
FLUID SIMULATIONS WITH LOCALIZED BOLTZMANN

UPSCALING BY DIRECT SIMULATION MONTE-CARLO ∗

Pierre Degond1,2 and Giacomo Dimarco†1,2
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Abstract

In the present work, we present a novel numerical algorithm to couple the Direct Simulation
Monte Carlo method (DSMC) for the solution of the Boltzmann equation with a finite volume
like method for the solution of the Euler equations. Recently we presented in [14],[16],[17]
different methodologies which permit to solve fluid dynamics problems with localized regions
of departure from thermodynamical equilibrium. The methods rely on the introduction of
buffer zones which realize a smooth transition between the kinetic and the fluid regions. In
this paper we extend the idea of buffer zones and dynamic coupling to the case of the Monte
Carlo methods. To facilitate the coupling and avoid the onset of spurious oscillations in the
fluid regions which are consequences of the coupling with a stochastic numerical scheme, we use
a new technique which permits to reduce the variance of the particle methods [11]. In addition,
the use of this method permits to obtain estimations of the breakdowns of the fluid models
less affected by fluctuations and consequently to reduce the kinetic regions and optimize the
coupling. In the last part of the paper several numerical examples are presented to validate
the method and measure its computational performances.

Keywords: Kinetic-fluid coupling, Boltzmann equation, multiscale problems, Monte Carlo
methods.
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1 Introduction

Many problems of interests in applications involve non equilibrium gas flows as hypersonic objects
simulations or micro-electro-mechanical devices. Often, these kinds of problems are characterized
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by breakdowns of fluid models, either Euler or Navier-Stokes. Now, when the breakdown is localized
both in space and time we must deal with conjunctions of continuum and non equilibrium regions.
To face such problems, the most natural approach is to try to combine numerical schemes for
continuum models with microscopic kinetic models which guarantee a more accurate description
of the physics when far from thermodynamical equilibrium conditions are reached. In fact, it is
not always necessary to solve the Boltzmann equation, which is computationally more expensive
by several orders of magnitude than a continuum description, in the entire domain. It is, instead,
sufficient to use the microscopic description in regions where the departure from equilibrium is
strong and manifests itself as boundary layers or shocks.

The construction of such hybrid kinetic-fluid methods involve three main problems. The first
one is how to accurately identify the different regions. We refer, for instance, to the works of
Wijesinghe and Hadjiconstantinou [36], Levermore, Morokoff, and Nadiga [22], and Wang and
Boyd [32], in which various breakdown criteria are analyzed and then proposed. The second main
problem is how to, in practice, realize the coupling. In other words, how to match the two models
at the interfaces. Several different ideas are described in the works of Bourgat, LeTallec, Perthame,
and Qiu [4], Bourgat, LeTallec and Tidriri [5], LeTallec and Mallinger [23], Aktas and Aluru [1],
Roveda, Goldstein and Varghese [26, 27], Sun, Boyd and Candler [7, 33], Wadsworth and Erwin [35].
Domain decomposition approaches are also popular in others fields such as, for instance in epitaxial
growth [28] or for problems involving different scaling such as the diffusive scalings [13, 20]. The
decomposition between equilibrium and non equilibrium states can be realized also in the velocity
space instead of physical space [10], [18]. It is important to stress that most of the mentioned
methods use a static interface between kinetic and fluid regions. However, this approach appears
as somehow inadequate and inefficient for many realistic problems. To overcome this difficulty,
automatic domain decomposition methods have also been developed in the recent past. See for
example Kolobov et al. [21], or Tiwari [30, 31] and Degond, Dimarco and Mieussens [16, 17].
The third problem is the choice of the appropriate numerical methods for solving the macroscopic
and the microscopic model. A first possibility are the deterministic-deterministic methods in
which both the macroscopic and the microscopic models are solved by means of finite volume
techniques such as for instance in [14, 16, 17]. These methods permit to obtain very accurate
results but generally they are too expensive. For this reason simplified models are then used to
describe the kinetic part of the problem. In practice, in most of the cases, the collision operator is
replaced by the BGK relaxation operator which permits to reduce the computational cost. A second
approach consists in using particle-particle methods [29, 7]. These methods avoid the complexity
associated with using two independent methods for different regions and provide a simple solution
to the interface problem. On the other hand, the solutions contain large statistical errors which
are the typical drawback of Monte Carlo methods. Recently, some low diffusion particle-particle
numerical methods have been proposed by Boyd and coauthors in [6]. A third approach is the
deterministic-particle approach [34, 35, 37, 19, 33]. Here, the fluid model is discretized by using a
finite volume method, while the kinetic model is solved by the DSMC method. The popularity of
DSMC is due to several advantages compared to other simulation methods for kinetic equations,
including advantages related to efficiency, memory usage and implementation of additional physical
phenomena. The disadvantages of DSMC, however, are the increase of the computational cost close
to thermodynamical equilibrium and the large statistical error which scales with the inverse square
root of the number of particles. This last aspect is the cause of the big difficulties met in the
coupling, both for defining the kinetic regions and to avoid the introduction of oscillations in the
fluid part.

In the present paper, we present a novel numerical algorithm to couple a DSMC method for
the solution of the Boltzmann model and a finite volume like method for the Euler equations. The
method relies on two main aspects. The first one is the use of a new low variance Direct Simulation
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Monte Carlo method to compute the solution of the kinetic part. Monte Carlo methods, as already
observed, permit more realistic descriptions of the physical problems. On the other hand, the
solutions computed with these techniques are affected by large statistical noise. In order to reduce
this effect, we extend the variance reduction technique (called moment guided method) which has
been recently developed in [11, 12] to the coupling case. The moment guided method permits
to reduce the statistical error through a matching with a set of suitable macroscopic moment
equations. The basic idea, on which the method relies, consists in guiding the particle positions
and velocities through moment equations so that the concurrent solution of the moment and kinetic
models furnishes the same macroscopic quantities. The method is based on the observation that
the deterministic solution of the moment equation leads to a more accurate solution, in term
of statistical fluctuations, than the DSMC method. We experimentally showed in [11] that this
is indeed the case. Now, a crucial point, in the implementation of the domain decomposition
strategies, is the identification of the zones in which the microscopic description is necessary. In
other words, kinetic regions have to be as thin as possible, with the constraint that the effective
solution is correctly captured. Thus, the direct consequence of using the moment guided method
to solve the Boltzmann equation is that the research of the interface location becomes a less
difficult task to accomplish. Moreover, the use of this technique permits to reduce significantly the
propagation of spurious oscillations in the fluid regions.

The second main aspect of the method consists of the introduction of a buffer zone which
realizes a smooth transition between the kinetic and fluid regions. It differs from the method of
[14, 15, 16, 17] by the way the solution of the Boltzmann equation is decomposed into a kinetic
and a fluid component. The new decomposition we adopt is better adapted to a DSMC method
while the earlier one was more adapted to grid based solutions of the Boltzmann equation. As
in [11], we suggest a methodology to allow for the time evolution of the kinetic and fluid regions
which permits to follow discontinuities in time and space and solve the microscopic model only
where necessary. Thanks to this technique, it is possible to achieve considerable computational
speedup compared with steady interface coupling strategies, without otherwise, losing accuracy
in the solution. Finally, we observe that the use of a smooth transition between the micro and
the macro models further reduces the propagation of fluctuations in the fluid regions and thus it
permits to obtain more accurate results.

