
AN EFFECTIVE MASS THEOREM FOR THE BIDIMENSIONAL
ELECTRON GAS IN A STRONG MAGNETIC FIELD

FANNY DELEBECQUE-FENDT AND FLORIAN MÉHATS

Abstract. We study the limiting behavior of a singularly perturbed Schrödinger-
Poisson system describing a 3-dimensional electron gas strongly confined in the
vicinity of a plane (x, y) and subject to a strong uniform magnetic field in the
plane of the gas. The coupled effects of the confinement and of the magnetic
field induce fast oscillations in time that need to be averaged out. We obtain
at the limit a system of 2-dimensional Schrödinger equations in the plane (x, y),
coupled through an effective selfconsistent electrical potential. In the direction
perpendicular to the magnetic field, the electron mass is modified by the field, as
the result of an averaging of the cyclotron motion. The main tools of the analysis
are the adaptation of the second order long-time averaging theory of ODEs to
our PDEs context, and the use of a Sobolev scale adapted to the confinement
operator.

1. Introduction

1.1. The singularly perturbed problem. Many electronic devices are based on
the quantum transport of a bidimensional electron gas (2DEG) artificially confined
in heterostructures at nanometer scales, see e.g. [2, 4, 20, 31]. In this article, we
derive an asymptotic model for the quantum transport of a 2DEG subject to a
strong uniform magnetic field which is parallel to the plane of the gas. The aim of
this paper is to understand how the cyclotron motion competes with the effects of
the potential confining the electrons and the nonlinear effects of the selfconsistent
Poisson potential. Our tool is an asymptotic analysis from a singularly perturbed
Schrödinger-Poisson system towards a reduced model of bidimensional quantum
transport. In particular, we generalize in this context the notion of cyclotron ef-
fective mass, usually explicitely calculated in the simplified situation of a harmonic
confinement potential [20, 28].

Our starting model is thus the 3D Schrödinger-Poisson system, singularly per-
turbed by a confinement potential and the strong magnetic field. The three-
dimensional space variables are denoted by (x, y, z) and the associated canonical
basis of R3 is denoted by (ex, ey, ez). The particles are subject to three effects: a
confinement potential depending on the z variable, a uniform magnetic field applied
to the gas along the ey axis, and the selfconsistent Poisson potential. Given a small
parameter ε > 0, which is the typical extension of the 2DEG in the z direction, our
starting model is the following dimensionless Schrödinger-Poisson system:

i∂tΨε =
1
ε2

(
−∂2

z +B2z2 + Vc(z)
)

Ψε − 1
ε

2iBz∂xΨε −∆x,yΨε + V εΨε , (1.1)

Ψε(0, x, y, z) = Ψ0(x, y, z), (1.2)

V ε(t, x, y, z) =
1

4πrε
∗ |Ψε|2, (1.3)

where we have denoted

rε(x, y, z) =
√
x2 + y2 + ε2z2. (1.4)
1
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The scaling is discussed in the next subsection. This system describes the transport
of electrons under the action of:

– The applied confinement potential 1
ε2
Vc(z), nonnegative, such that Vc(z)→

+∞ as |z| → +∞. The precise assumptions of this potential are made below
in Assumptions 1.1 and 1.2.

– The applied uniform magnetic field B
ε ey (with B > 0 fixed), which derives

from the magnetic potential 1
εBzex. We have chosen to work in the Landau

gauge.
– The Poisson selfconsistent potential V ε.

Note that (1.1) is equivalent to

i∂tΨε =
1
ε2

(
−∂2

z + Vc(z)
)

Ψε +
(
i∂x −

Bz

ε

)2

Ψε − ∂2
yΨε + V εΨε . (1.5)

The goal of this work is to exhibit an asymptotic system for (1.1), (1.2), (1.3) as
ε→ 0.

Let us end this subsection with short bibliographical notes. In a linear setting,
quantum motion constraint on a manifold has been studied for a long time by
several authors, see [15, 18, 21, 30] and references therein. Nonlinear situations were
studied more recently. The approximation of the Schrödinger-Poisson system with
no magnetic field was studied when the electron gas is constraint in the vicinity
of a plane in [7, 25] and when the gas is constraint on a line in [5]. When the
nonlinearity depends locally on the density, as for the Gross-Pitaevskii equation,
asymptotic models for confined quantum systems were studied in [8, 6, 12]. In
classical setting, collisional models in situations of strong confinement have been
studied in [17]. Finally, let us draw a parallel with the problem of homogenization
of the Schrödinger equation in a large periodic potential, studied in [1] and [29].
At the limit ε → 0, as noted above, we will obtain an homogenized system which
takes the form of bidimensional Schrödinger equations with an effective mass in
the x direction. However, this phenomenon is due to an averaging of the cyclotron
motion induced by a strong magnetic field, and is not exactly the same notion as
the usual effective mass for the transport in a lattice or in a crystal. Nevertheless,
it is interesting to observe that the scaling used in [1, 29] in the case of a strong
periodic potential is similar to the strong confinement scaling used in the present
paper.

1.2. The physical scaling. In order to clarify the physical assumptions under-
lying our singularly perturbed system, let us derive (1.1), (1.2), (1.3) from the
Schrödinger-Poisson system written in physical variables. This system reads as
follows:

i~∂tΨ =
1

2m

(
i~∇− eB

c
zex

)2

Ψ + eVcΨ + eVΨ, (1.6)

V =
e

4πε
√

x2 + y2 + z2
∗
(
|Ψ|2

)
. (1.7)

Each dimensionless quantity in (1.1), (1.2), (1.3) is the associated physical quantity
normalized by a typical scale:

x =
x
x
, y =

y
y
, z =

z
z
, |Ψε|2 =

|Ψ|2

N
, Vc =

Vc

Vc
, V ε =

V
V
, B =

B
B
. (1.8)

Now we introduce two energy scales in this problem: a strong energy Econf , which
will be the energy of the confinement in z and of the magnetic effects, and a transport
energy Etransp, which will be the typical energy of the longitudinal transport in (x, y)
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and also of the selfconsistent effects. We introduce the following small dimensionless
parameter:

ε =
(
Etransp
Econf

)1/2

� 1. (1.9)

Then our scaling assumptions are the following. We set to the scale Econf the
confinement potential, the magnetic energy and the kinetic energy along z:

Econf := eVc =
1
2
m

(
eB

mc

)2

z2 =
~2

2mz2 (1.10)

and we set to the scale Etransp the selfconsistent potential energy, the kinetic energies
along x and y and we finally choose a time scale adapted to this energy:

Etransp := eV =
e2N xz

ε
=

~2

2mx2 =
~2

2my2 =
~
t
. (1.11)

By inserting (1.8) in (1.6), (1.7), then by using (1.9), (1.10) and (1.11), we obtain
directly our singularly pertubed problem (1.1), (1.3). Note that (1.10) and (1.11)
imply that ε is also the ratio between the transversal and the longitudinal space
scales:

ε =
z

x
=
z

y
.

1.3. Heuristics in a simplified case. In this section, we analyze a very simplified
situation where analytic calculations can be directly done. We assume here that Vc
is a harmonic confinement potential and we neglect the Poisson potential V ε. We
formally analyze the heuristics in this simplified case, that will be further compared
to our result obtained in the general case.

We thus consider here a new system, similar to (1.1) where we prescribe Vc(z) =
α2z2, α > 0 and where the Poisson potential V ε is replaced by 0:

i∂tΨε =
1
ε2

(
−∂2

z + (α2 +B2)z2
)

Ψε − 1
ε

2iBz∂xΨε −∆x,yΨε , (1.12)

Ψε(0, x, y, z) = Ψ0(x, y, z). (1.13)
In this situation, there is a trick which enables to transform the equation. Indeed,
by remarking that

−∂2
z + (α2 +B2)z2 − 2iBεz∂x − ε2∂2

x

= −∂2
z + (α2 +B2)

(
z − B

α2 +B2
iε∂x

)2

− α2

α2 +B2
ε2∂2

x ,

we obtain that (1.12) is equivalent to

i∂tΨε =
1
ε2

[
−∂2

z + (α2 +B2)
(
z − B

α2 +B2
iε∂x

)2
]

Ψε − α2

α2 +B2
∂2
xΨε − ∂2

yΨε .

(1.14)
Introduce now the following operator: for a function u ∈ L2(R3), we set

(Θεu)(x, y, z) = F−1
x

(
Fxu(ξ, y, z +

B

α2 +B2
εξ)
)
,

where Fx denotes the Fourier transform in the x variable. Note that this operator
Θε is unitary on L2(R3) and commutes with ∂x and ∂y. Hence, we deduce from
(1.14) and by direct calculations that the function uε = ΘεΨε satisfies the following
system:

i∂tu
ε =

1
ε2
H̃zu

ε − α2

α2 +B2
∂2
xu

ε − ∂2
yu

ε, uε(t = 0) = ΘεΨ0 ,
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where
H̃z = −∂2

z + (α2 +B2)z2.

Let us now filter out the oscillations by introducing the new unknown

Φε = exp(itH̃z/ε
2)uε.

Again, the operator exp(itH̃z/ε
2) commutes with ∂x, ∂y and, finally, the following

equation is equivalent to (1.12):

i∂tΦε = − α2

α2 +B2
∂2
xΦε − ∂2

yΦε, Φε(t = 0) = ΘεΨ0 . (1.15)

As ε→ 0, it is not difficult to see that, for sufficiently smooth initial data, we have
ΘεΨ0 → Ψ0. Therefore, one can show that, in adapted functional spaces, we have
Φε → Φ as ε→ 0, with Φ solution of the limit system:

i∂tΦ = − α2

α2 +B2
∂2
xΦ− ∂2

yΦ, Φ(t = 0) = Ψ0 . (1.16)

This equation is a bidimensional Schrödinger equation with an anisotropic operator
that can be interpreted as follows. Whereas, as expected, the dynamics in the y is
not perturbed by the magnetic field (since it is parallel to y), in the x direction the
electrons are transported as if their mass was augmented by a factor α2+B2

α2 > 1.
This coefficient is called the (dimensionless) electron cyclotron mass [20, 28].

