Ingénierie mathématique et analyse statistique de données sportives

Sébastien Déjean Ingénieur de recherche statisticien

math.univ-toulouse.fr/~sdejean

8 avril 2022

Ingénieur en mathématique ?

- 1993 Baccalauréat série C, mathématiques et sciences physiques, mention AB, (merci l'option latin!)
- 1994-1997 Institut Universitaire Professionnalisé, Mathématiques Industrielles, Calcul Scientifique et Statistique (DEUG, licence, maîtrise)
- 1998 Diplôme d'Études Approfondies en mathématiques appliquées
- 2002 Doctorat en mathématiques appliquées.
- 2019 Habilitation à Diriger les Recherches. Quinze ans de recherche appliquée en science des données.

Métier

BAP E « Informatique, Statistiques et Calcul scientifique » - Statistiques - IR

E1D44 - Expert-e en information statistique

Mission

Concevoir et piloter la réalisation de systèmes d'information statistique et animer le fonctionnement

Métiers si besoin

- responsable d'une cellule statistique dans un rectorat, une université, un organisme de recherche
- ingénieur responsable des aspects statistiques dans un laboratoire de recherche

ı		
	Famille d'activité professionnelle	Correspondance statutaire
	Statistiques	Ingénieur de recherche
	Famille d'activité professionnelle REME	Emploi-type de rattachement REME
	Études et évaluation des politiques publiques	Ingénieur, Chargé d'études et d'évaluation

Activités principales

- Piloter des projets statistiques
- · Concevoir des systèmes d'information à but décisionnel
- Coordonner une équipe autour de projets en statistique
- Définir un plan de recueil et de gestion des données ainsi que la chaine de traitement associée
- Élaborer des enquêtes et des études
- Concevoir les méthodes pour traiter les données stockées
- Contrôler la qualité des résultats et de leur interprétation
- Apporter aux partenaires d'un projet des conseils de haut niveau sur les méthodes statistiques à employer et les outils pertinents disponibles
- Participer à de projets au plan national, voire international et aux publications associées
- Effectuer des présentations et des formations pour assurer un transfert de compétences

Conditions particulières d'exercice

- Obligation de respecter le secret statistique ou professionnel dans le cadre législatif existant
- · Contraintes de calendrier en fonction de la nature du projet

Ancien code de l'emploi-type	Ancien intitulé de l'emploi-type				
REFERENS	REFERENS				
E1D24	Chef de projet ou expert en information statistique				

Compétences principales

Connaissances

- Statistiques (expertise)
- Techniques statistiques et informatiques de collecte et de traitement de données (expertise)
- Outils et méthodes de projection (expertise)
- Logiciels statistiques (maîtrise)
- Mathématiques (maîtrise)
- Langage de programmation (application)
- Méthodologie de conduite de projet
- Langue anglaise : B2 (cadre européen commun de référence pour les langues)

Compétences opérationnelles

- Piloter un projet
- · Encadrer / Animer une équipe
- Gérer la sécurité de l'information
- · Assurer une veille
- Mettre au point ou adapter des techniques nouvelles
- Apporter des réponses à des besoins spécifiques
- Identifier et restituer de l'information
- Réaliser des synthèses
- Accompagner et conseiller
- Communiquer et faire preuve de pédagogie

Compétences comportementales

- Capacité de prospective
- Capacité de conceptualisation
- Créativité / Sens de l'innovation

Diplôme réglementaire exigé - Formation professionnelle si souhaitable

- Doctorat, diplôme d'ingénieur
- Domaine de formation souhaité : statistiques et probabilités, économétrie, mathématiques appliquées

Tendances d'évolution

Facteurs d'évolution à moyen terme

- Renforcement de l'utilisation des outils et techniques informatiques de gestion et de traitement de très grandes masses de données
- Développement d'outils d'aide à la décision analysant des données complexes en un temps réduit

Impacts sur l'emploi-type (qualitatif)

 Adaptation aux techniques et outils statistiques de traitement de grandes masses de données

BAP A : Sciences du vivant, de la terre et de l'environnement

> 5 familles professionnelles > 36 emplois-types

BAP B: Sciences chimiques et Sciences des matériaux

> 4 familles professionnelles > 19 emplois-types

BAP C : Sciences de l'Ingénieur et instrumentation scientifique

> 4 familles professionnelles > 37 emplois-types

BAP D: Sciences Humaines et Sociales

> 4 familles professionnelles > 17 emplois-types

BAP E: Informatique, Statistiques et Calcul scientifique

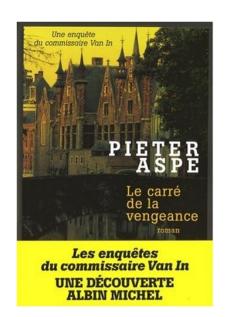
> 5 familles professionnelles > 18 emplois-types

BAP F: Culture, Communication, Production et diffusion des savoirs

> 4 familles professionnelles > 44 emplois-types

BAP G: Patrimoine immobilier, Logistique, Restauration et Prévention

> 3 familles professionnelles > 38 emplois-types


BAP J : Gestion et Pilotage

> 6 familles professionnelles > 33 emplois-types

Statistiques	Calcul scientifique
Expert-e en information statistique E1D44	Expert-e en calcul scientifique E1E45
Ingénieur-e statisticien-ne E2D46	Ingénieur-e en calcul scientifique E2E47
Assistant-e statisticien-ne E3D44	



Un métier à risque...

Selon le profil que j'ai établi en me basant sur les deux fax, le plus vieux des ravisseurs est très certainement universitaire. Il doit être ingénieur ou mathématicien. Je ne serais pas étonné si on me disait que c'est un statisticien ou un spécialiste du calcul des probabilités.

