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A remark on the finite number of particles effect in Monte Carlo methods
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Monte Carlo methods are the most popular methods for solving problems inkinetic theory [2, 5]. In this short remark we
emphasize some of the side effects due to the use of conservative methods over a finite number of statistical samples (particles)
in the simulation. The most relevant aspect is that the steady states of the system are compactly supported and thus they cannot
be Maxwellian (or any other non compactly supported statistics) unless the number of particles goes to infinity. These aspects
are studied numerically with the help of a simple one-dimensional space homogeneous kinetic model.
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1 Introduction

The numerical solution of kinetic equations is usually performed through statistical simulation methods such as MonteCarlo
[3]. The reason for this is twofold, on the one hand probabilistic techniques provide an efficient toolbox for the simulation due
to the reduced computational cost when compared with deterministic schemes, on the other hand the evolution of the statistical
samples follows the microscopic binary interaction dynamics thus providing all the relevant physical properties of the system.
Traditionally the methods are considered extremely efficient when dealing with stationary problems. In such case, in fact,
fluctuations can be eliminated by taking subsequent averages of the solution after then a certain ”stationary time” has been
reached. Here we show, with the help of a simple one-dimensional system, that this averaging procedure does not guarantee
convergence towards the correct steady state due to finite number of particles correlations introduced by the microscopic
conservation laws. Similar analysis for rarefied gas dynamics have been done in [9, 6].

1.1 The model equation

We will consider a simple one–dimensional kinetic model, where the binary interaction between particles obey to the law

v′ = v cos θ − w sin θ, w′ = v sin θ + w cos θ, (1)

whereθ ∈ [−π, π] is a collision parameter. The microscopic energy after the binary interaction rule is conserved

(v′)2 + (w′)2 = v2 + w2, (2)

whereas momentum is not.
Let f(v, t) denote the distribution of particles with velocityv ∈ R at timet ≥ 0. The kinetic model can be easily derived by

standard methods of kinetic theory, considering that the change in time off(v, t) depends on a balance between the gain and
loss of particles with velocityv due to binary collisions. This leads to the following integro-differential equation of Boltzmann
type [4],

∂f

∂t
=

∫
R

∫ π

−π

1

2π
(f(v′)f(w′) − f(v)f(w)) dθ dw. (3)

As a consequence of the binary interaction the second momentum of the solution is conserved in time, whereas the first
momentum is preserved only if initially it is equal to zero. For this model one can show that the stationary solutionf∞(v) is
the Maxwell density

f∞(v) =
1√
2π

e−v2/2. (4)

A standard Monte Carlo method for this equation can be easilyderived using either Bird’s or Nanbu’s algorithm for Maxwell
molecules [2, 5]. The two algorithms differ mainly in the waythe time discretization is treated, but not in the way collisions
(sampling from the collision integral operator) are performed. Our results do not differ for the two methods.
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Fig. 1 Equilibrium states for different finite sets of particles vs Maxwellian (left) and equilibrium value of the fourth order moment for the
different finite sets of particles.

2 Numerical results

The problem we consider here is related to the effect of the finite number of particles in Monte Carlo simulations. Note that
given a set of particlesv1, v2, . . . , vN with energyE = 1

2

∑N
i=1

v2

i , we have the inequality

|vi| ≤ RN =
√

2EN. (5)

As a consequence of this, any particle dynamic, namely any transformation of the type

v′

i = φi(v1, . . . , vN ), i = 1, . . . , N, (6)

that preserves exactly energy is such that the particle solution remains compactly supported in[−RN , RN ] at any time. This
implies that the distribution of such particles cannot be Maxwellian (or any other non compactly supported statistics)unless
the particles number goes to infinity. This is exactly what happens if we use the so-called Nanbu-Babovsky [1] strategy of
performing collisions by pairs so that the Monte Carlo methods are exactly conservative and not conservative in the mean. We
report in Figure 1 (left) the numerical distribution of the finite sets of particles in the case of the one-dimensional Maxwell
model (3). The results have been obtained taking initially Maxwellian samples with zero mean and energy4 and then averaging
in time over the Monte Carlo solutions to the equation. For very small numbers of particles it is remarkable that the computed
distribution differ considerably from the expected Maxwellian. The different fourth order moments of the corresponding
steady solutions are then plotted in Figure 1 (right) against the exact fourth order moment of the Maxwellian. We point out
that such small particle numbers can be present is some cellswhen one consider fully non homogeneous rarefied gas flow
simulations and thus, even if the transport part can affect the nature of these correlations, a particular care has to be taken
when averaging over such small numbers. Similar conclusionare valid also for different kinetic models where the steadystate
statistics is not compactly supported like in granular gases, plasma physics, quantum kinetic theory, traffic flows and economic
models.
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