In this article, the model that we want to treat is the nonlinear system (1.1),
(1.3), with a general confinement potential Vc instead of α2z2 and the selfconsis-
tent Poisson potential. Consequently, it is not possible to simplify the equation
(1.1) by the above trick. Moreover, the potential V ε depends on the z variable
and on the function Ψε itself. Therefore, one has to be careful for instance when
filtering out the fast oscillations by applying the operator exp(itH̃z/ε

2), since in
this nonlinear framework some interference effects between the elementary waves
might appear. In this article, we present a general strategy that enables to over-
come these difficulties. The strategy will be inspired from [6] where the nonlinear
Schrödinger equation under strong partial confinement was analyzed. Two main
differences appear here. First, the Poisson nonlinearity is nonlocal, which requires
specific estimates. Observe that, at the limit ε→ 0, the nonlinearity in the present
paper reads 1

4π|x| ∗
∫
|ψ|2dz and does not depend on z. This makes an important

difference with the case of [6], in particular no resonance effects due to the nonlin-
earity will appear. Second, the magnetic field induces in (1.1) a singular term at
an intermediate scale 1

ε between the confinement operator (at the scale 1
ε2
) and the

nonlinearity (at the scale 1
ε0
). Hence, compared to [6], the average techniques have

to be pushed to the order two and resonance effects will finally appear here due to
this magnetic term.

1.4. Main result. Consider the system (1.1), (1.2), (1.3). We assume that the con-
finement potential Vc satisfies two assumptions. The first one concerns the behavior
of this function at the infinity.

Assumption 1.1. The potential Vc is a C∞ nonnegative even function such that

a2|z|2 ≤ Vc(z) ≤ C|z|M for |z| ≥ 1, (1.17)

where a > 0, M > 0, and

|∂zVc(z)|
Vc(z)

= O
(
|z|−M ′

)
,
|∂kzVc(z)|
Vc(z)

= O(1) for all k ∈ N∗, (1.18)

as |z| → +∞, where M ′ > 0.
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Note that a smooth even potential of the form Vc(z) = C|z|s for |z| ≥ |z0|, with
C > 0, s ≥ 2, satisfies these assumptions. In particular the harmonic potential
Vc = a2z2 fits these conditions.

Let us discuss on the assumptions. The assumption that the function Vc(z) is even
is important in our analysis, see e.g. Step 4 in subsection 1.5. The left inequality in
the first condition (1.17) implies that Vc tends to +∞ as |z| → +∞. The fact that
Vc(z) ≥ a2z2 is not essential in our analysis but simplifies it (see below, it allows to
give a simple characterization of the energy space related to our system). As it is
well-known [26], the spectrum of operator Hz defined by

Hz = −∂2
z +B2z2 + Vc(z). (1.19)

is discrete, when Hz is considered as a linear, unbounded operator over L2(R), with
domain

D(Hz) = {u ∈ L2(R), Hzu ∈ L2(R)}.

The complete sequence of eigenvalues of Hz will be denoted by (Ep)p∈N, taken
strictly increasing with p (recall indeed that in dimension 1 the eigenvalues are sim-
ple), and the associated Hilbert basis of real-valued eigenfunctions will be denoted
by (χp(z))p∈N. The right inequality in (1.17) and the second condition (1.18) are
more technical and are here to simplify the use of a Sobolev scale based on the op-
erator Hz, which is well adapted to our problem. More precisely, these assumptions
are used in Lemma 2.3.

The second assumption on Vc concerns the spectrum of the confinement operator
Hz.

Assumption 1.2. The eigenvalues of the operator Hz defined by (1.19) satisfy the
following property: there exists C > 0 and n0 ∈ N such that

∀p ∈ N, Ep+1 − Ep ≥ C(1 + p)−n0 .

The most simple situation where (1.2) is satisfied is when there exists a uniform
gap between the eigenvalues: for all p ∈ N∗, Ep+1−Ep ≥ C0 > 0. Note that in this
case we have n0 = 0. This property is true in the following examples.

– If Vc(z) = a2z2 +V1(z), with ‖V1‖L∞ < 2
√
a2 +B2. Indeed, in this case the

perturbation theory gives |Ep − (2p+ 1)
√
a2 +B2| < ‖V1‖L∞ .

– If Vc(z) ∼ a|z|s as |z| → +∞, with s > 2. Indeed, in this case the Weyl
asymptotics [19] gives Ep ∼ Cp

2s
s+2 , so Ep+1 − Ep → +∞ as p→ +∞.

Let us now give a few indications on the Cauchy problem for (1.1), (1.2), (1.3).
This system benefits from two conservation laws, the mass and energy conservations:

∀t ≥ 0, ‖Ψε(t)‖2L2 = ‖Ψ0‖2L2 , E(Ψε(t)) = E(Ψ0), (1.20)

where the total energy of the wavefunction Ψε is defined by

E(Ψε) =
1
ε2
‖∂zΨε‖2L2 +

1
ε2
‖
√
VcΨε‖2L2 +

1
ε2
‖(ε∂x + iBz)Ψε‖2L2

+‖∂yΨε‖2L2 +
1
2
‖
√
V εΨε‖2L2 . (1.21)

For fixed ε > 0, the Cauchy theory for the Schrödinger-Poisson with a constant
uniform magnetic field was solved in [14, 16] in the energy space. It is not difficult to
adapt these proofs (see also the reference book [13]) to our case where an additional
confinement potential is applied. The energy space in our situation is the set of
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functions u such that E(u) is finite:

B1 =
{
u ∈ L2(R3) : ∂zu ∈ L2(R3),

√
Vcu ∈ L2(R3), ∂yu ∈ L2(R3)

and
(
∂x +

iBz

ε

)
u ∈ L2(R3)

}
.

This space seems to depend on ε, which would not be convenient for our asymptotic
analysis. In fact, it does not. Indeed, thanks to our assumption (1.17) on the
confinement potential, one has

‖zu‖L2 ≤
1
a
‖
√
Vcu‖L2 ,

so u ∈ B1 implies that zu ∈ L2 and thus ∂xu ∈ L2. Hence one has

B1 =
{
u ∈ H1(R3) :

√
Vcu ∈ L2(R3)

}
and, on this space, we will use the following norm independent of ε:

‖u‖2B1 = ‖(I −∆x,y +Hz)1/2u‖2L2

= ‖u‖2L2 + ‖(−∆x,y)1/2u‖2L2 + ‖(Hz)1/2u‖2L2

= ‖u‖2H1 + ‖
√
Vcu‖2L2 +B2‖zu‖2L2 , (1.22)

where we used the selfadjointness and the positivity of −∆x,y and of the operator
Hz defined by (1.19), and where I denotes the identity operator. In this paper,
we will assume that the initial datum Ψ0 in (1.2) belongs to this space B1. Then,
for all ε > 0, the system (1.1), (1.2), (1.3) admits a unique global solution Ψε ∈
C0([0,+∞), B1). Our aim is to analyze the asymptotic behavior of Ψε as ε→ 0.

We are now in position to state our main results. Here and throughout this paper,
we will use the notation

∀u ∈ L1
z(R), 〈u〉 =

∫
R
u(z) dz. (1.23)

Let us introduce the limit system. First define the following coefficients

∀p ∈ N, αp = 1−
∑
q 6=p

〈2Bzχpχq〉2

Eq − Ep
, (1.24)

where we recall that (Ep, χp)p∈N is the complete sequence of eigenvalues and eigen-
functions of the operator Hz defined by (1.19). Then, we introduce the follow-
ing infinite dimensional, nonlinear and coupled differential system on the functions
φp(t, x, y):

∀p ∈ N, i∂tφp = −αp ∂2
xφp − ∂2

yφp +Wφp , φp(t = 0) = 〈Ψ0 χp〉 , (1.25)

W =
1

4π
√
x2 + y2

∗

∑
p∈N
|φp|2

 . (1.26)

Note that the convolution in (1.26) holds on the variables (x, y) ∈ R2. The equation
(1.26) is nothing but the Poisson equation for a measure valued distribution of mass
whose support is constrained to the plane z = 0:

W (t, x, y) =

 1

4π
√
x2 + y2 + z2

∗

∑
p∈N
|φp(t, x, y)|2δz=0

∣∣∣∣∣∣
z=0

.
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In order to compare with Ψε, we introduce the following functions:

Φ(t, x, y, z) =
∑
p∈N

φp(t, x, y)χp(z), Ψε
app(t, x, y, z) =

∑
p∈N

e−itEp/ε
2
φp(t, x, y)χp(z).

(1.27)
Remark that Ψε

app can be deduced from Φ through the application of the operator
eitHz/ε

2 , unitary on B1:
Ψε
app = e−itHz/ε

2
Φ.

This explicit relation is the only dependency in ε of the limit system (1.25), (1.26),
(1.27). Our main result is the following theorem.

Theorem 1.3. Assume that Vc satisfies Assumptions 1.1 and 1.2 and let Ψ0 ∈ B1.
For all ε ∈ (0, 1], denote by Ψε ∈ C0([0,+∞), B1) the unique global solution of the
initial system (1.1), (1.2), (1.3). Then the following holds true.
(i) The limit system (1.25), (1.26), (1.27) admits a unique maximal solution Ψε

app ∈
C0([0, Tmax), B1), where Tmax ∈ (0,+∞] is independent of ε. If Tmax < +∞ then
‖Ψε

app(t, ·)‖B1 → +∞ as t→ Tmax.
(ii) For all T ∈ (0, Tmax), we have

lim
ε→0

∥∥Ψε −Ψε
app

∥∥
C0([0,T ],B1)

= 0.

Comments on Theorem 1.3.

1. The cyclotron effective mass. Theorem 1.3 thus states that, on all time intervals
where the limit system (1.27), (1.25), (1.26) is well-posed, the solution Ψε of the
singularly perturbed system (1.1), (1.2), (1.3) is close to Ψε

app. As expected, the
dynamics in the y direction, ie parallel to the magnetic field, is not affected by the
magnetic field, since the operator is still −∂2

y . On the other hand, the situation
is different in the direction x and the averaging of the cyclotron motion results
in a multiplication of the operator −∂2

x by the factor αp which only depends on
Vc and B. The coefficient 1

αp
plays in (1.25) the role of an effective mass in the

direction perpendicular to the magnetic field. We find that the effective mass in the
Schrödinger equation for the mode p depends on the index p of this mode. We do
not know whether these coefficients are positive for a general Vc.

