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Abstract. If the collisional time scale for Coulomb collisions is comparable to the characteristic
time scales for a plasma, then simulation of Coulomb collisions may be important for computation
of kinetic plasma dynamics. This can be a computational bottleneck because of the large number of
simulated particles and collisions (or phase-space resolution requirements in continuum algorithms),
as well as the wide range of collision rates over the velocity distribution function. This paper con-
siders Monte Carlo simulation of Coulomb collisions using the binary collision models of Takizuka
and Abe and of Nanbu. It presents a hybrid method for accelerating the computation of Coulomb
collisions. The hybrid method represents the velocity distribution function as a combination of a
thermal component (a Maxwellian distribution) and a kinetic component (a set of discrete parti-
cles). Collisions between particles from the thermal component preserve the Maxwellian; collisions
between particles from the kinetic component are performed using the method of Takizuka and Abe
or of Nanbu. Collisions between the kinetic and thermal components are performed by sampling a
particle from the thermal component and selecting a particle from the kinetic component. Particles
are also transferred between the two components according to thermalization and dethermalization
probabilities, which are functions of phase space.
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1. Introduction. In many plasma systems, the principal interactions between
charged particles are Coulombic. For interparticle distance d larger than the Debye
length λD, Coulomb interactions are mediated through electromagnetic fields gov-
erned by a Vlasov equation. On the other hand, if d < λD, these interactions can be
described as Coulomb collisions, governed by the Fokker–Planck equation.

The Fokker–Planck equation has a time scale tFP , defined by the rate of change
of the particle velocity vector angle. If the characteristic time t0 of interest is large
compared to tFP , then Coulomb interactions will drive the velocity distribution f(v)
to its equilibrium, given by a Maxwellian distribution M , with density nM , velocity
uM , and temperature TM . Further evolution of the system can be described by
continuum equations for nM , uM , and TM . At the other extreme if t0 << tFP , the
plasma can be described as collisionless. In the intermediate regime with t0 and tFP
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of comparable size, the kinetics of Coulomb collisions are significant for the evolution
of the velocity distribution function for the plasma.

This paper is concerned with Monte Carlo particle methods for simulation of
Coulomb collisions in a plasma using binary collisions. One of the earliest and most
influential Monte Carlo binary collision models was proposed by Takizuka and Abe
(TA) in 1977 [14] and modified by Nanbu in 1997 [9]. In a subsequent work, Bobylev
and Nanbu [2] derived a general time-explicit formulation for the approximation of
the Fokker–Planck equation by a binary collision model. Wang et al. [16] performed
a numerical convergence study for the methods of TA and Nanbu.

The two methods proposed by TA [14] and Nanbu [9] have been widely used in the
plasma physics community. Simulation of Coulomb collisions can be a computational
bottleneck, however, since the collision times are often very different from the charac-
teristic times of interest. This difficulty is compounded by the wide range of collision
rates for many problems. For example, consider a velocity distribution in the form of
a bump on tail, i.e., a near-equilibrium distribution at low velocity with an isolated
spike far out on its tail (the “bump”). The rate of collisions between two particles
of velocity v1 and v2 is proportional to u−3 for u = |v1 − v2|. The average rate of

collisions between the particles in the central distribution f ≈ M is of size T
−3/2
M ,

in which TM is the temperature of the Maxwellian distribution M . The bump may

be concentrated at a velocity difference uB from the center of M with uB >> T
1/2
M ,

so that its rate of interaction with M is of size u−3
B << T

−3/2
M . Direct simulation

of the Coulomb collisions for a bump-on-tail distribution is dominated by collisions
between M and itself, which preserve M but do not affect the evolution of f , and
the important interactions of the bump with M will be rare events. This shows that
direct simulation of this problem is highly inefficient.

The purpose of this paper is to present a hybrid method for accelerating the sim-
ulation of Coulomb collisions. It represents the distribution function as a combination
of a thermal component m (a Maxwellian distribution) and kinetic component k (nu-
merically represented as a set of particles). Evolution of the thermal component m is
performed using continuum methods based on conservation principles, while evolution
of the kinetic component k is performed by Monte Carlo simulation of binary collisions
using the method of TA or Nanbu. An interaction between m and k is performed by
sampling a particle from m and selecting a particle from k and then treating the inter-
action as a particle collision. In addition, thermalization (particles moved from k to m)
and dethermalization (particles moved from m to k) are performed with probabilities
pT and pD, respectively. In this approach, the thermalization/dethermalization step is
considered to be a part of the reorganization of the velocity distribution into the form
of a Maxwellian plus a perturbation, rather than being a part of the collision process.

Although the physical significance of the hybrid method is fairly transparent, we
do not have a full mathematical derivation for it. In particular, the relation between
the thermalization/dethermalization and the collision process is not mathematically
clear. On the other hand, we have a derivation of an equilibrium requirement—similar
to the detailed balance condition—for the thermalization and dethermalization prob-
abilities. In addition, the computational results presented in this paper demonstrate
the consistency and accuracy of the method, as well as the character of the numerical
solutions. The method is not yet complete, because it does not yet include spatial
transport of the charged particles, and our implementation is not optimized.

This hybrid method is motivated by a similar hybrid method for rarefied gas
dynamics (RGD) developed by Pareschi and Caflisch [10], which combines the direct



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HYBRID METHOD FOR COULOMB COLLISIONS 867

simulation Monte Carlo (DSMC) method [1] with a fluid dynamic solver. There
are several significant differences between the hybrid method for RGD and that for
Coulomb collisions. For RGD, there is a mathematical derivation of the thermalization
and dethermalization: Particles that experience a large number of collisions in a
single time step are thermalized, while the portion of the Maxwellian component
that collides with the particle component is dethermalized. The collision rates have a
much wider range of values for Coulomb collisions than for RGD, because the Coulomb
collision rate varies strongly in phase space (i.e., x and v), whereas the RGD collision
rate varies mainly in physical space (i.e., x only). As a result, the division between
Maxwellian and particle components is performed solely in physical space x for RGD.
For Coulomb collisions, however, the division between the two components must be
performed in phase space (x,v), and pT and pD are functions of x and v. The relations
between the DSMC method and the methods of TA and Nanbu are discussed further
in section 2.

