lim
r→∞

Q(η)

r
+ lim
r→∞

r−1

∫
S

[1− ωs(η)]ν(ds) = c.

Hence, the Q-term is really present. Consider now the remainder,

I(η) = r −Q(η) =

∫
S

[1− ωs(η)]ν(ds). (108)

We know from (65) that I(η) = C̃n− qn(η). We show now that ν is a finite measure. Take any positive ε < n−1
2

and set Sε = [ε, n−1
2 ]. Since ωs(η) is decreasing to zero uniformly on s ∈ Sε when r = dn(η, 0̄) → ∞ and also

qn(η) tends to zero, we have

C̃n ≥ lim
r→∞

∫
Sε

[1− ωs(η)]ν(ds) = ν(Sε).

It follows that

ν(0,
n− 1

2
] = lim

ε→0
ν(Sε) ≤ C̃n <∞.

Therefore, we can split the integral in (108). Since limr→∞
∫
Sε ωs(η)ν(ds) = 0, and since os bounded implies

limr→∞
∫ ε

0
ωs(η)ν(ds) = 0, we have limr→∞

∫
S ωs(η)ν(ds) = 0. Then

ν(S)−
∫
S
ωs(η)ν(ds) = C̃n − qn(η),
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and limr→∞ qn(η) = 0 implies ∫
S
ωs(η)ν(ds) = qn(η).

Let us now show that this indicates the absence of the lower spectrum, at least for n ≤ 5. Denote Si = {s =
n−1

2 + iλ} the upper spectrum. Since ωs are non-negative for real s, for any ε < n−1
2 we can write, using (61)∫ ε

ε/2

ωs(η)ν(ds) ≤ qn(η) +

∫
Si
|ωs(η)|ν(ds) ≤ qn(η) + ν(Si) max

s∈Si
|ωs(η)|

≤ qn(η) + ν(Si)|ωn−1
2

(η)|.

For n ≤ 5 we have, by using (60) and (66)

qn(η) + ν(Si)|ωn−1
2

(η)| = O
(
re
−(n−1)r

2

)
,

while by (58) ∫ ε

ε/2

ωs(η)ν(ds) � ν[ε/2, ε] · e−εr.

Since ε < n−1
2 , we conclude that ν[ε/2, ε] = 0. Since ε < n−1

2 was chosen arbitrary, it follows that ν(0, n−1
2 ) = 0.

For n > 5, the same reasoning shows that there is no spectral mass in a neighborhood of zero, namely
ν(0, 2) = 0.

For H-fractional Lévy Brownian field, H < 1/2, write

r2H := d(0, η)2H = cQ(η) +

∫
S

[1− ωs(η)]ν(ds), η ∈ Ln. (109)

Again, by using (65) and Proposition 5.3 we see that

0 = lim
r→∞

r2H

r
= c lim

r→∞

Q(η)

r
+ lim
r→∞

r−1

∫
S

[1− ωs(η)]ν(ds) = c.

Hence, the Q-term is absent. Unlike the case H = 1
2 the spectral measure should be infinite, hence it charges

any neighborhood of 0.In Section 9 we will give a representation of the spectrum in H-fractional case, as a
mixture of the known spectra. In particular we show that ν[ε, n−1

2 ) ≈ ε−2H , as ε→ 0.
A form of the spectral representation for Lévy Brownian field, H = 1/2,was found by G.M. Molchan in [28].

The upper spectrum has a density while the lower spectrum is concentrated on even integer points of the interval
[2, n−1

2 ). Again we see that in any dimension there is a neighborhood of zero, namely, [0, 2), which is not charged
by the spectral measure and there is no lower spectrum at all for n ≤ 5.

In our notation, Molchan’s formula for the spectral density is

p(λ) =
Γ(n+1

2 )

2nπ3/2Γ(n/2)

∣∣∣∣Γ(
n− 1

2
+ iλ)

∣∣∣∣2 λ sinh(πλ)
|Γ(−n−1

4 + iλ/2)|2

|Γ(n+3
4 + iλ/2)|2

.

Some further simplifications are available for odd n ≥ 3. By standard properties of Γ-function, one arrives to a
rational function as a spectral density

p(λ) =
Γ(n+1

2 )

2nπ1/2Γ(n/2)

n−3
2∏
j=0

[(
n− 2j − 3

2

)2

+ λ2

] n−1
2∏
j=0

[(
n− 4j − 1

4

)2

+ λ2/4

]−1

.
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The density is decreasing as λ−2 at infinity. In the simplest case, n = 3,

p(λ) =
4λ2

π(1 + λ2)2
.

For the weights of the lower spectrum, [28] contains only some hints. Using these ideas one can prove that the
spectral weight wm at even integer point m ∈ [2, n−1

2 ) is (according to [31])

wm =
n− 1− 2m

(n− 1−m)m

Γ(1− n
2 )

Γ(1 + m−n
2 )
·

Γ(n+1
2 )

Γ(n+1
2 −

m
2 )
·

Γ( 1
2 )

Γ( 1−m
2 )
· 1

Γ(1 + m
2 )

=
n− 1− 2m

(n− 1−m)m

(
n−1
2
m
2

)2

(
n−1
m

) , (110)

where as usual
(
x
m

)
= x(x−1)···(x−n+1)

m! .

8.3. Spectral density of the Lévy Brownian field on hyperbolic plane

We restrict us to the case n = 2 and accept in this subsection Helgason’s notation. Let us prove the following
result.

Theorem 8.1. The spectral decomposition of the Brownian field on the hyperbolic plane is

r =
1

2
Q(r) +

∫ ∞
0

[1− ϕλ(r)]p(λ)dλ, (111)

where the spectral density p is given by

p(λ) =
φ̂2(λ) λ tanh(πλ/2)√

2π(λ2 + 1)

where φ̂2 is the classical Fourier transform of the function

φ2(u) =

∫ π/2

0

2 sin2 θ − 1√
cosh2 u− sin2 θ

dθ.