Notice that the effective mass could be predicted heuristically by the following
argument. Denoting by kx, ky the wavevectors of the 2DEG in the plane (x, y), the
electron dispersion relation Ep(kx, ky) in the transversal subbands can be written
from (1.1) by computing the eigenvalues of the operator

1
ε2

(
− d2

dz2
+B2z2 + Vc(z) + 2εBzkx + ε2k2

x + ε2k2
y

)
.

Since ε is small, an approximation of Ep(kx, ky) can be computed thanks to pertur-
bation theory, which gives the following parabolic band approximation:

Ep(kx, ky) =
Ep
ε2
− k2

x

∑
q 6=p

〈2Bzχpχq〉2

Eq − Ep
+ k2

x + k2
y + o(1).

We can read on this formula that the effective mass is 1 in the y direction and is α−1
p

according to (1.24) in the x direction. Note that the specific case of the harmonic
potential is treated below (see comment 3).

2. Conservation of the energy for the limit system. Let us write the conservation
of the energy for the limit system. The total energy for this system can be splitted
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into a confinement energy Econf (Φ) and a transport energy Etr(Φ) defined by

Econf (Φ) =
∑
p∈N

Ep ‖φp‖2L2 , (1.28)

Etr(Φ) =
∑
p∈N

αp‖∂xφp‖2L2 +
∑
p∈N
‖∂yφp‖2L2

+
1
2

∑
p,q

∫
R4

1
4π
√
|x− x′|2 + |y − y′|2

|φp(x, y)|2|φq(x′, y′)|2 dxdydx′dy′. (1.29)

An interesting property is that these two quantities are separately conserved by the
limit system. If Ψε

app solves (1.25), (1.26), (1.27), then, for all t ∈ [0, T ], we have

Econf (Ψε
app(t)) = Econf (Ψε

app(0)) and Etr(Ψε
app(t)) = Etr(Ψε

app(0)). (1.30)

In particular, by summing up the two equalities in (1.30), we obtain the following
conservation property:

Econf (Ψε
app(t)) + Etr(Ψε

app(t)) = Econf (Ψε
app(0)) + Etr(Ψε

app(0)). (1.31)

Note that, in the general case, we do not know whether the energy defined by (1.29)
is the sum of nonnegative terms. This point is related to the fact that the well-
posedness for t ∈ [0,+∞) of the Cauchy problem for the nonlinear system (1.25),
(1.26) is an open issue. Nevertheless, when the αp are such that the energy is
coercive on B1, ie when we have

∀Φ ∈ B1, C0‖Φ‖2B1 ≤ Econf (Φ) + Etr(Φ) ≤ C1‖Φ‖2B1 + C2‖Φ‖4B1 , (1.32)

with a constant C0 > 0 independent of ε, then the maximal solution of (1.25), (1.26)
is globally defined: Tmax = +∞.

Corollary 1.4 (Global in time convergence). Under the assumptions of Theorem
1.3, assume moreover that there exists 0 < α < α such that the coefficients αp
defined by (1.24) satisfy the following condition:

∀p ∈ N, α ≤ αp ≤ α. (1.33)

Then the system (1.27), (1.25), (1.26) admits a unique global solution Ψε
app ∈

C0([0,+∞), B1) and, for all T > 0, we have

lim
ε→0

∥∥Ψε −Ψε
app

∥∥
C0([0,T ],B1)

= 0,

where Ψε ∈ C0([0,+∞), B1) denotes the solution of (1.1), (1.2), (1.3).

The proof of this corollary is immediate and will not be detailed in this paper.
Indeed, remarking that (1.33) implies (1.32), we obtain that the solution Ψε

app(t) of
(1.25), (1.26) satisfies the following uniform bound:

‖Ψε
app(t)‖2B1 ≤ C

(
Ẽconf (Ψε

app(t)) + Ẽtr(Ψε
app(t))

)
= C

(
Ẽconf (Ψ0) + Ẽtr(Φ0)

)
,

where the quantity in the right-hand side is finite as soon as Ψ0 ∈ B1.

3. Case of harmonic confinement. In the special case of a harmonic confinement
potential Vc(z) = a2z2, the eigenvalues and eigenfunctions ofHz = −∂2

z+(a2+B2)z2

can be computed explicitely and one has

Ep = (2p+ 1)
√
a2 +B2, χp(z) = (a2 +B2)1/8 up

(
(a2 +B2)1/4z

)
,
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where (up)p∈N are the normalized Hermite functions defined e.g. in [24] (Appendix
B-8 in this book) and satisfying −u′′ + z2up = (2p + 1)up. The properties of the
Hermite functions give

2zχp =

√
2(p+ 1)

(a2 +B2)1/4
χp+1 +

√
2p

(a2 +B2)1/4
χp−1 ,

and one can compute explicitely the coefficients

αp = 1−B2 〈2zχpχp+1〉2

Ep+1 − Ep
+B2 〈2zχpχp−1〉2

Ep − Ep−1
=

a2

a2 +B2
.

We thus recover here the coefficient found in subsection 1.3 in the simplified situa-
tion. Note that, in this case, condition (1.33) is satisfied and the convergence result
holds on an arbitrary time interval. It is reasonable to conjecture that this condition
(1.33) holds again when Vc(z) = a2z2 + V1(z), where V1 is a small perturbation.

4. Towards a more realistic model. Since we aim at describing the transport of
electrons, which are fermions, our model should not be restricted to a pure quantum
state. The following model describes the transport of an electron gas in a mixed
quantum state and is more realistic:

i∂tΨε
j =

1
ε2

(
−∂2

z +B2z2 + Vc(z)
)

Ψε
j−

1
ε

2iBz∂xΨε
j−∆x,yΨε

j +V εΨε
j , ∀j, (1.34)

Ψε
j(0, x, y, z) = Ψj,0(x, y, z), ∀j, (1.35)

V ε(t, x, z) =
1

4πrε
∗ ρε, ρε =

∑
j

λj |Ψε
j |2, (1.36)

where λj , the occupation factor of the state Ψε
j , takes into account the statistics

of the electron ensemble and is fixed once for all at the initial time. Note that the
Schrödinger equations (1.34) are only coupled through the selfconsistent Poisson
potential. Therefore, we claim that our main Theorem 1.3, which has been given
for the sake of simplicity in the case of pure quantum state, can be extended to
this system (1.34), (1.35), (1.36), with appropriate assumptions on the initial data
(Ψj,0) .

Similarly, a given smooth external potential could be incorporated in the initial
system. We also claim that our result can be easily adapted if we add in the right-
hand side of (1.1) a term of the form Vext(t, x, y, εz)Ψε (which is coherent with our
scaling), and the result does not change qualitatively.

1.5. Scheme of the proof. In this section, we sketch the main steps of the proof
of the main theorem.

Step 1: a priori estimates.

The first task is to obtain uniform in ε a priori estimates for the solution of (1.1),
(1.2), (1.3), which are of course crucial in the subsequent nonlinear analysis. Due to
the presence of the singular 1

ε2
and 1

ε terms in (1.1), this task is not obvious here. In
subsection 2.1, we introduce a well adapted functional framework: a Sobolev scale
based on the operators −∆x,y and Hz. More precisely, for all m ∈ N, we introduce
the Hilbert space

Bm =
{
u : ‖u‖2Bm = ‖u‖2L2(R3) + ‖(−∆x,y)m/2u‖2L2(R3) + ‖Hm/2

z u‖2L2(R3) < +∞
}
.

(1.37)
In subsection 2.1, we give some equivalent norms which are easier to handle here.
Then in subsection 2.2 we take advantage of this functional framework and derive
some a priori estimates for (1.1), (1.2), (1.3).
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Step 2: the filtered system.

In [3, 6], the asymptotics of NLS equations under the form

i∂tu
ε =

1
ε2
Hzu

ε −∆x,yu
ε + F(|uε|2)uε, (1.38)

such as the Gross-Pitaevskii equation, was analyzed. In (1.38), F : R+ 7→ R is a
given function and the nonlinearity depends locally on the density |uε|. It appeared
in [6] that a fruitful strategy is to filter out the oscillations in time induced by the
term 1

ε2
Hz, without projecting on the eigenmodes of Hz . Indeed, projecting (1.38)

on the Hilbert basis χp leads to difficult problems of series summations and of small
denominators in oscillating phases. Introducing the new unknown:

vε(t, x, z) = exp
(
itHz/ε

2
)
uε(t, x, z),

the filtered system associated to (1.38) reads

i∂tv
ε = −∆x,yv

ε + eitHz/ε
2F
(∣∣∣e−itHz/ε2vε∣∣∣2) e−itHz/ε2vε (1.39)

where we used the fact that Hz, thus eitHz , commutes with ∂x and ∂y. Then, the
analysis of the limit ε→ 0 amounts to prove that it is possible to define an average
of the nonlinearity in (1.39) with respect to the fast variable t/ε2.

Let us adapt this strategy to our problem. Introduce

Φε(t, x, z) = exp
(
itHz/ε

2
)

Ψε(t, x, z).

One deduces from (1.1), (1.2), (1.3) the following equation for Φε:

i∂tΦε = −2B
ε

(
eitHz/ε

2
ze−itHz/ε

2
)

(i∂xΦε)−∆x,yΦε + F

(
t

ε2
,Φε(t)

)
, (1.40)

where we introduced the nonlinear function

(τ, u) 7→ F (τ, u) = eiτHz
(

1
4πrε

∗
∣∣e−iτHzu∣∣2) e−iτHzu, (1.41)

and where rε is still defined by (1.4).

Step 3: approximation by an intermediate system.

Before performing the limit ε→ 0 in (1.40), we remark that (1.41) can be approx-
imated in order to get rid of the fast time variable t/ε2 in the nonlinear term of
(1.40). By writing formally

1√
x2 + y2 + ε2z2

=
1√

x2 + y2
+ o(1), (1.42)

we remark that
1
rε
∗
∣∣e−iτHzu∣∣ =

1√
x2 + y2

∗
〈∣∣e−iτHzu∣∣2〉+ o(1)

=
1√

x2 + y2
∗
〈
|u|2
〉

+ o(1),

where the symbole ∗ denotes here a convolution in the (x, y) variables only, and
where we used the fact that eiτHz is unitary on L2

z(R). Hence, inserting this Ansatz
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in (1.41) yields

F (τ, u) = eiτHz

(
1

4π
√
x2 + y2

∗
〈
|u|2
〉)

e−iτHzu+ o(1)

=

(
1

4π
√
x2 + y2

∗
〈
|u|2
〉)

u+ o(1).