The hybrid method presented here has the potential to accelerate kinetic compu-
tations for Coulomb collisions in a plasma. Currently, simulations that use the full
distribution function (“full f” methods) are often prohibitively expensive computa-
tionally. Alternative acceleration methods (“δf” methods) [3, 4, 5, 6] represent the
velocity distribution function as f = M + δf and solve linearized (or partially lin-
earized) equations for δf . These methods have been successful in many applications
but are not applicable in some important regimes such as the edge region of a magnet-
ically confined fusion plasma. Our aim is to overcome the computational difficulties
of the full f methods for problems that cannot be addressed with δf methods.

The remainder of this paper is organized as follows: The Monte Carlo binary col-
lision methods of TA [14] and Nanbu [9], as well as the general formulation of Bobylev
and Nanbu [2], are presented in section 2, and the hybrid method is formulated in
section 3. Determination of pT and pD is performed in section 4 through a detailed
balance requirement and the use of Nanbu’s s parameter. Computational results are
presented in section 5. These include a series of computations to illuminate the char-
acter of the solutions of the hybrid method, followed by a study of the accuracy and
efficiency of the method. Conclusions and a discussion of further research directions
are presented in section 6.

2. Monte Carlo simulation of Coulomb collisions. We first introduce the
governing equation for the physical process and describe the TA and Nanbu Monte
Carlo binary collision models for a spatially homogeneous plasma. We consider colli-
sions between particles of two species α and β and describe simulations that involve
N particles consisting of N/2 particles from each of the species. Spatial dependence
and electromagnetic fields are omitted.

For the two species, denote vα and vβ to be the particle velocities, fα and fβ
to be the velocity distribution functions, mα and mβ to be the particle masses, nα

and nβ to be the particle number densities, and qα and qβ to be the particle charges.
In a later section, there is only a single species, and we will use the same notation
without any subscript. Also define the free space electrical permittivity ε0 and the
reduced mass mαβ = mαmβ/(mα +mβ). The Fokker–Planck time scale (e.g., in [15])
is defined by (in MKS units)

tFP =

(
cFP nL

u3
αβ

)−1

,(1)
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cFP =
q2
αq

2
β

4πε20m
2
αβ

log Λ,

in which nL = min(nα, nβ), and uαβ is the root mean square of the difference between
the velocity of an α and that of a β particle. The Coulomb logarithm log Λ and the
Debye length λD come from the cutoff of the Coulomb potential at a large distance
and are defined by

Λ = (2πε0TmαβλD)/|qαqβ |,(2)

λD = (nq2/ε0T )−1/2,

in which T is temperature in units of energy (i.e., the Boltzmann constant k is included
in T ). In numerical simulations, Λ is often replaced by a numerical parameter that is
taken to be independent of the physical parameters.

2.1. Fokker–Planck equation. Coulomb interactions between charged parti-
cles are long range with a potential decaying at a rate r−1 for interparticle distance
r. In a plasma with quasi neutrality of the charges, Debye shielding [7] reduces the
potential to r−1e−r/λD . Interactions over distance r > λD are included through elec-
tric and magnetic fields, while those for r < λD are described by direct interactions
between particles. Typical plasmas contain many particles within a Debye volume
λ3
D, and the resulting Coulomb interactions can be thought of as a large number of

small-angle binary collisions [13].
The resulting time evolution of the particle distribution in a spatially homoge-

neous, nonequilibrium plasma is described by drag and diffusion in velocity space
through the Fokker–Planck equation

(3)
∂fα
∂t

=
∑
β

{
− ∂

∂v
· Fd(v)f(v) +

1

2

∂2

∂v∂v
: D(v)f(v)

}
,

in which

Fd(v) = cFP
mαβ

mα

∂H

∂v
= cFP

mαβ

mα

∂

∂v

∫
fβ(v′)

|v − v′|dv
′,

D(v) = cFP

m2
αβ

m2
α

∂2G

∂v∂v
= cFP

m2
αβ

m2
α

∂2

∂v∂v

∫
fβ(v′)|v − v′|dv′.(4)

The functions Fd and D are the drift vector and diffusion matrix, and H and G are
the Rosenbluth potentials [11]. Since the drift has the form Fd(v) = Fd(v)(v/v), it
can be thought of as a drag term.

The Fokker–Planck equation (3) can be rewritten in the following Landau form:

(5)
∂fα
∂t

= −
∑
β

cFPm
2
αβ

2mα

∂

∂vαj

∫
dvβ

[
δjk
u

− ujuk

u3

] [
fα
mβ

∂fβ
∂vβk

− fβ
mα

∂fα
∂vαk

]
,

in which we use the notation u = vα − vβ , u = |u|, fα = fα(vα), and fβ = fβ(vβ),
as well as the Einstein summation convention. The equation for fβ is similar.

Because of the high dimensionality of the Fokker–Planck equation (3) or (5),
the most efficient simulation method is often a Monte Carlo method. There are two
different types of Monte Carlo methods used to solve (3) and (5). The first is a Monte
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Carlo method using a drag/diffusion formulation developed by Mannheimer, Lampe,
and Joyce [8] and extended recently in [12]. In their method each particle velocity
evolves due to drift (drag) and random jumps (diffusion), corresponding to the drift
velocity Fd (or drag coefficient Fd) and the diffusion coefficient D, as in (3). The
particle velocities (and positions) are then used to determine Fd and D, as in (4).

The second Monte Carlo method using a binary collision formulation was devel-
oped by TA [14]. They interpreted the terms in (5) as binary collisions, in the spirit
of the DSMC method developed by Bird [1] for RGD. In both of these methods,
the number of numerical particles is substantially less than the physical number of
particles, and the numerical collisions are performed randomly in order to represent
the much larger number of physical collisions. Significant differences between the TA
method for Coulomb collisions and Bird’s DSMC method are in the rate and mean-
ing of the numerical collisions. In the usual DSMC method, each numerical collision
represents a real collision between two gas particles, and each numerical particle expe-
riences the physically correct number of collisions in a time step. Because of the very
large rate of Coulomb interactions, in the TA, Nanbu, and Bobylev–Nanbu methods,
each collision represents an aggregate of many small-angle interactions. Moreover,
each numerical particle undergoes a single collision in each time step Δt; and the
scattering angle for each numerical collision depends on Δt.