Proof.
Since we know that there is no lower spectrum, we can write Lévy–Khinchin formula as

r =
1

2
Q(r) +

∫ ∞
0

p(λ)[1− ϕλ(z)]dλ

where Q(r) = 2 log cosh r is the generalized quadratic form and p(·) denotes the unknown spectral density.
Recall that the variables r ≥ 0 and z ∈ D are related by r = d(z, 0). Apply the Helgason’s version of Laplace–
Beltrami operator (15) to both sides. Clearly, ∆r = 2 coth(2r) and we know that ∆Q ≡ 4. Indeed, in Faraut
interpretation, ∆Q = n − 1 = 1 but we remember that Helgason’s operator is four times larger. Anyway, it is
easy to check this directly. We obtain the equation

2(coth(2r)− 1) =

∫ ∞
0

(λ2 + 1)p(λ)ϕλ(z)dλ.
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Notice that the left hand side is decreasing as e−4r at infinity, hence it belongs to L2(D) and we can apply
Fourier transform defined in (29) in its radial version.

Letting f(z) = 2(coth(2r)− 1), we can compare the inversion formula (31)

f(z) =
1

2π

∫ ∞
0

f̃(λ) λ tanh(πλ/2) ϕλ(z)dλ

with equation above and see that

(λ2 + 1)p(λ) =
1

2π
f̃(λ) λ tanh(πλ/2),

hence

p(λ) =
f̃(λ) λ tanh(πλ/2)

2π(λ2 + 1)
.

One can think of using series representation

f(z) = 2(coth(2r)− 1) =
4e−2r

e2r − e−2r
= 4e−4r 1

1− e−4r
= 4

∞∑
k=1

e−4kr

for getting the Fourier transform but we proceed differently, as suggested by Helgason, p.40-41. Namely, do the
following. Write

f(z) = f1(r) = f2(tanh r) = F (cosh2 r),

then calculate integrals

φ(u) =

∫ ∞
−∞

F (u+ y2)dy

set φ2(u) = φ(cosh2 u) and finally apply classical Fourier transform,

f̃(λ) =

∫ ∞
−∞

eiλuφ2(u)du =
√

2π φ̂2(λ),

with the definition (81) we chose for the Fourier transform.

With our specific function we have f1(r) = 4
e4r−1 . Since T = tanh r = e2r−1

e2r+1 , we get e2r = 1+T
1−T , hence

e4r = (1+T )2

(1−T )2 and f2(T ) = (1−T )2

T .

Next, for q = cosh2 r, we have T 2 = (er+e−r)2−4
(er+e−r)2 = 1 − 1

q . Hence T =
√

(q − 1)/q and F (q) = f2(T ) =√
q/(q − 1)− 2 +

√
(q − 1)/q.

Furthermore,

φ(u) =

∫ ∞
−∞

F (u+ y2)dy = 2

∫ ∞
0

( √
u+ y2√

u+ y2 − 1
− 2−

√
u+ y2 − 1√
u+ y2

)
dy

= 2 lim
U→∞

(I1(U)− 2U + I2(U)) ,

where

I1(U) =

∫ U

0

√
u+ y2√

u+ y2 − 1
du :=

∫ U

0

√
a2 + y2√
b2 + y2

du,

I2(U) =

∫ U

0

√
u+ y2 − 1√
u+ y2

du :=

∫ U

0

√
b2 + y2√
a2 + y2

du,
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with a2 = u > u − 1 = b2. Let α = arctan(U/b) = arctan(U/(u − 1)) and q = b2−a2
a = 1√

u
. According to

formulas 3.169 and 8.111-8.112 in [15], we have

I1(U) = a [F (α, q)− E(α, q)] + U

√
a2 + U2

√
b2 + U2

,

I2(U) =
b2

a
F (α, q)− aE(α, q) + U

√
a2 + U2

√
b2 + U2

where F and E are incomplete elliptic integrals of the first and of the second kind, respectively.
By summing up,

I1(U)− 2U + I2(U) = (a+
b2

a
)F (α, q)− 2aE(α, q) + 2U

(√
a2 + U2

√
b2 + U2

− 1

)
.

By taking a limit, note that the last term vanishes, and we obtain

φ(u) = 2

[
(a+

b2

a
)F (π/2, q)− 2aE(π/2, q)

]
= 2

[
(a+

b2

a
)F(q)− 2aE(q)

]
= 2

[
(2
√
u− 1√

u
)F(q)− 2

√
u E(q)

]
= 4

√
u

(
F(

1√
u

)− E(
1√
u

)

)
− 2√

u
F(

1√
u

),

where

F(q) =

∫ π/2

0

dθ√
1− q2 sin2 θ

and

E(q) =

∫ π/2

0

√
1− q2 sin2 θdθ

are complete elliptic integrals of the first and second kind, respectively.
We get a slightly clearer representation with

4
√
u

(
F(

1√
u

)− E(
1√
u

)

)
=

∫ π/2

0

4
√
u(1− (1− sin2 θ/u)√

1− sin2 θ/u
dθ

= 4

∫ π/2

0

sin2 θ√
u− sin2 θ

dθ.