> Le carré de la vengeance, Pieter Aspe (traduction Emmanuèle Sandron)

Ingénierie mathématique et analyse statistique de données sportives Sébastien Déjean – www.math.univ-toulouse.fr/~sdejean

... mais sympa quand même


hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century

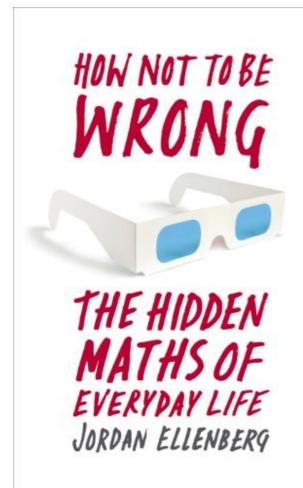
Analytics And Data Science

Data Scientist: The Sexiest Job of the 21st Century

Meet the people who can coax treasure out of messy, unstructured data. by Thomas H. Davenport and DJ Patil

From the Magazine (October 2012)

Andrew J Buboltz, silk screen on a page from a high school yearbook, 8.5" x 12", 2011 Tamar Cohen



Data scientist: The sexiest job of the 22nd century

Répondre à de vraies questions

Je n'aime pas les problèmes "issus de la vie courante". Ils donnent une image fausse du rapport entre mathématiques et réalité. "Bobby a 300 billes ; il en donne 30% à Jenny" [...]

Mais les guestions du monde réel ne ressemblent pas à ce type d'énoncés. **Un problème dans le monde réel**, c'est quelque chose comme : "La récession et ses suites ont-elles été particulièrement dures pour l'emploi des femmes, et dans ce cas, dans quelle mesure est-ce le résultat de l'administration Obama?" Votre calculette n'a pas de bouton pour ça.

Car pour donner une réponse vous devez connaître autre chose que de simples chiffres. [...] Ce n'est qu'après avoir formulé ces questions que vous pouvez prendre votre calculette. Mais à ce point, le véritable travail intellectuel est déjà terminé. **Diviser un nombre par un autre, ce n'est** que du calcul ; savoir ce que vous devez diviser par quoi, ça, c'est des mathématiques.

Répondre à de vraies questions

[...] **the rocky road of real problems** in preference to smooth road of unreal assumptions, arbitrary criteria, and abstract results without real attachments.

John Tukey, 1962, The Future of Data Analysis

génierie mathématique et analyse statistique de données sp ébastien Déjean – www.math.univ-toulouse.fr/~sdejean

Domaines d'application

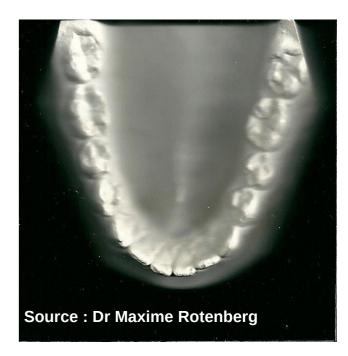
12 Examples of Big Data Analytics In Healthcare That Can Save People Mona Lebied, Business Intelligence Jul 18th 2018

Imaginez une flotte d'avions qui transmettraient l'ensemble de leurs données de vol sur une seule et même plate-forme numérique, de la moindre vanne défectueuse à un décollage poussif, en passant par des vibrations anormales de la voilure. Collectées, agrégées, retraitées, ces données formeraient un trésor. Il deviendrait possible pour l'utilisation de chaque avion de s'enrichir de l'exploitation des autres. À la clé, des millions d'euros d'économie. Changer cette pièce juste avant qu'elle ne tombe en panne, définir la meilleure trajectoire de vol pour réduire la consommation de carburant...Une révolution pour l'aéronautique, un changement de modèle économique pour les industriels, un scénario de rêve pour les compagnies aériennes.

usinenouvelle.com/article/avec-skywise-airbus-lance-linternet-des-avions.N618963

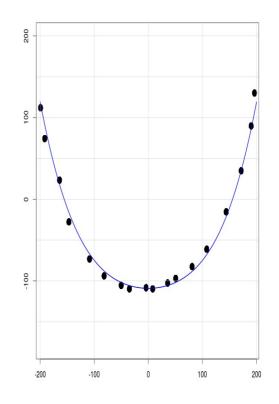
Imaginez un ensemble de patients qui transmettraient l'ensemble de leurs données de santé sur une seule et même plate-forme numérique, de la moindre prise de tension artérielle jusqu'aux examens génétiques ou d'imagerie lors d'un diagnostic de cancer, en passant par les résultats du bilan lors d'une lombalgie commune. Collectées, agrégées, retraitées, ces données formeraient un trésor. Il deviendrait possible pour le soin de chaque patient de s'enrichir de l'exploitation des autres. À la clé, des vies sauvées et des millions d'euros d'économie. Mettre en place des mesures de prévention et de dépistages personnalisés, définir le meilleur parcours de soin pour réduire l'impact des maladies et le handicap qui en découle... Une révolution pour la santé, un changement de modèle économique pour les hôpitaux, un scénario de rêve pour les patients et les cliniciens.

Adaptation réalisée avec l'aide de Pr X. de Boissezon (CHU Toulouse)



Orthodontie

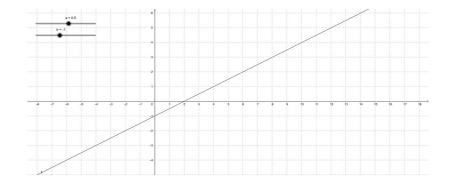
... il faut en passer par ici...

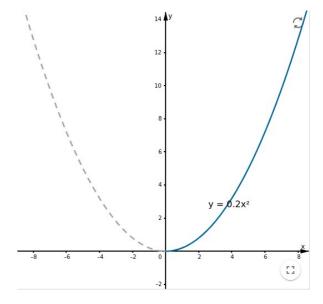


... et peut-être aussi par là!

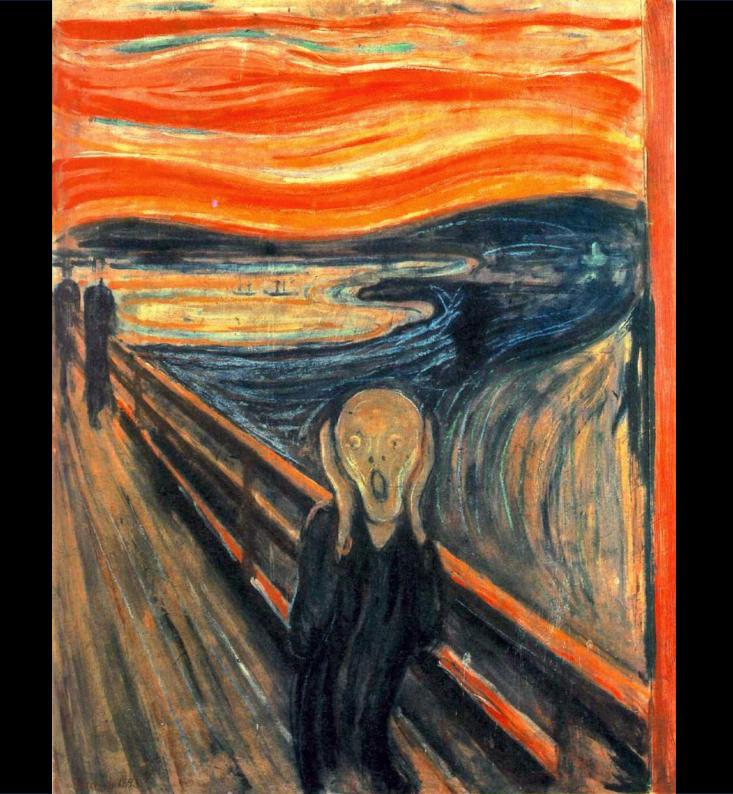
Modélisation de l'arcade dentaire par un polynôme de degré 4 sans termes de degrés impairs (symétrie axiale)

