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Summary. In this note we consider the development of a domain decomposition
scheme directly obtained from the multiscale hybrid scheme described in [7]. The
basic idea is to couple macroscopic and microscopic models in all cases in which the
macroscopic model does not provide correct results. We will show that it’s possible
to view a Boltzmann-Euler domain decomposition method as a subset of the hybrid
scheme if we impose the value of the relaxation parameter equal to zero in some
regions of the computational domain. Applications to the two-dimensional BGK
equation is presented to show the performance of the method.

1 Introduction

In this note we afford the problem of developing efficient numerical methods
for multiscale phenomena in Rarefied Gas Dynamic (RGD). In some fluid
dynamic simulations the Navier-Stokes or the Euler equations do not give
a satisfactory descriptions of the physical system and a kinetic description
through the Boltzmann equation is often required. For regions not too far
from thermodynamic equilibrium the BGK approximation is known to be ac-
curate in describing the physics of the problem. However, the computational
cost of a direct discretization of the BGK equation is still high and the use of
particle simulation methods is preferable. The price to pay for the reduction
of computational cost is the presence of fluctuations in the solution. As a con-
sequence particle methods loose their competitiveness in continuum regions
where a finite volume solver for the Euler or Navier-Stokes equations can be
used. Domain decomposition techniques are then used in order to better treat
these difficulties and to design suitable numerical schemes. In many situation
in fact we don’t need to solve the kinetic equations in the whole computa-
tional domain but it’s sufficient to solve the hydrodynamical equations except
in small zones where departure from thermodynamical equilibrium like shock
waves are present. To this aim we developed a numerical scheme derived from
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the multiscale hybrid scheme [7], which can be used to obtain a decomposition
of the domain, artificially imposing the value of the Knudsen number ε equal
to zero, where the thermodynamic profiles provided by Euler equations are
sufficiently accurate.

2 The BGK Equation

We will consider the BGK equation

∂tf + v · ∇xf =
1
ε
(Mf − f), (1)

with the initial condition

f(x, v, t = 0) = f0(x, v), (2)

where f = f(x, v, t) is a non negative function describing the time evolution of
the distribution of particles which move with velocity v ∈ R3 in the position
x ∈ Ω ⊂ R3 at time t > 0. The parameter ε > 0 is the Knudsen number and is
proportional to the mean free path between collison. In the BGK equation the
collision are modelled with a relaxation towards the Maxwellian equilibrium
Mf . The local Maxwellian function is defined by

Mf (%, u, T )(v) =
%

(2πT )3/2
exp

(−|u− v|2
2T

)
, (3)

where %, u, T are the density, mean velocity and temperature of the gas

% =
∫

R3
fdv, u =

∫

R3
vfdv, T =

1
3%

∫

R3
[v − u]2fdv. (4)

In addition we define the energy E as

E =
1
2

∫

R3
v2fdv, (5)

and the kinetic entropy Hf by

Hf =
∫

R3
f log fdv. (6)

It is easy to show the entropy dissipation inequality

∂t

∫

R3
f log fdv +∇x

∫

R3
vf log fdv ≤ 0. (7)

Now, if we consider the BGK equation (1) and multiply it for the collision
invariants 1, v, 1

2 |v2| by integrating in v we obtain the evolution of the first
three moments of the distribution function f



Title Suppressed Due to Excessive Length 3

∂t

∫

R3
fφ(v)dv +∇x

∫

R3
vfφ(v)dv = 0, φ(v) = 1, v1, v2, v3, |v|2. (8)

These equations are the corresponding conservations laws for mass, momen-
tum and energy. Unfortunately the differential system of equations (8) is not
closed, since it involves higher order moments of the distribution function. As
ε → 0, from (1) we notice that f → Mf . In this case the higher order moments
of the distribution function can be computed as functions of %, u, and T and
we obtain the closed system of compressible Euler equations

∂%

∂t
+∇x · (%u) = 0,

∂%u

∂t
+∇x · (%u⊗ u + p) = 0,

∂E

∂t
+ (Eu + pu) = 0,

p = %T, E =
3
2
%T +

1
2
%|u|2.