Hence

φ(u) = 2

∫ π/2

0

2 sin2 θ − 1√
u− sin2 θ

dθ,

φ2(u) = 2

∫ π/2

0

2 sin2 θ − 1√
cosh2 u− sin2 θ

dθ.
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Recall that

p(λ) =
φ̂2(λ) λ tanh(πλ/2)√

2π(λ2 + 1)
,

and we are done. �

9. Ornstein-Uhlenbeck fields

We start with R1 and Rn analogies. A centered Gaussian one-parametric stationary process is called OU
process if its covariance is EU(t)U(0) = e−a|t|. Similarly (one version of) α-fractional OU fields is defined
by EU(t)U(0) = e−a|t|

α

. Here 0 < α ≤ 2. In Euclidean case time scaling is not a problem, so we set for a
while a = 1. The spectral measure for OU field is the Cauchy distribution ν(du) = du

π(1+u2) . Analogously, for

fractional OU field the spectral measure is the symmetric α-stable distribution.
Next, consider OU stationary random field U(t), t ∈ Rn, which we require to be OU field along any real line.

It follows that the covariance should be EU(t)U(0) = e−a||t||. The corresponding spectral measure on Rd is the
symmetric multivariate Cauchy distribution (for which e−a||t|| is a characteristic function). There are two ways
to define multivariate Cauchy distribution. One is to look at its Lévy-Khinchin formula. By scaling,∫

S

∫ ∞
0

(ei(t,rθ) − 1)r−pdrdθ = c ||t||p−1, 1 < p < 3.

Hence, p = 2 provides a Lévy-Khinchin measure r−2drdθ for Cauchy distribution.
Another way to define Cauchy distribution goes through the connection of the density of a spherically

symmetric distribution and the density of its one dimensional projection, see [39]. Indeed, let ν(dx) = p(||x||2)dx
and let f be its marginal density. Then

p(s) =

{
c dm

dsm f(
√
s), n = 2m+ 1;

c dm

dsm

[∫∞√
s
zf(z)dz√
z2−s

]
, n = 2m.

We know that marginal distribution is Cauchy. Hence f(s) = c
1+s2 and we easily obtain p(s) = c(1+s)−(n+1)/2,

hence,

ν(dx) = c (1 + ||x||2)−(n+1)/2 dx.

For further information about multivariate Cauchy distribution and some generalizations, we refer to [21]
Chapter 42 and to [10].

We also obtain the spherical spectral measure:

e−||t|| =

∫
Rn
ei(t,x)ν(dx) = c

∫
S

∫ ∞
0

ei(t,x) rn−1

(1 + r2)(n+1)/2
drdθ

= c

∫ ∞
0

ϕr(t)
rn−1

(1 + r2)(n+1)/2
dr.

Similarly, fractional OU random fields on Rn are defined by covariance EU(t)U(0) = e−a||t||
α

. The cor-
responding spectral measure is the symmetric α-stable measure whose Lévy-Khinchin measure is given by
r−(α+1)dr dθ and there is no formula for its Lebesgue density. For α = 2 the spectral measure is standard
Gaussian.
Remark: a) The presented way is by far not the unique possibility to generalize the notion of OU process
to fractional and/or to multivariate case. Even if time is one-dimensional, one can obtain another reasonable
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fractional extension of OU process by applying Lamperti transformation to the univariate fractional Brownian

process WH , that is considering Ũ(t) = e−HtWH(et). The covariance of Ũ is then

EŨ(t)Ũ(0) =
1

2

(
eHt + e−Ht −

∣∣∣et/2 − e−t/2∣∣∣2H) .
b) There is also a considerable literature about the extensions of OU process taking values in manifolds other

than Rn, see e.g. [36], focused on properties of OU as a diffusion. In spite of many common keywords, the latter
approach apparently is completely disjoint with our constructions.

c) OU processes on the line have important Markov property. The corresponding Markov concepts for random
fields are too numerous and subtle to be discussed here. We refer to [26], [22], [27], [30] for related information
about LBM and OU fields.

We now pass to fractional OU fields on hyperbolic space Ln. As before, this should be a stationary random
field with covariance EU(η)U(0) = exp{−adn(η, 0)α} (in classical case, α = 1). In other words, U would be a
one-parametric fractional OU field along every geodesic line. Recall that parameter a formally is now important,
because we do not have appropriate time scaling in Ln.

Recall that a function D is negatively defined if and only if e−aD is non-negatively define for all a > 0.
Knowing that Lévy’s fractional Brownian field exists for H ≤ 1/2, we conclude that fractional OU is well
defined for all 0 < α ≤ 1, a > 0 and that it does not exist for α > 1 at least for all a that are small enough. We
do not know whether fractional OU does not exist for all a > 0 in this case.

In the case of existence, it would be interesting to find the spherical spectral measure

e−ar
α

=

∫ ∞
0

ωs(r)νa,α(ds). (112)

When α < 1, for any a > 0 the spectrum definitely is non-void in any neighborhood of zero, since covariance is
decreasing slower than e−sr for any particular s.

When α = 1, the spectrum does not approach 0 and its lower bound depends on parameter a. Indeed,
decreasing as e−ar, a < n− 1/2, prevents from the presence of spectrum in [0, a), cf. (58). On the other hand,
if a is large enough, a > (n− 1)/2, the covariance is in L2 and hence only upper spectrum is present. Molchan
in [30], Theorem 2, provides more detailed picture. In our notation, he gives a formula for the spectral density
of OU-field with parameter a,

ga(λ) =
aΓ(n+1

2 )

2nπ3/2Γ(n/2)
|Γ(

n− 1

2
+ iλ)|2λ sinh(πλ)

|Γ(a/2− n−1
4 + iλ/2)|2

|Γ(a/2 + n+3
4 + iλ/2)|2

.

Notice that the ga vanishes at zero except for the values a = n−1
2 − 2j, j ∈ N where Γ-function explodes in the

nominator. We will see now that these values have also a special meaning for the lower spectrum.
Remark: We can not see what the complicated density ga has in common with Cauchy distribution from
Euclidean case.