$$Y = b_0 + b_2 X^2 + b_4 X^4$$


- comparer les courbes avant et après traitement
- comparer une courbe à des références (charte)



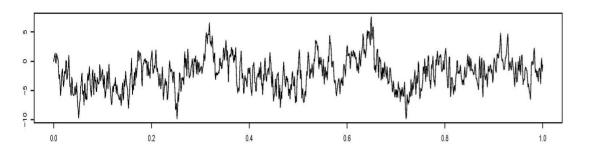
Travaux théoriques

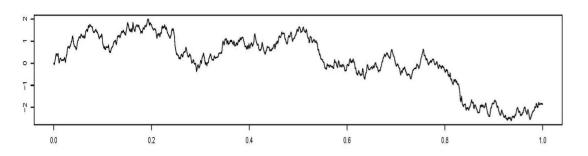

$$Y = aX + b$$

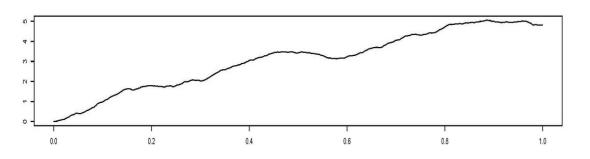
$$Y = aX^2 + bX + c$$

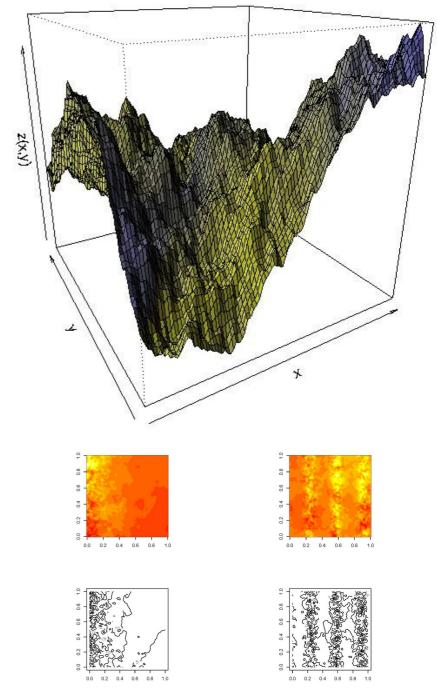
$$\sum_{l=1}^{n} \left(\frac{\cos(2\pi\theta_l) \left[\cos\left(\frac{R_l}{m}t.U_l\right) - 1 \right] + \sin(2\pi\theta_l) \left[\sin\left(\frac{R_l}{m}t.U_l\right) \right]}{R_l^{h(t)+1/2}} \right)$$

Un programme informatique


Extrait de programme en langage C


```
for (t=0;t<T;t++) nombre de valeurs de t, T termes
for (n=0;n<N;n++) calcul de la somme, N termes
{
  tmp1 = cos(2*M PI*theta)*(cos(t*R*U)-1);
  tmp2 = sin(2*M PI*theta)*sin(t*R*U);
  tmp3 = pow(R,0.5+H[t]);
  tmp = (tmp1+tmp2)/tmp3;
  res[t] = res[t] + tmp;
}</pre>
```


$$\sum_{l=1}^{n} \left(\frac{\cos(2\pi\theta_l) \left[\cos\left(\frac{R_l}{m}t.U_l\right) - 1 \right] + \sin(2\pi\theta_l) \left[\sin\left(\frac{R_l}{m}t.U_l\right) \right]}{R_l^{h(t)+1/2}} \right)$$



Des dessins!

Revue de presse

latribune.fr | 14/03/2013

L'an dernier, **le salaire moyen brut a progressé** de 2,1%, soit près d'un point de plus que l'inflation (+1,2%). Mais cette hausse ralentit.

Petite éclaircie pour le pouvoir d'achat des Français. L'Agence centrale des organismes de Sécurité sociale (Acoss) a annoncé les chiffres sur l'évolution du salaire moyen brut en France. En 2012, il a augmenté de 2,1% pour s'établir à 2 410 euros brut [...]

Moyenne : 2500 Médiane : 1000

Un exemple

	970
 Supposons qu'une entreprise compte 12 personnes : 8 ouvriers : entre 970€ et 1 100 € chacun Un chef d'atelier : 2 000 € Un directeur technique : 4 000 € 	975
	980
• 8 ouvriers : entre 970€ et 1 100 € chacun	985
	990
	995
 Un chef d'atelier : 2 000 € 	1005
	1100
 Un directeur technique : 4 000 € 	2000
• Un directeur des ressources humaines : 6 000 €	4000
• On directed des ressources numaines. 6 000 €	6000
• Un directeur général : 10 000 €	10000

Salaire moyen : **2500 €** - Salaire médian : **1000 €**

Comment augmenter le salaire moyen dans cette société ?

Solution 1 : augmenter tous les salaires de x %

Solution 2 : le dirigeant augmente son salaire

Solution 3 : « remercier » quelques postes de bas salaire

	1018.50		970		
	1023.75		975		
	1029		980		980
	1034.25		985		985
	1039.50		990		990
	1044.75		995		995
	1055.25		1005		1005
	1155		1100		1100
	2100		2000		2000
Solution 1	4200	Solution 2	4000	Solution 3	4000
	6300		6000		6000
	10500		12000		10000

La suite de l'article

latribune.fr | 14/03/2013

L'an dernier, **le salaire moyen brut a progressé** de 2,1%, soit près d'un point de plus que l'inflation (+1,2%). Mais cette hausse ralentit.

