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HYBRID MULTISCALE METHODS II. KINETIC EQUATIONS∗
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Abstract. In this work we consider the development of a new family of hybrid numerical methods
for the solution of kinetic equations which involves different scales. The basic idea is to couple
macroscopic and microscopic models in all cases in which the macroscopic model does not provide
correct results. The key aspect in the development of the algorithms is the choice of a suitable hybrid
representation of the solution and a merging of Monte Carlo methods in nonequilibrium regimes with
deterministic methods in equilibrium ones. This approach permits us to treat efficiently both the
microscopic and the macroscopic scales. Applications to the Boltzmann–BGK equation are presented
to show the performance of the new methods.
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1. Introduction. A broad range of scientific problems involve multiple scales
and multiscale phenomena (material science, chemistry, fluid dynamics, biology, . . .).
Examples are microscopic departures from macroscopic neutrality in plasmas, dislo-
cation in plastic deformation, turbulence in fluid, or molecular reaction in biology
simulations. These phenomena involve different physical laws which govern the pro-
cesses at different scales. In many situations we are interested only in the macroscopic
scale of the problems, and we would like to have equations to describe these macro-
scopic variables, ignoring the rest. From the computational point of view, the repre-
sentation of the solution through the microscopic model has an overwhelming cost.
To this aim many numerical methods have been developed which address explicitly
the multiscale structure of the solution such as wavelet [19], domain decomposition
in space [3, 4, 12, 11, 25, 14] and in space velocity [9], stiff solvers [5, 20, 21, 22],
and adaptive mesh refinement [7, 32]. In addition, coupling techniques for a micro-
scopic stochastic solver with a macroscopic deterministic model for ODEs or PDEs
[16, 17, 18, 23, 24, 34] gave very good results in the recent past. In the present work we
afford in details the problem in the case of multiscale kinetic equations. The Navier–
Stokes or the Euler equations, which describe the problem at the macroscopic level,
do not give a satisfactory description of the physical system in all situations, and a
kinetic description through the Boltzmann equation is often required. The develop-
ment of numerical methods to solve rarefied gas dynamics (RGD) problems is a big
challenge due to the presence of different time and/or space scales. As a consequence
the dominant methods for the computations are based on probabilistic Monte Carlo
techniques at different levels [2, 27, 30]. They have many advantages in terms of
computational cost for problems with high dimensions: simplicity in preserving some
physical properties of the underlying problem (typically using a particle interpretation
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1170 GIACOMO DIMARCO AND LORENZO PARESCHI

of the statistical sample) and great flexibility when dealing with complicated geome-
tries. On the other hand, particle methods yield low accurate and fluctuating results
with respect to deterministic methods, and the convergence, in general, is quite low.
Typically, in continuum regions a macroscopic numerical scheme that solves the Euler
or the Navier–Stokes equations gives the correct results. Thus it is highly desirable to
have a method that combines a Monte Carlo solver in nonequilibrium regions with a
deterministic solver in equilibrium ones. Domain decomposition techniques are then
often used in order to better treat these difficulties and to design suitable numerical
schemes. However, this multimodeling approach requires the a priori knowledge of
some of the scales, in order to define the different regions where the different models
are valid, which are typically hard to know in practice [3, 25, 10].

In this paper we will focus on the Boltzmann–BGK model, which is known to be
accurate in describing systems close to equilibrium [8]. First, we extend the results
obtained in [13] for the solution of systems of hyperbolic equations with relaxation
to the case of kinetic equations. Next, we propose several generalizations to the
multiscale hybrid schemes in order to afford the new complications that arise in the
simulation of multiscale RGD, such as the lack of a compact support for the probability
distribution function in velocity space.

The strategy is based on the solution of the full model in the whole computational
domain and on the design of the numerical method in such a way that it is capable of
taking advantage of the model reduction when we approach the thermodynamic equi-
librium. This involves the development of heterogeneous numerical methods which
hybridize different numerical approaches of probabilistic and deterministic nature.

The main features of the schemes can be summarized as follows:
(i) In regions far from equilibrium, where the solution of the full kinetic equation

is required, the schemes provide a probabilistic Monte Carlo approximation of the
solution.

(ii) In thermodynamic equilibrium regions, where the Euler equations are valid,
the schemes provide a deterministic finite volume/difference approximation without
any time step restrictions induced by the small relaxation rate.

(iii) In intermediate regions, the approximated solution is generated automati-
cally by the schemes as a suitable blending of a nonequilibrium probabilistic compo-
nent and an equilibrium deterministic one.

The rest of the article is organized as follows. First, we introduce the Boltzmann–
BGK equation and its main properties. Then we present the hybrid schemes with par-
ticular emphasis on the difference between solving the true Boltzmann–BGK equation
(which is not compactly supported in velocity space) and a discrete velocity model
(for which we need an artificial boundary in velocity space). Next, in section 4 we
perform several numerical tests in order to compare the different performances of the
methods. Some final considerations are reported in the last section.

2. Boltzmann–BGK equation. We consider the Boltzmann–BGK equation

(1) ∂tf + v · ∇xf =
1

τ
(Mf − f),

with the initial condition

(2) f(x, v, t = 0) = f0(x, v),

where f = f(x, v, t) is a nonnegative function describing the time evolution of the
distribution of particles which move with velocity v ∈ R

dx , in the position x ∈ Ω ⊂ R
dv
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HYBRID MULTISCALE METHODS II. KINETIC EQUATIONS 1171

at time t > 0. In most applications dx = dv = 3; however, one-dimensional and two-
dimensional models are often used.

The relaxation time τ is defined in the dimensional case as [1]

(3) τ−1 = Ac�,

where Ac is a constant and � is the density. In [12] the relaxation parameter is defined
as

(4) τ−1 = C�T 1−ω,

where T is the temperature, while ω and C are constants that depend on the gas. In
the adimensional case we have

(5) τ−1 =
C1

ε
.

The parameter ε > 0 is the Knudsen number and is proportional to the mean free path
between collision, while C1 is a constant that we choose equal to one [8, 33]. In the
BGK equation the collisions are modeled with a relaxation towards the equilibrium
Mf called Maxwellian. The local Maxwellian function is defined by

(6) Mf (�, u, T )(v) =
�

(2πT )3/2
exp

(
−|u− v|2

2T

)
,

where �, u, and T are the density, mean velocity, and temperature of the gas,

(7) � =

∫
R3

fdv, u =

∫
R3

vfdv, T =
1

3�

∫
R3

|v − u|2fdv,

while the energy E is defined as

(8) E =
1

2

∫
R3

|v|2fdv.