As for the lower spectrum, it is worthwhile to describe the evolution of the spectral measure of OU field when
the parameter a decreases from infinity to zero, as suggested by Theorem 2 in [30].

For OU field with covariance a−1 exp{−a r} the spectral weight is situated at the point a + m ∈ (0, n−1
2 ),

where m is even integer, and the atom size is ( [31])

wam =
n− 1− 2m− 2a

4a(n− 1−m− 2a)

Γ(m+ a)

Γ(1 + a)m!
·

Γ(1− n
2 + a)

Γ(1 + m−n
2 + a)

·
Γ(n+1

2 )

Γ(n+1
2 −

m
2 )
·

Γ( 1
2 )

Γ( 1−m
2 )
·

× Γ(1 + a)

Γ(1 + m
2 + a)

· Γ(n− 1−m− a)

Γ(n− 1−m− 2a)
·

Γ(n2 − a)

Γ(n2 )
.



46 TITLE WILL BE SET BY THE PUBLISHER

Therefore, the qualitative evolution picture is as follows. Let denote ν = n−1
2 the crossing point of upper

and lower spectra.
Once a > ν, only the upper spectrum is present.
When a = ν an atom is born at ν.
When a decreases from ν to ν − 2, the atom floats through positions a.
When a = ν − 2 the second atom is born at ν.
When a decreases from ν − 2 to ν − 4, the first (resp. second) atom floats through positions a (resp. a+ 2).
And so on: every time a crosses a point ν −m, with an even m ∈ N, a new atom is born at ν and starts

floating with unit speed towards zero.
Finally, when a = 0 is achieved, we arrive to the spectrum of Lévy Brownian field. At this point the first

atom arrives to 0 and this results in the appearance of a quadratic component. Other atoms will be situated in
the even points of the open interval (0, ν): namely, the atom born at a = ν −m will find its final place at m.
This is in accordance with positions of atoms for LBF.

Of course, when comparing with LBF weights (110), we obtain lima→0 w
a
m = wm, as a ↓ 0.

On the other hand, notice that the baby atom (when it is just born) is very small: recall that the m’-th atom
appears at a = ν −m, so that

lim
a→ν−m

(n− 1− 2m− 2a) = lim
a→ν−m

(n− 1− 2(m+ a)) = n− 1− 2ν = 0.

Since n− 1− 2m− 2a is the first factor in the definition of wam, we have

lim
a→ν−m

wam = 0.

From the spectral measure of OU-fields associated to the covariance e−au one can deduce the spectral measure
of a field with stationary increments and with structure functions 2(1 − e−au), as in (86). This enables us to
obtain the spectral measure of many other fields. Indeed, let

F (u) =

∫ ∞
0

(1− e−au)µ(da)

be a Bernstein function. Then the spectral measure of a field with stationary increments and with structure
function F writes as

νF (ds) =
1

2

∫ ∞
0

νa(ds) µ(da)

where νa is the spectral measure of the OU-field just described above:

νa(ds) = ga(λ)dλ+ a
∑

m=0,2,...
m+a≤(n−1)/2

wamδm+a .

For example, for H-fractional Lévy field we obtain

νH(ds) =

∫ ∞
0

νa(ds)
H da

Γ(1− 2H)a1+2H
, 0 < H < 1/2.

Note that this spectral measure is absolutely continuous, both in upper and lower parts.
When m = 0 and a → 0, the atom wa0 located at the point a → 0 has the asymptotics wa0 ∼ Γ(a) ∼ a−1.

Therefore, the asymptotics of the spectral density at zero (lower spectrum) is H
Γ(1−2H)a1+2H .
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10. Quadratic field

10.1. Non-degeneracy of quadratic field

Quadratic field on hyperbolic space is a field with stationary increments {Xη, η ∈ Ln} such that E|Xη|2 =
Q(η) where generalized quadratic form Q is defined in (41) and plays a fundamental role in Lévy-Khinchin
decomposition (87).

Notice that the Euclidean analogue of Q is a simple quadratic form QR(x) = ||x||2. Therefore, Euclidean
quadratic field is just X(t) =

∑n
1 tiξi, t ∈ Rn, with non-correlated r.v. ξi. This is a finite-rank field and its

kernel is finite-dimensional.
In spite of this analogy, the quadratic field on hyperbolic space is not as degenerate. Just take n = 2 and

consider the behavior of X along a fixed geodesic line. This restriction produces a 1-parametric process with
stationary increments (still denote it X) such that, according to (43),

E|Xr|2 = Q(η) = 2 log cosh(r/2), r = d(η, 0) ≥ 0.

We are interested in the derivative X ′ of X. Recall that for any differentiable process Y with stationary
increments the derivative is a stationary process with covariance

EY ′t Y ′0 = lim
δ→0

δ−2E(Yt+δ − Yt)Yδ =
1

2
lim
δ→0

δ−2
[
E|Yt+δ|2 + E|Yt−δ|2 − 2E|Yt|2

]
=

1

2

d2

dt2

∣∣∣
t
E|Yt|2.

In our case, EX ′rX ′0 = 1
2 Q
′′(r) = 1

4 cosh−2( r2 ). We are even able to find the spectral measure of X ′. Namely,
according to Formula 3.982 in [15],∫ ∞

0

cos ar

cosh2 βr
dr =

aπ

2β2 sinh(aπ/2β)
, a > 0, Reβ > 0,

hence the spectral density for X ′ is

f(a) =
1

2π

∫ ∞
−∞

eiar

4 cosh2(r/2)
dr =

a

2 sinh(aπ)
.

We see that X ′ is an infinitely differentiable (since the spectral measure has all moments) and infinite-rank
process. Hence, the same is true for X itself.

