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Abstract. An innovative Particle In Cell method, aimed at reducing the numerical noise characterising classical PIC schemes,
has been investigated in the framework of ionospheric plasma simulations.The numerical model is composed of a kinetic
equation for the plasma coupled with the Maxwell-Faraday law driving the evolution in the magnetic field.

INTRODUCTION

In this paper we investigate the evolution of the ionospheric plasma and more precisely, the interaction of plasma
bubbles with the earth magnetic field. The plasma composing these bubbles can be assumed quasi-neutral but not in a
thermodynamical equilibrium and thus requires a kinetic description. In these first stages of the study the collision
processes, although very important in the ionosphere context [see 1], are disregarded and postponed to a future
work. We propose a simplified model consisting of a Vlasov equation for the plasma coupled to the Maxwell-Faraday
equation for the magnetic field evolution, where the electric field is provided by a generalised Ohm’s law. It is derived
under the same assumptions as the Magneto-Hydro-Dynamic model but with a kinetic description of the plasma. The
numerical method relies on a moment guided method introduced in [5] which aims at reducing the numerical noise of
classical particle method. It has proven to be very efficientin the context of collisional rarefied gas dynamics and is
investigated here in a different framework. One dimensional numerical experiments are proposed to give a first view
of the numerical method efficiency.

A MODEL FOR THE EVOLUTION OF A IONOSPHERIC PLASMA IN A NON
THERMODYNAMICAL EQUILIBRIUM

A kinetic description of the ionospheric plasma

The system relies on a kinetic description for the ions and a fluid one for the electrons coupled to the Maxwell’s
equations for the electromagnetic field evolution. The equations are detailed with dimensionless quantities obtained
thanks to typical space and velocity scales ¯x and ū defining the time scalēt = x̄/ū. We denote byĒ, B̄, T̄ and n̄
the typical values for the electric and magnetic fields as well as the plasma temperature and density, we introduce
f̄ = n̄/(ū3) the typical value for the distribution function. Using these scales to define dimensionless variables yields

∂ f
∂ t

+v·∇x f +η (E+αβv×B) ·∇v f = 0. (1)



The electro-magnetic field(E,B) is a function ofx andt, its evolution being driven by the Maxwell’s equations

α
β

∂E
∂ t

−∇x×B= 0=−
α

βηλ 2 j , (2)

∂tB+∇x×E = 0, (3)

ηλ 2∇x ·E = ρ , (4)

∇x ·B= 0. (5)

In these equationsρ and j are respectively the charge and current densities as definedby ρ = ne−ni , j = niui −neue,
where the electronic density and velocity obey

∂tne+∇x · (neue) = 0, (6)

ε2 (∂t(neue)+∇x · (neue⊗ue))+∇xpe(ne) =−ηne(E+αβue×B) . (7)

The ionic density and momentum are provided byn =
∫

f dv, nui =
∫

f vdv. This system relies on the following
dimensionless parameters

ε = me/mi the ratio of the electronic and ionic masses;
β = cB̄/Ē wherec is speed of light;
α = ū/c the ratio of the typical macroscopic velocity to the speed oflight;
λ 2 = ε0kBT̄/(e2n̄x̄2) is the dimensionless squared Debye length,ε0 being the vacuum permittivity,e the elementary

charge;
η = eĒx̄/mi ū2 is the ratio of the momentum transport term and the Lorentz force.

Scaling relations

First we assume an entire Lorentz force comparable to the pressure term for both electrons and ions, which means
η = 1 as well asαβ = 1. The electron inertia is then disregarded and the plasma isassumed quasi-neutral which
translates intoε → 0 andλ → 0. The latter limit, thanks to the Gauss law (4), providesne = ni = n, the former one
transforms the electronic momentum equation (7) in the so-called generalised Ohm’s law :

∇xpe =−n(E+u×B)+ j ×B. (8)

In this expressionu = ui is the plasma velocity. Finally the current caused by the particle motion is assumed large
enough to produce changes in the magnetic field. This last statement yieldsα/(βηλ 2) = 1 which, using all the above
hypotheses, givesα/β = λ 2: the displacement current vanishes in Ampere’s equation which degenerates into