Finally, we define the kinetic entropy of f by

(9) Hf =

∫
R3

f log fdv.

Now, if we consider the BGK equation (1) and multiply it for 1, v, 1
2 |v2|, the so-

called collision invariant, by integrating in v we obtain the first three moments of the
distribution function f :

∂�

∂t
+

3∑
i=1

∂

xi
(�ui) = 0,

∂�uj

∂t
+

3∑
i=1

∂

xi
(�uiuj + pij) = 0, j = 1, 2, 3,

∂

∂t

(
1

2
�|u|2 + �e

)
+

3∑
i=1

∂

∂xi

[
�ui

(
1

2
|u|2 + e

)
+

3∑
i=1

uipij + qi

]
= 0.

(10)

These equations are the corresponding conservations laws for mass, momentum,
and energy, in which e represents the internal energy and p the kinetic pressure, while
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q is the third order moment. Furthermore, the dissipation of entropy could easily be
proved:

(11) ∂t

∫
f log fdv + ∇x

∫
vf log fdv ≤ 0.

Unfortunately the differential system of equations (10) is not closed, since it involves
higher order moments of the distribution function. Now it can be seen that Mf is the
unique solution of the following entropy minimization problem:

(12) HMf
= min

{
Hf , f ≥ 0 s.t.

∫
R3

mf = �

}
,

where m is the vector containing the collision invariants, while � is the vector con-
taining the first three moments of f :

(13) m(v) =

(
1, v,

1

2
|v|2

)
, � = (�, �u,E).

This is the well-known Boltzmann H-theorem, and it means that the local equilibrium
state minimizes the entropy of all the possible states leading to the same macroscopic
properties. Now formally as ε → 0 the function f tends to Maxwellian. In this case
it is possible to compute f from its moments, thus obtaining the closed Euler system
of compressible gas dynamics equations:

∂�

∂t
+ ∇x · (�u) = 0,

∂�u

∂t
+ ∇x · (�u⊗ u + p) = 0,

∂E

∂t
+ (Eu + pu) = 0,

p = �T, E =
3

2
�T +

1

2
�|u|2.

(14)

2.1. Boundary conditions. Typically, (1) is completed with boundary condi-
tions for x ∈ ∂Ω and for v · n ≥ 0, where n denotes the unit normal, pointing inside
the domain. The boundary conditions are modeled by

(15) |v · n|f(x, v, t) =

∫
v∗·n<0

|v∗ · n|K(v∗ → v, x, t)f(x, v∗, t)dv∗,

where v∗ is the velocity after the process. The entering flux is described as a function
of the outgoing flux modified by the boundary kernel K. Such a definition of the
boundary condition preserves the mass if

(16) K(v∗ → v, x, t) ≥ 0,

∫
v∗·n≥0

K(v∗ → v, x, t)dv = 1.

Usually we apply two types of boundary conditions, absorbing or reflecting; another
condition could be a convex combination of the two. From a physical point of view, one
assumes that a fraction of particle (α) is absorbed and reemitted at a temperature
and velocity corresponding to a Maxwellian (with temperature and velocity of the
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boundary), while the other (1−α) is specular reflected; this is equivalent to imposing
for the ingoing velocities

(17) f(x, v, t) = (1 − α) ∗Rf(x, v, t) + αMf(x, v, t), v · n(x) ≥ 0,

and

Rf(x, v, t) = f(x, v − 2n(n · v), t),
Mf(x, v, t) = μ(x, t)Mω(v, t).

(18)

If we denote by Tω the temperature of the boundary and by uω the velocity, Mω is
given by

(19) Mω(�, uω, Tω)(v) =
�

(2πTw)3/2
exp

(
−|uw − v|2

2Tw

)
.

Finally, the value of μ is determined by mass conservation:

(20) μ(x, t)

∫
v·n≥0

Mω(v)|v · n|dv =

∫
v·n<0

f(x, v, t)|v · n|dv.

We note that for α = 0 (specular reflection) the reemitted particles have the same flow
of mass, temperature, and tangential momentum of the incoming molecules, while for
α = 1 (full accommodation) the reemitted particles have completely lost memory of
the incoming values (only the global mass is conserved).

3. Hybrid methods. In what follows we will restrict ourselves for the sake of
simplicity to the one-dimensional situation dx = dv = 1, even though our methods
apply naturally to the full three-dimensional case. Furthermore, the dependence on
the x and t variables will be omitted in this introductory part.

The starting point in the construction of all the hybrid methods is the interpre-
tation of the distribution function as a probability density,

(21) f(v) ≥ 0, � =

∫ +∞

−∞
f(v)dv = 1,

and the following definition of hybrid representation.
Definition 1. Given a probability density f(v), and a probability density M(v),

called equilibrium density, we define w(v) ∈ [0, 1] and f̃ ≥ 0 in the following way:

(22) w(v) =

⎧⎨
⎩

f(v)

M(v)
, f(v) ≤ M(v) 
= 0,

1, f(v) ≥ M(v)

and

(23) f̃(v) = f(v) − w(v)M(v).

Thus f(v) can be represented as (Figure 1, left)

(24) f(v) = f̃(v) + w(v)M(v).

If we now take

(25) β = min
v

{w(v)}
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−R R

w(v)M(v)

nonequilibrium

equilibrium

f(v)

v −R R
 

equilibrium

f(v)
nonequilibrium

βM(v)

v

Fig. 1. Distribution function as a combination of equilibrium and nonequilibrium part repre-
sentation (24) left, (28) right.

and

(26) f̃(v) = f(v) − βM(v),

we have

(27)

∫
v

f̃(v)dv = 1 − β.

Let us define for β 
= 1 the probability density

fp(v) =
f̃(v)

1 − β
.

The case β = 1 is trivial since it implies f(v) = M(v). Thus the probability density
f(v) can be written as a convex combination of two probability densities in the form
[28, 29] (Figure 1, right)

(28) f(v) = (1 − β)fp(v) + βM(v).

Clearly the above representation is a particular case of (24).
Remark 1. If we define for R > 0

(29) wR(v) =

{
w(v), |v| ≤ R,
0, |v| > R

and

(30) f̃R(v) =

{
f̃(v), |v| ≤ R,
f(v), |v| > R,

we have the representation

(31) f(v) = f̃R(v) + wR(v)M(v).

In this case taking

(32) βR = min
v

{wR(v)} ≥ β
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and

(33) f̃R(v) = f(v) − βRE(v),

where E(v) = M(v)Ψ(|v| ≤ R) and Ψ(·) is the indicator function, we have

(34)

∫
v

f̃R(v)dv = 1 − ρEβR, ρE =

∫
E(v)dv ≤ 1.