The outline of the article is the following. In section 2, we introduce the Boltzmann equation,
its properties and the fluid limit. In section 3 we present the coupling strategy. Section 4 is devoted
to the discretization of the Boltzmann equation, on the moment guided method, and on the finite
volume scheme for the Euler equations. In section 5, we describe the breakdown criterion and the
time evolution of the interface. Several numerical tests are presented in section 6 to illustrate the
properties of our method and to demonstrate its efficiency in comparison with DSMC schemes. A
short conclusion is given in section 7.

2 The Boltzmann equation and its fluid limit

We consider the following model [9]

∂tf + v · ∇xf = Q(f, f), (1)

with the initial data
f(x, v, t = 0) = f0,

where f = f(x, v, t) is the density of particles that have velocity v ∈ R
3 and position x ∈ Ω ⊂ R
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at time t > 0. The collision operator Q locally acts in space and time and takes into account
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interactions between particles. It is written:

Q(f, f) =

∫

R3

∫

S2

B

(
|q|, q · n|q|

)
[f(v′)f(v′∗) − f(v)f(v∗)]dndv∗. (2)

In the above expression S2 is the unit sphere in R
3, q = v−v∗ the relative velocity, n ∈ S2 the unit

vector in the direction of the scattered velocity. The collision kernel B(|q|, q · n/|q|) characterizes
the detail of the collision and is defined as

B(|q|, cos θ) = |q|σ(|q|, θ), (0 ≤ θ ≤ π) (3)

where cos θ = q ·n/|q| and σ(|q|, θ) is the collision cross section which corresponds to the scattering
angle θ. Finally the post collisional velocity are computed by

v′ =
1

2
(v + v∗ + |q|n), v′∗ =

1

2
(v + v∗ − |q|n). (4)

The collisional operator locally satisfies the conservation of mass, momentum and energy:

〈mQ(f, f)〉 = 0 (5)

for every f , where we denote weighted integrals of f over the velocity space by

〈φf〉 =

∫

R3

φ(v)f(v)dv, (6)

with φ(v) any function of v, and m(v) = (1, v, |v|2) are the collisional invariants. The multipli-
cation of (1) by m(v) and the integration in velocity space leads to the following system of local
conservation laws

∂t〈mf〉 + ∇x · 〈vmf〉 = 0. (7)

Now, the well known Boltzmanns H-theorem implies that any equilibrium distribution function,
i.e. any function f for which Q(f, f) = 0, has the form of a locally Maxwellian distribution:

E[̺](v) =
̺

(2πθ)3/2
exp

(−|u− v|2
2θ

)
, (8)

where ̺ = (̺, ̺u, ̺e), with ̺ and u the density and mean velocity while θ = RT , with T the
temperature of the gas and R the gas constant. The macroscopic values ̺, u and T are related to
f by:

̺ =

∫

R3

fdv, ̺u =

∫

R3

vfdv, θ =
1

3̺

∫

R3

|v − u|2fdv, (9)

while the fluid energy e is defined as

e =
1

2̺

∫

R3

|v|2fdv =
1

2
|u|2 +

3

2
θ. (10)

When the mean free path between particles is very small compared to the size of the compu-
tational domain, the space and time variables can be rescaled to

x′ = εx, t′ = εt (11)

where ε is the ratio between the microscopic and the macroscopic scale (the so-called Knudsen
number). Using these new variables in (1), we get

∂t′f
ε + v · ∇x′fε =

1

ε
Q(fε, fε). (12)
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If the Knudsen number ε tends to zero, formally the distribution function converges towards the
local Maxwellian equilibrium Eε[̺]. Inserting this relation into the conservation laws (7) gives the
set of compressible Euler equations for the macroscopic quantities ̺:

∂t′̺ + ∇x′ · F (̺) = 0, (13)

where F (̺) = 〈vmEε[̺]〉.
In the sequel we will omit the primes to simplify notations wherever they will not cause in

confusion.

3 The coupling model

In this section, we first introduce the so-called micro-macro decomposition of the distribution
function [15] and then our coupling model which is based on this decomposition.

3.1 The micro-macro decomposition

The micro-macro decomposition of the distribution function consists in dividing f in a part in
equilibrium and a part in non equilibrium, it reads

f = E[̺] + g. (14)

The function g represents the non-equilibrium part of the distribution function. From the
definition above, it follows that g is in general non positive. Moreover since f and E[̺] have the
same first three moments we have

〈m(v)g〉 = 0. (15)

Finally, it is possible to show that E[̺] and g satisfy the following coupled system of equations

∂t̺ + ∇x · F (̺) + ∇x · 〈vm(v)g〉 = 0, (16)

∂tf + v · ∇xf =
1

ε
Q(f, f) (17)

We skip the proof of the above statement and we refer to [15] for details on the micro-macro
decomposition and its properties.

In the following sections, we will consider the case in which the perturbation g is very small
in a part of the domain while it is large in the complementary part. In the small perturbation
regions it will be suitable to avoid the solution of the kinetic equation (17) and solve only the Euler
equations which are able to furnish an accurate description of the problem under consideration.

3.2 The model

Let Ω1, Ω2, and Ω3 be three disjointed sets such that Ω1 ∪ Ω2 ∪ Ω3 = R
3. The first set Ω1 is

supposed to be a domain in which the flow is far from the equilibrium (the ”kinetic zone”, g
large), while the flow is supposed to be close to equilibrium in Ω2 (the ”fluid zone”, g ≃ 0). The
third region is the buffer zone and also in Ω3 we suppose the gas to be close to thermodynamical
equilibrium. We define a function h(x, t) such that

h(x, t) =





1, for x ∈ Ω1,
0, for x ∈ Ω2,
0 ≤ h(x, t) ≤ 1, for x ∈ Ω3.

(18)
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Note that the time dependence of h means that we account for dynamically changing the shape of
the transition function. The topology and geometry of the different zones is directly encoded in h
and may change dynamically as well.

Multiplying (17) by h and 1 − h, we get

∂t̺ + ∇x · F (̺) + ∇x · 〈hvm(v)g〉 + ∇x · 〈(1 − h)vm(v)g〉 = 0, (19)

∂t(hf) + v · ∇x(hf) =
h

ε
Q(f, f) +

(
∂th

h
+ v · ∇xh

h

)
(hf), (20)

∂t((1 − h)f) + v · ∇x((1 − h)f) =
1 − h

ε
Q(f, f) −

(
∂th

h
+ v · ∇xh

h

)
(hf). (21)

Denoting fK = hf , fF = (1 − h)f , gK = hg and gF = (1 − h)g the ensemble (fK , fF ,̺, gK , gF )
satisfies the system

∂t̺ + ∇x · F (̺) + ∇x · 〈vm(v)gK〉 + ∇x · 〈vm(v)gF 〉 = 0, (22)

∂tfK + v · ∇xfK =
h

ε
Q(fK + fF , fK + fF ) +

(
∂th+ v · ∇xh

h

)
fK , (23)

∂tfF + v · ∇xfF =
1 − h

ε
Q(fK + fF , fK + fF ) −

(
∂th+ v · ∇xh

h

)
fK , (24)

We observe that the system (22)-(24) is equivalent to equation (1) in the sense that if f is a solution
of (1) with initial datum f(t = 0) = f0, g(t = 0) = g0 = f(t = 0) − E[̺(t = 0)] then fK = hf ,
fF = (1 − h)f , gK = hg, gF = (1 − h)g and ̺ = 〈m(v)f〉 are solutions of system (22)-(24) with
initial data fK(t = 0) = hf0, fF (t = 0) = (1 − h)f0, gK(t = 0) = hg0, gF (t = 0) = (1 − h)g0
̺(t = 0) = 〈m(v)f0〉. Reciprocally, if fK , fF , gK , gF and ̺ are solutions of (22)-(24) with initial
data fK(t = 0) = hf0, fF (t = 0) = (1 − h)f0, gK = hg0, gF = (1 − h)g0 and ̺(t = 0) = 〈m(v)f0〉
then f = fK + fF , g = gK + gF = f − E[̺] is the solution of (1) with initial data f(t = 0) = f0
and g(t = 0) = g0.