Denoting

F0(u) =

(
1

4π
√
x2 + y2

∗
〈
|u|2
〉)

u, (1.43)

and introducing the solution Φ̃ε of the following intermediate system:

i∂tΦ̃ε = −2B
ε

(
eitHz/ε

2
ze−itHz/ε

2
)

(i∂xΦ̃ε)−∆x,yΦ̃ε + F0

(
Φ̃ε(t)

)
, (1.44)

we expect that the solution Ψε of (1.40) satisfies

Φε = Φ̃ε + o(1). (1.45)

Subsection 2.3 is devoted to the rigorous proof of this heuristics. We give sense to
the o(1) in Lemma 2.7 and we prove that the solutions of the two nonlinear equations
(1.40) and (1.44) are close together and that (1.45) holds true in the sense of the
B1 norm. This statement is given in Proposition 2.1.

Step 4: second order averaging of oscillating systems.

Thanks to this Step 3, we can consider the simplest system (1.44) instead of (1.40).
We are now left with the analysis of the asymptotics of this intermediate system as
ε→ 0. Note that (1.44) is under the general form

i∂tu =
1
ε
f

(
t

ε2

)
u(t) + g(u(t)) (1.46)

with
f(τ) = −2BeiτHzze−iτHz i∂x and g(u) = −∆x,yu+ F0(u).

At this point, a critical fact has to be noticed. Equations under the form

i∂tu = f

(
t

ε2

)
u(t) + g(u(t)) (1.47)

can be averaged when, due to some ergodicity property, one can give a sense to the
time average

f0 = lim
T→+∞

1
T

∫ T

0
f(τ) dτ. (1.48)

Indeed, under rather general assumptions, the techniques of averaging of dynamical
systems – see the reference book on the topic by Sanders and Verhulst [27]– enable
to show that (1.47) is well approximated by the averaged equation

i∂tu = f0u(t) + g(u(t)).

Yet, the oscillating term in (1.46), compared to the same term in (1.47), is multiplied
by 1

ε . Therefore, a necessary condition in order to perform the averaging of (1.46)
is that the average f0 of f is zero. In our case, the integral kernel of the operator
eiτHzze−iτHz , defined by

∀u, eiτHzze−iτHzu =
∫

R
G(τ, z, z′)u(z′)dz′,
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is given by

G(τ, z, z′) =
∑
p∈N

∑
q∈N

eiτ(Ep−Eq) 〈zχpχq〉χp(z)χq(z′)

=
∑
p∈N

∑
q 6=p

eiτ(Ep−Eq) 〈zχpχq〉χp(z)χq(z′).

In the last inequality, we used the fact that, by Assumption 1.1, Vc is even. Indeed,
this property implies that, for all p, (χp)2 is also even, thus 〈z(χp)2〉 = 0. Conse-
quently, since p 6= q implies Ep 6= Eq, the kernel G(τ, z, z′) is a series of functions
which all have a vanishing average in time. We thus expect that the operator-valued
function f(τ) has the same property:

f0 = lim
T→+∞

1
T

∫ T

0
f(τ) dτ = 0.

In such a situation, the theory of averaging has to be pushed to the second order
[27] in order to obtain the limit of (1.46) as ε → 0. Section 3 is devoted to this
question of second order averaging, which leads to the limit system (1.25), (1.26).
The main result of this Section 3 is Proposition 3.2.

In the short last Section 4, we prove our main Theorem 1.3 by just gathering the
results proved in the previous sections.

2. The nonlinear analysis

In this section, we obtain some a priori estimates uniform in ε for the initial
system (1.1), (1.2), (1.3) and we prove that it can be approximated by an interme-
diate system, where we regularize the initial data and where we replace the Poisson
nonlinearity by its formal limit given in (1.43) . This intermediate system takes the
form

i∂tΨ̃ε =
1
ε2
HzΨ̃ε − 1

ε
2iBz∂xΨ̃ε −∆x,yΨ̃ε +W εΨ̃ε , (2.1)

Ψ̃ε(0, x, y, z) = Ψ̃0(x, y, z), (2.2)

W ε(t, x, z) =
1

4π
√
x2 + y2

∗
〈
|Ψ̃ε|2

〉
. (2.3)

Notice that (2.3) is nothing but the Poisson equation (1.3) where we replace rε =√
x2 + y2 + ε2z2 by r0 =

√
x2 + y2. Moreover, the initial datum Ψ̃0 in (2.2) will

be chosen as a regularization in Bm of the initial datum Ψ0. Recall the definition
(1.37) of the space Bm. The main result of this section is the following proposition.

Proposition 2.1 (Approximation of the initial system). Assume that Vc satis-
fies Assumptions 1.1, 1.2 and that Ψ0 ∈ B1. For all ε ∈ (0, 1], denote by
Ψε ∈ C0(R+, B

1) the unique global solution of the initial system (1.1), (1.2), (1.3).
Then the following holds true.
(i) There exists a maximal positive time such that Ψε is bounded uniformly in ε :
the quantity

T0 := sup

{
T ≥ 0 : sup

ε∈(0,1]
‖Ψε‖C0([0,T ],B1) < +∞

}
. (2.4)

satisfies T0 ∈ (0,+∞]. If T0 < +∞ then

lim sup
ε→0

‖Ψε‖C0([0,T0],B1) = +∞.
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(ii) For all T ∈ (0, T0), where T0 is defined by (2.4), for all δ > 0 and for all
integer m ≥ 2, there exist Ψ̃0 ∈ Bm and εδ such that the following holds true. For
all ε ∈ (0, εδ], the intermediate system (2.1), (2.2), (2.3) admits a unique solution
Ψ̃ε ∈ C0([0, T ], Bm) satisfying the following uniform estimates:

∀ε ≤ εδ ‖Ψε − Ψ̃ε‖C0([0,T ],B1) ≤ δ (2.5)

‖Ψ̃ε‖C0([0,T ],Bm) ≤ C(‖Ψ0‖B1)‖Ψ̃0‖Bm . (2.6)

Remark 2.2. It is a priori not excluded that T0 < +∞. Indeed, although we are in
a repulsive case, the energy conservation does not enable to obtain ε-independant
a priori estimates in B1 (see the proof of Lemma 2.6). This may be linked to
the possible formation of caustics, as for the nonlinear Schrödinger equation in
semiclassical regime, see e.g. [11].

2.1. Preliminaries. As we explained in subsection 1.5, our nonlinear analysis will
deeply rely on the use of the functional spaces Bm defined by (1.37) and adapted
to the operators Hz and −∆x,y. The following result was proved in [6] by using an
appropriate Weyl-Hörmander pseudodifferential calculus, inspired by [9, 22]:

Lemma 2.3 ([6]). Under Assumption 1.1, consider the Hilbert space Bm defined
by (1.37) for m ∈ N. Then the norm ‖ · ‖Bm in (1.37) is equivalent to the following
norm:

‖u‖Hm(R3) + ‖Vc(z)m/2u‖L2(R3). (2.7)

Moreover, for all u ∈ Bm+1, we have

‖H1/2
z u‖Bm + ‖∂xu‖Bm + ‖∂yu‖Bm + ‖∂zu‖Bm + ‖

√
Vcu‖Bm . ‖u‖Bm+1 . (2.8)

The operator ∆x,y commutes with the rapidly oscillating operator e±itHz/ε2 and
with the operator iz∂x. This will enable us to obtain uniform bounds for the solution
of (1.1) by simply applying ∆x,y to this equation. Unfortunately, the operator Hz

does not satisfy this property. For this reason, we introduce the following operator:

Hε = Hz − 2iεBz∂x − ε2∂2
x = −∂2

z + Vc(z) + (iε∂x −Bz)2 . (2.9)

This operator enables to define another norm equivalent to the Bm norm. The
following lemma is proved in the Appendix A.

Lemma 2.4. The operator Hε defined by (2.9) on L2(R3) with domain B2 is self-
adjoint and nonnegative. There exists a constant C1 > 0 such that, for all ε ∈ (0, 1]
and for all u ∈ B1, we have

1
C1
‖u‖2B1 ≤ ‖u‖2L2(R3) + ‖(−∆x,y)1/2u‖2L2(R3) + ‖H1/2

ε u‖2L2(R3) ≤ C1‖u‖2B1 . (2.10)

Moreover, for all integer m ≥ 2, there exists εm ∈ (0, 1] such that, for all ε ∈ (0, εm],
for all u ∈ Bm, we have

1
2
‖u‖2Bm ≤ ‖u‖2L2(R3) + ‖(−∆x,y)m/2u‖2L2(R3) + ‖Hm/2

ε u‖2L2(R3) ≤ 2‖u‖2Bm . (2.11)

2.2. A priori estimates. In this subsection, we obtain a priori estimate uniform in
ε for the initial Schrödinger-Poisson model (1.1), (1.3) and the intermediate model
(2.1), (2.2), (2.3). Remark first that these two models can be considered in a unified
way. For all u ∈ B1 and for α ∈ {0, 1}, denote

Fα(u) =

(
1

4π
√
x2 + y2 + αε2z2

∗
(
|u|2
))

u , (2.12)
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where the convolution holds on the three variables (x, y, z) ∈ R3. Remark that for
α = 0, this definition coincides with the definition (1.43). We shall consider for
ε ∈ (0, 1] and α ∈ {0, 1} the nonlinear equation

i∂tu
ε =

1
ε2
Hεu

ε − ∂2
yu

ε + Fα(uε) , (2.13)

uε(0, x, y, z) = u0(x, y, z), (2.14)
where the operator Hε was defined by (2.9). Note that for u0 = Ψ0 and α = 1,
(2.13), (2.14) is the initial system (1.1), (1.2), (1.3), and that for u0 = Ψ̃0 and
α = 0, (2.13), (2.14) is the intermediate system (2.1), (2.2), (2.3). Let us first
state a technical lemma concerning the nonlinearities F1 and F0, which is proved in
Appendix B.