Let us define the probability density

fp
R(v) =

f̃R(v)

1 − ρEβR
.

Again f(v) can be written as a convex combination of two probability densities in the
form

(35) f(v) = (1 − ρEβR)fp
R(v) + ρEβR

E(v)

ρE
.

Of course these representations are particularly useful since, as we will see in what
follows, they allow us to restrict the deterministic part of the schemes to compactly
supported function in velocity space.

For a more general function which depends also on space and time we consider
the following representation:

f(x, v, t) = f̃(x, v, t)︸ ︷︷ ︸
nonequilibrium

+ w(x, v, t)M(x, v, t)︸ ︷︷ ︸
equilibrium

,

where w(x, v, t) is a continuum function (which may or may not be compactly sup-
ported in v) that characterizes the equilibrium fraction and f̃(x, v, t) the nonequi-
librium part of the distribution function. In order to compute the solution we need
to discretize the velocity space; thus practically the function w(x, v, t) becomes the
approximation wk(x, t) = w(x, vk, t), which means we replace our continuous function
by a piecewise constant function. The general methodology consists in the following:

(i) Solve the evolution of the perturbation by Monte Carlo methods. Thus
f̃(x, v, t) will be represented by a set of samples in the computational domain.

(ii) Solve the evolution of the equilibrium fraction by deterministic methods.
Thus w(x, v, t)M(x, v, t) will be represented on a suitable grid in the computational
domain.

In what follows we will describe the different schemes. In the first part we start
from a discrete velocity model (DVM) of the Boltzmann–BGK equation. Thus the ve-
locity space is naturally discretized and bounded by the model itself, and the schemes
we obtain in this case represent a direct generalization of [13]. In the second part we
show how to extend our methodology to the full Boltzmann–BGK equation without
any artificial boundary in the velocity space.

3.1. Hybrid DVM-BGK schemes. In order to introduce the reader to the
main tools used, we first describe briefly a DVM-BGK scheme and how to solve it
with a fully deterministic and a fully Monte Carlo method.
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3.1.1. DVM-BGK. We assume that gas particles can attain only a finite set
of velocities (see [26] for details about DVM-BGK models). Let K be a set of N
multi-indexes, defined by K = {k = (ki)Di=1, k

i ≤ Ki}, where D = 1, 2, 3 is the space
dimension and {Ki} are given bounds. The set of possible velocities reads

(36) V = {vk = k�v + a, k ∈ K},
where a is an arbitrary vector of R

D and �v is a scalar. We denote the discrete
collision invariants by mk = (1, vk,

1
2 |vk|2), and the continuous distribution function

becomes a piecewise constant function fK(t, x) = (fk(t, x))k∈K, where each component
fk(t, x) is assumed to be an approximation of f(x, vk, t). The macroscopic quantities
are now given by sums on V:

�K(t, x) =
∑
k∈K

mkfk(t, x),(37)

HK(t, x) =
∑
k∈K

fk(t, x) log fk(t, x).(38)

The solution of the BGK model is reduced to the solution of a set of N equations:

(39) ∂tfk + vk · ∇xfk =
1

ε
(Ek − fk) ∀k ∈ K.

Now the main problem is to define an approximation EfK of the Maxwellian equi-
librium MfK such that conservation is preserved (10) and dissipation of entropy is
assured (11). Notice that the natural approximation Ek = MfK(vk) cannot satisfy
these requirements. Let us define EK by the minimum of discrete entropy among all
the piecewise constant functions, defined on the same support and with the same
discretization of the velocity space, that have the same moments of f :

(40) HEK = min

{
Hg, g ≥ 0 s.t.

∑
k∈K

mkgk = �K

}
.

It has been proved that the solution for this problem exists; it is unique and has
an exponential form [26]. Due to the above results, the computation of EK can be
obtained through the solution of the nonlinear set of equations for α:

(41)
∑
k∈K

mk exp(α · mk) = �K.

This nonlinear set of equations can be solved, for instance, by a Newton algorithm.
The parameters α are functions of t and x and can be expressed in terms of the
macroscopic variables �, u, T through

(42) α =

(
log

(
�

(2πRT )
3
2

− |u|2
2RT

)
,

u

RT
,− 1

RT

)
.

Now let f0 be a vector of R
N ; if the problem (39) has a solution fK, then we have

fk(t, x) > 0 ∀ k, t, x,(43)

Ek = exp(α · mk) ∀k,(44)

∂t
∑
k∈K

mkfk + ∇x ·
∑
k∈K

mkvkfk = 0,(45)

∂t
∑
k∈K

fk log fk + ∇x ·
∑
k∈K

vkfk log fk ≤ 0.(46)
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3.1.2. A deterministic numerical scheme for DVM-BGK. We restrict the
presentation of the scheme to one spatial dimension and one velocity dimension on a
Cartesian grid (see [26] and [33] for details about DVM-BGK deterministic numerical
schemes). The equations to be solved are

(47) ∂tfk + vk · ∇xfk =
1

ε
(Ek − fk) ∀k ∈ K.

Consider a spatial Cartesian uniform grid defined by nodes xi = (i�x) and a time
discretization tn = n�t. Thus fn

k,i is an approximation of f(tn, xi, vk) inside the
space cell I = ]xi− 1

2
, xi+ 1

2
[, and the corresponding discrete equilibrium is denoted by

En
i = (En

k,i)k∈K, and is therefore En
k,i = exp(αn

i ·mk), where αn
i is the unique solution

of the nonlinear set of equations

(48)
∑
k∈K

mk exp(αn
i · mk) = �n

i .

The computation of αn
i is performed through a Newton algorithm with the choice of

En
k,i = Mf (xi, vk, tn) ∀k ∈ K as initial value; in the cases tested the convergence of the

method is fast: very often only one iteration is needed. However, if the choice of the
boundary in velocity space is done wisely, En

k,i can approach Mf (xi, vk, tn) ∀k ∈ K.
Now, in order to introduce the hybrid scheme, we split the problem into a relax-

ation step and a convection step; the transport part is simply the linear convection
equation and can be approximated by a standard finite volume scheme, while the
relaxation step is represented by a system of stiff ODEs. The scheme reads

(49) fc
k,i = fn

k,i −
Δt

Δx

(
Fn

k,i+1/2 −Fn
k,i−1/2

)
∀k ∈ K,

where c indicates the intermediate step after the transport. The numerical fluxes are
defined by

(50) Fn
k,i+1/2 =

1

2

(
vkf

n
k,i+1 + vkf

n
k,i − |vk|(fn

k,i+1 − fn
k,i)

)
∀k ∈ K.