Now assume that the flow is very close to equilibrium in Ω2 ∪ Ω3. This means that we assume
the distribution function to be Maxwellian in this set: fF = E[̺F ] and thus gF = 0. Then,
equation (24) does not contain additional informations, all the informations related to the gas flow
are now described by the following equations:

∂t̺ + ∇x · F (̺) + ∇x · 〈vm(v)gK〉 = 0, (25)

∂tfK + v · ∇xfK =
h

ε
Q(fK + E[̺F ], fK + E[̺F ]) +

(
∂th+ v · ∇xh

h

)
fK . (26)

System (25–26) represents our kinetic-fluid model. In this model the local distribution function f
is approximated by E[̺] + gK where gK = fK − E[̺K ]. The distribution E[̺K ] is defined as the
Maxwellian whose moments are given by 〈m(v)fK〉, while E[̺F ] is the Maxwellian whose moments
are given by ̺−〈m(v)fK〉. Observe that fK is zero in the fluid zone Ω2 as well as gK . This means
that, in these regions, we simply solve the compressible Euler equations. On the other hand, in
Ω1 the function 〈m(v)fK〉 = ̺ and thus the system (25–26) reduces to the system (16–17) which
is equivalent to the Boltzmann equation (1) where we will employ the moment guided method
described next to reduce the variance of the classical DSMC method.

In the next section we will discuss the numerical scheme which discretizes the system (25–26)
as well as the boundary conditions between the different regions.
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4 The numerical schemes

4.1 The moment guided method for the Boltzmann equation

We will now describe the method which permits to reduce statistical fluctuations in DSMC schemes.
We refer to [11, 12] for details on the method. In this paper, we adapt the moment guided method
to the coupled model (25–26). However, for simplicity, we before explain the principle of the
method in the case of equations (16-17). We will then extend the methodology in the next sections
to the equations (25–26).

The moment guided strategy consists in solving the kinetic equation (17) with the Monte Carlo
method, and concurrently the fluid equations (16) with a finite volume scheme. The correction
term which is necessary to close the macroscopic equations ∇x ·〈vm(v)g〉 is evaluated using particle
moments. We observe that the two equations (16-17), except for numerical errors, give the same
results in terms of macroscopic quantities. We assume that the set of moments obtained from the
fluid system represents a better statistical estimate of the true moments of the solution, since the
resolution of the moment equations does not involve any stochastic process. We experimentally
showed that this is the case in [11].

Consider a time discretization of the problem (16-17), then the method is summarized in the
following steps: at each time step tn

1. Solve the kinetic equation (17) with any type of DSMC method and obtain a first set of
moments.

2. Solve the fluid equation (16) with any type of finite volume scheme where particles are used
to evaluate ∇x · 〈vm(v)g〉 and obtain a second set of moments.

3. Match the moments of the kinetic solution with the fluid solution through a transformation
of the samples values.

4. Restart the computation to the next time step.

Remark 1. There exist in literature other numerical methods which are used to reduce variance of
particle methods as for instance the method of Boyd and co-authors [7] or the δ-f method of Parker
and Lee [25] for plasmas. In particular, the δ-f methods share some analogies with our method.
However, there are important differences. In the δ-f method a background state, independent of
time, is chosen and then the solution is computed deriving an evolution equation for the perturbation
from this state. In the moment guided method, there is no choice of the background state, instead
the decomposition is done using the local Maxwellian distribution, thus there are no hypothesis on
the background state. Moreover, the moment matching method imposes a matching of the moments
between the solution of the macroscopic and kinetic equation while δ-f methods do not.

4.2 The DSMC method for the coupled Boltzmann equation

The classical approach used to solve the Boltzmann equation by Monte Carlo methods is the time
splitting approach [2, 24] between the free transport term

∂tfK + v · ∇xfK = 0, (27)

and the collision term

∂tfK =
h

ε
Q(fK + E[̺F ], fK + E[̺F ]). (28)
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We start to discuss the discretization of the transport term which, in our model, is replaced by the
free transport term plus the term which involves the time and space derivative of the transition
function h (h-term):

∂tfK + v · ∇xfK =

(
∂th+ v · ∇xh

h

)
fK (29)

4.2.1 Free transport step

We introduce a space discretization of mesh size ∆x and a time discretization of time step ∆t.
The discretization of the domain is not needed for the transport step which is solved exactly for
particles but it is necessary to solve the collision part of the problem which acts locally in space
and thus it is necessary to solve the full problem. In Monte Carlo simulations the distribution
function fK is discretized by a finite set of particles

fK =
mp

N

N∑

i=1

αi(t) δ(x −Xi(t))δ(v − Vi(t)), (30)

where Xi(t) represents the particle position in the three spatial directions, Vi(t) the particle veloc-
ities in the velocity space, mp a constant and αi(t) the weight to associate to each particle. During
the transport step (27), the particles move to their next positions according to

Xi(t+ ∆t) = Xi(t) + Vi(t)∆t (31)

where (30) with (31) and αi = 1 represents an exact solution of equation (27). On the other hand,
an exact solution of the modified transport equation (29) is a distribution of the form (30) if Xi(t)
and αi(t) satisfy the system

Ẋi = Vi , (32)

αi(t) = h(Xi, t). (33)

This can be shown by inserting (30) inside (29). The previous solution of equation (29) holds for
all choices of Vi. The transition function h is discretized on the mesh of size ∆x and thus particles
which belongs to the same cell have the same weight. These relations mean that the weights vanish
in the buffer zone proportionally to the local value of h. Consequently, at the boundary of the
buffer zones on the fluid side, the particles are weightless and can be removed. Simultaneously, the
velocity is not affected by the value of the cut-off function (as for instance in the decomposition
used in [14] and [16]), which means that there is no accumulation of weightless particles at the
boundaries.