(9)

3 Fluid Solver Indipendent Hybrid Method

In this section we introduce the Fluid Solver Indipendent (FSI) Hybrid
Method, that will be used to compute our solution in the whole domain (see
[7]). The domain decomposition will be achieved simply imposing the value
of the Knudsen number equal to zero in some part of the domain. The FSI
hybrid method is able to take advantage from the equilibrium part of the
solution through a general fluid solver for the Euler equations instead of a
kinetic scheme as in [6]. This represents an advantage in term of computa-
tional flexibility and cost. In this way the resulting scheme is faster and more
accurate then a conventional Monte Carlo (MC) solver. In fact, since only the
perturbation from equilibrium is solved by a MC scheme we have a reduction
of the number of particles in the computational domain with respect to a full
MC. In order to explain the algorithm we introduce the projection operator P .
The projection operator computes from the microscopic variables f or Mf the
macroscopic variables U = (%, u, T ), thus P (f) = U and P (Mf ) = U , since
the local Maxwellian has the same moments of the distribution function. If
we split the BGK equation (1) into a relaxation step and in a transport step,
from the exact solution of first step we have

f(x, v, t) = e−∆t/εf(x, v, t) + (1− e−∆t/ε)Mf (x, v, t), (10)

Thus we can write

U(x, t) = (1− β(x))P (f(x, v, t)) + β(x)P (Mf (x, v, t)) (11)

Where β(x) indicate the value of the equilibrium fraction at each time step
in each cell. Now we set fp(x, v, t) = (1 − β(x))P (f(x, v, t)) and solve the
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transport step for fp with Monte Carlo methods while for β(x)P (Mf (x, v, t))
we use any deterministic macroscopic scheme. Unfortunately the knowledge
of fp is linked to the solution of the entire distribution function f . Let us now
introduce the relaxation and transport operators R and T . The solution of
the microscopic problem for one time step can be written in the following way

R(fMC(x, v, t)) = (1− β(x))fMC(x, v, t) + β(x)MMC
f (x, v, t) (12)

T (R(fMC(x, v, t))) = T ((1−β(x))fMC(x, v, t))+T (β(x)MMC
f (x, v, t)) (13)

Where the apex MC , indicate that the solution is computed with MC scheme.
After transport we loose the equilibrium structure of the solution, we define
the quantity transported in the following way

f̃p(x, v, t) = T ((1− β(x))fMC(x, v, t)) (14)

M̃f (x, v, t) = T (β(x)MMC
f (x, v, t)) (15)

On the other hand the solution of the macroscopic equations can be performed
as

P (β(x)Md
f (x, v, t)) = Ud(x, t) (16)

T (Ud(x, t)) = Ũd(x, t) (17)

The final solution at each time step can be recovered by

Uh(x, t) = P (f̃p(x, v, t)) + Ũd(x, t) (18)

At the next time step from relaxation we obtain

f(x, v, t + ∆t) = (1− β(x))(f̃p(x, v, t) + M̃f (x, v, t))
+ β(x)Mf (x, v, t + ∆t) (19)

The term f̃p + M̃f represent the entire distribution function computed with
MC algorithm, however, we need only (1 − β(x)) of the latter quantity, thus
instead of sampling from local Maxwellian a fraction of particle β(x)Uh(x) we
sample only (1−β(x))β(x)Uh(x). This permits to avoid the effect of discarding
and resampling particles at each time step.

The macroscopic scheme, for the compressible Euler equation, used is a
MUSCL type (see [10], [7] for details), note however, that any numerical
scheme is possible for the fluid equations to our purpose. The method de-
serves some remarks
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Remark 1.

• We could try to compute the degree of equilibrium after transport of the
distribution function, in that way it’s possible to diminish particles and
fluctuations similarly to [6]. Note however that this will cause an increase
in the computational cost since we need the reconstruction of the distrib-
ution function f from samples. Moreover the evaluation of the equilibrium
fraction will be rather difficult due to the probabilistic character of the
component M̃f with respect to [5] and [6].

• It’s possible to think to other strategies to compute the degree of equilib-
rium after transport. For example a strategy based on a best fitting of the
higher order moments.