2.2. Bobylev–Nanbu approach. Bobylev and Nanbu [2] developed a general
formulation for a binary collision model that approximates the solution of (5) over a
time step Δt. They used this to show that Nanbu’s method [9] is an approximation
of the Fokker–Planck equation (5). In Appendix A, we apply their analysis to show
that the TA method is also an approximation of the Fokker–Planck equation (5).

The binary collision model of Bobylev and Nanbu (see [2] for further details and
definitions) is

(6) fα(vα, t + Δt) =

n∑
β=1

παβ

∫
R3×S2

dvβdnDαβ

(
u · n
u

,Aαβ
Δt

u3

)
fα(v

′

α, t)fβ(v
′

β , t),

in which παβ defines the proportion of α particles that have a collision with β particles,
Aαβ is a rate factor for collisions between α and β particles, and n is the normal vector
on the sphere at a point with angular coordinates (θ, ψ) which are the scattering
angles. For velocities vα and vβ after a collision, v

′

α and v
′

β are the velocities before
the collision (or vice versa, since collisions are reversible), given by

v
′

α = vα +
mαβ

mα
Δu,

v
′

β = vβ − mαβ

mβ
Δu,(7)

in which

Δux = (ux/u⊥)uz sin θ cosφ− (uy/u⊥)u sin θ sinφ− ux(1 − cos θ),

Δuy = (uy/u⊥)uz sin θ cosφ + (ux/u⊥)u sin θ sinφ− uy(1 − cos θ),

Δuz = −u⊥ sin θ cosφ− uz(1 − cos θ),(8)

u = vα − vβ ,

u⊥ =
√
u2
x + u2

y.
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The interpretation of this equation by Bobylev and Nanbu is that in a single
time step, each particle with velocity v′α undergoes a collision with some particle with
velocity v′β and is replaced by the resulting particle with velocity vα. The rate of
numerical collisions is independent of the particle velocities, so that the particles for
a collision can be chosen randomly (independent of their velocity), as in RGD for
Maxwell molecules. The kernel 2πD describes the probability density for the choice

of scattering angle; since 2π
∫ 1

−1
dμD(μ, τ) = 1, then μ = cos θ is chosen uniformly

on the interval [−1, 1]. One advantage of this interpretation is that virtual collisions
(i.e., trial collisions that must be randomly accepted or rejected) and Bird’s no-time
counter method are not required for simulation of Coulomb collisions using the TA
or Nanbu methods or any method that follows the approach of Bobylev and Nanbu.

Nanbu [9] defined a parameter s that describes the mean-square deflection of
a scattered particle as a function of the time step Δt and the relative velocity u
between two colliding particles. To simplify the comparison of our equations with
those in [2] and [9], we use parameters τ from [2] and s from [9], defined by

(9) τ =
s

2
=

nL

tFPu3
Δt.

They also found a set of conditions (written out in Appendix A) on the kernel
Dαβ which ensure that f is an approximate solution of (5) with first order accuracy.
As described in the following, the TA and Nanbu collision models each correspond to
a Monte Carlo simulation of the integral (6) for a specific choice of Dαβ .

2.3. The collision model of TA. Although the TA model was not analyzed
in [2], we show that it fits into the Bobylev–Nanbu formulation. In particular, we show
that the collision model of TA corresponds to the following formula for D = DTA:

(10) DTA(μ, τ) = (2π)−1(2πτ)−1/2e−ζ2/2τ (dζ/dμ).

The scattering angle θ in the frame of the relative velocity u is defined by

θ = 2 arctan ζ,

μ = cos θ.(11)

With the choice D = DTA, the convergence criteria of Bobylev and Nanbu in [2] are
satisfied, as shown in Appendix A.

A Monte Carlo algorithm for simulation of the integral (6) with the kernel (10)
over a single time interval Δt consists of performing the following steps N/2 times:

1. Randomly select two particles with velocities vα and vβ from the distributions
fα and fβ . This is done by exclusive sampling, so that no particle is selected
more than once. This corresponds to the term fαfβ in (6).

2. Sample a value of μ = cos(2 arctan ζ), in which ζ is a Gaussian random
variable with mean 0 and variance τ = 〈ζ2〉 and τ is defined by (9) using
u = |vα − vβ |. Define θ by θ = 2 arctan ζ. This corresponds to the factor

(2πτ)−1/2e−ζ2/2τ (dζ/dμ) in DTA.
3. Choose the azimuthal angle φ randomly and uniformly from the interval

[0, 2π]. This corresponds to the remaining factor (2π)−1 in DTA.
4. The new velocities are v

′

α and v
′

β defined by (7).
5. Replace the velocities vα and vβ by v′

α and v′
β . This corresponds to the

appearance of v′
α and v′

β as the arguments of fα and fβ in (6).
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These are exactly the steps of the algorithm described in the work of TA [14]. Note
that in this algorithm, as well as in the algorithm of Nanbu and the general formulation
of [2], every particle collides exactly once in each time interval.

2.4. Nanbu’s collision model. Nanbu’s method is based on a parameter s
that measures the average angular deflection of a particle over a time step Δt. As
described in [2], the collision model of Nanbu corresponds to the following formula
for D = DNanbu:

(12) DNanbu(μ, τ) =
A

4π sinhA
expμA,

in which A is defined by

(13) cothA−A−1 = e−s = e−2τ .

Monte Carlo simulation using this kernel over a single time interval Δt is exactly
the same as the simulation for TA given above, except that step 2 is replaced by the
following:

2’. Calculate the quantities s and A solving (13) using u = |vα − vβ | in the
definition (9) of τ . Sample a value of the random variable μ from the interval
[−1, 1] with probability density

(14) f(μ) = 2πDNanbu = A(2 sinhA)−1eAμ

and define θ by μ = cos (θ).
These are exactly the steps of the algorithm described in the work of Nanbu [9] with
some minor changes in notation for consistency with the TA method.

In the remainder of the paper, the collisions are assumed to be between particles
from a single species, so that the subscripts α and β are dropped. In addition, the
distribution function will be assumed to be spatially homogeneous, so that particle
position can be neglected.