Thus, the Monte Carlo solution of the transport step consists in moving the particles in space
according to equation (31) as in the classical transport case. The only difference is that the mass
of each particle changes in time and space according to the transition function value h and it takes
values between 0 when h(x, t) = 0 (which means in cells in which the gas is in thermodynamical
equilibrium) and mp when h(x, t) = 1 (which means in the cells in which the gas is far from
equilibrium). The constant mp is defined at the beginning of the computation in the following way

mp =
1

N

∫

Ω

∫

R3

fK(t = 0)dvdx. (34)

Thus, the transport step is composed of two substeps: transport of particles and mass rescaling.
Finally, to guarantee preservation of macroscopic quantities we need boundary conditions. This
means we need to inject weightless particles at the boundaries of the buffer zones on the fluid
sides. The gas, being in thermodynamical equilibrium in these regions, we just sample the number
of requested particles from a Maxwellian distribution whose associated macroscopic quantities are
the ones given by the solution of the fluid model.
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4.2.2 The moment matching

We discuss now the matching method between the kinetic equation and the macroscopic equations.
This corresponds to step 3 of the moment guided method described in section (4.1). Imagine that
the value of the macroscopic moments ̺

n+1 obtained from the solution of system (25) is known
at time n + 1. Now, in the kinetic regions we want to match these moments with the moments
˜̺n+1

K obtained solving the transport part of the kinetic equation (29). On the other hand, in buffer
regions, the mass of particles decreases linearly with the transition function h. This means that
the matching has to be done between h̺n+1 and ˜̺n+1

K , where when h = 1 we have the matching
between the macroscopic equations and the Boltzmann equation and when h = 0 we do not perform
any matching. Observe that, the collision step conserves the moments while it changes the shape of
the distribution in velocity space. Thus ˜̺n+1

K represents the moments solution obtained by solving
the kinetic equation (26) at time n+ 1 independently of the type and number of collisions.

We first discuss the matching of momentum and energy which can be realized through the
following linear transformation: let consider the set of velocities V1, . . . , VNIj

inside the cell Ij at

time n+ 1, where NIj
is the number of particles inside the cell j. In the Monte Carlo setting the

first two moments are given by

µ1 =
1

NIj

NIj∑

i∈Ij

Vi µ2 =
1

NIj

NIj∑

i∈Ij

1

2
|Vi|2, (35)

where µ1 is a vector representing the mean velocity in the three spatial directions. Suppose now
that better estimates σ1 and σ2 of the same moments are available. They are, for instance, obtained
by resolving the moment equations (25). We apply the transformation described in [8] and get
velocities V ∗

i given by

V ∗
i = (Vi − µ1)/c+ σ1 c =

√
µ2 − µ2

1

σ2 − σ2
1

, i = 1, . . . , Ij (36)

to get

1

NIj

NIj∑

i∈Ij

V ∗
i = σ1,

1

NIj

NIj∑

i∈Ij

1

2
|V ∗

i |2 = σ2.

Let us now discuss the matching of the zero-th order moment: the mass density. In this case,
we first observe that the above renormalization is not possible if we want to keep the mass of the
particles constant and uniform inside the cells. We denote by µ0 an estimate of the zero-th order
moment and by σ0 its better evaluation obtained solving the moment equations (25). Among the
possible techniques that can be used to restore a prescribed density, we choose to replicate or
discard particles inside the cells. Other possibilities are discussed in [12].

In the discarding procedure case we eliminate the following number of particles:

Ñp = Iround

(
µ0 − σ0

mp

)
, (37)

where Iround represents a stochastic rounding. This means that a mismatch e such that e < ±mp

is unavoidable when the mass of the particle is constant and uniform. Observe that, we already
change, at each time step, the mass of the particles according to the transition function h. However,
if we change the particles mass to match the density, this implies that, due to the transport step,
we will end with particles of different weights in the same cells. This situation will cause difficulties
for the collision step procedure that we want to avoid. In the case of change of mass due to the
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transition function, we do not have this problem, because particles which belong to the same cell
have the same mass, h being constant inside each cell.

In the opposite case, in which the mass of the particles inside a cell is lower than the mass
prescribed by the fluid equations µ0 < σ0, the situation is less simple. Here, since the distribution
function is not known analytically, it is not possible to sample new particles without introducing
correlations between samples. In this case we replicate

Ñp = Iround

(
σ0 − µ0

mp

)
(38)

particles randomly with uniform probability. We then perform a stochastic rounding of (σ0 −
µ0)/mp by lower and upper values. Note that this replication is done allowing repetitions of the
choice of the particle to replicate. After the generation step, samples are relocated uniformly inside
each spatial cell.

4.2.3 Collision step

We consider now the solution of the collision step (28). The effect of this step is to change the
shape of the velocity distribution and to project it towards the equilibrium distribution leaving
unchanged mass momentum and energy. The collision operator acts locally in space which means
that we solve it independently in each spatial cell where the particles are assumed to have all the
same weight (h is constant in each cell). The initial data of this step is given by the solution of
the transport step after the moment matching procedure. We assume that the collision term (28)
can be written in the form

∂tfK =
h

ε
[P (fK + E[̺F ], fK + E[̺F ]) − µ(fK + E[̺F ])], (39)

where µ > 0 is a constant which typically corresponds to an estimation of the largest spectrum
of the loss part of the collision operator. The operator P (f, f) is a non negative bilinear operator
such that

1

µ

∫

R3

P (f, f)(v)m(v) dv =

∫

R3

f(v)m(v) dv. (40)

For example for Maxwellian molecules

P (f, f) = Q+(f, f)(v) =

∫

R3

∫

S2

b0(cos θ)f(v′)f(v′∗) dω dv∗, (41)

and µ = ̺. In the numerical tests presented in this paper, we considered Maxwellian molecules. In
any case, the use of different and more general kernels does not involve any change in the coupling
method. Now, since the assumption in our model is that the distribution E[̺F ] is Maxwellian and
constant along the collision step, we can rewrite (39) in the following way:

∂t (fK + E[̺F ]) =
h

ε
[P (fK + E[̺F ], fK + E[̺F ]) − µ(fK + E[̺F ])], (42)

Let now fn∗
K,j(v) be an approximation of fK(v, n∆t, jxj) after transport and matching. The forward

Euler scheme for equation (42) writes [24]

fn+1

K,j +E[̺n+1

F,j ] =

(
1 − hµ∆t

ǫ

) (
fn∗

K,j + E[̺n∗
F,j]

)
+
hµ∆t

ǫ

P (fn∗
K,j + E[̺n∗

F,j], f
n∗
K,j + E[̺n∗

F,j ])

µ
. (43)

Observe that E[̺n+1

F,j ] = E[̺n∗
F,j]. This means that at the Monte Carlo level, the above formula can

be interpreted in the following way: in order to obtain the statistical solution of the distribution
function at time step n+ 1, fn+1

K,j , we need to
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• sample with probability (1 − µ∆t/ǫ) from the distribution fn
K,j . This means that with

probability (1 − µ∆t/ǫ) the velocity of the particle does not change.

• Sample with probability hµ∆t/ǫ from the distribution P (fn∗
K,j + E[̺n∗

F,j ], f
n∗
K,j + E[̺n∗

F,j])/µ.
This means that with probability hµ∆t/ǫ the velocity of the sample change as a consequence
of a collision with a particle either coming from fn∗

K,j or E[̺n∗
F,j ].

To sample from the distribution P (fn∗
K,j +E[̺n∗

F,j ], f
n∗
K,j +E[̺n∗

F,j ])/µ, first we need to construct the
probability distribution fn∗

K,j +E[̺n∗
F,j]. For constructing this distribution we just need to sample a

number of particle corresponding to the density ̺n∗
F,j from a Maxwellian distribution with moments

̺
n∗
F,j. Then, we apply the operator P (·, ·) to the results. Note that, we request ∆t ≤ ǫ/(hµ) for

the probabilistic interpretation to be valid.
We finally observe that in Ω1 equation (43) reduces to the classical Nanbu scheme for Maxwellian

molecules because E[̺F ] is identically equal to zero in this region as well as the transport step
reduces to the classical transport. Conversely in Ω3 we consider both models (the macroscopic and
the kinetic one) and thus we solve the coupled collision step described by equation (43).