For the relaxation step we utilize the exact solution of the ODE equation

(51) fr
k,i = e−

Δt
ε fc

k,i + (1 − e−
Δt
ε )Ec

k,i ∀k ∈ K,

where Ec
k,i is the discrete equilibrium function computed with the moments found after

the convection. The distribution function at the next time step is simply fn+1
i,k = fr

i,k

∀k ∈ K. Finally, the time step is computed through the relation

(52) Δt

(
max
K

(
|vk|
Δx

))
< 1.

3.1.3. A Monte Carlo scheme for DVM-BGK. A Monte Carlo approach
to solve the DVM-BGK equations is the next tool we need for the construction of
the hybrid schemes. In this model the distribution function is again represented by a
piecewise constant function, defined on a compact support. We describe the scheme
in one dimension in space and one dimension in space velocity. First, we split the
equations into two parts, a transport and a relaxation stage:

∂tf
c
k(x, t) + vk · ∇xf

c
k(x, t) = 0 ∀k ∈ K,(53)

∂tf
r
k (x, t) = −1

ε
(fr

k (x, t) − Er
k(x, t)) ∀k ∈ K.(54)
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The solution of the relaxation problem can be sought in the form of an evolution of a
discrete probability density in each space point:

(55) pk(x, t) =

{
fk(x, t)Δv

�(x, t)
, v = v(k) ∀k ∈ K.

Thus, with probability pk(x, t), we assign to a sample velocity vk. In order to begin
the procedure we need to sample from the discrete probability density defined by the
initial data f0

k (x, t). We want to sample N particles for each interval in the discrete
space. We use the following strategy: divide the interval [0, 1] into K intervals, the
ith interval being of length pk, extract a uniform [0, 1] random number ξ, detect the
interval k to which ξ belongs, and give to the sample velocity vk. We can proceed as
follows for each interval.

Algorithm 1 (discrete sampling).

1. Compute Pk =
∑k

i=1 pk, k = 1, ..,K, P0 = 0.
2. Find the integer k such that Pk−1 ≤ ξ < Pk, with ξ a random number in

[0, 1].
Once P has been computed, step 2 can be performed with a binary search in

O(lnK). Let us define with {ν1, ν2, . . . , νN} the initial samples from p0
k,i at a given

space point xi. Hence a Monte Carlo method to obtain samples from pnk,i with n time
step and �i solutions of the transport step is the following algorithm.

Algorithm 2 (Monte Carlo for DVM-BGK equations).
1. Given N samples νk, the following hold:

(a) With probability e−t/ε the samples are unchanged.
(b) With probability 1−e−t/ε the samples are replaced with equilibrium sam-

ples. To extract N equilibrium samples proceed as follows:

i. Compute pk,i =
Er
k,iΔv

�i
.

ii. Use Algorithm 1.
Here Er

k,i represent the discrete equilibrium function at point xi, computed with
the moments found after convection. Note that the above procedure requires the exact
knowledge of �i, which we can estimate only from the samples at the given point xi.
In practice we need the knowledge of density, mean velocity, and temperature at
each point xi to reconstruct the discrete Maxwellian. The simplest method, which
produces a piecewise constant reconstruction, is based on evaluating the histogram of
the samples on the grid. Given a set of N samples with position χ1, χ2, . . . , χN and
velocity ν1, ν2, . . . , νN , we define the discrete probability density at the cell centers:

(56) pk(xi) =
1

N

N∑
j=1

ΨΔx(χj − xi)ΦΔv(νj − vk), i, k = . . . ,−2,−1, 0, 1, 2, . . . ,

where ΨΔx(x) = 1 if |x| ≤ Δx/2 and ΨΔx(x) = 0 elsewhere, while ΦΔv(v) = 1 if
|v| ≡ 0 and ΦΔv(v) = 0 in other cases.

Let us denote by the index k the sample νk and its position χk. If we use
equations (56), then �i is given by the number of samples Nj belonging to the cell Ii:

(57) �i =
m

Δx

∑
χk∈Ii

1 =
m

Δx
Nj ,

where m = 1
N

∫
�dx, while the mean velocity and the energy are given by

(58) ui =
1

Nj

∑
χk∈Ii

νk, Ei =
1

2Nj

m

Δx

∑
χk∈Ii

|νk|2.
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We refer the reader to [31] (and the references therein) for an introduction to basic
sampling and different reconstruction techniques in Monte Carlo methods.

Finally, the transport step does not present any difficulty and can be applied
without any need of meshes or reconstructions. In fact, from the exact expression of
the solution fc

k,i = fr
k,i(x− vkt, t) ∀k ∈ K, we simply need to shift the position of the

samples accordingly to the law

(59) χk = χk + νkt ∀k.

In what follows we will use the terminology “particle” to denote the pair (χk, νk)
characterizing the sample νk and its position χk.

The method described above deserves some remarks.
Remark 2.

(i) One important aspect in the method is that we do not need to reconstruct
the functions fK but only the conserved quantity �, u, T .

(ii) As for the deterministic DVM-BGK scheme, the Monte Carlo scheme pre-
sented needs the computation of a discrete equilibrium function through some iterative
solver, such as the Newton method.

(iii) Note that as ε → 0 the method becomes a Monte Carlo algorithm for the
limiting fluid dynamic equations. This limiting method is the analogue of a kinetic
particle method for the compressible Euler equations.

(iv) The simple splitting method we have described here is first order in time.
Second order Strang splitting can be implemented similarly.

3.1.4. The hybrid method (HM). The standard HM is based on the hybrid
representation (28). In the DVM case we consider the hybrid representation for the
function fK instead of f using EK instead of MfK . We have two differences with
respect to (28): the function fK and EK are piecewise constant and defined on a
compact support (see Figure 2 for the representation of E(v) with respect to Mf (v)
in the continuous case). Thus we assume that the solution of the relaxation step has
the form

(60) fr
k (x, t) = (1 − βr(x, t))fr,p

k (x, t) + βr(x, t)Er
k(x, t) ∀k ∈ K.

From the exact solution of the relaxation step (51) and the initial data, we could
obtain the evolution of the unknowns fp

k,i and βr
i ; for the details of the computations

we refer the reader to [13]:

fr,p
k (x, t) = fp

k (x, t = 0) ∀k ∈ K,(61)

βr(x, t) = e−t/εβ(x, t = 0) + 1 − e−t/ε.(62)

Note that Er
k(x, t) = Ek(x, t = 0) and that βr(x, t) → 1 as ε → 0. If we start from

β(x, t = 0) = 0 (all particles) at the end of the relaxation, a fraction 1 − e−t/ε of
the particles is discarded by the method as the effect of the relaxation to equilibrium.
Thus particles will represent the fractions (1−βr(x, t))fr,p

k (x, t). Moreover, the hybrid
representation is naturally kept by the relaxation.