3.1 Domain decomposition method

We could view a domain decomposition technique as a subset of the FSI
hybrid scheme just described. The method consist simply in setting artificially
the value of the Knudsen number equal to zero where the Euler profiles are
sufficiently accurate. Thus the scheme becomes a coupling of a Euler solver
(by MUSCL scheme) in one part of the domain and a BGK solver in the rest
of the domain (by FSI method). In fact if ε ≡ 0 from (10) we get

f(x, v, t) = Mf (x, v, t). (20)

Thus after transport since we project the entire solution towards the equilib-
rium, we are no more interested to the form of the distribution function but
only by their moments. As a consequence P (f̃p) ≡ 0 and the hybrid solution is
Uh = Ũd. In order to divide the domain we need to decide some criteria which
permit to detect the zones in thermodynamical equilibrium with respect to
the others, this is still an open problem and it will not be addressed in the
present work, we quote for instance [8] in which the question is considered in
detail. Two consideration about the boundary conditions are necessary

• The deterministic scheme we use to solve the problem in regions where ε =
0, need a value which is supplied by the hybrid scheme. That value contains
some statistical fluctuation that could be large, thus the full deterministic
model could contain some boundary error given by the fluctuation which
propagates in the rest of the domain. In order to avoid the problem a
technique could be to make ε a smooth function of x which gently vary
from some fixed value towards zero. For instance we could set ε as

ε(x) =





εF , for x ≤ a
0, for x ≥ b
x− b

a− b
εF , for x ∈ [a, b]

(21)

Where b represent the boundary of the equilibrium zones, a represent
the boundary of the non equilibrium zones in which we use the full hybrid
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scheme, while εF represent the value of the Knudsen number for the hybrid
scheme.

• We need also the boundary value for the MC part of the FSI where ε 6= 0,
thus at the boundary between ε ≡ 0 and ε 6= 0 we need to sample some
particles from the Maxwellian. The number of samples we need is given by
(1−β(x))β(x)Uh(x), but they have to be taken from the local Maxwellian
in the cell (x − 1), if we are considering the left boundary, the same of
course it’s true for the right boundary.

4 Numerical test

In this section we compare the performance of MC and of DD-FSI (Domain
Decomposition-FSI). We consider an ellipse embedded in a flow with the fol-
lowing characteristic

% = 1, T = 5, M = 10 (22)

Where M indicates the Mach number, we choose full accommodation bound-
ary condition with temperature TE = 10. The Knudsen number is ε = 10−4

that correspond to β = 0.75 if ((x − 2)/1.8)2 + (y − 1)2 < 0.8 while ε = 0 if
((x− 2)/1.9)2 + (y − 1)2 > 0.8 that correspond of course to β = 1. The value
of the Knudsen number shift from the two reported value while we move from
one region towards the other as shown in Figure 2. The number of space cell
are 200× 200, the number of particles are 40 for cell. Since we are computing
a stationary solution we could after some fixed time strongly diminish the
fluctuation by averaging in time the solution, however we want to stress the
difference of fluctuations and computational time of our hybrid scheme with
respect to Monte Carlo, for this reason the solution is not averaged. What we
could see is the better accuracy and performance we obtain respect a Monte
carlo scheme. In the test presented we have a computational gain of about
40% which clearly increases in simulations in which we approach the hydrody-
namic limit. In fact if ε → 0 particles and fluctuations completely disappear
and the time we need to perform the solution is the same of a solver for the
compressible gas dynamic equations.

References

1. J. F. Bourgat, P. LeTallec, B. Perthame, and Y. Qiu, Coupling
Boltzmann and Euler equations without overlapping, in Domain Decom-
position Methods in Science and Engineering, Contemp. Math. 157, AMS,
Providence, RI, (1994), pp. 377–398.

2. R. E. Caflisch, and E. Luo, A Uniform Hybrid Monte Carlo Method
for Simulation of Rarefied Gas Dynamics, preprint (2004).

3. N.Crouseilles, P.Degond, M.Lemou, A hybrid kinetic-fluid model for
solving the gas-dynamics Boltzmann BGK equation, Journal of Computa-
tional Physics 199 (2004) 776-808.



Title Suppressed Due to Excessive Length 7

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Fig. 1. 2D flow: Domain Decomposition Hybrid scheme(left) Monte Carlo (right)
density (top), temperature (middle) velocity x- direction (middle) and velocity y-
direction (bottom)
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Fig. 2. Degree of equilibrium in different regions of the domain. β
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