4.3 The numerical scheme for the moment equations

Here we discuss the discretization of the moment equations. In the construction of the numerical
scheme we take advantage of the knowledge of the Euler part of the moment equations

∂t̺ + ∇x · F (̺)︸ ︷︷ ︸
Euler equations

+∇x · 〈vm(v)gK〉 = 0. (44)

Thus, the method is based on solving the set of compressible Euler equations and then considering
the discretization of the kinetic flux ∇x · 〈vm(v)gK〉. To this aim, we use a classical discretization
in space and time which means:

̺
n+1
j − ̺

n
j

∆t
+
ψj+1/2(̺

n) − ψj−1/2(̺
n)

∆x
+

Ψj+1/2(< vm(v)gn
K >) − Ψj−1/2(< vm(v)gn

K >)

∆x
= 0.

(45)
The numerical flux ψ is an approximation of the flux F (̺n) obtained by the second order MUSCL
extension of a Lax-Friedrichs like scheme. For simplicity, we indicate in the same way the numerical
flux in one or in more spatial dimensions:

ψj+1/2(̺
n) =

1

2
(F (̺n

j ) + F (̺n
j+1)) −

1

2
A(̺n

j+1 − ̺
n
j ) +

1

4
(σn,+

j − σn,−
j+1), (46)

in the above relation we set

σn,±
j =

(
F (̺n

j+1) ±A̺
n
j+1 − F (̺n

j ) ∓A̺
n
j

)
ϕε(χ

n,±
j ) (47)

where ϕε is a modified slope limiter, A is the largest eigenvalue of the Euler system and

χn,±
j =

F (̺n
j ) ±A̺

n
j − F (̺n

j−1) ∓A̺
n
j−1

F (̺n
j+1) ±A̺

n
j+1 − F (̺n

j ) ∓A̺
n
F,j

(48)

where the above vectors ratios are defined componentwise. Classical slope limiters, based on
the total variation arguments, determine which regions of the domain can be solved by a second
order method and which regions need a first order method to avoid the onset of numerical oscil-
lations. Following the same principle, we define a modified limiter which takes into account also
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the departure from the thermodynamical equilibrium. We introduce this modification because the
consequence of the departure from the thermodynamical equilibrium is the onset of particles in
the domain which are needed to represents the perturbation gK . It follows that, some statistical
error is introduced in the solution and the use of high order spatial discretization will keep the
level of the oscillations high. Thus, we switch from second to first order in this case and we use
the following function to perform this switch:

ϕε(χj) = ϕL(χj)(1 − h(j)) (49)

where φL(χ) is the van Leer limiter

φL(χ) =
|χ| + χ

1 + χ
. (50)

The MUSCL second order scheme is then used in fluid regions if φL = 1, while the first order
scheme is used otherwise.

Concerning the discretization of the non equilibrium term ∇x· < vm(v)gK >, the same space
first order discrete derivative is used as for the hydrodynamic flux F (̺):

Ψj+1/2(< vm(v)gn
K >) =

1

2

(
F (〈vm(v)gn

K,j〉) + F (〈vm(v)gn
K,j+1〉)

)
. (51)

The non equilibrium term 〈vm(v)gK〉 = 〈vm(v)(fK −E[̺K ])〉 is computed by taking the difference
between the moments of the particle solution and those of the Maxwellian equilibrium. Thus, the
flux ψj+1/2(̺

n) can be either first or second order while Ψj+1/2(< vm(v)gn
K >) is always first

order.
Observe that we do not need boundary condition for the moment equations at the interfaces

because they are solved in all the domain. The only difference, between the fluid and the kinetic
regions, is that the perturbation term disappears in the equilibrium zones. Then, thanks to the
smooth transition between the two models and the variance reduction technique employed to reduce
the variance of the DSMC method, fluctuations do not propagate to the fluid zones as shown in
the numerical test section. Finally, the CFL condition is chosen such that the time step is always
the minimum between the relaxation parameter ε, the ratio between the mesh size and the largest
particle velocity (vmax) and the ratio between the mesh size and the largest eigenvalue of the fluid
equations (Amax):

∆t = min

(
∆x

vmax

,
∆x

Amax

, ε

)
(52)

5 The breakdown criterion

For defining the interface location, we will try to combine the local Knudsen number with the
effects that the numerical scheme has on the solution. We observe that, the smaller uncertainly in
the macroscopic quantity values which has been obtained with the moment guided method, permits
to better define the breakdown of the fluid model and consequently to optimize the coupling. The
Knudsen number is defined as the ratio of the mean free path of the particles λpath to a reference
length L:

ε′ = λpath/L, (53)

where the mean free path is defined by

λpath =
kT√
2πpσ2

c

,
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with k the Boltzmann constant equal to 1.380062×10−23JK−1, p the pressure and πσ2
c the collision

cross section of the molecules. Now, in order to take into account the elementary fact that, even
in extremely rarefied situations, the flow can be in thermodynamic equilibrium, as in Bird [3], the
reference length is defined as

L = min

(
̺

∂̺/∂x
,

̺u

∂̺u/∂x
,

̺e

∂̺e/∂x

)
. (54)

According to [22] and [21], the fluid model is accurate enough if the local Knudsen number is lower
than the threshold value 0.05. It is argued that, in this way, the error between a macroscopic and
a microscopic model is less than 5% [32]. This parameter has been extensively used in many works
and is now considered in the rarefied gas dynamic community as an acceptable indicator.

In the numerical tests section we distinguish between the physical Knudsen number ε′ defined
in (53) and the relaxation parameter ε which appears in the model and in the numerical schemes
defined in the previous sections. In practice in our tests ε is fixed at the beginning of the simulation
and it does not change as a function of the macroscopic quantities. In other words, ε is just a
rescaling parameter of the Boltzmann equation, and all the quantities will be dimensionless. This
choice permits to control the relaxation towards the equilibrium and thus to focus on the behavior
the numerical scheme.

The criterion we choose is based on measuring the ratio between the relaxation time and the
time step. We recall that, the time step is chosen as the minimum between the relaxation time
and the transport time (both for the fluid and for the kinetic equations). Thus, if the time step is
the same as the relaxation time, it means that all the particles collide at each time step. In this
case we make the hypothesis that we are in a fluid regime. On the other hand, if at each time
step, only few particles collide, we can be both in equilibrium or not depending on the values of
the derivatives of the macroscopic quantities. Thus, the breakdown criterion is defined as

β =

(
1 − µ∆t

ε

)
∆x

L
. (55)

The first part of the above formula corresponds to the first weight of the forward Euler scheme for
solving the Boltzmann collision term introduced before. The second part is just the dimensionless
reference length. Now, the smaller the relaxation parameter is, the smaller the influence of the
derivative of macroscopic quantities on the evaluation of the equilibrium of the gas is. On the
other hand, the larger the difference between the macroscopic quantities in adjacent cells is, less
likely the equilibrium is guarantee. The parameter β is substantially equivalent to the Knudsen
number but it takes into account the mesh discretization and the choice of the time step.