After relaxation the exact solution of the transport step reads

fc
k(x, t) = (1 − βc(x, t))fc,p

k + βc(x, t)Ec
k(x, t) = fr

k (x− vkt, t)

= (1 − βr(x− vkt, t))f
r,p
k (x− vkt, t)(63)

+ βr(x− vkt, t)Er
k(x− vkt, 0) ∀k ∈ K.
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To simplify notation let us set

f∗,p
k (x, t) = (1 − βr(x− vkt, t))f

r,p
k (x− vkt, t) ∀k ∈ K,

E∗
k (x, t) = βr(x− vkt, t)Er

k(x− vkt, 0) ∀k ∈ K.

Unfortunately now the hybrid structure of the solution is not kept since E∗
k (x, t) are

not equilibrium states. For example the above set of equations can be solved taking

(64) βc(x, t) = 0

and

(65) fc,p
k (x, t) = f∗,p

k (x, t) + E∗
k (x, t) ∀k ∈ K.

The choice (64) means we completely lose, after the transport, the structure equi-
librium/nonequilibrium. However, note that we do not need to resample the whole
deterministic fraction; in fact, if we move one step t1 further in the relaxation using
fc
k(x, t) defined above as initial data, we have βr(x, t + t1) = 1 − e−t1/ε and

(66) fr
k (x, t + t1) = e−t1/ε(f∗,p

k + E∗
k (x, t)) + (1 − e−t1/ε)Er

k(x, t + t1) ∀k ∈ K,

where Er
k(x, t+t1) = Ec

k(x, t). Thus, in practice, we can avoid resampling particles after
the convection and apply the resampling only on a fraction e−t1/ε of the deterministic
fraction as needed by the relaxation. More precisely, taking cell averages of (66) as
in a standard Monte Carlo method, and using equations (56) for the reconstruction
as shown later, the algorithm to compute the particles that represent the fractions
e−t1/εfc

k(x, t) in each interval reads as follows.
Algorithm 3 (hybrid Monte Carlo for DVM-BGK).

1. Given m = Δx�v
N

∑
i

∑
k f

c
k,i(t) = m0 = Δx�v

N0

∑
i

∑
k fk,i(t = 0), do the

following:
2. For each interval Ii, i = . . . ,−2,−1, 0, 1, 2, . . . ,

(a) set βi = 1 − e−t1/ε;
(b) set Ni = Iround

(
(1 − βi)

Δx�v
m

∑
k f

c
k,i(t)

)
;

(c) set Pi =
u∗
p,i(t)

u∗
p,i(t)+u∗

E,i(t)
,

with u∗
p,i(t) =

∑
k f

∗,p
k,i (t)

and u∗
E,i(t) =

∑
k E∗

k,i(t);
(d) for k = 1, . . . , Ni

with probability Pi take (νj , χj) as one of the advected particles;
with probability 1−Pi take one sample νj from the deterministic fraction.
To extract (1 − Pi)Ni samples from a discrete advected Maxwellian do
the following:

i. Compute pk,i =
E∗
k,i·Δv

�i
.

ii. Compute Pk,i =
∑

K pk,i, k = 1, ..,K, P0,i = 0.
iii. Compute a random number ξ.
iv. Find the integer k such that Pk−1,i ≤ ξ < Pk,i.
v. Give to the sample νj the velocity vk−1.

After this the hybrid solution is computed simply by adding the deterministic
terms

βiEr
k,i(t + t1) ∀k ∈ K
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to the stochastic terms

(1 − βi)f
r,p
k,i (t + t1) ∀k ∈ K.

Note that as ε → 0 we do not perform any resampling at all, and we obtain a
relaxation scheme for the limiting Euler equations. We denote with the shorthand HM
the hybrid scheme based on the above algorithm to determine the fraction of solution
represented by particles which make use of the choice (64) after the transport.

Remark 3.

(i) The convection part corresponding to f∗,p
k (x, t) is solved exactly by trans-

port of particles as in a full Monte Carlo method. At variance the convection part
corresponding to E∗

k (x, t) is solved by a finite volume scheme for a DVM.
(ii) Note that the effective value of βi used in the above algorithm differs from

1− e−t1/ε. In fact if N c
i denotes the number of particles in cell i after the convection

step, during the relaxation we keep only an integer approximation Nβ
i of (1− βi)N

c
i .

The effective value of βi can then be computed at the end of the algorithm as

βE
i = 1 − Nβ

i

N c
i

.

3.1.5. Componentwise hybrid method (CHM). Another approach consists
in finding the maximum value of βc(x, t) > 0 in order to maximize the deterministic
fraction in equations (63). To achieve this goal we start from representation (24),
which gives for the relaxation step

(67) fr
k (x, t) = f̃r

k (x, t) + wr
k(x, t)Er

k(x, t) ∀k ∈ K.

The evolution for the unknowns f̃r
k (x, t), wr

k(x, t) are now (see [13] for details)

(68) f̃r
k (x, t) = e−t/εf̃k(x, t = 0), wr

k(x, t) = e−t/εwk(x, t = 0)+1−e−t/ε ∀k ∈ K.

As before the hybrid representation is kept by the relaxation process. The only
difference with respect to the HM is that particles are discarded from fk with different
ratios, depending on the local equilibrium degree.

Again the convection destroys the structure of the solution, and we get

fc
k(x, t) = f̃c

k(x, t) + wc
k(x, t)Ec

k(x, t) = fr
k (x− vkt, t)

= f̃r
k (x− vkt, t) + wr

k(x− vkt, t)Er
k(x− vkt, 0) ∀k ∈ K.(69)

To simplify notation let us set

f∗,p
k (x, t) = f̃r

k (x− vkt, t), Ẽk(x, t) = wr
k(x− vkt, t)Er

k(x− vkt, 0) ∀k ∈ K.

Here we do not assume wc
k(x, t) = 0 ∀k ∈ K, since we want to take advantage of the

componentwise hybrid representation in order to maximize the deterministic fraction
of the solution. Thus, starting from the deterministic fractions Ẽk(x, t) defined above
we construct the new values of wc

k(x, t), f̃c
k(x, t), using Definition 1 in the case of

piecewise constant functions defined on a compact support.
More precisely, we define

(70) wc
k(x, t) =

⎧⎨
⎩

Ẽk(x, t)
Ec
k(x, t)

, Ẽk(x, t) ≤ Ec
k(x, t) 
= 0

1, Ẽk(x, t) > Ec
k(x, t)

∀k ∈ K
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and

(71) E∗
k (x, t) = Ẽk(x, t) − wc

k(x, t)Ec
k(x, t) ∀k ∈ K.

