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Who am I? Short resume

1993

1996

1998

2002

2003

● A levels, Mathematics and Physics

● Bachelor of Science, Industrial Mathematics

● Master degree, Applied Mathematics

● PhD in Applied Mathematics, Statistics
Comparison of estimation methods for nonlinear mixed effects models. Application to the 
modelling of the evolution of the leaf area index of crops observed by remote sensing

● Hired as a research engineer in Statistics at Université Toulouse III 
– Paul Sabatier

● Habilitation Thesis
Fifteen years of applied research in data science

2019
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What does a research engineer in statistics do?

● Officially (in French, data.enseignementsup-recherche.gouv.fr/pages/fiche_emploi_type_referens_iii_itrf/?refine.referens_id=E1D44)
– engineer responsible for statistical aspects in a research laboratory
– manage statistical projects
– define a data collection and management plan and the associated processing chain
– participate in national and international research projects and associated publications
– ...

● In practice
– answer questions in the real world
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Address real-world problems

The future of data analysis can involve great process, the 
overcoming of real difficulties, and the provision of a great 
service to all fields of science and technology. Will it? That 
remains to us, to our willingness to take up the the rocky 
road of real problems in preference to smooth road of 
unreal assumptions, arbitrary criteria, and abstract results 
without real attachments.

I blame word problems. They give a badly wrong impression of the relation between mathematics 
and reality. “Bobby has three hundred marbles and gives 30% of them to Jenny. He gives half as 
many to Jimmy as he gave to Jenny. How many does he have left?” That looks  like it’s about the 
real world, but it’s just an arithmetic problem in a not very convincing disguise [...]

But real-world questions aren’t like word problems. A real-world problem is something like “Has 
the recession and its aftermath been especially bad for women in the workforce, and if so, to what 
extent is this the result of Obama administration policies?” Your calculator doesn’t have a button 
for this. Because in order to give a sensible answer, you need to know more than just numbers. 
[…]

It’s only after you’ve started to formulate these questions that you take out the calculator. But at 
that point the real mental work is already finished. Dividing one number by another is mere 
computation; figuring out what you should divide by what is mathematics.
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The rocky road of real problems...

… smooth road of unreal assumptions, 
arbitrary criteria, and abstract results 
without real attachments
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A real-world problem

How is global warming 
affecting plant growth?
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Back to linear algebra

The biological sciences are today in the process of changing from being 
primarily descriptive to being very much quantitative. As a result, biologists 

find themselves confronted more and more with large amounts of numerical 
data […]. But the mere collecting and recording of data achieve nothing; having 
been collected, they must be investigated to see what information may be 

contained concerning the biological problem at hand.[…]

Frequently, however, biologists have to subject their data to more complex 
calculations, requiring procedures that involve mathematical details beyond 
their general experience. In order to carry out the mathematics the biologist in 

this situation must either learn the procedures himself, or at least learn 
something of the language of mathematics, that he may communicate 

satisfactorily with the mathematician whose aid he enlists.

S.R Searle (1966)
Matrix Algebra for the biological sciences
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Eigen decomposition

M = VΛV'
M a square matrix nxn
V columns of V are the eigen vectors of M corresponding to the eigen values
Λ diagonal matrix of the eigen values λ

i

λ is an eigen value of M


∃ one vector v (length n) such that Mv = λv
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Singular Value Decomposition (SVD)

M = UΣV'
M a rectangular matrix mxn
U, V columns of U and V are, respectively, left and right singular vectors corresponding to 

singular values
Σ diagonal matrix of the singular values of M

σ is a singular value of M


∃ 2 vectors u (length m) and v (length n) such that Mv = σu and M'u = σv
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Link between eigen and SVD decompositions

M = UΣV' (SVD)

Let’s compute : M'M and MM'
M'M = (UΣV')'UΣV' replace M with SVD decomposition

 = VΣ'U'UΣV' (AB)' = B'A'

 = VΣ'ΣV' U unit vector, U'U=UU'=I

MM' = UΣV'(UΣV')' = UΣV'VΣ'U' = UΣΣ'U'

We obtain the eigen decomposition of M'M and MM' with eigen 
values equal to the square of the singular values and eigen 
vectors respectively equal to left and right singular vectors.