Petite éclaircie pour le pouvoir d'achat des Français. L'Agence centrale des organismes de Sécurité sociale (Acoss) a annoncé les chiffres sur l'évolution du salaire moyen brut en France. En 2012, il a augmenté de 2,1% pour s'établir à 2.410 euros brut, soit 0,9 point de plus que l'inflation qui s'est tenu à 1,2%.

Les effectifs salariés en légère baisse

La progression du salaire moyen s'explique en grande partie par la hausse de la masse salariale (+1,7%) alors que **le nombre de salariés du secteur privé s'est légèrement contracté** [...] L'Acoss note que la hausse de la masse salariale s'inscrit en net ralentissement puisqu'elle avait été de 3,5% l'année précédente. **La baisse des effectifs** est davantage marquée dans le secteur immobilier [...]

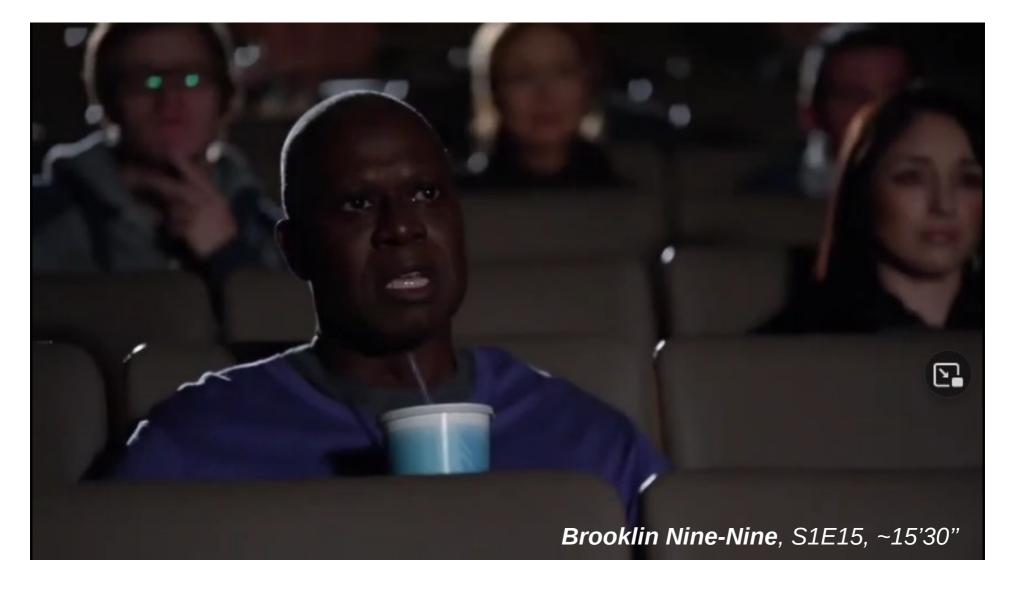
Source Colcanopa - Dessins d'actualité et illustrations - colcanopa.com

Et d'autres surprises...

• **200** élèves : **100** filles, **100** garçons

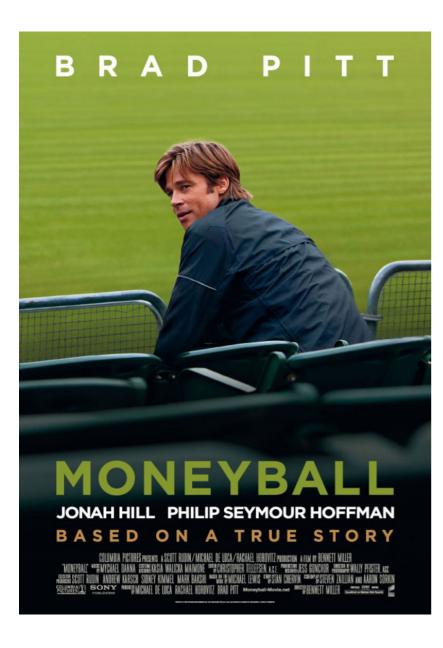
• 2 matières au choix : physique et biologie

Exemple fictif tiré de Pour la Science, Févmars 2018 ; J.-P. Delahaye citant Statistiques Méfiez-vous ! de N. Gauvrit


	Phys	sique	Biologie		
	G	F	G	F	
Réussite	80	10	4	50	
Echec	10	0	6	40	
Total	90	10	10	90	

Qui réussit le mieux ? Garçons ou filles ?

Analyse statistique de données sportives



This statistical analysis is so beautiful

Moneyball

Synopsis

www.allocine.fr/film/fichefilm_gen_cfilm=140005.html

Voici l'histoire vraie de Billy Beane, un ancien joueur de baseball prometteur qui, à défaut d'avoir réussi sur le terrain, décida de tenter sa chance en dirigeant une équipe comme personne ne l'avait fait auparavant...

Il va s'appuyer sur des théories statistiques [...] contre tous les principes, ils reconsidèrent la valeur de chaque joueur sur la base des statistiques [...]

La sabermétrie est une approche statistique du baseball. Le mot tire son origine de l'acronyme SABR (pour Society for American Baseball Research)[...].

Cette approche a été popularisée dans la dernière décennie par le livre Moneyball de Michael Lewis [...] et par le film du même nom [...]

fr.wikipedia.org/wiki/Saberm%C3%A9trie

Analyse statistique de données sportives

Sport et Big Data – Quand la science des données donne l'avantage sur le terrain

INSOLITE. Quand les datas des joueurs du RAF se LADEPECHE • fr retrouvent dans des exercices de maths

https://www.ladepeche.fr/2022/03/27/insolite-quand-les-datas-des-joueurs-du-rafse-retrouvent-dans-des-exercices-de-maths-10198130.php

Coupe du monde: Comment le Big Data coache l'équipe d'Allemagne

La Mannschaft s'entraîne depuis quelques mois avec l'appui d'un logiciel analysant les données biométriques et les déplacement des joueurs, ainsi que l'historique des matches joués par

Par Raphaéle Karayan

TFC: Avec Damien Comolli, la révolution du Big Data va déferier sur Toulouse

FOOTBALL Très probable futur président du TFC, Damien Comolli est un pionnier de l'usage des statistiques dans le football, notamment dans le recrutement

Nicolas Stival | • Publié le 14/06/20 à 10h15 — Mis à jour le 14/06/20 à 10h15

Le déclic « Moneyball »

L'autre déclic chez Comolli est d'origine familiale : « Son frère installé aux Etats-Unis lui a envoyé le livre *Moneyball* de Michael Lewis qui a été une révélation pour lui : on pouvait donc rationaliser le sport plutôt que se fier à des avis purement subjectifs », décrit l'ancien journaliste. Cet ouvrage de 2003, adapté au cinéma sous le titre Le Stratège en VF retrace

Exemple avec les coupes du monde de foot

- Données disponibles sur le site **STATSBOMB**.com
- Données des finales homme 2018 (France Croatie) et femme 2019 (USA – Pays-Bas)
- 1 685 passes réalisées pendant ces 2 matchs
- Informations recueillies pour chaque passe : temps écoulé, nom du joueur ou de la joueuse, son poste, longueur de la passe, angle donnant la direction de la passe, joueur ou joueuse ayant reçu la passe, hauteur de la passe (sol, basse, haute), partie du corps (pied droit, pied gauche, tête, main...)