∇x×B= j . (9)

A simplified model problem for the ionospheric plasma interactions with the ambient
magnetic field

The model obtained with these scaling relations and expressed with dimensional quantities reads as a Vlasov
equation coupled with the Maxwell-Faraday law

∂ f
∂ t

+v·∇x f +
e
mi

(E+v×B) ·∇v f = 0, (10)

∂B
∂ t

+∇x×E = 0, (11)

where the magnetic field is divergence free,∇x ·B= 0 and the electric field is defined by (8) as,

E =−
(
u−∇x×B/(µ0en)

)
×B, (12)

µ0 being the vacuum permeability. Note that, for sake of simplicity we have omitted the electronic pressure term in the
generalised Ohm’s law. These equations can be regarded as a kinetic extension of the Hall-MHD system. This point
will be detailed further in the sequel.



NUMERICAL METHODS

The “moment guided method”

The moment guided method has been introduced in [5] in the context of rarefied gas dynamics described by the
Boltzmann equation. It is aimed at reducing the numerical noise characteristic of particle methods widely used to
discretize kinetic equations. The idea is to decompose the distribution function as a Maxwellian corrected with an
additional functiong: f = Mn,u,T +g. In this decomposition the MaxwellianMn,u,T shares the same first three mo-
ments with the distribution functionn(x, t) =

〈
f
〉
, u(x, t) = 1

n

〈
v f

〉
, T(x, t) = ∂

∂n

〈
|v−u|2 f

〉
, where

〈
f
〉
=

∫
f (x,v, t)dv.

Inserting this decomposition in the Vlasov equation and computing the first moments yields themoment model

∂n
∂ t

+∇x · (nu) = 0,

m
∂nu
∂ t

+∇x ·
(
mnu⊗u−

1
µ0

B⊗B
)
+∇xpTOT =−m∇x ·

〈
v⊗vg

〉
,

∂WTOT

∂ t
+∇ ·

(
WTOTu+ pTOTu−

1
µ0

(B·u)B
)
=−

m
2

∇x ·
〈
|v|2vg

〉
,

(13)

where⊗ is the tensor product,kB being the Boltzmann constant, the total pressure and energyare defined as

pTOT = p+
B2

2µ0
, WTOT =W+

B2

2µ0
, p= nkBT , W =

1
2

mnu2+
1

γ −1
p. (14)

These equations are coupled to the induction equation

∂B
∂ t

+∇x · (u⊗B−B⊗u) =−∇x×

(
∇x×B
µ0en

)
×B. (15)

Note that the moment model (13 – 15) is very close to the Hall-MHD system but with correction terms as second mem-
bers for the momentum and energy conservation equations. These kinetic corrections are explained by a distribution
function that is not reduced to a Maxwellian. The moment model is derived from the Vlasov equation (10) coupled
to the Maxwell-Faraday law (11) without any approximationsand should provide the same macroscopic quantity as
the one obtained thanks to the Vlasov equation. The guiding strategy performed at each time step is depicted in fig-
ure 1. It consists in using the informations provided by the moment model to correct particles properties, so that, the

f m

Um

f̃ m+1 f m+1

Um+1Ũm+1MHD system

Kinetic model

︸ ︷︷ ︸
Moment model

Matching
procedure

Kinetic corrections

The distribution function is advanced by means of the kinetic equation
providing f̃ m+1. At the same time the macroscopic quantitiesUm are
advanced thanks to the moment model with kinetic corrections evalu-
ated with f m and givingUm+1. These quantities are used to perform the
matching procedure aimed at correcting particle properties and comput-
ing the new distribution functionf m+1.