  

11 / 47

Linear algebra for statistics

Principal Component Analysis (PCA)

● X a nxp data matrix

● PCA is an orthogonal linear transformation that projects the data 
in a new coordinate system such that the greatest variance of the 
data lies on the first coordinate (first PC), the second greatest 
variance on the second PC and so on…

● It can be shown that :
➔ The greatest variance is the first eigen value of X’X
➔ Transforming coordinates is done using the first eigen vector

Jolliffe, I. T. (1986). Principal Component Analysis. Springer Series in Statistics. Springer-Verlag. doi:10.1007/b98835 ISBN 978-0-387-95442-4.
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Linear algebra for statistics

The singular values (in Σ) are the square roots of the eigenvalues of the matrix 
X’X. Each eigenvalue is proportional to the portion of the "variance" (more 
correctly of the sum of the squared distances of the points from their 
multidimensional mean) that is associated with each eigenvector. The sum of all 
the eigenvalues is equal to the sum of the squared distances of the points from 
their multidimensional mean. PCA essentially rotates the set of points around 
their mean in order to align with the principal components. This moves as 
much of the variance as possible (using an orthogonal transformation) into the 
first few dimensions. The values in the remaining dimensions, therefore, tend to be 
small and may be dropped with minimal loss of information (see below). PCA is 
often used in this manner for dimensionality reduction. PCA has the distinction 
of being the optimal orthogonal transformation for keeping the subspace that has 
largest "variance" (as defined above).

en.wikipedia.org/wiki/Principal_component_analysis (2023/12/11)
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PCA, principle

Teasing: Would you use a cubic 
box to pack a fishing rod?
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PCA, principle

S
h

o
u

ld
e
r 

g
ir

th

Waist girth

1st Principal Component: 
«beefyness»

Do we need 3 
dimensions to represent 
‘standard’ individuals?

=

Do we need a cubic box 
to pack a fishing rod?
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PCA, toy example

• 20 individuals or observations 

• 5 variables
s.g : shoulder girth (cm)
c.g : chest girth (cm)
w.g : waist girth (cm)
w   : weight (kg)
h   : height (cm)

Id     s.g    c.g    w.g    w     h
I1    106.2   89.5  71.5  65.6  174.0
I2    110.5   97.0  79.0  71.8  175.3
I3    115.1   97.5  83.2  80.7  193.5
I4    104.5   97.0  77.8  72.6  186.5
I5    107.5   97.5  80.0  78.8  187.2
I6    119.8   99.9  82.5  74.8  181.5
I7    123.5  106.9  82.0  86.4  184.0
I8    120.4  102.5  76.8  78.4  184.5
I9    111.0   91.0  68.5  62.0  175.0
I10   119.5   93.5  77.5  81.6  184.0
I11   105.0   89.0  71.2  67.3  169.5
I12   100.2   94.1  79.6  75.5  160.0
I13    99.1   90.8  77.9  68.2  172.7
I14   107.6   97.0  69.6  61.4  162.6
I15   104.0   95.4  86.0  76.8  157.5
I16   108.4   91.8  69.9  71.8  176.5
I17    99.3   87.3  63.5  55.5  164.4
I18    91.9   78.1  57.9  48.6  160.7
I19   107.1   90.9  72.2  66.4  174.0
I20   100.5   97.1  80.4  67.3  163.8
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PCA, toy example

Id     s.g    c.g    w.g    w     h
I1    106.2   89.5  71.5  65.6  174.0
I2    110.5   97.0  79.0  71.8  175.3
I3    115.1   97.5  83.2  80.7  193.5
I4    104.5   97.0  77.8  72.6  186.5
I5    107.5   97.5  80.0  78.8  187.2
I6    119.8   99.9  82.5  74.8  181.5
I7    123.5  106.9  82.0  86.4  184.0
I8    120.4  102.5  76.8  78.4  184.5
I9    111.0   91.0  68.5  62.0  175.0
I10   119.5   93.5  77.5  81.6  184.0
I11   105.0   89.0  71.2  67.3  169.5
I12   100.2   94.1  79.6  75.5  160.0
I13    99.1   90.8  77.9  68.2  172.7
I14   107.6   97.0  69.6  61.4  162.6
I15   104.0   95.4  86.0  76.8  157.5
I16   108.4   91.8  69.9  71.8  176.5
I17    99.3   87.3  63.5  55.5  164.4
I18    91.9   78.1  57.9  48.6  160.7
I19   107.1   90.9  72.2  66.4  174.0
I20   100.5   97.1  80.4  67.3  163.8