3. The hybrid method. In formulating a hybrid method, we hope to take
advantage of two multiscale features for Coulomb collisions. The first is the separation
between the fluid dynamic time scale and the collisional time scale for problems in
which the collisional time scale is relatively small (i.e., a small Knudsen number) but
not so small that a continuum description is justified. In this case, separation of the
velocity distribution function f into a Maxwellian component and a remainder allows
use of fluid dynamics for efficient simulation of the Maxwellian component.

The second multiscale feature is the large variation of the scattering rate over
phase space. For problems such as a bump-on-tail distribution there is a wide sepa-
ration between different features in phase space, e.g., between the central Maxwellian
and the bump. In this case, the fast interactions of the particles within the Maxwellian
do not require simulation, since they leave the Maxwellian unchanged. A larger frac-
tion of the computational effort can then be applied to the slow interactions between
particles in the Maxwellian and those in the bump.

The hybrid method is based on representation of the velocity distribution function
f as a combination of a thermal component m and a kinetic component k; i.e.,

(15) f(v) = m(v) + k(v).

The thermal component is a Maxwellian distribution

(16) m(v) = nm(2πTm)−3/2 exp (−|v − um|2/2Tm).
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Because of the (expected) slow interaction of the thermal component m with the
kinetic component k, the average density, velocity, and temperature nm, um, and Tm

of m are not assumed to be those of the full distribution f . This explains the difference
between the notation m and M , since M is assumed to have density, velocity, and
temperature that are equal to those of f .

Denote nm and nk to be the effective number of particles in the thermal and
kinetic components, respectively, of f . At present these numbers will be kept to
be even integers. The kinetic component will be simulated using a set of discrete
particles; i.e.,

(17) k(v) =

nk∑
i=1

δ(v − vi).

In each time interval, the simulation steps are the following:
1. Determine the number of collisions of each type, so that each simulation par-

ticle experiences only one collision of any kind when collisions are computed.
• nmm = n2

m/2(nk+nm) is the number of collisions between 2 m particles.
• nkk = n2

k/2(nk + nm) is the number of collisions between 2 k particles.
• nmk = nmnk/(nk+nm) is the number of collisions between an m particle

and a k particle.
2. Perform the collisions.

• The m−m collisions do not change the distribution m, so they do not
need to be performed.

• For each k−k collision, select two particles vk1 and vk2 from k. Perform
a collision between them, as in the method of TA or Nanbu, to get new
velocities v′

k1 and v′
k2. In k, replace vk1 and vk2 by v′

k1 and v′
k2.

• For each m − k collision, sample a particle vm from m and select a
particle vk from k. Perform a collision between them, as in the method
of TA or Nanbu, to get new velocities v′

m and v′
k. The postcollision

velocity v′
k replaces vk in k.

3. Apply thermalization and dethermalization.
• For each postcollision particle v′ from the kinetic component (i.e., v′

k1,
v′
k2, or v′

k from the previous step), thermalize v′ with probability pT (v′).
This is done by removing v′ from k (in the next step its number, mo-
mentum, and energy will be added to m).

• For each postcollision particle v′
m, dethermalize v′

m with probability
pD(v′

m). This is done by adding v′
m to k (in the next step its number,

momentum, and energy will be subtracted from m).
4. Apply conservation.

• Adjust the number nk of particles in k due to thermalization and de-
thermalization.

• Adjust the number, momentum, and energy of m due to thermalization
and dethermalization. This is most easily performed by requiring that
the total number, momentum, and energy of f = m + k be the same
before and after the collisions.

A possible problem with this algorithm is that sampling velocities vm from m
may remove too much energy from m. This can be avoided by conservative sampling.
First sample all nmk velocities from m and then shift and scale these, so that the
average momentum and energy of the sampled particles are the same as the average
momentum and energy of m. If ṽi for 1 ≤ i ≤ nmk are the velocities sampled directly
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from m, then the resulting velocities from conservative sampling are vi,

(18) vi = c(ṽi − w̄),

in which

w̄ = v̄e − c−1um,

c2 = Tm/Te,

v̄e = n−1
mk

nmk∑
i=1

ṽi,

Te = n−1
mk

nmk∑
i=1

(ṽi − v̄e)
2,

and um and Tm are the average velocity and temperature of the Maxwellian m.

4. Choice of pD and pT .

4.1. Detailed balance condition. We first derive a consistency condition on
pD and pT and then present a detailed choice for their dependence on v.

Consider an equilibrium distribution M represented as

(19) M = m + k = f,

in which m is the continuum component and k is the kinetic component. Note that
m is an equilibrium, but m is not necessarily equal to M . In Appendix B, detailed
balance is used to derive conditions on pD and pT , starting from the scattering integral
of (6) with the inclusion of thermalization/dethermalization. Although this is the
theoretically correct approach, it does not lead to explicit conditions on pD and pT .

In this section, we adopt a simpler approach by requiring that thermalization/
dethermalization applied to all of f = m + k does not change m and k if f = M is a
Maxwellian. This is performed as follows: Apply thermalization to k with probability
pT and dethermalization to m with probability pD. Also define a projection ΠM

onto equilibria; i.e., ΠMf is the Maxwellian with same (ρ,u, T ) as f . The resulting
distribution is

(20) f ′ = ΠM ((1 − pD)m + pT k) + pDm + (1 − pT )k.

Note that since the projection ΠM conserves mass, momentum, and energy, the dis-
tributions f and f ′ have the same mass, momentum, and energy. Now assume that
f = m + k = M and require that the form of f be conserved; i.e.,

m = ΠM ((1 − pD)m + pT k),(21)

k = pDm + (1 − pT )k.

It follows that

k = (pD/pT )m,(22)

M = (1 + pD/pT )m.(23)

Denote

(24) γ = M/m.
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For simplicity assume that

(25) uM = um = 0

or, more generally, that uM = um. This is not generally true but is a reasonable
assumption if f = M . Then look for

(26) γ(v) = ce|v|
2/2τ ,

in which

c = (nM/nm)(Tm/TM )3/2,(27)

τ−1 = T−1
m − T−1

M .(28)

Note that m < M for all v, so that Tm < TM . Insertion of (26) into (23) shows that
the detailed balance requirement for pD and pT is

(29) 1 + pD/pT = ce|v|
2/2τ .