FIGURE 1. Schematic representation of a typical time step for the moment guided method.

moments of the advanced distribution function match the macroscopic quantities computed by the moment model.
This correction applied to the particle properties consists, for each cell, in creating or discarding particles, in order to
match the first order moment (density), and applying a lineartransformation to particle velocity in order to match local
mean velocities and pressures. We refer to [5] for a completedescription of this correction procedure. This strategy
is completely different to that of the most recent methods aimed at reducing the statistical fluctuations, namely the
molecular block model DSMC [12] or the Information Preservation DSMC method [7, 15]. The block model exploits
the dependance of the statistical error on the gas molecularmass [see 11]. A molecular block account for a large num-
ber of particles, and replaces the the conventional simulation particles, with a modified mass and cross section. This
method has proven to change the flow Mach number [17] and much work is needed to improve it. The IP-DSMC is
an alternative that has received a large interest. In this approach the simulated particles carry additional informations,
the preserved quantities, that can be interpreted as an ensemble average from a large set of real molecules represented
by the simulation particle. These preserved quantities, initially the velocity [7] referred to as the information velocity,
subsequently extended to the density and the temperature [9, 10, 14], are used to evaluate the macroscopic flow field.



However, the derivation of the equations driving the evolution of the preserved quantities relates on some assumptions
(a Maxwellian distribution is assumed for each cell in [18]), intuitive formulation or approximations [14, 10]. These
methods are more demanding in terms of mermory usage, than the standard (DSMC) ones, and have shown some
weakness in describing shock structures [9]. The approach developed here does not suffer any approximation in the
moment model derivation and is motivated by the statement that the quantities computed thanks to this model contain
less statistical error than the solution of the kinetic equation.

Overview of the numerical methods

As briefly mentioned above, the numerical methods rely on a Particle-In-Cell scheme [2, 8] using
macro particlesp ∈ P defined by their position, velocity and weight (Xp(t),Vp(t),ωp) such thatf (x,v, t) =
∑p∈P ωpδ (x−Xp(t)) δ (v−Vp(t)) , whereδ is the Dirac delta function andXp, Vp satisfy Newton’s laws

dXp(t)

dt
=Vp(t) ,

dVp(t)

dt
=

e
m

(
E(Xp)+Vp×B(Xp)

)
. (16)

The particle motion is integrated with a classical leapfrogscheme for which the particle position is computed on
integer time steps with velocity on half time steps. A classical Boris Push ([see 2, 8]) is used to integrate the
differential equation for the particle velocity. The electromagnetic field is computed on a grid thanks to the definition
of the macroscopic quantities defined on each cell accordingto particle properties. After the computations of the
electromagnetic field, the grid quantities are interpolated back onto the particles allowing the Newton’s law (16)
integration. The projection of macroscopic quantities as well as the interpolation of grid quantities at particle position
are achieved thanks to a projection-interpolation scheme such as theNearest Grid Pointor theCloud In Cell[2, 8].

The moment model (13 – 15) is discretized thanks to an upwind scheme [6] supplemented with a generalised
Lagrangian multiplier [4] to ensure a divergence free magnetic field. The correction terms accumulated from particle
properties are finite differenced. For the moment, the Hall term (i.e., the second member) in the induction equation (15)
is disregarded and its discretization is reported in futurework.

NUMERICAL RESULTS

The efficiency of the moment guided method is illustrated on asimulation carried out for a one dimensional space
configuration with three components for both the magnetic field and the velocity. It consists of a “Brio and Wu” shock
tube [3] widely used for the validation of numerical schemesdesigned for the MHD system. The grid is composed
of 200 cells. A first order accurate time discretization has been used for all these simulations. The plasma densityn
and hydrodynamic energyW as well as theBy magnetic field component are represented in figure 2. The classical
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FIGURE 2. Comparisons of the plasma density, hydrodynamic energy and magneticfield componentBy at timet = 0.25 s., as
computed by the moment guided method, and classical Particle-In-Cell methods using NGP and CIC schemes. For the moment
guided method an NGP scheme has been used. The grid is composed of 200 cells, a total of 2·105 particles being used.