Lemma 2.5. There exists a constant C > 0 such that, for all ε ∈ (0, 1], for α = 0
or 1, we have

∀u, v ∈ B1, ‖Fα(u)− Fα(v)‖B1 ≤ C
(
‖u‖2B1 + ‖v‖2B1

)
‖u− v‖B1 , (2.15)

where Fα is defined by (2.12). Moreover, for all m ∈ N∗, there exists Cm > 0 such
that we have the tame estimate

∀ε ∈ (0, 1], ∀α ∈ {0, 1}, ∀u ∈ Bm, ‖Fα(u)‖Bm ≤ Cm‖u‖
2
B1 ‖u‖Bm . (2.16)

Now we are able to derive uniform a priori estimates for the solution of (2.13),
(2.14).

Lemma 2.6. Let ε ∈ (0, 1], α ∈ {0, 1} and u0 ∈ B1. Then the solution uε of the
equation (2.13), (2.14) exists and is unique in C0([0,+∞), B1) and the following
uniform in ε estimates hold true.
(i) For all M > 0, there exist T > 0, only depending on M and ‖u0‖B1, such that,
for all ε ∈ (0, 1], we have

‖uε‖C0([0,T ],B1) ≤ (1 +M)‖u0‖B1 . (2.17)

(ii) Let m ≥ 2 an integer and assume that u0 ∈ Bm. Then, for all T̃ > 0, we have
the estimate

∀ε ∈ (0, εm], ‖uε‖
C0([0,eT ],Bm)

≤ C‖u0‖Bm exp
(
CT̃‖uε‖2C0([0,T ],B1)

)
. (2.18)

where εm > 0 is as in Lemma 2.4.

Proof. Step 1: the Cauchy problem and the conservation laws. For any given ε > 0,
the existence and uniqueness of a maximal solution uε ∈ C0([0, T ), B1) can be
obtained by standard techniques [13]. We leave this first part of the proof to the
reader. This solution satisfies both L2 and energy conservation laws:

∀t ≥ 0, ‖uε(t)‖L2 = ‖u0‖L2 and Eα(uε(t)) = Eα(u0), (2.19)

where the energy Eα is defined by

Eα(u) =
1
ε2

(Hεu, u)L2 + ‖∂yu‖2L2 +
1
2

(Fα(u), u)L2

=
1
ε2
‖∂zu‖2L2 +

1
ε2
‖
√
Vcu‖2L2 +

1
ε2
‖(ε∂x + iBz)u‖2L2 + ‖∂yu‖2L2 +

1
2

(Fα(u), u)L2 .

We recall that the operator Hε is defined by (2.9). These conservation laws show
that the solution uε is global, ie that T = +∞. Unfortunately, due to the 1

ε2

terms in this expression, one cannot use the energy conservation to get uniform in
ε estimates. Instead, we will directly write the equations satisfied by ∂xuε, ∂yuε or
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(Hε)1/2uε and use the standard L2-estimates for these equations and the fact that
the self-adjoint operators Hε, ∂x and ∂y commute together.

Step 2: B1 estimate. This yields

i∂t(∇x,yuε)(t) =
1
ε2
Hε(∇x,yuε)− ∂2

y(∇x,yuε) +∇x,y (Fα(uε))

and

i∂t

(
H1/2
ε uε

)
(t) =

1
ε2
Hε(H1/2

ε uε)− ∂2
y(H1/2

ε uε) +H1/2
ε (Fα(uε)) .

Hence,

‖uε(t)‖L2 + ‖∇x,yuε(t)‖L2 + ‖H1/2
ε uε(t)‖L2 ≤ ‖u0‖L2 + ‖∇x,yu0‖L2 + ‖H1/2

ε u0‖L2

+C
∫ t

0

(
‖∇x,yFα(uε(s))‖L2 + ‖H1/2

ε Fα(uε(s))‖L2

)
ds

and, for ε ∈ (0, 1], the equivalence of norms given in Lemma 2.4, yields

‖uε(t)‖B1 ≤ C‖u0‖B1 + C

∫ t

0
‖Fα(uε(s))‖B1 ds

≤ C‖u0‖B1 + C

∫ t

0
‖uε(s)‖3B1 ds, (2.20)

where we used (2.15) with v = 0 to estimate Fα(uε(s)). Hence, by applying the
Gronwall lemma to the integral inequality (2.20), we prove Item (i) of the Lemma.

Step 3: Bm estimate. Let T > 0, m ≥ 2, u0 ∈ Bm and let ε ∈ (0, εm], where
0 < εm ≤ 1 as in Lemma 2.4. Since the operators Hε and ∆x,y commute together,
H
m/2
ε uε satifies the following equation:

i∂t

(
Hm/2
ε uε

)
(t) =

1
ε2
Hε(Hm/2

ε uε)− ∂2
y(Hm/2

ε uε) +Hm/2
ε (Fα(uε)) ,

thus, for all t ∈ [0, T ],

‖Hm/2
ε uε(t)‖L2 ≤ ‖Hm/2

ε u0‖L2 +
∫ t

0
‖Hm/2

ε (Fα(uε(s))) ‖L2 ds,

≤ C‖u0‖Bm + C

∫ t

0
‖Fα(uε(s))‖Bm ds

≤ C‖u0‖Bm + C‖uε‖2C0([0,T ],B1)

∫ t

0
‖uε(s)‖Bm ds, (2.21)

where we used Lemma 2.4 and the tame estimate (2.16). Similarly, −∆x,yu
ε satisfies

the following equation:

i∂t(−∆x,yu
ε)(t) =

1
ε2
Hε(−∆x,yu

ε)− ∂2
y(−∆x,yu

ε)−∆x,y

(
Fα(uε)

)
and, using the definition of Bm (1.37) and (2.16) yields:

‖(−∆x,y)m/2uε(t)‖L2 ≤ ‖(−∆x,y)m/2u0‖L2 +
∫ t

0
‖(−∆x,y)m/2 (Fα(uε(s))) ‖L2 ds,

≤ C‖u0‖Bm + C‖uε‖2C0([0,T ],B1)

∫ t

0
‖uε(s)‖Bm ds. (2.22)
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Therefore, by using again the equivalence of norms given by Lemma 2.4 and the L2

conservation law in (2.19), we deduce from (2.21) and (2.22) that, for t ≤ T , we
have

‖uε(t)‖Bm ≤ C‖u0‖Bm + C‖uε‖2C0([0,T ],B1)

∫ t

0
‖uε(s)‖Bm ds,

and the Gronwall lemma gives (2.18). �

2.3. Proof of Proposition 2.1. In this subsection, we prove Proposition 2.1, ie
we show that this solution can be uniformly approximated by a regular solution of
the intermediate system. We first state a technical lemma on the Poisson kernels,
which is proved in the Appendix C.

Lemma 2.7. There exists a constant C > 0 such that, for all ε ∈ (0, 1], we have

∀u ∈ B2, ‖F1(u)− F0(u)‖B1 ≤ C ε1/3 ‖u‖3B2 , (2.23)

where F0 and F1 are defined by (2.12).

We are now ready to prove the main result of this section.

Proof of Proposition 2.1. Let Ψ0 ∈ B1, let an integer m ≥ 2 be fixed, and define
the regularized initial datum Ψ̃0 by

Ψ̃0 = (I − η∆x,y)
−m/2 (I + ηHz)

−m/2 Ψ0 , (2.24)

where η > 0 is a small parameter that will be fixed further and where I denotes the
identity operator. Denote by Ψε the solution of the initial system (1.1), (1.2), (1.3)
and by Ψ̃ε the solution of the intermediate system (2.1), (2.2), (2.3) with the initial
datum (2.24). We shall estimate the difference Ψε − Ψ̃ε.

Step 1: uniform bounds for Ψε. Let 0 < ε ≤ 1. From Lemma 2.6 (i), we first deduce
that there exists T1 > 0 only depending on ‖Ψ0‖B1 such that, for all ε ∈ (0, 1]

‖Ψε‖C0([0,T1],B1) ≤ 2‖Ψ0‖B1 .

This implies that T0 defined by (2.4) satisfies T0 ≥ T1 > 0. Clearly, if T0 < +∞, we
have

lim sup
ε→0

‖Ψε‖C0([0,T0],B1) = +∞,

otherwise by reiterating the above procedure we could find a uniform bound on
[0, T2] with T2 > T0.

Now we fix T ∈ (0, T0) and δ > 0 for the sequel of this proof. Definition (2.4) of
T0 implies that

‖Ψε‖C0([0,T ],B1) ≤ C (‖Ψ0‖B1) , independent of ε ∈ (0, 1]. (2.25)

Step 2: bounds for the initial datum Ψ̃0. First, we deduce from (2.24) that

(I −∆x,y +Hz)1/2Ψ̃0 = (I − η∆x,y)−m/2(I + ηHz)−m/2(I −∆x,y +Hz)1/2Ψ0 ,

hence

‖(I −∆x,y +Hz)1/2Ψ̃0‖L2

≤ ‖(I − η∆x,y)−m/2(I + ηHz)−m/2(I −∆x,y +Hz)1/2Ψ0‖L2

≤ ‖(I −∆x,y +Hz)1/2Ψ0‖L2

where we used the fact that the operators (I − η∆x,y)−m/2 and (I + ηHz)−m/2 are
bounded on L2, with bounds equal to 1. Therefore, using (1.22), we obtain

‖Ψ̃0‖B1 ≤ ‖Ψ0‖B1 , (2.26)
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where we recall that the right-hand side is independent of ε.
Next, we get from (2.24) the two following identities: for all integer ` ≤ m,

(−∆x,y)`/2+1/2Ψ̃0 = (−∆x,y)`/2(I−η∆x,y)−`/2(I−η∆x,y)`/2−m/2(I+ηHz)−m/2(−∆x,y)1/2Ψ0 ,

and

H`/2+1/2
z Ψ̃0 = H`/2

z (I + ηHz)−`/2(I + ηHz)`/2−m/2(I − η∆x,y)−m/2H1/2
z Ψ0 .