Raw data

       s.g    c.g    w.g     w     h
s.g    68.6   37.7   28.1   55.3  61.2
c.g    37.7   37.5   33.9   45.7  32.4
w.g    28.1   33.9   50.8   56.6  27.7
w      55.3   45.7   56.6   85.7  59.5
h      61.2   32.4   27.7   59.5 109.3

Covariance matrix

68.6 + 37.5 + 50.8 + 85.7 + 109.3 = 351.9

351.9 represents the quantity of 
information contained in the data.
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Eigen decomposition of the covariance matrix

R> eigen(cov(dataBody))
eigen() decomposition
$values
[1] 255.7  60.2  23.5   8.6   4.0

$vectors
      [,1]  [,2]  [,3]  [,4]  [,5]
[1,]  -0.45  0.16  0.78  0.18 -0.36
[2,]  -0.32 -0.25  0.26 -0.72  0.49
[3,]  -0.34 -0.53 -0.33 -0.24 -0.66
[4,]  -0.53 -0.36 -0.18  0.60  0.44
[5,]  -0.54  0.70 -0.42 -0.16 -0.02

www.r-project.org

PC1 =  0.45*shoulder.g + 0.32*chest.g + 0.34*waist.g + 0.54*weight + 0.54*height
PC2 = -0.16*shoulder.g + 0.25*chest.g + 0.53*waist.g + 0.36*weight – 0.70*height
...

Coefficients of linear combinations or loadings

R> prcomp(dataBody)

Standard deviations (1, .., p=5):
[1] 15.99  7.76  4.85  2.93  2.00

Rotation (n x k) = (5 x 5):
           PC1   PC2   PC3   PC4   PC5
shoulder.g 0.45 -0.16  0.78 -0.18  0.36
chest.g    0.32  0.25  0.26  0.72 -0.49
waist.g    0.34  0.53 -0.33  0.24  0.66
weight     0.54  0.36 -0.18 -0.60 -0.44
height     0.54 -0.71 -0.43  0.17  0.02



  

18 / 47

Transorm the data

Id     s.g     c.g     w.g     w     h
I1    -1.9    -4.7    -3.8   -5.0   -0.4
I2     2.4     2.8     3.7    1.2    0.9
I3     7.0     3.3     7.9   10.1   19.1
I4    -3.6     2.8     2.5    2.0   12.1
I5    -0.6     3.3     4.7    8.2   12.8
I6    11.7     5.7     7.2    4.2    7.1
I7    15.4    12.7     6.7   15.8    9.6
I8    12.3     8.3     1.5    7.8   10.1
I9     2.9    -3.2    -6.8   -8.6    0.6
I10   11.4    -0.7     2.2   11.0    9.6
I11   -3.1    -5.2    -4.1   -3.3   -4.9
I12   -7.9    -0.1     4.2    4.9  -14.4
I13   -9.0    -3.4     2.6   -2.4   -1.7
I14   -0.5     2.8    -5.8   -9.2  -11.8
I15   -4.1     1.2    10.7    6.2  -16.9
I16    0.3    -2.4    -5.4    1.2    2.1
I17   -8.8    -6.9   -11.8  -15.1  -10.0
I18   -16.2   -16.1   -17.4  -22.0  -13.7
I19   -1.0    -3.3    -3.1   -4.2   -0.4
I20   -7.6     2.9     5.1   -3.3  -10.6

Centered data
         PC1   PC2   PC3   PC4   PC5
I1     -6.50  -4.48 -0.37 -1.03  1.27
I2      4.40   2.04  0.81  1.87  1.38
I3     22.66  -5.94 -6.18  0.11  1.97
I4      7.78  -5.24 -8.38  4.10 -1.74
I5     13.73  -2.67 -8.02  0.82 -2.15
I6     15.67  -0.15  4.49  2.33  4.40
I7     26.99   3.19  6.29  0.04 -3.08
I8     18.41  -3.43  5.63  1.09 -1.96
I9     -6.25  -8.48  4.97  0.79  1.86
I10    16.78  -3.67  1.99 -7.08  1.22
I11    -8.83  -0.78  0.28 -3.02  0.07
I12    -7.28  15.41 -2.31 -3.00 -2.35
I13    -6.45   2.25 -7.60  0.95  1.15
I14   -12.51   2.68  8.91  4.27 -1.53
I15    -3.65  20.76 -0.30 -2.45  1.99
I16    -0.63  -4.62  0.34 -3.46 -2.80
I17   -23.61  -5.07  2.20  1.19 -1.15
I18   -37.50  -9.07 -1.33 -1.89 -0.02
I19    -4.98  -3.61  0.33 -0.50  1.02
I20    -8.24  10.89 -1.74  4.86  0.44