Now, the time evolution of the transition function h(t, x) is decided accordingly to the break-
down parameter β. We fix a threshold value βthr and then:

1. If β < βthr then we put h = 0.

2. If β > βthr then we put h = 1.

3. We also impose a linear smooth transition (0 < h < 1) at the end of each kinetic zone of
fixed thickness.

Remark 2. In a previous work [17], we proposed a criterion to locate the interface between the
fluid and the kinetic regions based on the analysis of the micro-macro decomposition. Unfortunately,
this criterion as well as other similar criteria which measure some non equilibrium quantities (see
for instance [22]) needs a precise evaluation of the macroscopic quantities. However, when DSMC
methods are used to compute the solution especially in unsteady situations it is very difficult to
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evaluate precisely these quantities. This is moreover true when relatively few particles are used
to compute the kinetic solution. On the other hand, when the number of particles employed to
compute the solution is large enough these indicators give good estimations of the departure from
equilibrium. It is important to remark that, the indicator β needs less precise evaluations of the
macroscopic quantities and thus, its use is more suitable for cases in which only few particles are
used to compute the solution.

6 Numerical tests

6.1 General setting

Here we present several numerical results to highlight the performances of the method. All the
tests we present represent unsteady physical problems. By investigating these kinds of problems we
want to emphasize one of the main characteristics of our method: we are able to catch departures
from the thermodynamical equilibrium which move in time. Moreover, we are able to determine
the necessity of kinetic models even using Monte Carlo methods and with relatively few particles
per cell. Of course, in the case of steady test cases, the possibility to average quantities permits
to realize simulations using only few particles per cell (typically 50 or less particles per cell). On
the other hand, when the solutions are unsteady even with 300-400 particles in average per cell,
many details of the solution are lost. In practice the number of particles needed depends on
the problem and on the requested resolution needed. Nevertheless, we will show that even with
a relatively low number of particles, we are able both to catch departure from equilibrium and
to describe the solutions enough accurately. Finally, if more precise solutions are requested, we
point out that increasing the number of particles leads to more precise interface locations and less
noisy evaluations of macroscopic quantities than classical DSMC methods and classical coupling
methods. On this subject, we recall that the convergence of the moment guided Monte Carlo
methods is faster than the convergence of DSMC for increasing number of particles [11].

In the appendix, we will show some results concerning the moment guided method. In fact, in
our previous paper [11], we only showed the behaviors of the method in the case of the simplified
BGK relaxation operator. Here, instead, we use a full Boltzmann collision operator to perform our
tests. Thus, in the appendix we will show that the moment guided method is a method capable
of describing problems modeled by kinetic equations. We will remind to [12] for details on noise
reduction and convergence results for the full Boltzmann case.

In the first test, we consider a space dependent relaxation frequency ε−1. This test mimics
the case in which different regions with different collision rates have to be considered in the same
simulation. As we will see, when these problems are present, constructing a domain decomposition
method is relatively simple, the interface location being well defined.

Next, as in [17], we consider an unsteady shock test problem. In this case the relaxation time
is taken constant in the domain. We remark that in this situation, a standard static domain
decomposition fails. In fact the shock moves in time. When the relaxation time is large, i.e. in
rarefied regimes, it is necessary to use a kinetic solver in the full domain. On the other hand, with
our algorithm, we are able to catch the shock region and to describe only this part of the domain
with the kinetic model.

Finally, as in [17], we use our scheme to compute the solution of the Sod test. Again, the
relaxation frequency is taken constant in the domain. Here, the structure of the solution is more
complicated but, as described below, the method is still able to deal with such a situation and to
realize an efficient coupling.
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For all tests the time step is given by the minimum of the maximum time steps allowed by
the kinetic and fluid schemes. The speed-up we obtain is only due to the reduction of the sizes
of the kinetic and buffer regions inside the domain. This reduction is achieved through a correct
prediction of the evolution of the transition function. It is measured through the difference between
the number of particles used for the full DSMC simulation and the number of particles used in the
DSMC/Fluid coupling considering the same number of initial particles. We point out that all the
procedure is automatic and determined by the step by step algorithm presented in the previous
section. For all tests, we set βthr = 2.5 10−2 while the buffer regions thickness is fixed constant
for every test.

6.2 Two relaxation frequencies test

In this paragraph we present a two regimes fluid-kinetic test. The domain ranges from x = 0 to
x = 1 and the number of cells is 200. For a full resolution with the DSMC method the number of
particles employed is 80000 which corresponds to an average of 400 per cell. In the left half of the
domain ε is taken equal to 10−4, while in the right half we take ε = 10−2. Neumann boundary
condition are chosen both for the kinetic and fluid models. At the beginning of the simulation the
gas is considered in thermodynamical equilibrium, in others words we set h = 0 everywhere.

The initial data are:

̺ = 1 + 0.1

√
(x − 0.5)2

0.02
u = 0 T = 1.

In figure 1 the number of particles in time is reported for the DSMC method and the DSMC/Fluid
coupling method. The interface position is given by the breakdown parameter β and it appears
fixed in time and space. This fixed location reproduces the boundary between the low and the
large values of the relaxation frequency ε−1. A smooth transition region (ten cells thick) between
the two models is also fixed in time and space. Figure 2 reports the profile of the temperature
for increasing times from top to bottom, on the left side the DSMC and on the right side the
DSMC/Fluid coupling method. In each figure we plot the solution of the Euler equation and a
reference solution obtained with the DSMC scheme where the number of particles is such that the
statistical error is very small.

We observe that, in the case in which the equilibrium and non equilibrium zones are well
identified by the number of collisions that the particles encounter each time step, the coupling works
very well. For the coupling method case we observe on the left of the domain an high order finite
volume scheme which is able to catch well discontinuities. On the other hand, on the right side,
thanks the moment matching method, the DSMC method exhibits reduced fluctuations compared
to the classical DSMC method. Moreover, thanks to the smooth transition, the fluctuations do
not propagate in the fluid regions. We finally recall that, the reduction of the statistical error
due to the moment matching strongly depends on the frequency ε−1. In particular for large
relaxation frequencies the reduction of the fluctuations are much more obvious. We will see, in the
test cases presented in the next paragraph, that this reduction can be larger. This is due to the
fact that we will describe with the kinetic model also regions with large relaxation. Finally, the
reduction of the computational cost is proportional to the total number of particles used in the
simulations and for this test is around 60% less. In the next test cases we will consider problems
with high rarefaction states in all the domain. In these cases catching the departure from the
thermodynamical equilibrium will be less easy.

6.3 Unsteady shock tests

We consider an unsteady shock that propagates from left to right in the computational domain
x = 0, x = 1.5 discretized with 200 cells in space. The number of particles is such that 400 particles
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Figure 1: Two relaxation frequencies test: number of particles in time for the Monte Carlo scheme
and the DSMC-Fluid Coupling.

correspond to ̺ = 1. The shock is produced pushing a gas against a wall which is located on the
left boundary. In our test the particles are specularly reflected and the wall adopts the temperature
of the gas instantaneously. The gas is supposed in thermodynamic equilibrium at the beginning of
the simulation. The computation is stopped at the final time t = 0.15. The transition function h
is initialized as h = 0 (fluid region) everywhere.

We repeat the test with the same initial data ̺ = 1, u = −2 and T = 4, but changing the
collision frequency. The relaxation parameter is ε = 10−1 in the first case, ε = 10−2 in the second
case and ε = 10−3 in the last case. The thickness of the transition regions is fixed for every test
depending on the frequency of collisions: ten cells for ε = 10−1 and ε = 10−2 while five cells for
ε = 10−3.