10.2. Helix representation

In this subsection we prove that a helix given in [11] provides a covariance structure of quadratic process.
Our starting point will be a stationary field Xs with the covariance (73) associated to the spherical function ωs.
Define a field with stationary increments Ys(η) = s−1/2(Xs(η)−Xs(0̄). Then Cov(Ys(η1), Ys(η2)) equals to

s−1γ(s, n)−1

∫
B̄

∫
B̄

(
[η1, b̄1]−(n−1−s) − 1

) (
[η2, b̄2]−(n−1−s) − 1

)
[b̄1, b̄2]−sdb̄1db̄2.

In particular,

E|Ys(η)|2 = 2s−1(1− ωs(η))

= s−1γ(s, n)−1

∫
B̄

∫
B̄

(
[η, b̄1]−(n−1−s) − 1

) (
[η, b̄2]−(n−1−s) − 1

)
[b̄1, b̄2]−sdb̄1db̄2.
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Notice also that ∫
B̄

∫
B̄

(
[η, b̄1]−(n−1−s) − 1

) (
[η, b̄2]−(n−1−s) − 1

)
db̄1db̄2

=

∫
B̄

(
[η, b̄1]−(n−1−s) − 1

)
db̄1

∫
B̄

(
[η, b̄2]−(n−1−s) − 1

)
db̄2

= (ωn−1−s(η)− 1)2 = (ωs(η)− 1)2 = O(s2), s→ 0.

We see that

Q(η) = lim
s→0

s−1(1− ωs(η)) = lim
s→0

1

2
E|Ys(η)|2

= lim
s→0

s−1(2γ(s, n))−1

∫
B̄

∫
B̄

(
[η, b̄1]−(n−1−s) − 1

) (
[η, b̄2]−(n−1−s) − 1

) (
[b̄1, b̄2]−s − 1

)
db̄1db̄2

= −(2γ(0, n))−1

∫
B̄

∫
B̄

(
[η, b̄1]−(n−1) − 1

) (
[η, b̄2]−(n−1) − 1

)
log([b̄1, b̄2])db̄1db̄2 .

Therefore, the helix of functions
(
Fη : B̄ → R

)
η∈Ln

given by

Fη(b̄) = (2γ(0, n))−1/2
(

[η, b̄]−(n−1) − 1
)

considered in the Hilbert space with scalar product

(f1, f2) = −
∫
B̄

∫
B̄

f1(b̄1)f2(b̄2) log([b̄1, b̄2])db̄1db̄2

has the same Hilbert structure as a quadratic process.

10.3. Integral representation

Again we use that a quadratic field XQ(η) can be obtained as the limit of (2s)−1/2(Xs(η)−Xs(0̄) as s→ 0.
By using the white noise representation for Xs given in (77) we obtain

XQ(η) =

∫
Rn−1

mQ
η (x)W (dx),

where

mQ
η (x) = lim

s→0
(2s)−1/2(mη(x)−m0̄(x)) = lim

s→0
(2s)−1/2

(
Z(s, n)

2γ(s, n)

)1/2

Is(x),

with Is(x) :=
(
Z(s,n)
2γ(s,n)

)−1/2

(mη(x)−m0̄(x)). Moreover,

lim
s→0

(2s)−1/2

(
Z(s, n)

2γ(s, n)

)1/2

= lim
s→0

(2s)−1/2

(
Γ(n−1

4 + s
2 )2 Γ(n−1

2 − s)
Γ(n−1

4 −
s
2 )2 Γ(s)π

n−1
2

· π1/2Γ(n− 1− s)
Γ(n/2) Γ(n−1

2 ) 2n−s

)1/2

=

(
Γ(n− 1)

Γ(n/2)2n+1π
n
2−1

)1/2

lim
s→0

(sΓ(s))−1/2

=

(
Γ(n− 1)

Γ(n/2)2n+1π
n
2−1

)1/2
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and

lim
s→0

Is(x) = lim
s→0

∫
Rn−1

||x− x1||
1−n
2 −sJP(x1)1/q

(
[η,P(x1)]−(n−1−s) − 1

)
dx1

=

∫
Rn−1

||x− x1||
1−n
2 JP(x1)

(
[η,P(x1)]−(n−1) − 1

)
dx1.

Therefore,

mQ
η (x) =

(
Γ(n− 1)

Γ(n/2)2n+1π
n
2−1

)1/2 ∫
Rn−1

||x− x1||
1−n
2 JP(x1)

(
[η,P(x1)]−(n−1) − 1

)
dx1.

For n = 2, we obtain

mQ
η (x) = 2−3/2

∫
R1

||x− x1||−
1
2 JP(x1)

(
[η,P(x1)]−1 − 1

)
dx1.

When we use the Poincaré half plane we get for the integral representation with respect to the Fourier white
noise for ζ ∈ P

m̂Q
ζ (u) = (2|u|)−1/2 ̂(

(=(ζ)(<ζ − t)2 + =(ζ)2)
−1 − (1 + t2)−1

)
(u).

= π(2|u|)−1/2
(
e−2π(i<ζu+=ζ|u|) − e−2π|u|

)
.

One can remark that the quadratic field is not generated by finite dimensional white noise in contrast with
the Euclidean case.

11. White noise

In this section, we let n = 2. Since the white noise is a generalized process, it is defined on test functions.
Following the analogy with Euclidean case, it is natural to define a white noise on D as a field W[f ], f ∈
L2(D, dz), with covariance

Cov(W[f1],W[f2]) =

∫
D
f1(z)f2(z)dz.

By using Fourier transform, we can also write this as

Cov(W[f1],W[f2]) =

∫ ∞
0

∫
B

f̃1(λ, b)f̃2(λ, b)db
λ tanh(πλ/2)dλ

2π
.