In this way we obtain

(72) f̃c
k(x, t) = f∗,p

k (x, t) + E∗
k (x, t) ∀k ∈ K.

The HM based on the computations of the equilibrium fraction after the transport
through (70) will be called CHM. The next relaxation step then applies as in the HM
case, substituting the value f̃c

k(x, t) with the relation above:

fr
k (x, t + t1) = f̃r

k (x, t + t1) + wr
k(x, t + t1)Er

k(x, t + t1)

= e−t1/εfc
k(x, t) + (1 − e−t1/ε)Ec

k(x, t)

= e−t1/ε(f∗,p
k (x, t) + E∗

k (x, t) + wc
k(x, t)Ek(x, t))

+ (1 − e−t1/ε)Ek(x, t) ∀k ∈ K.(73)

If we define after the convection step

(74) βc(x, t) = min{wc
k(x, t)} ∀k ∈ K,

we maximize the common value of βc such that the standard HM applies; that par-
ticular choice leads to another hybrid scheme that will be called HMI. This could be
very relevant in applications where it is important that the hybrid decomposition is
component independent. For instance if we want to treat the equilibrium part through
a macroscopic scheme, we have to adopt this strategy. The independent fluid solver
strategy will be the subject of a future work [15].

3.2. Hybrid Boltzmann–BGK schemes. The use of a DVM presents several
drawbacks. First, since the discrete local Maxwellian equilibrium is needed explicitly,
we need a suitable numerical method to solve the nonlinear system of equations (41).
From the computational side this leads to an increase of computational cost, which is
especially relevant in higher dimensions. Next, since discrete Maxwellian equilibrium
states are compactly supported they differ from Maxwellians of the Boltzmann equa-
tion. Thus the corresponding fluid equations may be different from the classical ones
(see Figures 2 and 3); in other words a DVM cannot describe correctly all possible
flows [26]. For this reason it is highly desirable to have a method which is not based
on the use of a DVM.

The idea is to split the Maxwellian into two parts:

(75) M(v) = ER(v) + TR(v),

where ER(v) = M(v)Ψ(|v| ≤ R), R > 0, represents the central part of the solution
and TR(v) = M(v)Ψ(|v| > R) the tails. The starting point of such schemes is given
by representations (31) and (35).

Since the schemes follow the same lines of the ones described for the DVM-BGK
model, we will describe them briefly by emphasizing only the major differences.

3.2.1. Boltzmann hybrid method (BHM). We start by again splitting our
problem into relaxation and transport steps and using representation (35). The solu-
tion of the relaxation now reads

(76) fr
R(x, v, t) =

(
1 − ρrE(x, t)

ρr(x, t)
βr
R(x, t)

)
fr,p
R (x, v, t) + βr

R(x, t)Er
R(x, v, t),
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Fig. 2. Discrete Maxwellian on a truncated velocity domain (dashed lines) and corresponding
Maxwellian with the same mass, momentum, and energy.
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Fig. 3. Density (left) and velocity (right) profiles for the Sod test with initial data �L = 2×10−5,
uL = 0, TL = 273.15 and �R = 0.25 × 10−5, uR = 0, TR = 273.15. The limit ε → 0 for DVM
schemes with velocity range [−2000, 2000] and [−500, 500], respectively.

where

ρr(x, t) =

∫
fr
R(x, v, t)dv =

∫
fr,p
R (x, v, t)dv.

As before, using the exact solution of the relaxation step starting from initial data at
t = 0 we are able to compute the evolution equations for the unknowns fr,p

R (x, t) and
βr
R(x, t). The equation for βr

R(x, t) is the same as in scheme HM:

(77) βr
R(x, t) = e−t/εβR(x, 0) + 1 − e−t/ε,

whereas the equation for the particle distribution now takes into account the changes
due to the presence of the tails:
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fr,p
R (x, v, t) =

e−t/εβR(x, 0) + 1 − e−t/ε

a− b
TR(x, v, 0)

+
1

a− b

(
e−t/ε

(
1 − ρE(x, 0)

ρ(x, 0)
βR(x, 0)

))
fp
R(x, v, 0),(78)

where

b = (1 − e−t/ε)

(
ρE(x, 0)

ρ(x, 0)

)
, a =

(
1 − ρE(x, 0)

ρ(x, 0)
βR(x, 0)e−t/ε

)
.

The major difference is that as ε → 0 a fraction (1− ρrE(x, t)/ρr(x, t)) of the solution
is still represented by particles. After relaxation we transport the particles and the
equilibrium part as before to obtain

fc
R(x, v, t) =

(
1 − ρcE(x, t)

ρc(x, t)
βc
R(x, t)

)
fc,p
R (x, v, t) + βc

R(x, t)Ec
R(x, v, t)

= f∗,p
R (x, v, t) + E∗

R(x, v, t).(79)

Finally, we reproject the solution into the form (35) by taking βc
R = 0 as in scheme

HM.
The treatment of the nonequilibrium part of the solution has been done using

a discrete velocity Monte Carlo scheme for the central part and a general Monte
Carlo scheme (i.e., samples can attain any velocity) for the tails. The details of the
Boltzmann hybrid method are given in the following algorithm.

Algorithm 4 (BHM scheme).
1. Given m = Δx

N

∑
i �

c
i,R(t), where �ci,R(t) represent the total mass in each cell

at time t after convection, which now differs from �v
∑

k f
c
k,i,R(t), do the

following:
2. For each interval Ii, i = . . . ,−2,−1, 0, 1, 2, . . . ,

(a) set βi = 1 − e−t1/ε;
(b) set Ni = Iround

(
(1 − βi)

Δx
m �ci (t)

)
;

(c) set Pi =
u∗
p,i(t)

u∗
p,i(t)+u∗

E,i(t)
,

with u∗
p,i(t) = m

Δx

∑
χk∈Ii

1 = m
ΔxNj, where Nj indicate the particles that

belong to the cell Ii
and u∗

E,i(t) =
∑

k E
∗
k,i,R(t);

(d) for k = 1, . . . , Ni

with probability Pi take (νj , χj) as one of the advected particles;
with probability 1−Pi take one sample νj from the deterministic fraction.
To extract (1− Pi)Ni samples from the discrete advected central part of
the Maxwellian do the following:

i. Compute pk,i =
E∗

k,i,R·Δv

�i
.

ii. Compute Pk,i =
∑

K pk,i, k = 1, ..,K, P0,i = 0.
iii. Compute a random number ξ.
iv. Find the integer k such that Pk−1,i ≤ ξ < Pk,i.
v. Give to the sample νj the velocity vk−1.