Thus, from the bound

∀λ ∈ R+, λ`/2(1 + ηλ)−`/2 ≤ Cη−`/2 ,

we deduce that both operators (−∆x,y)`/2(I − η∆x,y)−`/2 and H
`/2
z (I + ηHz)−`/2

are bounded on L2, with bounds equal to Cη−`/2, and thus

∀` ≤ m, ‖Ψ̃0‖B`+1 ≤ Cη−`/2 ‖Ψ0‖B1 , (2.27)

where we recall the definition (1.37) of the Bm norms.
Finally, we obtain also from (2.24) that

(I−∆x,y+Hz)1/2(Ψ0−Ψ̃0) =
(
I − (I − η∆x,y)−m/2(I + ηHz)−m/2

)
(I−∆x,y+Hz)1/2Ψ0 .

Decompose v = (I −∆x,y + Hz)1/2Ψ0 on the Hilbert basis (χp)p∈N of eigenmodes
of Hz:

v(x, y, z) =
∑
p∈N

vp(x, y)χp(z)

and denote by v̂p(ξ), ξ ∈ R2, the Fourier transform of vp(x, y). By (1.22), we have

‖Ψ0 − Ψ̃0‖2B1 =
∑
p∈N

∫
R2

(
1− (1 + η|ξ|2)−m/2(1 + ηEp)−m/2

)2
|v̂p(ξ)|2 dξ .

Hence, using that ∑
p∈N

∫
R2

|v̂p(ξ)|2 dξ = ‖Ψ0‖2B1 < +∞ (2.28)

and that

∀ξ ∈ R2, ∀p ∈ N, lim
η→0

(
1− (1 + η|ξ|2)−m/2(1 + ηEp)−m/2

)
= 0,

we deduce from Lebesgue’s dominated convergence theorem and from the conver-
gence of the series in (2.28) that

lim
η→0
‖Ψ0 − Ψ̃0‖B1 = 0. (2.29)

Step 3: uniform a priori estimates for Ψ̃ε. Consider

Tη := sup{τ ∈ (0, T ] : ∀ε ∈ (0, 1], ‖Ψ̃ε‖C0([0,Tη ],B1) ≤ 2‖Ψε‖C0([0,T ],B1)}. (2.30)

Note that, from (2.26) and Lemma 2.6 (i), we know that Tη ∈ (0, T ] is well-defined.
Then, from Lemma 2.6 (ii), we deduce the following estimate:

∀ε ∈ (0, εm], ∀` ≤ m, ‖Ψ̃ε‖C0([0,Tη ],B`+1) ≤ C
(
‖Ψ̃ε‖C0([0,Tη ],B1)

)
‖Ψ̃0‖B`+1

≤ C
(
‖Ψε‖C0([0,T ],B1)

)
‖Ψ̃0‖B`+1

≤ C (‖Ψ0‖B1) ‖Ψ̃0‖B`+1 (2.31)

where we used (2.30) and (2.25).
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Step 4: estimate of the difference Ψε− Ψ̃ε. Using the notations defined in (2.9) and
(2.12), Ψε and Ψ̃ε satisfy (2.13),(2.14) with α = 1, u0 = Ψ0 and α = 0, u0 = Ψ̃0

respectively. The Duhamel formulation of these equations read respectively

Ψε(t) = e−it(Hε−∂
2
y)Ψ0 +

∫ t

0
e−i(t−s)(Hε−∂

2
y)F1(Ψε(s)) ds,

Ψ̃ε(t) = e−it(Hε−∂
2
y)Ψ̃0 +

∫ t

0
e−i(t−s)(Hε−∂

2
y)F0(Ψ̃ε(s)) ds.

Hence, for all t ∈ [0, Tη] and ε ∈ (0, εm],

‖Ψε(t)− Ψ̃ε(t)‖B1 ≤ ‖Ψ0 − Ψ̃0‖B1 +
∫ t

0
‖F1(Ψε(s))− F1(Ψ̃ε(s))‖B1ds

+
∫ t

0
‖F1(Ψ̃ε(s))− F0(Ψ̃ε(s))‖B1ds

≤ ‖Ψ0 − Ψ̃0‖B1 + C

∫ t

0
‖Ψε(s)− Ψ̃ε(s)‖B1ds+ C ε1/3η−3/2,

where we used (2.15), (2.25), (2.30), (2.23) and (2.31) with ` = 1, coupled to (2.27).
Here C denotes a generic constant depending only on T and ‖Ψ0‖B1 . Hence, by the
Gronwall lemma, we get, for all t ∈ [0, Tη],

‖Ψε(t)− Ψ̃ε(t)‖B1 ≤
(
‖Ψ0 − Ψ̃0‖B1 + C ε1/3η−3/2

)
eCT . (2.32)

Now, according to (2.29), we fix η such that

‖Ψ0 − Ψ̃0‖B1eCT ≤ min
(
δ

2
,
1
3
‖Ψε‖C0([0,T ],B1)

)
and, in a second step, we fix εδ ∈ (0, εm] such that

C ε
1/3
δ η−3/2eCT ≤ min

(
δ

2
,
1
3
‖Ψε‖C0([0,T ],B1)

)
.

From (2.32), we deduce that

∀t ∈ [0, Tη], ∀ε ∈ (0, εδ], ‖Ψε(t)− Ψ̃ε(t)‖B1 ≤ min
(
δ,

2
3
‖Ψε‖C0([0,T ],B1)

)
.

(2.33)
Therefore, we have

‖Ψ̃ε‖C0([0,Tη ],B1) ≤ ‖Ψε‖C0([0,Tη ],B1) + ‖Ψε − Ψ̃ε‖C0([0,Tη ],B1)

≤ 5
3
‖Ψε‖C0([0,T ],B1). (2.34)

We claim that Tη = T . Indeed, if Tη < T , then, applying again Lemma 2.6 at Tη
and using (2.34) enables to find τ > 0 such that, for all ε ∈ (0, 1),

‖Ψ̃ε‖C0([Tη ,Tη+τ ],B1) ≤ 2‖Ψε‖C0([0,T ],B1),

which, together with (2.34), contradicts the definition (2.30) of Tη. Finally, (2.33)
gives (2.5) and (2.31) with ` = m − 1 gives (2.6). The proof of Proposition 2.1 is
complete. �
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3. Second order averaging

In this section, we focus on the intermediate system (2.1), (2.2), (2.3) as ε goes
to zero. As we explained in subsection 1.5, it is interesting to consider the filtered
version of this equation. Let Ψ̃0 ∈ Bm be a given initial data, let Ψ̃ε be the
corresponding solution of (2.1), (2.2), (2.3) and set

Φ̃ε(t, ·) = exp
(
itHz/ε

2
)

Ψ̃ε(t, ·). (3.1)

This function satisfies the system

i∂tΦ̃ε = −2B
ε

(
eitHz/ε

2
ze−itHz/ε

2
)

(i∂xΦ̃ε)−∆x,yΦ̃ε + F0

(
Φ̃ε(t)

)
, (3.2)

Φ̃ε(t = 0) = Ψ̃0,

where F0 is defined by (1.43). The advantage of this intermediate system, compared
to (1.40) is that the nonlinearity F0(Φ̃ε) has no dependence in the fast variable t

ε2
.

We will analyze the filtered system (3.2) in the framework of second order aver-
aging of fast oscillating ODEs under the form (1.46) –see [27]–, that we adapt here
to our context of nonlinear PDEs. Recall that (Ep)p∈N, (χp)p∈N are the complete
families of eigenvalues and eigenfunctions of the operator Hz and denote by Πp the
spectral projector on χp:

∀Φ ∈ L2(R3), ΠpΦ = 〈Φχp〉χp.

Introduce now the following unbounded operator on L2(R3):

A0 = −∂2
x

∑
p≥0

αp Πp with αp = 1−
∑
q 6=p

〈2Bzχpχq〉2

Eq − Ep
. (3.3)

With this notation, the limit system (1.25), (1.26), (1.27) can be rewritten in a more
compact form as

i∂tΦ = A0Φ− ∂2
yΦ + F0(Φ), Ψ(t = 0) = Ψ0. (3.4)

We state the main results of this section in the following two propositions.

Proposition 3.1. Assume that Vc satisfies Assumptions 1.1 and 1.2. Then the
following properties hold true.
(i) The unbounded operator A0 defined by (3.3) on L2(R3) with the domain

D(A0) = {Φ ∈ L2(R3) : ∂2
x

∑
p≥0

αp ΠpΦ ∈ L2(R3)}

is selfadjoint. Moreover, the operator A0 satisfies

∀` ≥ 0, ∀u ∈ B2n0+4+` ‖A0u‖B` ≤ C‖u‖B2n0+4+` (3.5)

where n0 is as in Assumption 1.2.
(ii) Let Ψ0 ∈ B1. The limit system (3.4) admits a unique maximal solution Φ ∈
C0([0, Tmax), B1). If Tmax < +∞ then ‖Φ(t)‖B1 → +∞ as t→ Tmax.

Proposition 3.2 (Averaging of the intermediate system). Assume that Vc satisfies
Assumptions 1.1 and 1.2. Then there exists an integer m ≥ 2 such that the following
holds true. For Ψ̃0 ∈ Bm, we consider the solution Φ̃ε ∈ C0([0,+∞), Bm) of (3.2)
and the maximal solution Φ̃ ∈ C0([0, Tmax), B1) of the limit system with Ψ̃0 as
initial data:

Φ̃(t) = e−it(A0−∂2
y) Ψ̃0 − i

∫ t

0
e−i(t−s)(A0−∂2

y)F0(Φ̃(s))ds. (3.6)
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We assume that there exist T ∈ (0, Tmax), ε0 > 0 such that

M := sup
ε∈(0,ε0]

‖Φ̃ε‖C0([0,T ],Bm) < +∞. (3.7)

Then we have
‖Φ̃ε − Φ̃‖C0([0,T ],B1) ≤ εCM , (3.8)

where CM is independent of ε.