Let us discuss the spectral measure of white noise. For any stationary field Xz on D with a spectral measure
ν supported on the upper spectrum (see (69)) let X[f ] =

∫
D f(z)X(z)dz. We have

Cov(X[f1], X[f2]) =

∫
D

∫
D
f1(z1)f2(z2)Cov(Xz1 , Xz2)dz1dz2.

By spectral representation

Cov(Xz1 , Xz2) =

∫ ∞
0

Kλ(z1, z2)ν(dλ) =

∫ ∞
0

∫
B

e(1+iλ)〈z1,b〉+(1−iλ)〈z2,b〉db ν(dλ)
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where Kλ is the covariance from (68). It follows that

Cov(X[f1], X[f2]) =

∫
D

∫
D

f1(z)f̄2(z)

∫ ∞
0

∫
B

e(1+iλ)〈z1,b〉+(1−iλ)〈z2,b〉db ν(dλ)

=

∫ ∞
0

∫
B

∫
D
f1(z1)e(1+iλ)〈z1,b〉dz1 ·

∫
D
f̄2(z2)e(1−iλ)〈z2,b〉dz2db ν(dλ)

=

∫ ∞
0

∫
B

f̃1(λ, b)f̃2(λ, b)db ν(dλ).

In the case of white noise, by comparing this with the formula above we conclude that

νW(dλ) =
λ tanh(πλ/2)dλ

2π
.

12. Euclidean Sphere

In this section we provide a brief survey of the same problems considered on the unit Euclidean sphere
S = Sn ⊂ Rn+1 instead of hyperbolic space. Compactness of S simplifies the problems considerably.

12.1. S as a symmetric space

We can consider S as a symmetric space equal to the factor of all rotations SO(n+ 1) of S factorized by the
set of rotations SO(n) preserving one given point (which is equivalent to all rotations of Sn−1). In the following
we let 0̄ = (1, 0, . . . , 0) be a fixed point.

The space S is a Riemann manifold with the distance d(·, ·) ∈ [0, π] given by

cos d(η, η′) = (η, η′)Rn+1 .

The invariant measure is the surface measure of the sphere. We normalize it so that the total mass would be
one.

The geodesic lines are large circles. Thus the shortest way between two points goes along a large circle.
There are infinitely many such ways. In particular, if the points are opposite poles, then there are infinitely
many shortest ways (meridians) connecting the points.

The volume of an r-ball in Sn is

V (r) = |Sn−1|
∫ r

0

sinn−1 θdθ =
2πn/2

Γ(n/2)

∫ r

0

sinn−1 θdθ.

Hence, the surface measure A of the r-ball on the sphere is defined by

A(r) =
d

dr
V (r) =

2πn/2

Γ(n/2)
sinn−1 r.

The Laplace–Beltrami operator on S can be defined as [11], p.200,

∆f =
d2

dr2
f +

A′(r)

A(r)

d

dr
f =

d2

dr2
f + (n− 1) cot r

d

dr
f .

The spherical functions are [11], p.203.

ωs(η) =

∫
Sn−1

[(0̄, η)Rn+1 − i(b, η)Rn+1 ]sdb, s = 0, 1, 2, . . . , (113)
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where Sn−1 = {b ∈ S : b0 = 0}. In coordinate form

ωs(η) =
Γ(n/2)
√
πΓ(n−1

2 )

∫ π

0

[cos r − i sin r cos θ]s sinn−2 θdθ = Pn,s(cos r). (114)

Here (and elsewhere in this section) r = d(η, 0̄) and Pn,s are ultra-spherical polynomials (Gegenbauer polyno-
mials).

Examples: Pn,0(u) = 1, Pn,1(u) = u, Pn,2 = (n+1)u2−1
n , Pn,3 = (n+3)u3−3u

n .
The spherical functions satisfy (see [11], p.203)

∆ωs = −s(s+ n− 1)ωs.

12.2. Lévy-Khinchin formulas

The non-negative type functions (covariance functions of spherically invariant stationary fields) have the form
K(x) = K(d(x, 0̄)),

K(r) =

∞∑
s=0

νsωs(x) =

∞∑
s=0

νsPn,s(cos r),

with spectrum (νj) satisfying νj ≥ 0,
∑∞
s=0 νs <∞.

Moreover, the functions of negative type (structure functions of the spherically invariant fields with stationary
increments, have the form D(x) = D(r),

K(r) =

∞∑
s=0

νs(1− ωs(x)) =

∞∑
s=0

νs(1− Pn,s(cos r)),

with the same assumptions on (νj).
We see that every field with stationary increments on the sphere is generated by a stationary process. There is

no generalized quadratic form and there is no possibility for infinite spectral measure since there is no spectrum
in the neighborhood of zero.

12.3. Examples of stationary fields on Euclidean sphere

Example 1. Let (ξj)0≤j≤n be centered i.i.d. with unit variance. Let X(η) =
∑n
j=0 ηjξj for η ∈ Sn. Then

cov(X(η), X(η′)) = (η, η′)Rn+1 = cos d(η, η′). We see that the degenerated field X corresponds to the spherical
function ωn,1.

Example 2. Let (ξj1j2)0≤j1,j2≤n be centered i.i.d. with unit variance. Let X(η) =
∑n
j1,j2=0 ηj1ηj2ξj1j2 for

η ∈ Sn. Then

cov(X(η), X(η′)) =
∑
j1,j2

ηj1ηj2η
′
j1η
′
j2 =

∑
j

ηjη
′
j

2

= (η, η′)2
Rn+1 = cos2 d(η, η′).