4.2. Velocity-based choice of pD and pT . Now we make a specific choice of
the remaining degrees of freedom in pD and pT . We expect more thermalization for
small |v| and more dethermalization for larger |v|. Look for pT , pD to satisfy

pT = 1 for |v| < v1,(30)

pD = 1 for |v| > v2,

in which v1 and v2 are constants with v1 < v2. Define

pD =
√
α(γ − 1),(31)

pT =
√
α/(γ − 1),

which automatically satisfy (29). For a given choice of v1, v2, set

c = 1,

τ = (4 log 2)−1(v2
1 + v2

2),

γ1 = γ(v1) = ev
2
1/2τ ,

γ2 = γ(v2) = ev
2
2/2τ ,

α1 = α(v1) = (γ1 − 1),(32)

α2 = α(v2) = (γ2 − 1)−1.

The choice of τ was made so that

(33) 0 < α1 < 1, 0 < α2 < 1,

i.e.,

(34) v2
1/2τ < log 2 < v2

2/2τ.

Since pD(v1) = α1 and pT (v2) = α2, the construction below will ensure that 0 ≤ pD ≤
1 and 0 ≤ pT ≤ 1.
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Fig. 1. Probabilities pT (solid line) and pD (dashed line) for thermalization and dethermaliza-
tion as functions of v = |v|, in which v1 = 0.1774 and v2 = 0.2031.

Equations (30) and (31) determine α for |v| < v1 (i.e., for γ < γ1) and |v| > v2

(i.e., for γ > γ2). Define α in the interval γ1 < γ < γ2 by interpolation with respect
to γ to get

(35) α =

⎧⎨
⎩

(γ − 1) for |v| < v1,

α1 + (γ−γ1)
(γ2−γ1)

(α2 − α1) for v1 < |v| < v2,

(γ − 1)−1 for v2 < |v|.

Figure 1 shows a typical graph of the probabilities pT and pD as functions of v.
Note that the choice c = 1, along with (27), determines the mass of the theoreti-

cally predicted Maxwellian component of m = mth to be

(36) nm = nM (Tm/TM )3/2.

In addition, the values of pT for |v| < v1 and pD for v2 < |v| could be set to values
p̄T and p̄D that are different from 1, and the formulas above could be modified to
accommodate this change.

4.3. s-based method. In order to correctly incorporate the time step Δt into
the hybrid method, we base the thermalization/dethermalization probabilities pT and
pD on Nanbu’s parameter s from (9) rather than v. Choose values of s1 and s2 with
s1 > s2 > 0. For each value of Δt, determine values of v1 and v2, so that s(v1,Δt) = s1

and s(v2,Δt) = s2. Then use the method in section 4.2 with these values of v1 and v2.
The choice of pT and pD described above is somewhat arbitrary; optimizing this

choice subject to the condition (29) (or some improvement on this condition, as in
Appendix B) could lead to an improved hybrid method.

5. Computational results. The computational results presented below are for
bump-on-tail and Maxwellian initial data, as described in section 5.1. There are four
sets of computations. Section 5.2 contains a set of consistency tests of the method.
Computations illustrating the character of the solutions of the hybrid method for
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a bump on tail are presented in section 5.3. The effect of varying the numerical
parameters Δt, s1, and s2 is shown in section 5.4. Finally, quantitative measurements
of accuracy and efficiency of the hybrid method are presented in section 5.5.

5.1. Bump-on-tail and Maxwellian initial data. As a test of the hybrid
method, we performed a series of computations for initial data that is a bump on
tail. As discussed in section 1, this problem involves two widely separated time scales
for Coulomb interactions, so that it is well suited for the hybrid method: a fast time
scale for collisions between particles within the central Maxwellian and a slower time
scale for those between particles from the central Maxwellian and the bump. We
also performed computations for initial data that is Maxwellian, in order to test the
consistency of the hybrid method.

The bump-on-tail initial distribution f0(v) is specified to be a combination of a
Maxwellian M0(v) and a bump g0(v). The bump is specified to be approximately a
δ-function containing 10% of the mass of the distribution and centered at v = (vb, 0, 0)
with vb = a

√
T/me. The Maxwellian M0 is centered and scaled, so that the average

velocity of f is 0 and the temperature is T . The examples presented here are for two
different choices of a: a = 4 in problem BOT4 and a = 3 in problem BOT3.

The computations were performed in a dimensionless formulation in which the
electron mass is me = 1, and the electron density n and temperature T were chosen
to be n = 0.1 and T = 0.05065776. For a characteristic time for the collision process,
we use

tc = u3
th(n cFP )−1,

uth =
√

6T/me,(37)

which has value tc = 5.348275. Unless otherwise stated, the number of particles is
N = 128,000. Note that in all of the simulation examples reported here, the plasma is
spatially homogeneous, so that there are no electromagnetic fields and no convection.

5.2. Consistency tests. As a consistency test, we first performed computations
for Maxwellian initial data M(v), with density n = 0.1, temperature T = 0.05065776,
and zero average velocity, as stated above.

Figure 2 shows the result of simulations using the hybrid method with this initial
data for two different values of the hybrid parameters s1 and s2. The hybrid method
parameters are (s1, s2) = (2, 1) on the left and (s1, s2) = (1, 0.5) on the right; the
time step is Δt = tc/100. The total distribution f = m + k (upper curves) and the
thermal component m (lower curves) of the distribution are shown as a function of
the x-velocity vx at three times: t = 0, t = 8.8tc, t = 18.5tc. The initial data consists
of all particles; i.e., k = M and m = 0 for t = 0. The total distribution f is the
same for all t, which is consistent with its Maxwellian initial data. Although it starts
at 0, by time t = 8.8tc (i.e., after an initial transient), the thermal component m has
reached a nonzero steady state which is the same as its value at t = 18.5tc. This
demonstrates the success of the detailed balance condition (29). Also shown is the
theoretically predicted thermal component mth from the choice c = 1 for which the
density is given by (27). Although the theoretical prediction is approximately correct
for the hybrid simulation on the left, it is incorrect for the simulation on the right. A
better theory (better than that of section 4.1) could help to improve the formulation
of the hybrid method.