In figure 3 we have reported the number of particles in time for the DSMC method (left) and
the coupling method (right) for the different values of the frequency. As expected this number
is independent from the choice of ε for the DSMC method while in the case of the coupling the
quantity of particles used varies strongly. This number is a measure of the computational cost of
the method, the coupling procedure being computationally not expensive as well as the moment
guided method and the solution of the fluid equations. In figure 4 the transition function is depicted
for three different times in the case of ε = 10−1. The same function is depicted in figure 5 for
ε = 10−2 and in figure 6 for ε = 10−3. These figures show the dynamics of the kinetic and fluid
regions in time and the capability of the method to follow the shock which moves in the domain.
We remark also that the thickness of the kinetic region decreases when the collision frequency
increases as expected.

In figure 7 we have reported the density on the left for the DSMC method and the on the right
for the DSMC/Fluid coupling. In this figure ε = 10−1. From top to bottom, time increases from
t = 0.05 (top) to t = 0.15 (bottom) with t = 0.1 in the middle. In each of the plots we reported
the solution computed with our coupling method or with the DSMC method. The solution of the
compressible Euler equation and a reference solution are also reported. The reference solution has
been computed with a DMSC method where the number of particles is taken very high to reduce
the statistical fluctuations

In figure 8 the density is reported for ε = 10−2 again for DSMC on the left and DSMC/Fluid
coupling on the right. Finally we report the same results in the case of ε = 10−3 in figure 9.

We measured a reduction of the computational cost in comparison to a moment guided DSMC
method, respectively of the 55%, 60% and 83% for ε = 10−1, ε = 10−2 and ε = 10−3.
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Figure 2: Two relaxation frequencies test: Solution at t = 0.05 (top), t = 0.10 (middle) and
t = 0.15 (bottom) for the temperature. MC method (left), Coupling DSMC-Fluid method (right).
Knudsen number ε = 10−4 in the left half of the domain and Knudsen number ε = 10−2 in the right
half of the domain. Reference solution (dotted line), Euler solution (continuous line), DSMC-Fluid
or DSMC (circles plus continuous line).
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Figure 3: Unsteady Shock Test: Number of particle in time for the Monte Carlo scheme (left) and
the DSMC-Fluid Coupling (right) for different values of the Knudsen Number (from ε = 10−1 to
ε = 10−3).
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Figure 4: Unsteady Shock Test: Transition function at t = 0.05 (left), t = 0.10 (right) and t = 0.15
(bottom). Knudsen number ε = 10−1.
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Figure 5: Unsteady Shock Test: Transition function at t = 0.05 (left), t = 0.10 (right) and t = 0.15
(bottom). Knudsen number ε = 10−2.
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Figure 6: Unsteady Shock Test: Transition function at t = 0.05 (left), t = 0.10 (right) and t = 0.15
(bottom). Knudsen number ε = 10−3.

During the simulation on the left boundary, the transition function h increases from zero to
one, which means that the solution is computed with the DSMC scheme, while in the rest of the
domain the solution is still computed with the fluid scheme (h = 0). When the shock starts to
move towards the right the kinetic region increases. We observe that, in the case of ε = 10−3, when
the shock is far from the left boundary the gas returns to thermodynamical equilibrium and thus
automatically h becomes equal to 0. This is an interesting results because it shows that the method
is able to recover an equilibrium regime after a time span in which it was in non equilibrium. While
this results is not surprising when a deterministic scheme is used to solve the kinetic model, this
is not obvious in the case of a DSMC solution of the kinetic equation because of the fluctuations
which prevent the good evaluation of the macroscopic quantities needed to calculate the breakdown
of the fluid model.

6.4 Sod tests

In this final series of tests, we consider the classical Sod initial data in a domain which ranges from
0 to 2. The numerical parameters are the following: 200 mesh points in space while the number
of particles is chosen different for different values of the collision frequency. In this test case, we
choose a larger number particles, in comparison to the previous tests, to show that the method
is able to reproduce the correct profiles of the solutions. The number of particles needed to keep
the statistical noise sufficiently low is a function of the perturbation gK . In fact, smaller is the
perturbation, smaller is the statistical error in the moment guided method. Observe anyway that,
the classical DSMC with the same number of particles still exhibits some important fluctuations.
The computation is stopped at the final time t = 0.8. Finally the simulations are initialized in the
thermodynamic equilibrium case, i.e. h = 0 everywhere.

We take the following initial conditions: mass density ̺L = 1, mean velocity uL = 0 and
temperature TL = 5 if 0 ≤ x ≤ 1, while ̺R = 0.125, uR = 0, TR = 4 if 1 ≤ x ≤ 2. We repeat the
same test changing the collision frequency. They are respectively such that ε = 10−1 in the first
case, ε = 10−2 in the second case and ε = 10−3 in the last case. The thickness of the transition
regions is fixed for every test depending on the Knudsen: ten cells for large Knudsen (10−1 and
10−2) and five cells for small Knudsen (10−3).

In figure 10 we have reported the number of particles in time for the DSMC method and the
coupling method for different values of the frequency ε−1 (ε = 10−1 left, ε = 10−2 middle, ε = 10−3

right). The initial number of particles (i.e. the number of particles used to represent the entire
solution) is both for the DSMC and the coupling 6 105 for ε = 10−1, 4 105 for ε = 10−2 and 2 105

for ε = 10−3. These numbers are a measure of the computational cost of the method as explained
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Figure 7: Unsteady Shock Test: Solution at t = 0.05 (top), t = 0.10 (middle) and t = 0.15
(bottom) for the density. MC method (left), Coupling DSMC-Fluid method (right). Knudsen
number ε = 10−1. Reference solution (dotted line), Euler solution (continuous line), DSMC-Fluid
or DSMC (circles plus continuous line).
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Figure 8: Unsteady Shock Test: Solution at t = 0.05 (top), t = 0.10 (middle) and t = 0.15
(bottom) for the density. MC method (left), Coupling DSMC-Fluid method (right). Knudsen
number ε = 10−2. Reference solution (dotted line), Euler solution (continuous line), DSMC-Fluid
or DSMC (circles plus continuous line).
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Figure 9: Unsteady Shock Test: Solution at t = 0.05 (top), t = 0.10 (middle) and t = 0.15
(bottom) for the density. MC method (left), Coupling DSMC-Fluid method (right). Knudsen
number ε = 10−3. Reference solution (dotted line), Euler solution (continuous line), DSMC-Fluid
or DSMC (circles plus continuous line).
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Figure 10: Sod Test: Number of particle in time for the Monte Carlo scheme and the DSMC-Fluid
Coupling. Knudsen Number ε = 10−1 (left), ε = 10−2 (middle), ε = 10−3 (right).
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Figure 11: Sod Test: Transition function at t = 0.3 (left), t = 0.6 (middle) and t = 0.8 (right).
Knudsen number ε = 10−1.
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Figure 12: Sod Test: Transition function at t = 0.3 (left), t = 0.6 (middle) and t = 0.8 (right).
Knudsen number ε = 10−2.
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Figure 13: Sod Test: Transition function at t = 0.3 (left), t = 0.6 (middle) and t = 0.8 (right).
Knudsen number ε = 10−3.

in the previous paragraph. In figure 11 the transition function is depicted for three different times
in the case of ε = 10−1. The same function is depicted in figure 12 for ε = 10−2 and in figure
13 for ε = 10−3. These figures shows the dynamics of the kinetic and fluid regions in time and
the capability of the method to follow not only the shock but also regions in which the departure
from the equilibrium is smaller and which moreover moves in the domain. We remark also that the
thickness of the kinetic region decreases when the collision frequency increases as expected. We
observe that the transition function oscillates in time. This is due to the statistical fluctuations of
the Monte Carlo scheme. If a more precise evaluation of the zones far from equilibrium is needed, it
is sufficient to increase the number of particles. However, we point out that even with an oscillatory
behavior of the transition function the profiles of the solution are very well captured.