Similarly, k-linear forms with independent coefficients generate fields with covariance cosk d(η, η′).
Example 3. Let X be a field from the previous example. We center it by subtracting its integral:

I :=

∫
S
X(η)dη = (n+ 1)−1

n∑
j=0

ξjj .
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Let X0(η) = X(η)− I. The covariance of the new field is

cov(X0(η), X0(η′)) = cov(X(η), X(η′))− cov(X(η), I)− cov(X(η′), I) + cov(I, I).

Clearly,

cov(X(η), I) = (n+ 1)−1cov(

n∑
j=0

ηj1ηj2ξj1j2 ,

n∑
j=0

ξjj) = (n+ 1)−1
n∑
j=0

η2
j = (n+ 1)−1,

and by the same reason, cov(X(η′), I) = (n+ 1)−1. Next,

cov(I, I) = (n+ 1)−2
n∑

j1=0

n∑
j2=0

cov(ξj1j1 , ξj2j2) = (n+ 1)−1.

It follows that
cov(X0(η), X0(η′)) = cos2 d(η, η′)− (n+ 1)−1 =

n

n+ 1
Pn,2(cos d(η, η′)).

We see that the field X0 corresponds to the second non-trivial spherical function (up to a constant).
We briefly sketch here the next step. Take the third order field from the previous example,

X(η) =

n∑
j1,j2,j3=0

ηj1ηj2ηj3ξj1j2j3 .

It is easy to see that
∫
SX(η)dη = 0, thus the centering will be more involved. Namely, we center X so that it

becomes orthogonal in L2(S) not only to constants but also to all linear functions. To this aim, let

X0(η) = X(η)−
n∑
l=0

∫
SX(u)uldu∫

S u
2
l du

ηl

= X(η)−
n∑
l=0

∑
j 6=l

(ξjjl + ξjlj + ξljj)
ηl

n+ 3
−

n∑
l=0

ξlll
3ηl
n+ 3

.

Here we used that∫
S
X(u)uldu =

n∑
j1,j2,j3=0

ξj1j2j3

∫
S
uj1uj2uj3uldu

=
∑
j 6=l

(ξjjl + ξjlj + ξljj)

∫
S
u2
ju

2
l du+ ξlll

∫
S
u4
l du

=
∑
j 6=l

(ξjjl + ξjlj + ξljj)
1

(n+ 1)(n+ 3)
+ ξlll

3

(n+ 1)(n+ 3)
.

An easy direct calculation shows that

cov(X0(η), X0(η′)) = cos3 d(η, η′)− 3 cos d(η, η′)

n+ 3
=

n

n+ 3
Pn,3(cos d(η, η′)).

Again we see that the field X0 corresponds to a non-trivial spherical function (up to a constant).
It is very likely that the fields corresponding to other spherical functions can be obtained from the fields of

Example 2 by similar centering (projection operation). This procedure is strikingly similar to the normalization
procedure for U -statistics. We stress that all basic stationary fields on S are finite-rank fields.
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Example 4. (Lévy’s Brownian field on the sphere). For η ∈ S let Aη = {b ∈ S : (b, η)Rn+1 > 0}. Take a
white noise W on S and consider the field X(η) = W (Aη). Then cov(X(η), X(η′)) = |Aη∩Aη′ |. Let us calculate
this measure. Clearly, it only depends on the distance r = d(η, η′) (hence, X is a stationary process). Let for
simplicity η = (1, 0, ..., 0), η′ = (cos r, sin r, 0, . . . , 0). Then

Aη ∩Aη′ = {u ∈ S : u0 = ρ cosψ, u1 = ρ sinψ, 0 ≤ ρ ≤ 1, r − π/2 ≤ ψ ≤ π/2}.

By rotation symmetry of S,

|Aη ∩Aη′ | = π/2− (r − π/2) = π − r = π − d(η, η′).

It follows that

1

2
E(X(η)−X(0̄))2 = EX(0̄)2 − EX(η)X(η′) = π − (π − d(η, η′)) = d(η, η′).

We see that the field with stationary increments 2−1/2(X(η)−X(0̄)) is a Lévy’s Brownian field.

12.4. Illustration: n = 1

The theory for S1 is particularly simple because it reduces to the well known case of periodic stationary
processes. We identify S1 with [0, 2π) . Covariance function of any complex 2π-periodical stationary process
writes as

K(θ) =
∑
s∈Z

νse
isθ,

with summable and positive spectral weights (νs), which can be calculated as

νs =
1

2π

∫ 2π

0

K(θ)e−isθdθ,

once K is given For real fields νs = ν−s and we have

K(θ) =
∑
s≥0

ν̃s cos(sθ),

Here the functions ωs(θ) = cos(sθ) are the spherical functions corresponding to eigenvalues −s2 = −s(s+n−1)
and ν̃0 = ν0; ν̃s = 2νs (for s > 0).

All stationary processes admit a simple integral representation. Let f ∈ L2[0, 2π). We set

X(η) =

∫ 2π

0

f(θ + η)W (dθ),

where W is a white noise controlled by Lebesgue measure. Let us calculate the covariance KX by using Fourier
expansion

f(θ) =
∑
s∈Z

f̂se
isθ.

Since

f(θ + η) =
∑
s∈Z

f̂se
isη eisθ,
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we obtain by Parseval equality

KX(η1, η2) =

∫ 2π

0

f(θ + η1)f(θ + η2)dθ

= 2π
∑
s∈Z

f̂se
isη1 f̂seisη2 = 2π

∑
s∈Z
|f̂s|2eis(η1−η2).

We see that νs = 2π|f̂s|2, hence any spectrum can be obtained within this family of fields.
The fields with stationary increments are all generated by stationary fields. They admit an integral repre-

sentation

Y (η) = X(η)−X(0) =

∫ 2π

0

(f(θ + η)− f(θ))W (dθ). (115)

As usual, DY (η) = 2(KX(0) − KX(η)). Notice that adding a constant to X does not change Y . Hence the
spectrum of X at zero is irrelevant for Y .