Next we perform a comparison of the s-based and v-based hybrid methods on
the bump-on-tail problem BOT4. Set (s1, s2) = (3, 2) and Δt = tc/10. The corre-
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Fig. 2. Comparison of the hybrid method for Maxwellian (equilibrium) initial data at three
different times: t = 0 (solid line), t = 8.8tc (dotted line) and t = 18.5tc (+). The plots show the
full distribution function f(vx) (upper curves) and the thermal component m(vx) (lower curves)
at each of these times. The full distribution function is approximately the same at all times. The
thermal component is 0 at t = 0 but is equal for the two later times. Also shown is the thermal
component (circles) predicted in (36) from sections 4.1 and 4.2. The hybrid method parameters are
(s1, s2) = (2, 1) (left) and (s1, s2) = (1, 0.5) (right).

sponding values of v1 and v2, satisfying s = S(v,Δt) defined by (9), are (v1, v2) =
(0.1774, 0.2031). The top row of graphs in Figure 3 shows the results for the v-based
method (upper left) and the s-based method (upper right) with these parameters.
Each graph shows a comparison of results from the hybrid (dashed line) and Nanbu
(solid line) methods at time t = 1.3tc. These graphs are identical (and show good
agreement between the hybrid and Nanbu methods), since the values of (v1, v2) were
chosen to be in agreement with the values of (s1, s2).

Now keep the same values of (v1, v2) and (s1, s2) but change the time step to
Δt = tc/1000. The results (on the lower graphs of Figure 3) show that the accuracy
of the v-based method (lower left) deteriorates as the time step is decreased, whereas
the accuracy of the s-based method (lower right) improves. In addition, the thermal
component (dotted line) for the s-based method decreases with the smaller time step,
so that the efficiency of the s-based method decreases. This gain in accuracy but loss
of efficiency for the s-based method has acceptable dependence on Δt, while the loss
of accuracy with decreased Δt for the v-based method is not acceptable.

The reason for this dependence on time step is easily understood. For the v-
based method, the probability of thermalization in each time step is independent of
the size of Δt, so that for small Δt the thermalization occurs too frequently. On the
other hand, for the s-based method, the thermalization per time step decreases as Δt
decreases, and the function s(Δt) has the correct dependence on Δt, as well as on
density and temperature.

5.3. Simulation for the evolution of a bump on tail. Figures 4 and 5 show
a comparison of the solutions computed by the hybrid (dashed line) and Nanbu (solid
line) methods for bump-on-tail problems BOT4 and BOT3, respectively, at various
times between the initial time and a final time tmax = 7.2tc. For the hybrid method
the parameters are (s1, s2) = (3, 2) and Δt = tc/10. The thermal component of the
hybrid representation (15) (dotted line) is also plotted. Both figures show very good
agreement between the hybrid and Nanbu curves, providing a measure of validation
for the hybrid method.
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Fig. 3. Comparison of the v-based and s-based versions of the hybrid method for different
time steps Δt. The plots show the velocity distribution function from the hybrid (dashed line) and
Nanbu (solid line) methods, as well as the thermal component for the hybrid method (dotted line),
for problem BOT4 at time t = 1.3tc. The time step is Δt = tc/10 for the top row and Δt = tc/1000
for the bottom row. The left column comes from the v-based method with (v1, v2) = (0.1774, 0.2031),
while the right column comes from the s-based method with (s1, s2) = (3, 2).

For problem BOT4 in Figure 4 the parameters are Δt = tc/10 and (s1, s2) = (3, 2).
The thermal component of the hybrid representation (15) contains about 1/3 of the
particles.

For problem BOT3 in Figure 5 the parameters are Δt = tc/100 and (s1, s2) =
(1, 0.5). In this problem, the thermal component of the hybrid representation (15)
contains about 1/7 of the particles.

5.4. Variation of parameters Δt, s1, and s2. In order to understand the
effect of the parameters Δt, s1, and s2 on the solution of the hybrid method, we
performed computations for the bump-on-tail problem BOT4 of Figure 4 with different
parameter values. Figures 6 and 7 show the solution of BOT4 at t = 1.2tc and
t = 3.6tc, respectively. In each figure, the time step is Δt = tc/10 for the graphs in
the left column and Δt = tc/100 for those in the right column. Also, the values of
(s1, s2) are (s1, s2) = (1, 0.5) for the graphs in the top row, (s1, s2) = (2, 1) for the
middle row, and (s1, s2) = (3, 2) for the bottom row.

In Figure 6 at an early time, the bump is still distinct but is shifted and diffused
from its original position and shape. In Figure 7 at a later time, the bump is no
longer a distinct peak but has been reduced to a shelf in the distribution function.
Comparison of the figures shows that for larger Δt or smaller s1 and s2 the bump
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Fig. 4. Comparison of the hybrid (dashed line) and Nanbu (solid line) solutions, as well as
the thermal component m (dotted line) for the hybrid method, at different times t = 0 (upper left),
t = 1.2tc (upper right), t = 3.6tc (lower left), and t = 7.2tc (lower right). The computations use
Δt = tc/10 and (s1, s2) = (3, 2) for problem BOT4.

is overthermalized, with the result that it is shifted too far toward the center and
becomes too wide. As Δt is decreased and s1 and s2 are increased, the accuracy of
the computation dramatically improves. On the other hand, the size of the thermal
component, which determines the efficiency of the hybrid method, is larger for larger
values of Δt and smaller values of s1 and s2. This shows a trade-off between efficiency
and accuracy of the hybrid method.

5.5. Accuracy and efficiency for the hybrid method. First we present
computations to illustrate the accuracy of the hybrid method for the problem BOT4.
Figure 8 shows the fourth order moment of the velocity

∫
|v|4fdv and the anisotropy

of the second order moments as functions of time for Nanbu’s method and the hybrid
method. For this problem, in which the initial perturbation of the Maxwellian is
primarily in the x-velocity, the anisotropy is defined as

∫
(v2

x− (v2
y + v2

z))fdv. For the
same initial condition, Figure 9 shows the entropy decay (more precisely the decay of
the H function

∫
f log fdv) as a function of time for Nanbu’s method and the hybrid

method. These two figures show excellent agreement between the two methods for
the anisotropy and entropy decay. The fourth order moment amplifies the differences
of the two methods, especially in the bump, and has a difference of about 10% (0.0392
for Nanbu’s method and 0.0359 for the hybrid method) at the final time.