In figure 14 we have reported the velocity profile on the left for the DSMC method and the
on the right for the DSMC/Fluid coupling. In this figure the collision frequency is taken equal to
ε = 10−1. From top to bottom, time increases from t = 0.3 (top) to t = 0.8 (bottom) with t = 0.6
in the middle. In each of the plots regarding the macroscopic variables we reported the solution
computed with our coupling method or with the DSMC method, a reference solution computed
with a DMSC method where the number of particles is taken very high to reduce the statistical
fluctuations and the solution of the compressible Euler equations.

In figures 15 the velocity profile is reported for ε = 10−2 again for DSMC on the left and
DSMC/Fluid coupling on the right. Finally we report the results in the case of ε = 10−3 in figures
16 using the same visualisation criterion of the previous cases.

In spite of the complexity of the solution (in this case we have more than one zone which is
potentially in non equilibrium), the algorithm shows a very good behavior. In particular, in the last
case, the non equilibrium region is very tiny. Therefore, we largely reduce the computational cost
and we do not lose accuracy in the description of the problem. The reduction of the computational
cost is of the order of 65%, 70% and 80% for the three cases studied in comparison to the moment
guided DSMC method.

7 Conclusion

In this paper, we have presented a novel numerical algorithm to couple a DSMC method for the
solution of the Boltzmann equation and a finite volume like method for the compressible Euler
equations. The method is based on the introduction of a buffer zone which realizes a smooth
transition between the kinetic and fluid regions which was first introduced by Degond, Jin and
Mieussens in [14]. Succesively, this method was extended to the case of moving interfaces in [16]
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and in [17].
Here, we have extended the idea of buffer zones and dynamic coupling to the case in which

Monte Carlo methods are used to solve the kinetic equation. This extension permits to treat more
detailed physical models than in the past. In particular it permits to resolve the Boltzmann collision
integral instead of simplified relaxation models. In order to better adapt the coupling methodology
to the case of DSMC methods, the coupling terms have been rearranged in a different way respect
to the past which make the coupling more suitable for Monte Carlo approximations. Moreover, to
reduce the fluctuations caused by Monte Carlo methods which produce spurious oscillations in the
fluid regions, we used a new technique which permits to reduce the variance of particle methods [11].
This technique, called moment guided, is based on matching the moments of the kinetic solution
with the moments of a suitable set of macroscopic equations which contains reduced statistical
error at each time step of the computation. In addition, the use of this method permits a more
precise estimation of the breakdowns of the fluid model. This is true even when few particles, in
comparison with the typical number of particle employed in unsteady computations, are used.

The last part of the present work is centered on the analysis of several numerical tests. The
results clearly demonstrate the capability of the method to couple Monte Carlo method with finite
volume methods even for unsteady problems and with a relatively small number of particles. The
resulting method is able to automatically create, cancel and move as many kinetic, fluid or buffer
regions as necessary. It is also able to capture the correct solutions, to reduce the computational
cost with respect to full DSMC simulations and to avoid the propagation of fluctuations in the
fluid regions.

We finally observe that the computational speed-up will significantly increase for two or three
dimensional simulations, which we intend to carry out in the future.

Appendices

A Numerical tests for the moment guided method applied

to the Boltzmann equation

In this appendix we present some numerical tests for the moment guided method. The reason is
that, in our coupling method, we make use of a technique to reduce the variance which has been
already presented in a previous paper [11] but only in the case of the BGK relaxation operator.
Here, we use the same method to develop the coupling, where we have substituted the BGK
operator with the full Boltzmann operator. In a future work [12], we will present in details this
methodology together with different test cases to show the capability of the method of reducing the
variance with respect to classical DSMC methods. Here, we just report some preliminary results
which show that the moment guided method works also in the case of the Boltzmann operator. To
show some of the behaviors of our method we choose a steady Couette flow test.

A.1 Steady Couette flow

The problem setting is the following: the domain ranges from x = 0 to x = 1 and the number of
cells is 100. The Knudsen number ε is taken equal to respectively 10−2 and 10−1. The formulation
of the problem is as follows. We considered two infinite parallel plates (L = 1 is the distance
between the plates). The initial density is ̺ = 1 uniformly in space. The diffuse reflection law
is set at the surface of the plates. The plates have equal temperatures Tw = 1. The left plate is
stationary, and the right plate moves in the y direction (in its own plane) with a velocity uw = 5.
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Figure 14: Sod Test: Solution at t = 0.3 (top), t = 0.6 (middle) and t = 0.8 (bottom) for the
velocity. MC method (left), Coupling DSMC-Fluid method (right). Knudsen number ε = 10−1.
Reference solution (dotted line), Euler solution (continuous line), DSMC-Fluid or DSMC (circles
plus continuous line).
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Figure 15: Sod Test: Solution at t = 0.3 (top), t = 0.6 (middle) and t = 0.8 (bottom) for the
velocity. MC method (left), Coupling DSMC-Fluid method (right). Knudsen number ε = 10−2.
Reference solution (dotted line), Euler solution (continuous line), DSMC-Fluid or DSMC (circles
plus continuous line).
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Figure 16: Sod Test: Solution at t = 0.3 (top), t = 0.6 (middle) and t = 0.8 (bottom) for the
velocity. MC method (left), Coupling DSMC-Fluid method (right). Knudsen number ε = 10−3.
Reference solution (dotted line), Euler solution (continuous line), DSMC-Fluid or DSMC (circles
plus continuous line).
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Figure 17: Couette flow test: Solution for the density (top), the velocity in the y direction (middle)
and the temperature (bottom). Knudsen number ε = 10−1 (left), Knudsen number ε = 10−2

(right). Reference solution (dotted line), Euler solution (continuous line), Moment Guided (circles
plus continuous line).

29



The choice of this test is done in order to show that the moment guided method behaves well
also for steady problems. Of course, for steady test cases the possibility to average different runs
makes the use of variance reduction techniques and dynamic domain decomposition strategies less
interesting. Nevertheless, for completeness we report here some results which demonstrate that we
can employ this technique also in these situations. This test, together with the tests presented in
[12], justifies the use of the variance reduction method in the development of the coupling strategy.
We refer to the above cited paper and to [11] for a more detailed exploration of the moment guided
strategy.

In figure 17, the reference solution is computed using the DSMC method with initially 102

particle per cell and averaging the results over 103 different runs. Instead, the computed solution
is obtained using initially 3 102 particles per cell. The figure reports the profile for the density,
the mean velocity in the y direction and the temperature when the equilibrium state is reached.
In each figure, we plot our solution, the reference solution and the solution of the Euler equations.
The latter solution corresponds to constant density, velocity and temperature. The results show
good agreement between the moment guided method and the DSMC method for the two different
choices of the Knudsen number (ε = 10−1 on the left, ε = 10−2 on the right).
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