Mean   0     0     0     0     0
Var. 255.7 60.2  23.5   8.6  4.0 = 351.9

Apply 
loadings

Ex: -6.50 = 0.45*(-1.9) + 0.32*(-4.7) + 0.34*(-3.8) + 0.54*(-5) + 0.54*(-0.4)

255.7 is the greatest variance we can obtain with a 
linear combination of the initial variables.

     PC1   PC2   PC3   PC4   PC5
s.g  0.45 -0.16  0.78 -0.18  0.36
c.g  0.32  0.25  0.26  0.72 -0.49
w.g  0.34  0.53 -0.33  0.24  0.66
w    0.54  0.36 -0.17 -0.60 -0.44
h    0.54 -0.70 -0.43  0.17  0.02
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Graphical outputs (1/4)

         PC1   PC2   PC3   PC4   PC5
I1     -6.50  -4.48 -0.37 -1.03  1.27
I2      4.40   2.04  0.81  1.87  1.38
I3     22.66  -5.94 -6.18  0.11  1.97
I4      7.78  -5.24 -8.38  4.10 -1.74
I5     13.73  -2.67 -8.02  0.82 -2.15
I6     15.67  -0.15  4.49  2.33  4.40
I7     26.99   3.19  6.29  0.04 -3.08
I8     18.41  -3.43  5.63  1.09 -1.96
I9     -6.25  -8.48  4.97  0.79  1.86
I10    16.78  -3.67  1.99 -7.08  1.22
I11    -8.83  -0.78  0.28 -3.02  0.07
I12    -7.28  15.41 -2.31 -3.00 -2.35
I13    -6.45   2.25 -7.60  0.95  1.15
I14   -12.51   2.68  8.91  4.27 -1.53
I15    -3.65  20.76 -0.30 -2.45  1.99
I16    -0.63  -4.62  0.34 -3.46 -2.80
I17   -23.61  -5.07  2.20  1.19 -1.15
I18   -37.50  -9.07 -1.33 -1.89 -0.02
I19    -4.98  -3.61  0.33 -0.50  1.02
I20    -8.24  10.89 -1.74  4.86  0.44

       PC1   PC2   PC3   PC4   PC5
Variance   255.7 60.2  23.5   8.6   4.0
% variance  72.6 17.1   6.7   2.4   1.1

Screeplot

Individual 
plot
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Graphical outputs (2/4)

             PC1   PC2
shoulder.g   0.45 -0.16
chest.g      0.32  0.25
waist.g      0.34  0.53
weight       0.54  0.36
height       0.54 -0.70

Loadings

Loading plot
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Graphical outputs (3/4)
         PC1   PC2
I1     -6.50  -4.48
I2      4.40   2.04
I3     22.66  -5.94
I4      7.78  -5.24
I5     13.73  -2.67
I6     15.67  -0.15
I7     26.99   3.19
I8     18.41  -3.43
I9     -6.25  -8.48
I10    16.78  -3.67
I11    -8.83  -0.78
I12    -7.28  15.41
I13    -6.45   2.25
I14   -12.51   2.68
I15    -3.65  20.76
I16    -0.63  -4.62
I17   -23.61  -5.07
I18   -37.50  -9.07
I19    -4.98  -3.61
I20    -8.24  10.89

Id     s.g    c.g    w.g    w     h
I1    106.2   89.5  71.5  65.6  174.0
I2    110.5   97.0  79.0  71.8  175.3
I3    115.1   97.5  83.2  80.7  193.5
I4    104.5   97.0  77.8  72.6  186.5
I5    107.5   97.5  80.0  78.8  187.2
I6    119.8   99.9  82.5  74.8  181.5
I7    123.5  106.9  82.0  86.4  184.0
I8    120.4  102.5  76.8  78.4  184.5
I9    111.0   91.0  68.5  62.0  175.0
I10   119.5   93.5  77.5  81.6  184.0
I11   105.0   89.0  71.2  67.3  169.5
I12   100.2   94.1  79.6  75.5  160.0
I13    99.1   90.8  77.9  68.2  172.7
I14   107.6   97.0  69.6  61.4  162.6
I15   104.0   95.4  86.0  76.8  157.5
I16   108.4   91.8  69.9  71.8  176.5
I17    99.3   87.3  63.5  55.5  164.4
I18    91.9   78.1  57.9  48.6  160.7
I19   107.1   90.9  72.2  66.4  174.0
I20   100.5   97.1  80.4  67.3  163.8