In order to measure the performance of the hybrid method, we first define quan-
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Fig. 5. Comparison of the hybrid (dashed line) and Nanbu (solid line) solutions, as well as
the thermal component m (dotted line) for the hybrid method, at different times t = 0 (upper left),
t = 0.6tc (upper right), t = 1.2tc (lower left), and t = 2.6tc (lower right). The computations use
Δt = tc/100 and (s1, s2) = (1, 0.5) for problem BOT3.

tities γeff and γacc that measure the efficiency and accuracy of the computations
as

γeff =
1

tmaxnf

∫ tmax

0

nmdt,(38)

γacc =
1

tmaxnf

∫ ∫ tmax

0

|f − fH |dtdv.(39)

Efficiency of the method is meant to be the ratio between the computational savings
of the hybrid method and the computational cost of the standard method. Since
the computational effort is roughly proportional to the number of particles in the
simulation, the efficiency measure γeff is the ratio of nm and nf , in which nm and
nf are the number of particles in the Maxwellian component m and the total number
of particles in f . As a measure of accuracy, γacc is the relative size of L1 norm (in v
and t) of the error.

We performed a series of computations for parameters in the range 0.2 ≤ s2 ≤ 2
and 0.2 ≤ s1 − s2 ≤ 2, as well as for time step Δt = tc/10 and final time tmax = 74tc.
The resulting values of γeff and γacc are presented in contour plots in Figure 10,
which shows them to be constant along (nearly) linear curves in the (s1, s2) plane. A
scatter plot of these values of γeff and γacc are presented in the graph on the left in
Figure 11. This graph shows that these values collapse onto a single curve, so that
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Fig. 6. Comparison of the hybrid (dashed line) and Nanbu (solid line) solutions, as well as the
thermal component m (dotted line) for the hybrid method, for different values of the parameters Δt,
s1, and s2. The values of Δt are tc/10 for the left column and tc/100 for the right column. The
values of (s1, s2) are (1, 0.5) for the top row, (2, 1) for the middle row, and (3, 2) for the bottom
row. These simulations are for problem BOT4 of Figure 4 at time t = 1.2tc.

γacc is a single-valued function of γeff . This shows that for any level of accuracy there
is a resulting level of efficiency. Further variation of the parameters (s1, s2) does not
change performance of the method. This conclusion holds only within the context of
the specific choice of pD and pT . The relationship between accuracy and efficiency
could be changed by considering a wider class of functions pD and pT .

In the graph on the left in Figure 11, the values of accuracy γacc appear to
taper off to a finite nonzero value. The graph on the right in Figure 11 shows that
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Fig. 7. Same as Figure 6 but at a later time: t = 3.6tc.

statistical fluctuations due to the finite value N of particles contribute importantly to
this residual error. There may be an additional significant contribution to the total
error due to finite Δt effects. This graph shows a plot of γacc versus γeff for three
values of N : N = 32,000, N = 128,000, and N = 512,000. The values of (s1, s2) are
4 < s2 < 6.2 and s1 = s2 + 2, which are larger than those in Figure 10 and the graph
on the left of Figure 11.

Comparison of the results for N = 32,000, N = 128,000, and N = 512,000 in this
graph shows the errors γacc are smaller for larger values of N . More specifically, for
larger values of N , the linear decrease of γacc continues for smaller values of γeff , and
the remaining residual value of γacc is smaller.
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Fig. 8. Anisotropy of the second order moments (left) and fourth order moment (right) from the
solutions of Nanbu (solid line) and the hybrid method (dotted line) for problem BOT4 of Figure 4.
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line) for problem BOT4 of Figure 4.
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Fig. 10. Contour plots of error (left) and efficiency (right) for the hybrid method applied to
problem BOT4 of Figure 4 with N = 128,000 as functions of the parameters s1 and s2.

6. Conclusions. The hybrid method developed here combines continuum and
particle descriptions for the evolution of a velocity distribution function through
Coulomb interactions. The method includes particle interactions, but since the exam-
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Fig. 11. Error versus efficiency for the bump-on-tail problem of Figure 4. The graph on the
left is a scatter plot of the values of error and efficiency from Figure 10. The graph on the right
shows a continuation of error and efficiency for larger values of s1 and s2 and for values of N given
by 32,000 (stars), 128,000 (circles), and 512,000 (x’s).

ples here are spatially homogeneous, the continuum description is just an equilibrium
Maxwellian distribution.

Because of the variation of the interaction rate as a function of particle velocity,
the division of f between particles and continuum must be performed as a function
of velocity. In the hybrid method of this paper, the velocity dependence is effected
through velocity dependence of the thermalization and dethermalization probabilities
pT (v) and pD(v).

The specific choice of pT (v) and pD(v) is ad hoc and formulated in terms of two
parameters s1 and s2 (or v1 and v2) as well as Δt. The simulations show that for
this method the efficiency is a single-valued function of the accuracy of the method.
Therefore the method provides a certain level of efficiency (acceleration) for prescribed
accuracy of the hybrid approximation.

These results demonstrate the consistency and potential effectiveness of this hy-
brid approach for simulation of Coulomb collisions. Application of this method to
real plasma physics problems will require progress in several directions: Further
development of the hybrid method will hopefully make the method more efficient
and accurate. Combination of the hybrid method with other methods, such as the
drift/diffusion approach [8] or the δf method [3, 4, 5, 6], could expand the range
of application for the method. Particularly important is the need to include spatial
inhomogeneity and particle advection in the hybrid method.

The efficiency of the hybrid method can be improved by decreasing the number
of particles in the kinetic component. In contrast to the result in section 5.2 and
Figure 2, for an optimal hybrid method the distribution would become completely
thermalized as t → ∞ (i.e., m → M and k → 0) by increasing the size of the Maxwel-
lian component m. We also plan to optimize the choice of the probabilities pT (v) and
pD(v). Another possible generalization of the hybrid approach would include multiple
Maxwellians in the hybrid representation of the velocity distribution function f . A
mathematical foundation for this method is missing at present; its development, in-
cluding an improved analysis of the detailed balance properties of the method, could
be an important guide in improving the method. Our current work is now including
the advection and acceleration of the particles, and we are replacing the “Maxwellian”
particles with a fluid equation representation, which is when the real computational
savings of the hybrid method is realized.
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Appendix A. Analysis of the scattering kernel D for the TA method.
In this appendix, we apply the convergence criteria of Bobylev and Nanbu [2] to show
that the TA equation—(6) using the kernel DTA for TA—is a first order approximation
of the Fokker–Planck equation.