PIC methods relying on either a NGP or a CIC projection-interpolation scheme are compared with the moment guided
method using a NGP scheme. A total of 2·105 particles have been used to compute these approximations. The moment
model is discretized thanks to aP0 scheme [6] equivalent to the Rusanov one [13], with a second order MUSCL [16]
reconstruction. For the classical PIC method, the magneticfield is computed by the MHD-system discretized by the
same space and time schemes, with macroscopic quantities defined from particle properties thanks to the projection
scheme. The approximations computed by all three methods are comparable. However, the moment guided method



seems to reduce, at least in a small ratio, the numerical noise. The influence of the number of particles as well as the
space discretization of the moment model is investigated thanks to additional computations carried out on the same
mesh but with more particles (2·107). These results are displayed on figure 3. The approximationcomputed with a
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FIGURE 3. Comparisons of the plasma density, hydrodynamic energy and the magnetic field componentBy at timet = 0.25 s.,
as computed by the moment guided method, and classical Particle-In-Cell methods using NGP and CIC schemes. For the moment
guided method an NGP has been used with a first (Guided(1)) or second(Guided) order space discretized moment model. The grid
is composed of 200 cells with 2·107 particles.

first order space disretization is referred to as “Guided(1)” in these plots. The first order scheme gives more diffusive
results. This feature is made obvious by observing the curves associated with the first and the second order space
discretizations, particularly for the density and hydrodynamic energy plots in the area around the abscissax= 0. The
larger number of particles used for this computation allowsa better control of the numerical noise as compared to that
of the simulation of the figure 2. Note that the approximations provided by the classical PIC method with either the
NGP or the CIC schemes are very close.

Finally the numerical noise reduction properties of the moment guided method are investigated. With this aim, a
reference solution is computed on the same 200-cells grid with 106 particles in a cell. This is ten times more particles
as compared to the simulation results of figure 3 for which thenumerical noise is already very small. On figure 4
this reference solution is compared with an approximation computed using only 103 particles in a cell. Two plots are
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(a) Difference between the two approximations of the density.
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FIGURE 4. Numerical noise of the approximations estimated by the difference between the computations realized with 103 and
106 particles per cell for the classical PIC methods and the moment guided method with first (Guided) and second order (Guided(2))
space discretizations: (a) Difference as a function of the space variable for the plasma density approximations; (b)l2-norm of the
differences divided by the norm of the variables for the plasma density and energy as well as the magnetic field (By component).

displayed, the first one is the difference of the two plasma density approximations as a function of the space variable
x, the second one is thel2-norm of this difference for the plasma density (n) and hydrodynamic energy (W) as well
as the magnetic field componentBy. For this later plot, the norm of the differences are dividedby the corresponding
variables norm, in order to plot dimensionless quantities.The approximations computed thanks to the CIC and NGP
schemes being very close, only the NGP results are displayedfor the classical PIC method and is compared, on this
figure, with the first and second order space discretized moment guided method. The moment guided method with the
less diffusive space discretization is observed to producenumerical approximation globally less subject to numerical
noise than the standard PIC method (see figure 4(b)). This feature is enforced when a first order space discretization
is used, but at the price of larger numerical diffusion altering significantly the approximation quality (in comparison
with the approximation computed thanks to standard PIC methods using a large number of particles) as depicted in
figure 3(a) and 3(b).



CONCLUSIONS AND PERSPECTIVES

In this paper we have proposed a numerical model for the ionospheric plasma description and its interaction with the
earth magnetic field. It consists of a kinetic description ofthe plasma coupled to the Maxwell-Faraday equation driving
the evolution of the magnetic field. The numerical method relies on a Particle-In-Cell method for the kinetic equation
discretization and a finite volume scheme for the magnetic field one. A noise reduction method has been tested in
this framework. It uses the information carried out by a moment model in order to correct the particles properties and
finally reduce the numerical noise characteristic of particles method. The first simulations performed demonstrate some
interesting benefits. Future work will be devoted to the extensions of these first results to two dimensional problems
with the introduction of more complete collision processesin order to address more accurate and relevant physics.
Moreover, as demonstrated in [5], the collisions should increase the efficiency of the moment guided method with
respect to the numerical noise reduction.
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