  PC1   PC2
shoulder.g 0.87  -0.15
chest.g    0.84   0.32
waist.g    0.75   0.58
weight     0.92   0.30
height     0.83  -0.52

Correlation circle plot

cor(s.g, PC1) =  0.87
cor(s.g, PC2) = -0,15

cor(c.g, PC1) =  0.84
cor(c.g, PC2) =  0.32
...
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Graphical outputs (4/4)

Id    s.g    c.g    w.g    w     h
I1   106.2   89.5  71.5  65.6  174.0
I2   110.5   97.0  79.0  71.8  175.3
I3   115.1   97.5  83.2  80.7  193.5
I4   104.5   97.0  77.8  72.6  186.5
I5   107.5   97.5  80.0  78.8  187.2
I6   119.8   99.9  82.5  74.8  181.5
I7   123.5  106.9  82.0  86.4  184.0
I8   120.4  102.5  76.8  78.4  184.5
I9   111.0   91.0  68.5  62.0  175.0
I10  119.5   93.5  77.5  81.6  184.0
I11  105.0   89.0  71.2  67.3  169.5
I12  100.2   94.1  79.6  75.5  160.0
I13   99.1   90.8  77.9  68.2  172.7
I14  107.6   97.0  69.6  61.4  162.6
I15  104.0   95.4  86.0  76.8  157.5
I16  108.4   91.8  69.9  71.8  176.5
I17   99.3   87.3  63.5  55.5  164.4
I18   91.9   78.1  57.9  48.6  160.7
I19  107.1   90.9  72.2  66.4  174.0
I20  100.5   97.1  80.4  67.3  163.8

Mean 108.1   94.2  75.3  70.6  174.4

Biplot
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Focus on the variable plot

Remember trigonometry and right triangles:

The correlation between two variables is represented as:

● An acute angle (cos(α) > 0) if it is positive

● An obtuse angle (cos(θ) < 0) if it is negative

● A right angle (cos(β)≈0) if it is near zero

Correlation ↔ cosine
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Focus on the individual plot

● To interpret the graphical results of 
PCA must be done keeping in mind 
that one is looking at a projection on 
a plane (or in a volume for 3D 
representation)

● Be careful when interpreting visual 
proximities

● Illustration in comics with the only 
true super-heros ...

Scenario & illustration: Pascal 
Jousselin
Colour: Laurence Croix

pjousselin.free.fr
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Focus on the individual plot

I13       99.1    90.8    77.9   68.2  172.7
I14      107.6    97.0    69.6   61.4  162.6
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Graphical outputs: summary

Screeplot

● How many components?

● 90% with 2 Pcs, 97% 
with 3PCs, 100% with 
5PCs

Individual plot

● ‘Natural’ clusters, 
outliers...

● Caution: visual 
proximities

Variable plot, loading plot

● Correlation between 
variables

● Interpret components: PC1 
« beefyness », PC2 
« fatness, rotundity »
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PCA, simulated examples

Data set : 50 observations, 3 variables (V1 – V2 - V3)

Case 1)
{V1} - {V2} - {V3} 

Case 2)
{V1 - V2} - {V3}

Case 3)
{V1 - V2 - V3}

1)   V1    V2   V3
V1  1.00 -0.05 -0.12
V2 -0.05  1.00  0.06
V3 -0.12  0.06  1.00

 Pearson Correlation matrices
2)   V1    V2    V3
V1  1.00  0.90  0.08
V2  0.90  1.00 -0.01
V3  0.08 -0.01  1.00

3)   V1    V2   V3
V1  1.00 0.93 0.87
V2  0.93 1.00 0.79
V3  0.87 0.79 1.00
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PCA, simulated examples

Case 1) Case 2) Case 3)
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PCA, simulated examples

Loadings

   Dim.1 Dim.2 Dim.3
V1 -0.23  0.14  0.07
V2  0.15  0.23 -0.03
V3  0.10 -0.02  0.22

39.7% 34.4% 25.9%
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PCA, simulated examples