Aperçu des données

competition.competiti	period	minute	second	timestamp	player.name
FIFA World Cup		1	0	0 00:00:00.400	Mario Mandžukić
FIFA World Cup		1	0	2 00:00:02.347	Marcelo Brozović
FIFA World Cup		1	0	3 00:00:03.947	Luka Modrić
FIFA World Cup		1	0	6 00:00:06.240	Šime Vrsaljko
FIFA World Cup		1	0	9 00:00:09.400	Danijel Subašić
FIFA World Cup		1	0	13 00:00:13.627	Raphaël Varane
FIFA World Cup		1	0	16 00:00:16.680	Ivan Perišić
FIFA World Cup		1	0	19 00:00:19.360	Ivan Rakitić
FIFA World Cup		1	0	20 00:00:20.120	Ivan Strinić
FIFA World Cup		1	0	23 00:00:23.547	Marcelo Brozović
FIFA World Cup		1	0	25 00:00:25.107	Ivan Perišić
FIFA World Cup		1	0	27 00:00:27.267	Domagoj Vida
FIFA World Cup		1	0	27 00:00:27.920	Luka Modrić
FIFA World Cup		1	0	29 00:00:29.427	Domagoj Vida
FIFA World Cup		1	0	31 00:00:31.747	Ivan Rakitić
FIFA World Cup		1	0	34 00:00:34.560	Domagoj Vida
FIFA World Cup		1	0	38 00:00:38.627	Dejan Lovren
FIFA World Cup		1	0	41 00:00:41.387	Ivan Rakitić
FIFA World Cup		1	0	54 00:00:54.747	Benjamin Pavard
FIFA World Cup		1	0	56 00:00:56.507	N\"Golo Kanté
FIFA World Cup		1	0	59 00:00:59.187	Marcelo Brozović
FIFA World Cup		1	1	0 00:01:00.107	Ivan Perišić
FIFA World Cup		1	1	1 00:01:01.947	Antoine Griezmann
FIFA World Cup		1	1	10 00:01:10.467	Benjamin Pavard
FIFA World Cup		1	1	14 00:01:14.667	Raphaël Varane
FIFA World Cup		1	1	17 00:01:17.227	Hugo Lloris
FIFA World Cup		1	1	36 00:01:36.867	Samuel Yves Umtiti
FIFA World Cup		1	1	39 00:01:39.027	Blaise Matuidi
FIFA World Cup		1	1	41 00:01:41.787	Samuel Yves Umtiti
FIFA World Cup		1	1	42 00:01:42.880	Olivier Giroud
FIFA World Cup		1	1	43 00:01:43.440	Blaise Matuidi
FIFA World Cup		1	1	45 00:01:45.440	Olivier Giroud
FIFA World Cup		1	1	47 00:01:47.107	Raphaël Varane
FIFA World Cup		1	1	51 00:01:51.427	Paul Pogba
FIFA World Cup		1	1	53 00:01:53.867	Domagoj Vida
FIFA World Cup		1	1	55 00:01:55.587	Ivan Strinić
FIFA World Cup		1	2	9 00:02:09.907	Marcelo Brozović
FIFA World Cup		1	2	11 00:02:11.507	Ivan Strinić
FIFA World Cup		1	2	13 00:02:13.067	Mario Mandžukić
FIFA World Cup		1	2	42 00:02:42.747	Kylian Mbappé Lottin
FIFA World Cup		1	2	53 00:02:53.507	Samuel Yves Umtiti
FIFA World Cup		1	3	15 00:03:15.680	Ivan Strinić
FIFA World Cup		1	3	17 00:03:17.267	Mario Mandžukić
FIFA World Cup		1	3	19 00:03:19.787	Kylian Mbappé Lottin

position.name	pass.length pass.angle	pass.recipient.name
Center Forward	11,0	3,1 Marcelo Brozović
Center Defensive Midfield	11,2	2,0 Luka Modrić
Right Center Midfield	23,0	1,6 Šime Vrsaljko
Right Back	40,3	-2,3 Danijel Subašić
Goalkeeper	64,1	-0,1 Mario Mandžukić
Right Center Back	10	1,6 NA
Left Wing	12,6	2,8 Ivan Rakitić
Left Center Midfield	17,9	-1,1 Ivan Strinić
Left Back	25,3	1,7 Marcelo Brozović
Center Defensive Midfield	3,6	-2,6 Ivan Perišić
Left Wing	12,4	2,9 Domagoj Vida
Left Center Back	7,6	0,4 Luka Modrić
Right Center Midfield	10,4	-2,9 Domagoj Vida
Left Center Back	11,2	-1,1 Ivan Rakitić
Left Center Midfield	12.8	2,5 Domagoi Vida
Left Center Back	19.1	1.7 Deian Lovren
Right Center Back	37.6	-1,1 Ivan Rakitić
Left Center Midfield	16,1	0.5 Ivan Perišić
Right Back	19.2	-1.7 N\"Golo Kanté
Left Defensive Midfield	5.1	1.4 Paul Pogba
Center Defensive Midfield	32.6	2.7 Ivan Perišić
Left Wing	6.4	2.5 Ivan Rakitić
Right Center Forward	6.3	1,2 Kylian Mbappé Lottin
Right Back	33.5	-2.8 Raphaël Varane
Right Center Back	31.6	-2,2 Hugo Lloris
Goalkeeper	17.8	-0.9 Samuel Yves Umtiti
Left Center Back	15.1	-0.1 Blaise Matuidi
Left Midfield	16,5	-2.9 Samuel Yves Umtiti
Left Center Back	27,0	0.0 Olivier Giroud
Left Center Forward	4	3.1 Blaise Matuidi
Left Midfield	6.4	2.2 Olivier Giroud
Left Center Forward	23.3	2,3 Raphaël Varane
Right Center Back	20.6	1,1 Paul Pogba
Right Defensive Midfield	42.2	-0.2 Antoine Griezmann
Left Center Back	13.6	-0.9 Ivan Strinić
Left Back	2.2	1.1 NA
Center Defensive Midfield	5,8	-1,0 Ivan Strinić
Left Back	24.1	0.1 Mario Mandžukić
Center Forward	24	1.6 Ante Rebić
Right Midfield	12.6	-2,8 Benjamin Pavard
Left Center Back	18.7	1.3 NA
Left Back	23.2	1,4 Mario Mandžukić
Center Forward	8.5	-2.4 Ivan Rakitić
Right Midfield	32.2	0.5 NA
rugin manolu		0,0.01