The convergence criteria from equations (48a)–(48c) in [2] are that

D(μ, τ) ≥ 0,(40)

2π

∫ 1

−1

dμD(μ, τ) = 1,(41)

lim
τ→0

D(μ, τ) = (2π)−1δ(1 − μ),(42)

lim
τ→0

(2π/τ)

∫ 1

−1

dμD(μ, τ)[1 − P�(μ)] = �(� + 1),(43)

in which P� is the Legendre polynomial for positive integers �. Conditions (40)
and (41) are reasonable restrictions that simplify the analysis; (42) is a consistency
condition; and (43) is a first-order accuracy condition in terms of a Legendre polyno-
mial expansion of the integral.

As written in (10), the kernel for the TA method is

(44) DTA(μ, τ) = (2π)−1(2πτ)−1/2e−ζ2/2τ (dζ/dμ).

The analysis of this kernel is similar to the analysis of the kernel for the Nanbu method
presented in [2]. Conditions (40)–(42) are easily verified.

To verify (43), use μ = cos θ and ζ = tan(θ/2) to calculate for small τ

(2π/τ)

∫ 1

−1

dμDTA(μ, τ)[1 − P�(μ)]

= τ−1

∫ ∞

0

(2πτ)−1/2e−ζ2/2τ [1 − P�(cos(2 arctan ζ))]dζ

= τ−1

∫ ∞

0

(2π)−1/2e−ξ2/2[1 − P�(cos(2 arctan
√
τξ))]dξ

≈ τ−1(2π)−1/2

∫ ∞

0

(2π)−1/2e−ξ2/2τξ2�(� + 1)dξ

≈ �(� + 1).(45)

These calculations use the expansion P�(cos(2 arctan
√
τξ)) ≈ 1− 2τξ2P ′

�(1) for small
τ and P ′

�(1) = �(�+1). This completes the verification of (40)–(43), which imply that
the TA equation is a first order approximation of the Fokker–Planck equation.

Appendix B. Detailed balance for binary collisions with thermaliza-
tion/dethermalization. For collisions between particles of a single species, (6)
becomes

(46) f(v, t + Δt) =

∫
R3×S2

dwdnD

(
g · n
g

,Λ
Δt

g3

)
f(v

′
, t)f(w

′
, t).

Using the requirement [2] that
∫
S2 dnD = 1, (46) can be written as the following

equation for the change Δf in time Δt:

(47) Δf(v) =

∫
R3×S2

dwdnD

(
g · n
g

,Λ
Δt

g3

){
f(v

′
, t)f(w

′
, t) − f(v, t)f(w, t)

}
,
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which will be used in the formulation of detailed balance conditions.

Equation (46) can be rewritten to include thermalization and dethermalization.
Since it is an equation for f(v), the thermalization/dethermalization is applied only
to the terms f(v) and f(v′) inside the integral. Using the representation f = m + k,
the integral on the right-hand side of (46) becomes

∫
R3×S2

dwdnD
{[

m(v
′
)m(w

′
) + (1 − pD)m(v

′
)k(w

′
) + pT k(v

′
)f(w

′
)
]

+
[
pDm(v

′
)k(w

′
) + (1 − pT )k(v

′
)f(w

′
)
]}

,(48)

in which

(49) D = D

(
g · n
g

,Λ
Δt

g3

)
.

Note that dethermalization is not applied to the term m(v
′
)m(w

′
). In the integral (48)

the velocities v′ and w′ are precollision values. In all of the formulas below, pD and
pT are evaluated at v, since the thermalization/dethermalization is applied after the
collision. The terms in the first set of square brackets are the terms that contribute
to the thermal component, while those in the second set of square brackets are the
terms that contribute to the kinetic component. The contributions to the thermal
component are projected onto a Maxwellian, so that

m(v, t + Δt) = ΠM

∫
R3×S2

dwdnD
[
m(v

′
)m(w

′
) + (1 − pD)m(v

′
)k(w

′
)

+ pT k(v
′
)f(w

′
)
]
,(50)

k(v, t + Δt) =

∫
R3×S2

dwdnD
[
pDm(v

′
)k(w

′
) + (1 − pT )k(v

′
)f(w

′
)
]
.

The projection in (50) is equivalent to the following equations for nm, um, and Tm:

(nm, nmum, nmTm)(t + Δt)

=

∫
R3×R3×S2

dvdwdnD
(
1,v, |v − um|2/2

)
×
[
m(v

′
)m(w

′
) + (1 − pD)m(v

′
)k(w

′
) + pT k(v

′
)f(w

′
)
]
.(51)

As in (47), these can be rewritten as equations for the changes in k and in nm,
um, and Tm; i.e.,

(Δnm,Δ(nmum), Δ(nmTm))

=

∫
R3×R3×S2

dvdwdnD
(
1,v, |v − um|2/2

) [
m(v

′
)m(w

′
)

+ (1 − pD)m(v
′
)k(w

′
) + pT k(v

′
)f(w

′
) −m(v)f(w)

]
,(52)

Δk(v) =

∫
R3×S2

dwdnD
{
pDm(v

′
)k(w

′
) + (1 − pT )k(v

′
)f(w

′
) − k(v)f(w)

}
.(53)
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The detailed balance condition says that in equilibrium (f = m + k = M), each
process and the reverse process exactly cancel. For (52) and (53), this says that

m(v
′
)m(w

′
) + (1 − pD)m(v

′
)k(w

′
) + pT k(v

′
)f(w

′
) = m(v)f(w),(54)

pDm(v
′
)k(w

′
) + (1 − pT )k(v

′
)f(w

′
) = k(v)f(w).(55)

Since f = m + k = M , the sum of (54) and (55) is just M(v
′
)M(w

′
) = M(v)M(w)

for any collision pair (v
′
,w

′
) before a collision and (v,w) after a collision, which is

the usual detailed balance condition for the Maxwellian equilibrium. Equation (54)
(or (55)) provides a single detailed balance condition on pT and pD. Although it is
not used in the hybrid method formulated above, the condition (54) may be useful
for improving the current hybrid method. This condition is more complicated than
the constraint (29) applied in section 4.1, and it may require that pT and pD depend
on v

′
, w

′
, v, and w.
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