Consider now a particular case of fractional Brownian process WH , 0 < H < 1, and find the respective
stationary field XH with covariance KH and spectrum (νs,H)s∈Z. We have

KH(η) = KH(0)− DH(η)

2
= KH(0)− d(η, 0)

2
= KH(0)− min{|η|, |2π − η|}2H

2
.

For s 6= 0, by integrating we find

νs,H = − 1

4π

∫ 2π

0

min{|η|, |2π − η|}2He−isηdη = − 1

4π

∫ π

−π
|η|2He−isηdη

= − 1

2π

∫ π

0

η2H cos(sη)dη.

One can easily show that if s 6= 0 is even and 1/2 < H ≤ 1, then νs,H < 0, see [18], p.257 (this is based on
convexity of the function η → η2H for H > 1/2). This fact simply means that H-fractional Brownian process
on S1 does not exist in this range. It follows that it does not exist on any Sn since the latter contains S1.

On the other hand, we can easily construct Brownian field (with H = 1/2) by letting f(η) = π1/2 1[0,π](η)
in (115). By Bernstein argument it follows that fractional Brownian process exists for all H < 1/2. We have
no more explicit representation for it.

For more information about random fields on compact symmetric spaces other than the sphere, we refer to [3].

13. Open problems

In this section we point some open questions.

• Find a closed (explicit) expression of the (upper and lower) spectrum of the fractional Lévy motion
W (H), 0 < H < 1/2.

• Although we know that H-fractional Lévy Brownian field does not exist when H > 1/2, find for these H
some natural (e.g. appearing in some limit theorems) fields with stationary increments X on hyperbolic
space such that E|X(z)−X(0)|2 ≈ d(z, 0)H as z → 0.

• Find the class of the stationary fields generated by the action of the group SU(1, 1) on the space of the
geodesics (may be every field can be obtained in this way?). Find the spectra of such fields.

• Give a white noise representation WH
η = W (Aη) for H-fractional Lévy Brownian fields, H < 1/2, on

the hyperbolic space and on the sphere as done by Takenaka [38] in Euclidean case (cf. Section 8.1).
The only construction we are aware of was proposed recently by Estrade and Istas. It handles the case
of one-dimensional sphere.
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• Check whether fractional Ornstein–Uhlenbeck field with covariance K(η, η′) = exp{−ad(η, η′)α} exists
for some a > 0, α > 1.

• Investigate the algebraic properties of spectral representations. For example:
– find the spectrum of the stationary field corresponding to the covariance functionK(z) = ωs1(r)ωs2(r),

where 0 < s1, s2 <∞ with s1, s2 ∈ [0, n−1
2 ] ∪ {n−1

2 + iλ, λ ∈ R}.
– Let (Xz, z ∈ D) be a field with stationary increments starting at 0 with the structure function

D(z) = E|Xz|2. Then D(·) is a function of negative type. Let F : R+ → R be a Bernstein function.
Then F (D(·)) is a function of negative type, too. Construct a field with stationary increments
(Yz, z ∈ D) such that F (D(z)) = E|Yz|2. Given the spectrum of X find that of Y .
Let us briefly explain the relation between the two problems. Imagine we know the spectral
measures {νs1,s2} corresponding to covariances {ωs1 · ωs2}. For any covariances K1 and K2 and
the corresponding spectral measures µ1, µ2 introduce a ”convolution” measure

µ1 ⊗ µ2 :=

∫ ∫
νs1,s2µ1(ds1)µ2(ds2).

The covariance corresponding to µ1 ⊗ µ2 is∫ ∫ ∫
ωs3(η)νs1,s2(ds3)µ1(ds1)µ2(ds2) =

∫ ∫
ωs1(η)ωs2(η)µ1(ds1)µ2(ds2)

= K1(η)K2(η).

By iterating this argument we see that if µ corresponds to K(·), then µ⊗m = µ ⊗ µ ⊗ · · · ⊗ µ (m
times) corresponds to K(·)m. Moreover, the spectral measure

exp⊗{γµ} :=

∞∑
m=0

γm

m!
µ⊗m

clearly corresponds to covariance exp(γK(·)} and to the structure function

Dγ(η) := 2 (exp(γK(0))− exp(γK(η)))

= 2 exp(γK(0)) (1− exp(−γ(K(0)−K(η))))

= 2 exp(γK(0)) (1− exp(−γDK(η)/2) ,

where DK(·) = 2(K(0)−K(·)) is the structure function related to K.
Finally, take a Bernstein function

F (u) =

∫ ∞
0

(
1− e−γu/2

)
ν(dγ)

and observe that

F (DK(η)) =

∫ ∞
0

(
1− e−γDK(η)/2

)
ν(dγ)

=

∫ ∞
0

1

2
exp(−γK(0))Dγ(η)ν(dγ)

=

∫ ∞
0

exp(−γK(0))

∫
(1− ωs(η)) exp⊗(γµ)(ds)ν(dγ)

=

∫
(1− ωs(η)

[∫ ∞
0

exp(−γK(0)) exp⊗(γµ)ν(dγ)

]
(ds)
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which gives the spectral representation for F (DK).

Acknowledgement. We are much indebted to the referees for careful reading of the manuscript and for their
numerous advice that helped us to improve the exposition.
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259. MR MR203757 (34 #3605)

[5] J.W. Cannon, W.J. Floyd, R. Kenyon and W.R. Parry, Hyperbolic geometry, In: Flavors of Geometry. Edited by Silvio

Levy. Mathematical Sciences Research Institute Publications, 31, Cambridge University Press, Cambridge, 1997, 59–115.
MR MR1491096(99c:57036)
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