3.1. Well-posedness of the limit system. In this section, we prove Proposition
3.1.

Step 1. Basic properties of the operator A0. First, from Vc(z) ≥ a2z2, we deduce
that the pth eigenvalue of Hz is larger than the pth eigenvalue of the harmonic
oscillator − d2

dz2
+ (a2 +B2)z2:

∀p ∈ N, Ep ≥
√
a2 +B2(2p+ 1). (3.9)

From Assumption 1.2, we deduce that the coefficients αp in (3.3) satisfy

|αp| ≤ 1 + C(1 + p)n0
∑
q≥0

〈2Bzχpχq〉2 = 1 + C(1 + p)n0‖Bzχp‖2L2

≤ CEn0+1
p ,

where we used (3.9) and that ‖Bzχp‖L2 ≤ E
1/2
p . Now, consider a nonnegative

integer ` and u in B2n0+4+`. Let n0 be defined as in Assumption 1.2, and decompose
u over the χp family which is orthogonal in L2.

‖A0u‖2B` =
∑
p≥0

α2
p‖∂2

xΠpu‖2B`

≤ C
∑
p≥0

E2n0+2
p ‖Πpu‖2B`+2 ≤ C

∑
p≥0

‖Hn0+1
z Πpu‖2B`+2

≤ C
∑
p≥0

‖Πpu‖2B2n0+4+` = C‖u‖2
B2n0+4+`

where we used Lemma 2.3. This proves (3.5).
Furthermore, by passing to the limit as N → +∞ in the identity

∀Φ,Ψ ∈ D(A),
N∑
p=0

αp(∂2
xΠpΦ,ΠpΨ)L2 =

N∑
p=0

αp(ΠpΦ, ∂2
xΠpΨ)L2 ,

we obtain that the operator A0 is symmetric. Moreover, the equation A0Φ+ iΦ = f
admits a solution Φ ∈ D(A0) for all f ∈ L2(R3). Indeed, the projection of this
equation on χp reads

−αp∂2
xφp + iφp = fp

and this elliptic equation can obviously be solved for all fp ∈ L2(R2). Therefore,
by the standard criterion for selfadjointness [26], the operator A0 is selfadjoint. We
have proved the first part of Proposition 3.1.

Step 2. Well-posedness and stability of the limit system. The operator A0 being
selfadjoint, the Stone theorem can be applied and the operator −iA0 generates a
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unitary group of continuous operators e−iA0t on L2 and also on B1. The Duhamel
formulation of (3.4) reads

Φ(t) = e−it(A0−∂2
y)Ψ0 − i

∫ t

0
e−i(t−s)(A0−∂2

y)F0(Φ(s))ds (3.10)

(recall that A0 and ∂2
y commute together). Since, by (2.15), the application F0

is locally Lipschitz continuous on B1, it is easy to prove by a standard fixed point
technique that (3.10) admits a unique maximal solution Φ ∈ C0([0, Tmax), B1). The
details are left to the reader. Note that, if Tmax < +∞, then ‖Φ(t)‖B1 → +∞ as
t→ Tmax. Item (ii) of Proposition 3.1 is proved. �

Remark 3.3. In fact, this strategy of proof by a fixed point mapping leads to a
stability result. For all η > 0 and for all T ∈ (0, Tmax), there exists δη,T > 0 such
that the following holds true. For all Ψ̃0 satisfying

‖Ψ0 − Ψ̃0‖B1 ≤ δη,T ,

the equation (3.6)

Φ̃(t) = e−it(A0−∂2
y)Ψ̃0 − i

∫ t

0
e−i(t−s)(A0−∂2

y)F0(Φ̃(s))ds

admits a unique solution Φ̃ ∈ C0([0, T ], B1) and we have

sup
t∈[0,T ]

‖Φ(t)− Φ̃(t)‖B1 ≤ η. (3.11)

3.2. Proof of Proposition 3.2. This subsection is devoted to the proof of Propo-
sition 3.2, which relies on a reformulation of the Duhamel formula for (3.2).

Step 1: reformulation of the Duhamel formula. Introduce the following family of
unbounded self-adjoint operators on L2(R3)

∀τ ∈ R, a(τ) = −2BeiτHzze−iτHz i∂x (3.12)

with domain B2. Note that, from (1.17) and Lemma 2.3, we deduce that, for all
` ∈ N,

∀u ∈ B2, ∀τ ∈ R, ‖a(τ)u‖L2 ≤ C‖u‖B2 . (3.13)

The Duhamel representation of (3.2) reads

Φ̃ε(t) = Ψ̃0 −
i

ε

∫ t

0
a
( s
ε2

)
Φ̃ε(s)ds− i

∫ t

0

(
−∆x,yΦ̃ε(s) + F0

(
Φ̃ε(s)

))
ds. (3.14)

Introduce the primitive of a:

∀u ∈ B2, ∀τ ∈ R, A(τ)u =
∫ τ

0
a(s)u ds, (3.15)

which is well-defined as a Riemann integral, thanks to (3.13), and is such that

∀u ∈ B2, ∀τ ∈ R, ‖A(τ)u‖L2 ≤ Cτ‖u‖B2 . (3.16)

Now, we notice that if Φ̃ε ∈ C0([0, T ], B4), then by (3.2) we have that ∂tΦ̃ε ∈
C0([0, T ], B2). Hence one can integrate by parts in the first integral of (3.14) and, if
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m ≥ 4, the following expression holds true for all t ∈ [0, T ], in the sense of functions
in C0([0, T ], L2):

− i
ε

∫ t

0
a
( s
ε2

)
Φ̃ε(s)ds = iε

∫ t

0
A
( s
ε2

)
∂tΦ̃ε(s)ds− iεA

(
t

ε2

)
Φ̃ε(t)

=
∫ t

0
A
( s
ε2

)
a
( s
ε2

)
Φ̃ε(s)ds− iεA

(
t

ε2

)
Φ̃ε(t)

+ε
∫ t

0
A
( s
ε2

)(
−∆x,yΦ̃ε(s) + F0

(
Φ̃ε(s)

))
ds,

where we used (3.2) to evaluate i∂tΦ̃ε. Finally, the Duhamel formula (3.14) becomes

Φ̃ε(t) = Ψ̃0 +
∫ t

0
A
( s
ε2

)
a
( s
ε2

)
Φ̃ε(s)ds− iεA

(
t

ε2

)
Φ̃ε(t)

+ε
∫ t

0
A
( s
ε2

)(
−∆x,yΦ̃ε(s) + F0

(
Φ̃ε(s)

))
ds

−i
∫ t

0

(
−∆x,yΦ̃ε(s) + F0

(
Φ̃ε(s)

))
ds. (3.17)

Step 2: approximation of the Duhamel formula. Denote

Φ̂ε(t) = Φ̃ε(t) + iεA

(
t

ε2

)
Φ̃ε(t)

and rewrite (3.17) as follows:

Φ̂ε(t) = Ψ̃0 +
∫ t

0

(
A
( s
ε2

)
a
( s
ε2

)
+ i∂2

x

)
Φ̃ε(s)ds− i

∫ t

0

(
−∂2

yΦ̃ε(s) + F0

(
Φ̃ε(s)

))
ds.

+ε
∫ t

0
A
( s
ε2

)(
−∆x,yΦ̃ε(s) + F0

(
Φ̃ε(s)

))
ds. (3.18)

In this step, we prove that

sup
t∈[0,T ]

‖Φ̃ε(t)− Φ̂ε(t)‖B1 ≤ εCM (3.19)

and that

Φ̂ε(t) = Ψ̃0 − i
∫ t

0

(
A0Φ̂ε(s)− ∂2

yΦ̂ε(s) + F0

(
Φ̂ε(s)

)
+ εf ε(s)

)
ds, (3.20)

with
sup
t∈[0,T ]

‖f ε‖B1 ≤ CM . (3.21)

In order to prove this claim, we state two technical lemmas which are proved in the
Appendix D so that the proof would be more readable.

Lemma 3.4. Let Vc satisfy Assumptions 1.1 and 1.2. Then, for all integer `, the
operator A(τ) defined by (3.15) satisfies

∀u ∈ C0([0, T ], B2n0+`+8), sup
t∈[0,T ]

∥∥∥∥A( t

ε2

)
u(t)

∥∥∥∥
B`
≤ C‖u‖C0([0,T ],B2n0+`+8),

(3.22)
where n0 is as in Assumption 1.2 and C is independent of ε.
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Lemma 3.5. Let Vc satisfy Assumptions 1.1 and 1.2. Let T > 0 and m = 4n0 +17.
Let u ∈ C0([0, T ], Bm) such that ∂tu ∈ C0([0, T ], Bm−2). Then we have, for all
ε ∈ (0, 1],

sup
t∈[0,T ]

∥∥∥∥∫ t

0

(
A
( s
ε2

)
a
( s
ε2

)
+ i∂2

x

)
u(s)ds+ i

∫ t

0
A0u(s)ds

∥∥∥∥
B1

≤ Cε2‖u‖ (3.23)

where A0, a and A are respectively defined by (3.3), (3.12) and (3.15) and where
‖u‖ denotes shortly ‖u‖C0([0,T ],Bm) + ‖∂tu‖C0([0,T ],Bm−2).

In order to apply these lemmas, we need some bounds for Φ̃ε and ∂tΦ̃ε. Let us
fix m = 4n0 + 17, where n0 is as in Assumption 1.2 and assume that we have the
uniform estimate (3.7). By (2.8), we deduce that

‖∆x,yΦ̃ε‖C0([0,T ],Bm−2) +
∥∥∥eitHz/ε2ze−itHz/ε2∂xΦ̃ε

∥∥∥
C0([0,T ],Bm−2)

≤ CM . (3.24)

Moreover, from (2.16), we deduce that

‖F0(Φ̃ε)‖C0([0,T ],Bm) ≤ CM . (3.25)

Hence, from (3.2), (3.24) and (3.25), we get

‖∂tΦ̃ε‖C0([0,T ],Bm−2) ≤
CM
ε
. (3.26)

Therefore, applying Lemmas 3.4 and 3.5 and using (3.7), (3.24), (3.25) and (3.26)
yield

sup
t∈[0,T ]

∥∥∥∥A( t

ε2

)
Φ̃ε(t)

∥∥∥∥
B2n0+5

≤ CM , (3.27)

ε sup
t∈[0,T ]

∥∥∥∥A( t

ε2

)(
−∆x,yΦ̃ε(t) + F0

(
Φ̃ε(t)

))∥∥∥∥
B1

≤ εCM (3.28)

and

sup
t∈[0,T ]

∥∥∥∥∫ t

0

(
A
( s
ε2

)
a
( s
ε2

)
+ i∂2

x

)
Φ̃ε(s)ds+ i

∫ t

0
A0Φ̃ε(s)ds

∥∥∥∥
B1

≤ εCM , (3.29)

where we used thatm ≥ 4n0+17, thus in particularm ≥ 4n0+13 andm ≥ 2n0+11.
Hence, from (3.27), we deduce (3.19) and

‖∂2
y(Φ̃ε − Φ̂ε)‖C0([0,T ],B1) +

∥∥∥F0

(
Φ̃ε
)
− F0

(
Φ̂ε
)∥∥∥

C0([0,T ],B1)
≤ εCM , (3.30)

where we also used the estimate (2.15). Moreover, from (3.5) and (3.27), we get

‖A0(Φ̃ε − Φ̂ε)‖C0([0,T ],B1) ≤ εCM . (3.31)

Finally, inserting (3.28), (3.29), (3.30), (3.31) in (3.18) yields (3.20) with the esti-
mate (3.21).