pass.height.name	pass.body part.name
Ground Pass	Right Foot
High Pass	Right Foot
High Pass	NA
Ground Pass	Right Foot
Ground Pass	Left Foot
Ground Pass	Right Foot
Ground Pass	Right Foot
Ground Pass	Left Foot
Ground Pass	Right Foot
Ground Pass	Right Foot
Ground Pass	Right Foot
Ground Pass	Right Foot
Ground Pass	Left Foot
Ground Pass	Right Foot
Ground Pass	Right Foot
Low Pass	NA
High Pass	Right Foot
High Pass	Head
Low Pass	Right Foot
Ground Pass	Left Foot
Low Pass	NA
Ground Pass	Left Foot
Ground Pass	Left Foot
Ground Pass	Left Foot
Ground Pass	Right Foot
Ground Pass	Left Foot
Low Pass	Left Foot
Low Pass	Head
Ground Pass	Right Foot
Ground Pass	Right Foot
High Pass	Right Foot
Low Pass	Left Foot
High Pass	Left Foot
Ground Pass	Right Foot
High Pass	Left Foot
High Pass	Head
High Pass	NA Bi-ta Fa
Ground Pass	Right Foot
High Pass	NA Head
High Pass	11000
High Pass	Right Foot

Exemple : La première ligne du fichier

Competition: FIFA World Cup

Period : 1 Minute : 0 Second : 0

Timestamp : 00:00:00.400

Player.name : Mario Mandžukić Position.name : Center Forward

Pass.length: 11.0 Pass.angle: 3.1

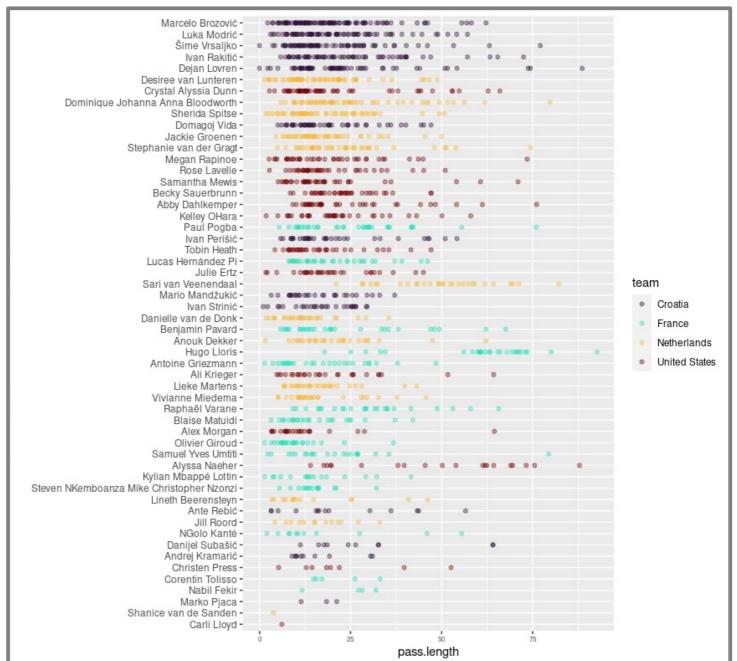
Pass.recipient.name : Marcelo Brozović

Pass.height.name : Ground Pass
Pass.body_part.name : Right Foot

Quelques indicateurs statistiques

- Nombre de passes, moyenne des longueurs de passe, médiane des longueurs de passe, étendue des longueurs de passe, différence moyenne-médiane, équipe, poste
- Joueurs et joueuses triés dans l'ordre décroissant de la moyenne des longueurs de passes

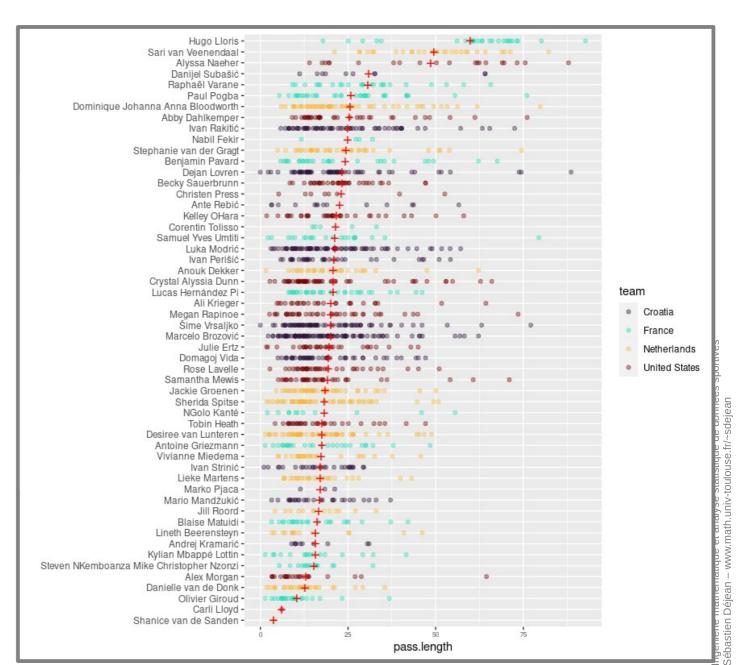
player.name	number	mean	median	range	mean-median	team	position
Hugo Lloris	27	59,9	63,2	74,9	-3,3	France	Goalkeeper
Sari van Veenendaal	29	49,6	50,2	61,1	-0,6	Netherlands Women's	Goalkeeper
Alyssa Naeher	20	48,5	52	74	-3,5	United States Women's	Goalkeeper
Danijel Subašić	10	30,8	25,4	52,9	5,4	Croatia	Goalkeeper
Raphaël Varane	24	30,6	29,2	56,5	1,4	France	Right Center Back
Paul Pogba	34	25,9	25,1	70,6	0,8	France	Right Defensive Midfield
Dominique Johanna Anna Bloodworth	55	25,7	20,2	73,9	5,5	Netherlands Women's	Left Center Back
Abby Dahlkemper	36	25,3	17	67	8,3	United States Women's	Right Center Back
Ivan Rakitić	65	24,8	20,6	66,6	4,2	Croatia	Left Center Midfield
Nabil Fekir	4	24,8	27,7	20,4	-2,9	France	Right Midfield
Stephanie van der Gragt	39	24,5	21,8	69,6	2,7	Netherlands Women's	Center Back
Benjamin Pavard	28	24,2	18,6	61,8	5,6	France	Right Back
Becky Sauerbrunn	37	23,3	22,4	38,7	0,9	United States Women's	Left Center Back
Dejan Lovren	64	23,3	20,1	88,6	3,2	Croatia	Right Center Back