(e) Set NT
i = Iround

(
βi

(
Δx
m �ci,R(t) − Δx�v

m

∑
k f

c
k,i,R(t)

))
.

(f) For k = 1, .., NT
i extract a sample from the tail of the Maxwellian. To

extract a sample from the right tail do the following:
i. Compute r = cos(2 ∗ π ∗ ξ1).
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ii. If r > 0, compute v =
√

− log(exp(−R2) − ξ2 ∗ exp(−R2)) with
ξ1, ξ2 random numbers in [0, 1].

iii. If v > R, take the sample; else reject the sample.
As for the HM scheme the final solution is recovered by adding the deterministic

term βi Ek,i,R(t) to the stochastic term.

3.2.2. Boltzmann componentwise hybrid method (BCHM). The com-
ponentwise approach described in the previous section can be adapted to the case of
representation (31). We have

(80) fr(x, v, t) = f̃r
R(x, v, t) + wr

R(x, v, t)Mr(x, v, t).

The evolutions for the unknowns f̃r
R(x, v, t), wr

R(x, v, t) are now

f̃r
R(x, v, t) = e−t/εf̃R(x, v, 0) + (1 − e−t/ε)TR(x, v, 0),(81)

wr
R(x, v, t) = e−t/εwR(x, v, 0) + (1 − e−t/ε)Ψ(|v| ≤ R).(82)

Clearly, as in scheme BHM, as ε → 0 a fraction of the solution is represented by
particles. Again after convection we have

fc
R(x, v, t) = f̃ c(x, v, t) + wc

R(x, v, t)M c(x, v, t) = f∗,p
R (x, v, t) + M̃r(x, v, t),

where f∗,p
R (x, v, t) and M̃r(x, v, t) represent the advected particles and equilibrium

fractions. The value wc
R(x, v, t) is now computed only in the central part of f , |v| ≤ R,

by

(83) wc
R(x, v, t) =

⎧⎨
⎩

M̃r(x, v, t)

M c(x, v, t)
, M̃r(x, v, t) ≤ M c(x, v, t) 
= 0,

1, M̃r(x, v, t) > M c(x, v, t).

Then we define

M∗(x, v, t) = M̃r(x, v, t) − wc
R(x, v, t)M c(x, v, t)

to obtain

(84) f̃c(x, v, t) = f∗,p
R (x, v, t) + M∗(x, v, t).

Finally, the same strategy, described in the previous section, of taking βc
R(x, t) =

minv{wc
R(x, v, t)} could be adopted for applications in which the decomposition is

component independent. We omit the details.

4. Numerical tests. In this section we compare the performance of the Monte
Carlo and the hybrid schemes presented here using two classical tests: a Sod test and
an unsteady shock test. We have chosen two unsteady tests because we would like to
test the performance of the methods without the effect of averaging the solution in
time (typical of Monte Carlo methods for steady problems). Before this, however, we
have performed an overall accuracy test of the different schemes.

4.1. Accuracy test. We report the total L1 norm of the errors for the conserved
quantities �, u, and T by considering a periodic smooth solution with initial data

�(x, 0) = 1 + a� sin
2πx

L
,

u(x, 0) = 1 + au sin
2πx

L
,(85)

T (x, 0) = 1 + aT sin
2πx

L
,
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Table 1

Accuracy test, L1 norm of the errors for density with respect to different values of the Knudsen
number ε (in units of 10−2).

ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6

MCM 2.1512 2.3435 2.6886 2.6684 2.6529
HM 2.0234 1.7406 1.2126 0.4020 0.12868
HMI 1.9934 1.600 0.7888 0.2895 0.0961
CHM 1.1704 0.6233 0.2743 0.10938 0.0309
BHM 1.9660 1.9125 1.3499 0.8163 0.7258
BHMI 1.7115 1.4536 0.7517 0.7212 0.6866
BCHM 1.4685 0.9204 0.7000 0.6439 0.6538

Table 2

Accuracy test, L1 norm of the errors for velocity with respect to different values of the Knudsen
number ε (in units of 10−2).

ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6

MCM 2.9320 3.5061 4.8096 4.626 4.6652
HM 2.8686 2.2685 2.1736 0.7182 0.2503
HMI 2.3551 1.9552 1.3733 0.4994 0.1851
CHM 1.3448 0.9139 0.4739 0.1662 0.0527
BHM 3.0944 2.5336 2.4123 1.5215 1.2635
BHMI 2.5098 2.2245 1.4186 1.4417 1.3714
BCHM 1.8727 1.5825 1.4079 1.2246 1.2355

Table 3

Accuracy test, L1 norm of the errors for temperature with respect to different values of the
Knudsen number ε (in units of 10−2).

ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6

MCM 3.2923 4.4354 6.2404 5.7733 6.1142
HM 2.9520 2.7893 2.6305 0.96996 0.2840
HMI 2.8437 2.5110 1.6132 0.6617 0.2053
CHM 1.8196 1.2004 0.5368 0.1310 0.0651
BHM 3.1869 3.0254 2.8536 2.1430 1.8134
BHMI 2.7132 2.6807 2.3756 2.0148 2.1010
BCHM 2.6210 2.3226 2.1498 1.9315 1.8849

where we set

a� = 0.3, au = 0.1, aT = 1.

We use 1500 particles for cell with bounds set at [−15, 15] for the DVM-BGK schemes
and bounds set at [−5, 5] for the Boltzmann–BGK schemes; we integrate the equations
for t ∈ [0, 5 × 10−2] for Δv = 0.16 and Δx = 0.05. We compare our hybrid solutions
with a reference solution obtained with a fully deterministic DVM-BGK model with
the same Δv and Δx but with bounds set at [−20, 20] in velocity space.

We use the shorthand MCM, HM, HMI, CHM, BHM, BHMI, BCHM to denote
the Monte Carlo scheme, the DVM–BGK hybrid schemes (respectively, (64), (74),
(70)), and the Boltzmann–BGK hybrid schemes with the same choice of βc(x, t). The
results for the relative L1 errors are reported in Tables 1, 2, and 3. The parameters
that influence the numerical solution in all the schemes are the number of particles
and the number of mesh points in velocity space. Moreover, DVM-BGK schemes are
influenced by the truncation of the velocity space and by the method we use to solve
the nonlinear system (41), while BHM schemes are influenced by the position of the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HYBRID MULTISCALE METHODS II. KINETIC EQUATIONS 1187

Table 4

Computational time test for different values of the Knudsen number ε.

ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6

MCM 23 sec 25 sec 27 sec 26 sec 27 sec
BHM 35 sec 25 sec 22 sec 22 sec 21 sec
BHMI 34 sec 20 sec 19 sec 20 sec 21 sec
BCHM 15 sec 11 sec 17 sec 21 sec 20 sec

boundary that divides Ef from Tf , which turns in a different number of particles
in the domain. The schemes HM, HMI, and CHM cause a progressive reduction of
fluctuations as the Knudsen number decreases. On the other hand, the deterministic
computation of the function E and of the large velocity components is expensive, and
the hybrid schemes, independently of ε, are computationally more expensive than
MCM.

The Boltzmann–BGK solvers are faster since we do not need to compute the
solution of a nonlinear system at each time step for each component of E . They are also
faster because the deterministic solvers contain fewer mesh points. However, BHM,
BHMI, and BCHM present more fluctuations with respect to HM, HMI, and CHM
because tails are represented by particles. We report the corresponding computational
times for the Boltzmann–BGK schemes with respect to the MCM scheme for different
Knudsen numbers in Table 4. Note that all these schemes are more accurate and more
efficient than MCM. In particular BCHM for ε = 10−3 is about twice as fast and
twice as accurate as MCM.

We remark that no attempt to optimize the truncation parameter in the Boltz-
mann–BGK schemes has been made in order to obtain the optimum compromise
between accuracy and computational time.

4.2. Sod test. We consider the classical Sod test with initial value

(86)

⎛
⎝ �L

uL

TL

⎞
⎠ =

⎛
⎝ 1

0
5

⎞
⎠ if 0 � x < 0.5,

⎛
⎝ �R

uR

TR

⎞
⎠ =

⎛
⎝ 0.125

0
4

⎞
⎠ if 0.5 � x � 1.

The solution is computed with 200 space points in [0, 1], and the final time is t = 0.05.
The initial number of particles is 1000 for each space cell; the Knudsen number is
ε = 10−3 in one case and ε = 10−5 in the other. In the HM, HMI, and CHM schemes
the velocity space is bounded at [−15, 15] and discretized with Δv = 0.16. The bounds
between the tails and the central part of the Maxwellian for BHM, BHMI, and BCHM
are set to [−5, 5], with the same mesh in velocity. We compare our solutions with a
reference solution obtained with a DVM model with 500 space cells and 250 cells in
velocity space with bounds set at [−20, 20] in velocity. From Figures 4, 5, 6, and 7 it is
clear that all hybrid schemes provide a more accurate solution with fewer fluctuations
with respect to MCM method.

4.3. Unsteady shock test. We consider an unsteady shock that propagates
from left to right; the shock is produced introducing a specular wall in the left bound-
ary, and this corresponds to putting an incoming Maxwellian distribution in the ghost
cell with parameters �, u, T equal to the parameters �(1), u(1), T (1) in the first cell.
At the beginning the flow is uniform with

(87) �(x, 0) = 1, u(x, 0) = −1, T (x, 0) = 4.
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Fig. 4. Sod test: Solution at t = 0.05 with ε = 10−3 for density (top), mean velocity (middle),
and temperature (bottom) for MCM and HM (left), HMI and CHM (right), with initial data (86).

The computation is stopped when t = 0.065, the number of space cells is 200 in [0, 1],
the initial number of particles is 1500 for each space cell, and the Knudsen number is
ε = 10−3 in one case and ε = 10−5 in the other. In the HM, HMI, and CHM schemes
the velocity space is discretized with Δv = 0.16, and the bounds are set at [−15, 15].
The bounds between the tails and the central part of the Maxwellian for BHM, BHMI,
and BCHM are set to [−5, 5], with the same mesh in velocity. We again compare our
solution with a DVM with 500 space cells and 250 cells in velocity space with bounds
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Fig. 5. Sod test: Solution at t = 0.05 with ε = 10−5 for density (top), mean velocity (middle),
and temperature (bottom) for MCM and HM (left), HMI and CHM (right), with initial data (86).

set at [−20, 20]. Again the improvement obtained with the hybrid schemes is clear
(see Figures 8, 9, 10, and 11).

5. Conclusion. In this work we have considered the development of hybrid
methods for kinetic multiscale problems. Although we have described the schemes
in the case of Boltzmann–BGK equation, our approach can be extended to other ki-
netic equations. The additional difficulty usually is represented by the structure of
the collision operator which requires a specific treatment (see [6, 28, 29] for the case
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Fig. 6. Sod test: Solution at t = 0.05 with ε = 10−3 for density (top), mean velocity (mid-
dle), and temperature (bottom) for MCM and BHM (left), BHMI and BCHM (right), with initial
data (86).

of the full Boltzmann equation).
The hybrid multiscale methods developed here can be used in all cases where a

macroscopic description of the phenomena is known but ceases to be valid in some
region of the computational domain and the microscopic model has to be used. The
necessary condition is that the microscopic variables and the macroscopic conserved
variables are linked through an operator that define a local equilibrium.

The general approach consists in a suitable blending of deterministic methods
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Fig. 7. Sod test: Solution at t = 0.05 with ε = 10−5 for density (top), mean velocity (mid-
dle), and temperature (bottom) for MCM and BHM (left), BHMI and BCHM (right), with initial
data (86).

for the equilibrium part and particle methods for the nonequilibrium part. Several
numerical examples are shown in order to prove the validity and efficiency of the new
methods. Of course other tests have to be done to measure the performance of the
hybrid methods in real applications.
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Fig. 8. Unsteady shock: Solution at t = 0.065 with ε = 10−3 for density (top), mean velocity
(middle), and temperature (bottom) for MCM and HM (left), HMI and CHM (right), with initial
data (87).
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Fig. 9. Unsteady shock: Solution at t = 0.065 with ε = 10−5 for density (top), mean velocity
(middle), and temperature (bottom) for MCM and HM (left), HMI and CHM (right), with initial
data (87).
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Fig. 10. Unsteady shock: Solution at t = 0.065 with ε = 10−3 for density (top), mean velocity
(middle), and temperature (bottom) for MCM and BHM (left), BHMI and BCHM (right), with
initial data (87).
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Fig. 11. Unsteady shock: Solution at t = 0.065 with ε = 10−5 for density (top), mean velocity
(middle), and temperature (bottom) for MCM and BHM (left), BHMI and BCHM (right), with
initial data (87).
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