Loadings

   Dim.1 Dim.2 Dim.3
V1  0.77  0.03  0.22
V2  0.97 -0.06 -0.17
V3  0.05  0.91 -0.02

62.9% 33.9%  3.2%
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PCA, simulated examples

Loadings

   Dim.1 Dim.2 Dim.3
V1  1.07 -0.05  0.22
V2  1.23 -0.34 -0.13
V3  1.07  0.44 -0.07

90.7% 7.6%  1.7%
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Extension to integration problems Numerical

Categorical
● Multivariate unsupervised
One numerical dataset
Principal Component Analysis

● Multivariate supervised
One numerical dataset and one categorical 
variable
Linear Discriminant Analysis, Projection to 
Latent Structures – Discriminant Analysis

● Multi-block unsupervised
Several numerical datasets, same samples 
(Generalized) canonical correlation 
analysis,(Multi-block) Projection to Latent 
Structure

● Multi-block supervised
Several numerical datasets and one 
categorical variable, same samples
(Multi-block) Projection to Latent 
Structure – Discriminant Analysis

● Multi-group analyses
Same as above with samples divided pre-
defined in groups (batch, study…)
Multi-group PCA, Multi-group PLS-DA
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Extension to integration problems
PCA

max var(PC
i
) PC1 PC2 PC3

X Y

PLS, PLS-DA
max cov(PLS

X
,PLS

Y
)

PLSX1 PLSX2 PLSX3 PLSY1 PLSY2 PLSY3

The trick for discriminant analyses: 
convert a factor into a numeric 

(dummy) matrix

G1
G2
G1
G1
G2
G2
G1

1  0
0  1
1  0
1  0
0  1
0  1
1  0

PLS-DA  →    PLS

X1 X2 X3 X4

Generalized PLS, PLS-DA
max {c12.cov(PLS

X1
,PLS

X2
) +

     c13.cov(PLSX1,PLSX3) +
     c14.cov(PLS

X1
,PLS

X4
) +

     c23.cov(PLSX2,PLSX3) +
...}

PLSX1_1 PLSX1_2 PLSX2_1 PLSX2_2 PLSX3_1 PLSX3_2 PLSX4_1 PLSX4_2

cij can be set by the user through a design matrix



  

34 / 47

Sparsity

Sparse PCA
max {var(PC

i
) + penalty} SPC1 SPC2 SPC3

SPC1 =   0.X1 + a12.X2 + a13.X3 + … +   0.Xp
SCP2 = a21.X1 +   0.X2 +   0.X3 + … + a2p.Xp
...

● High throughput experiments: too many variables, noisy or irrelevant 
depending on the goal aimed

● Some of the variable loadings, among the smallests, are set to 0 thanks to a 
LASSO (L1) penalty

● Associated variables are not taken into account when calculating the PCs
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How is global warming 
affecting plant growth?
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WallOmics project

1/ Collect plants on the ground
2/ Gather seeds and grow them in 
controlled conditions (temperature, 
light, humidity…) at 2 different 
temperatures (15°C and 22°C)

3/ Collect different parts 
of the plant (stem, leaf, 
rosette...)

4/ Analyze biological samples using 
high-throughput bio-technologies 
(DNA sequencing, mass 
spectrometry...) 5/ Generate very large 

datasets (thousands of 
features for each 
biological sample)

          Pectin_RGI Pectin_HG     XG Pectin_linearity Contribution_RG RGI_branching
Col.22.1       75.96     60.29  92.88             0.94            0.29          2.70
Col.22.2       63.71     76.68  89.76             1.32            0.17          3.49
Col.22.3       69.05     78.73 103.20             1.28            0.20          2.92
Col.15.1       57.56     43.65  81.75             0.85            0.20          4.95
Col.15.2       79.39     74.34 116.76             1.03            0.16          4.92
Col.15.3       84.36     73.31 123.27             0.96            0.17          5.18
Roch.22.1      89.13    109.42 117.23             1.37            0.20          2.69
Roch.22.2     120.02    138.92 135.48             1.33            0.24          2.16
Roch.22.3      97.46    114.35 130.65             1.33            0.22          2.48
Roch.15.1      91.94     88.57 136.65             1.07            0.19          4.04
Roch.15.2     100.44     96.91 193.22             1.04            0.14          5.95
Roch.15.3      96.42     97.84 179.30             1.09            0.13          6.07
Grip.22.1      97.44    119.20 113.23             1.38            0.21          2.50
Grip.22.2      90.28     88.47 111.65             1.12            0.24          2.76
Grip.22.3      45.95     54.63  58.89             1.29            0.14          4.47
Grip.15.1      77.22     72.26  99.00             1.01            0.14          6.26
Grip.15.2      80.55     77.47 122.85             1.04            0.14          6.08
Grip.15.3      86.40     82.43 132.43             1.03            0.13          6.24