Alex Morgan	24	12,9	9,6	61,1	3,3	United States Women's	Center Forward
Danielle van de Donk	28	12,8	11,3	33,7	1,5	Netherlands Women's	Left Wing
Olivier Giroud	23	10,3	8,9	35,4	1,4	France	Left Center Forward
Carli Lloyd	1	6,1	6,1	0	0,0	United States Women's	Right Wing
Shanice van de Sanden	1	3,8	3,8	0	0,0	Netherlands Women's	Right Wing

Ingénierie mathématique et analyse statistique de données sportive Sébastien Déjean – www.math.univ-toulouse.fr/~sdejean

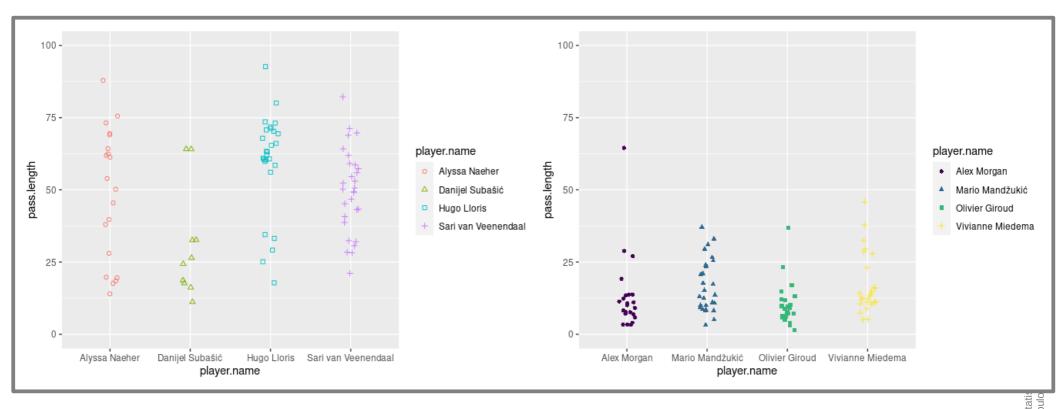
Représentations graphiques

- longueur des passes de tous les joueurs et joueuses des finales
- de haut en bas, dans l'ordre décroissant du nombre de passes réalisées
- la couleur indique l'équipe



Représentations graphiques

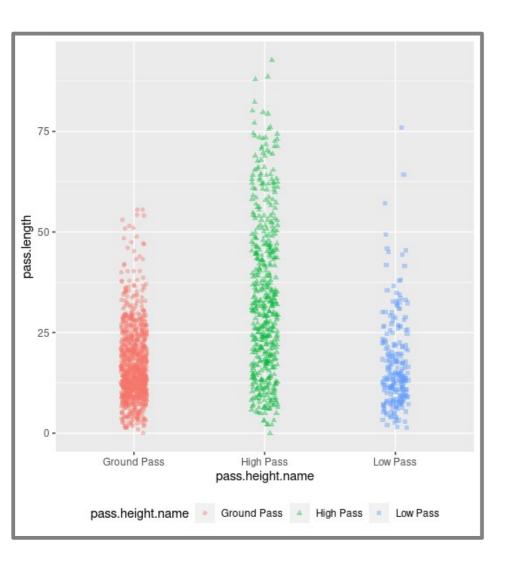
- longueur des passes de tous les joueurs et joueuses des finales
- de haut en bas, dans l'ordre décroissant de la longueur moyenne des passes
- la couleur indique l'équipe
- une croix rouge indique la moyenne de chaque joueur ou joueuse