→ need for statistical 
skills to analyze them
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WallOmics project: datasets
● R package WallomicsData

 CRAN.R-project.org/package=WallomicsData

● 60 samples A. thaliana:

– 5 ecotypes (Col, Grip, Hern, Roc, Hosp)

– 2 temperatures (low, high)

– 2 organs (stem, rosette)

– 3 replicates

● 4 tables: proteomics, transcriptomics, metabolomics (sugar), phenomics

proteomics transcriptomics phenomicssugar

e
c
o
t
y
p
e

t
e
m
p
e
r
a
t
u
u
r
e

o
r
g
a
n

20 000 400 7 9

60

Generally, data integration can be defined as the process of 
combining data residing in diverse sources to provide users with a 
comprehensive view of such data. There is no universal approach 
to data integration, and many techniques are still evolving.
Schneider, M. V., & Jimenez, R. C. (2012). Teaching the Fundamentals of 
Biological Data Integration Using Classroom Games. PLoS Computational Biology, 
8(12)

Source: la-biologia6.webnode.es



  

38 / 47

WallOmics project: one specific question

Can We Determine a Multi-omics 
Signature to Classify Ecotypes on 

the Basis of Floral Stem Data?

● Multi-omics: consider all the datasets (proteomics, transcriptomics, 
metabolomics, phenomics → multi-block analysis

● Signature: select the most relevant variables inside each dataset → sparsity

● Classify ecotypes: supervised method → Discriminant Analysis

● Floral stem: filter data ‘organ = stem’
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WallOmics project: method

Multi-Block
Sparse

Projection to Latent Structures
Discriminant Analysis
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WallOmics project: results

Scatterplot matrix

Correlation 
circle plot

Circos plot

Individual plot

Clustered Image Map / heatmap
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WallOmics project: publication

● Harold: PhD student, vegetal biology
● Merwann: intern, applied mathematics 
● Philippe: researcher biology
● Elisabeth: professor in biology
● Christophe: professor in biology, 

Harold’s supervisor
● Sébastien : statistician, Harold’s co-

supervisor
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Other problems in the real world 
where maths can help
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Maths help... to give you a shining smile

Does wearing dental braces for 18 months really work?

For a shining smile...

… you must go 
through this...

Y = b
0
 + b

2
X2 + b

4
X4

Source: Dr Maxime Rotenberg

… and maybe also that!
Modeling the dental arch with a 4 

degre polynom without odd degres 
terms (for axial symetry)

M. Rotenberg, Modélisation de la forme d'arcade dentaire 
de jeunes adultes www.theses.fr/1996TOU30012
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Maths help... to understand cheese ripening
What are the microbiological mechanisms involved in the cheese ripening process?

Complex microbial Ecosystems MUltiScale modElling: 
mechanistic and data driven approaches integration

www.itn-emuse.com

“This presentation is part of a project that has received funding from the European Union’s Horizon 2020 
research and innovation program under the Marie Skłodowska-Curie grant agreement No 956126”.

10 Europeans partners...

Mayo,  Rodríguez Álvarez,  
Vázquez, Flórez (2021). Microbial 
Interactions within the Cheese 
Ecosystem and Their Application 
to Improve Quality and Safety. 
Foods. 10. 602. 
10.3390/foods10030602. 

… to better understand 
the cheese ripening 

process
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Maths help... to understand cheese ripening

A

B

Source : ichi.pro/de/was-ist-der-kernel-trick-warum-ist-es-wichtig-167853994055197

PhD thesis (ongoing): Kernel approaches for the integration of 
biological data from heterogeneous sources
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Maths help... to optimize performance in sport

Brooklin Nine-Nine, S1E15

● Recruit new players

● Prevent injury

● Model collective behaviour

● Identify optimal strategies

● ...

lejournal.cnrs.fr/articles/quand-les-maths-se-melent-de-sport
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Other domains
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