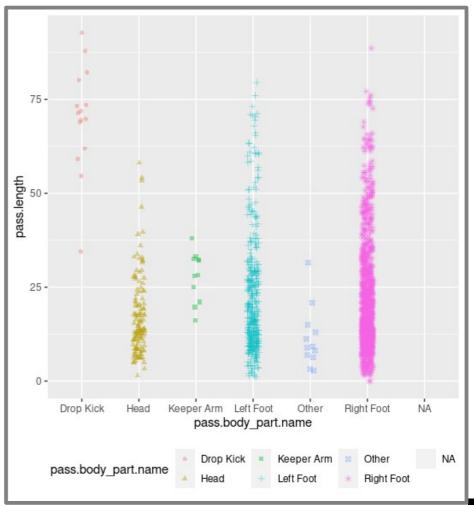


Deux postes spécifiques

Gardien.nes de but

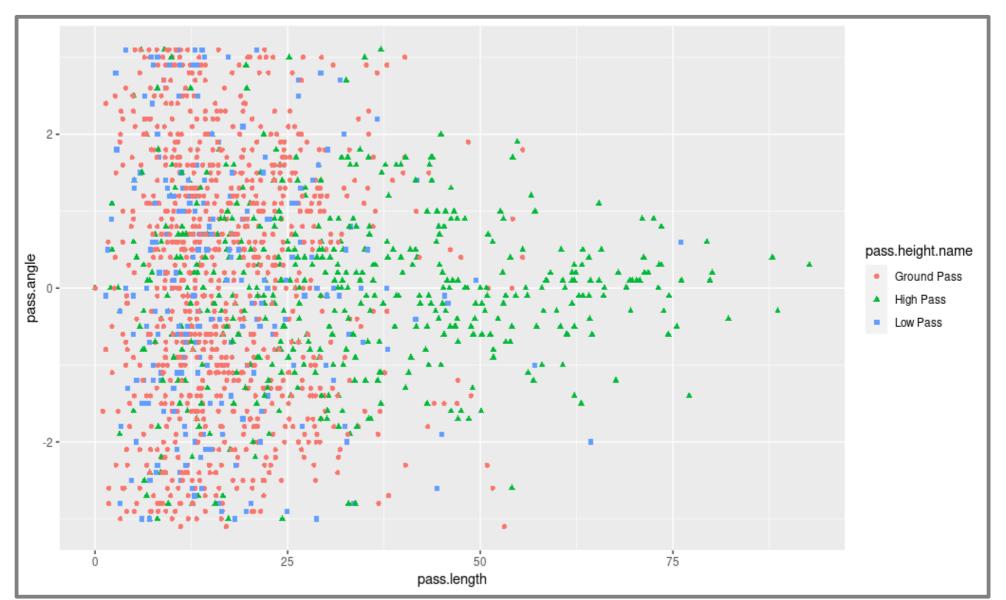
Attaquant.es


	Min.	Median	Mean	Max.		Min.	Median	Mean	Max.
Alyssa Naeher	14.0	52.1	48.5	87.9	Alex Morgan	3.3	9.6	12.9	64.5
Danijel Subašić	11.2	25.4	30.8	64.1	Mario Mandžukić	3.2	14.4	16.9	37.1
Hugo Lloris	17.8	63.2	70.5	92.7	Olivier Giroud	1.4	8.9	10.3	36.8
Sari van Veenendaal	21.1	50.2	49.6	82.2	Vivianne Miedema	5.0	13.3	17.3	45.8

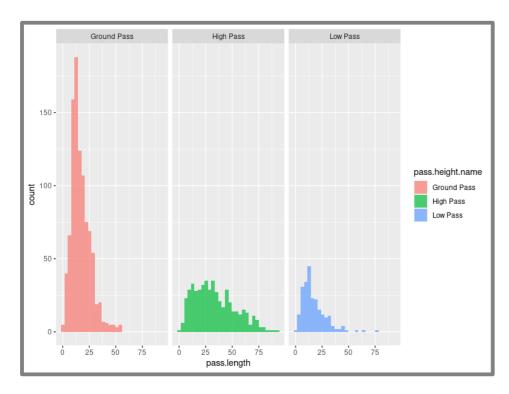


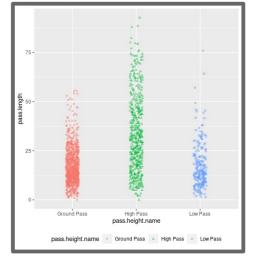
Avec d'autres paramètres

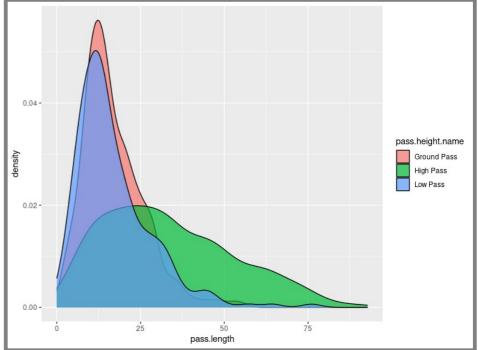
Longueur de la passe en fonction de la **hauteur**


Longueur de la passe en fonction de la **partie du corps**

Avec d'autres paramètres


Angle de la passe (axe vertical) en fonction de la **longueur** (axe horizontal) et de la **hauteur** (couleur)




Et d'autres représentations graphiques

Longueur de la passe en fonction de la hauteur

Histogrammes

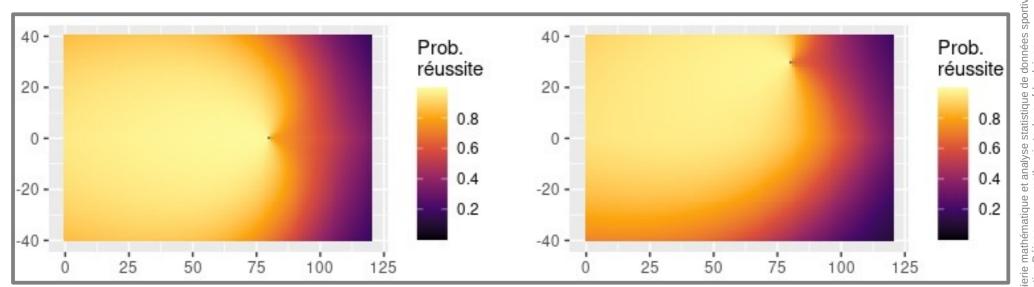
Densités

Un modèle expected pass

Un modèle statistique

Une base de données

- 64 matchs de la coupe du monde 2018
- 227 886 passes dont 215 172 réussies


$$logit(\pi(x_i)) = \ln(\frac{\pi(x_i)}{1 - \pi(x_i)})$$

$$= \theta_0 + \theta_1 length_i + \theta_2 angle_i + \sum_{j=2}^{6} \alpha_j \mathbb{1}_{zone_i = j}$$

$$+ \sum_{j=2}^{6} \beta_j \mathbb{1}_{receivalzone_i = j} + \theta_3 \mathbb{1}_{pressure_i = true} + \theta_4 \mathbb{1}_{bodypart_i = foot}$$

$$+ \theta_5 \mathbb{1}_{type_i = normal} + \sum_{j=2}^{25} \gamma_j \mathbb{1}_{position_i = j}$$

Résultat : prédiction de la probabilité de réussite d'une passe en fonction de la position du joueur

Projet de Z. Philippon et L. Kiersnowski étudiantes à l'INSA, Génie Mathématique et Modélisation. Encadrement : S. Déjean, J. Lopez Sanchez, P. Saint Pierre

Conclusion

Analytics And Data Science

Data Scientist: The Sexiest Job of the 21st Century

Meet the people who can coax treasure out of messy, unstructured data. by Thomas H. Davenport and DJ Patil

rom the Magazine (October 2012)

Andrew J Buboltz, silk screen on a page from a high school yearbook, 8.5" x 12", 2011 Tamar Cohen