Step 3: a stability result for the limit system. First notice that (3.20) implies that
Φ̂ε satisfies in the strong sense the equation

i∂tΦ̂ε = A0Φ̂ε − ∂2
yΦ̂ε + F0(Φ̂ε) + εf ε, Φ(t = 0) = Ψ̃0.

which has the following mild formulation:

Φ̂ε(t) = e−it(A0−∂2
y)Ψ̃0 − i

∫ t

0
e−i(t−s)(A0−∂2

y)
(
F0(Φ̂ε(s)) + εf ε

)
ds. (3.32)
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Apply now Proposition 3.1 (ii) with Ψ̃0 as initial data: there exists a maximal
solution Φ̃ ∈ C0([0, Tmax), B1) to the equation (3.6). Assume that T is such that
0 < T < Tmax. Substracting (3.6) to (3.32) leads, for all t ≤ T , to

‖Φ̂ε(t)− Φ̃(t)‖B1 ≤
∫ t

0

∥∥∥F0(Φ̂ε(s))− F0(Φ̃(s))
∥∥∥
B1
ds+ ε‖f ε‖C0([0,T ],B1)

≤ CM
(
ε+

∫ t

0

∥∥∥Φ̂ε(s)− Φ̃(s)
∥∥∥
B1
ds

)
,

where we used (2.15), (3.21) and ‖Φ̂ε‖C0([0,T ],B1) ≤ CM . Therefore, the Gronwall
lemma gives the estimate (3.8) and the proof of Proposition 3.2 is complete. �

4. Proof of the main theorem

This section is devoted to the proof of the main Theorem 1.3. Remark that the
statement (i) is already proved in Proposition 3.1. Let us prove the statement (ii)
of Theorem 1.3.

Let Ψ0 ∈ B1. Denote by Ψε ∈ C0([0,+∞), B1) the solution of (1.1), (1.2), (1.3)
and let T0 ∈ (0,+∞] be the maximal time given by Proposition 2.1 (i). We also
introduce the maximal solution Φ ∈ C0([0, Tmax), B1) of the limit system (3.4),
given by Proposition 3.1. Pick T such that

0 < T < min(T0, Tmax)

and let η > 0.
Since T < Tmax, according to Remark 3.3, one can define δη/3,T > 0 such that

the following holds true. For all Ψ̃0 satisfying

‖Ψ0 − Ψ̃0‖B1 ≤ δη/3,T ,

the equation (3.6) admits a unique solution Ψ̃ ∈ C0([0, T ], B1) and we have (3.11):

sup
t∈[0,T ]

‖Φ(t)− Φ̃(t)‖B1 ≤ η/3.

Next, we fix m ≥ 2 according to Proposition 3.2 and δ > 0 by

δ = min
(η

3
, δη/3,T

)
. (4.1)

Since T < T0, Proposition 2.1 (ii) enables to choose Ψ̃0 ∈ Bm and εδ such that
the corresponding solution Ψ̃ε of the intermediate system (2.1), (2.2), (2.3) satisfies
(2.5) and (2.6) for all ε ≤ εδ:

‖Ψε − Ψ̃ε‖C0([0,T ],B1) ≤ δ ≤
η

3
(4.2)

and Ψ̃ε is bounded in C0([0, T ], Bm) uniformly with respect to ε.
Now, we remark that by (4.2) this initial data Ψ̃0 satisfies

‖Ψ0 − Ψ̃0‖B1 ≤ δ ≤ δη/3,T .

Hence, Remark 3.3 gives that the solution Φ̃ of the equation (3.6) satisfies

‖Φ− Φ̃‖C0([0,T ],B1) ≤
η

3
,

or, equivalently,
‖e−itHz/ε2Φ− e−itHz/ε2Φ̃‖C0([0,T ],B1) ≤

η

3
, (4.3)
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Moreover, the uniform bound of Ψ̃ε in C0([0, T ], Bm) enables to apply Proposition
3.2, which gives that the function Ψ̃ε satisfies

‖Ψ̃ε − e−itHz/ε2Φ̃‖C0([0,T ],B1) ≤ δ ≤
η

3
, (4.4)

for ε ≤ εδ, where Φ̃ solves (3.6). Finally, (4.2), (4.3) and (4.4) yield the existence
of ε0 such that, for all ε ∈ (0, ε0] we have

‖Ψε − e−itHz/ε2Φ‖C0([0,T ],B1) ≤ η. (4.5)

To conclude, it remains to remark that T0 ≥ Tmax. Indeed, if T0 < Tmax, then we
have, by Proposition 2.1 (i),

lim sup
ε→0

‖Ψε‖C0([0,T0],B1) = +∞,

which implies by (4.5) that

lim
T→T0

‖Φ(T )‖B1 = +∞.

This contradicts T0 < Tmax. The proof of Theorem 1.3 is complete. �

Appendix A. Proof of Lemma 2.4

First, by integrating by parts and applying Cauchy-Schwarz, we obtain

‖Bz∂xu‖2L2 =
∫

R3

B2z2 |∂xu|2dxdydz =
∫

R3

(B2z2u)(−∂2
xu)dxdydz ≤ ‖u‖2B2 .

Hence, the first properties stated in the Lemma are obvious from the definition
(2.9), and we shall only detail the proof of the equivalence of norms.

Step 1: the case m = 1. From the definition (2.9) and the assumption (1.17) on Vc ,
we deduce that

‖H1/2
ε u‖2L2 = ((−∂2

z + Vc)u, u)L2 + ‖(ε∂x + iBz)u‖2L2

= ((−∂2
z + Vc)u, u)L2 +B2‖zu‖2L2 + ε2‖∂xu‖2L2 − 2εBIm (zu, ∂xu)L2

≥ 1
2

((−∂2
z + Vc)u, u)L2 + (

a2

2
+B2)‖zu‖2L2 + ε2‖∂xu‖2L2 − 2εB‖zu‖L2‖∂xu‖2L2

≥ 1
2

((−∂2
z + Vc)u, u)L2 +

a2

4
‖zu‖2L2 +

a2

a2 + 4B2
ε2‖∂xu‖2L2

≥ C‖H1/2
z u‖2L2 + Cε2‖∂xu‖2L2 .

Conversely, from (1.22) and (2.9), we estimate directly

(Hεu, u)L2 ≤ C ′‖H1/2
z u‖2L2 + C ′ε2‖∂xu‖2L2 .

For all ε ∈ (0, 1], this yields the equivalence of norms (2.10).
For m ≥ 2, we will proceed by induction. For the clarity of the proof, let us

introduce two notations. For m ∈ N, we denote by (Pm) the property

(Pm): there exists εm > 0 such that, for all ε ∈ (0, εm] and for all u ∈ Bm, we have
1
2
‖u‖2Bm ≤ ‖u‖2L2(R3) + ‖∆m/2

x,y u‖2L2(R3) + ‖Hm/2
ε u‖2L2(R3) ≤ 2‖u‖2Bm ,

and by (Qm) the property

(Qm): there exists Cm > 0 such that, for all u ∈ Bm and ε ∈ (0, 1],

the operator Am = 1
ε (Hm

ε −Hm
z ) satisfies |(Amu, u)L2 | ≤ Cm‖u‖2Bm .
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Note that the lemma will proved if we show that (Pm) holds true for all m ≥ 0.
Note also that, up to a possible modification of the sequence (εm)m∈N, this sequence
can be chosen nonincreasing.

Step 2: (Qm) implies (Pm). Let m ≥ 0 be fixed. From (Qm), we deduce that

‖Hm/2
ε u‖2L2 = (Hm

ε u, u)L2 = (Hm
z u, u)L2 + ε(Amu, u)L2

= ‖Hm/2
z u‖2L2 + ε(Amu, u)L2 ,

thus

‖Hm/2
z u‖2L2 − εCm‖u‖2Bm ≤ ‖Hm/2

ε u‖2L2 ≤ ‖Hm/2
z u‖2L2 + εCm‖u‖2Bm . (A.1)

Setting

εm =
1

2Cm
,

we deduce directly from (1.37) and (A.1) that, for ε ≤ εm,
1
2
‖u‖2Bm ≤ ‖u‖2L2(R3) + ‖∆m/2

x,y u‖2L2(R3) + ‖Hm/2
ε u‖2L2(R3) ≤ 2‖u‖2Bm .

We have proved (Pm).

Step 3: proof of (Qm) for m = 0 and 1. For m = 0, choose A0 = 0 and (Q0) is
obvious. Let us prove (Q1). From (2.9), we have

Hε = Hz + εA1, with A1 = −2iBz∂x − ε∂2
x. (A.2)

For all u ∈ B1, we have

|(A1u, u)L2 | = | − 2iB(∂xu, zu)L2 + ε‖∂xu‖2L2 | ≤ C(‖zu‖2L2 + ‖∂xu‖2L2) ≤ C1‖u‖2B1 ,

where we applied Cauchy-Schwarz and Lemma 2.3. We have proved (Q1).

Step 4: proof of (Qm) for m ≥ 2. We shall now proceed by induction. Let m ≥ 2
and assume that (Qm−2) and (Qm−1) hold true. Let us prove (Qm). We compute

Hm
ε = (Hz + εA1)Hm−2

ε (Hz + εA1)
= HzH

m−2
ε Hz + εA1H

m−1
ε + εHm−1

ε A1

= Hm
z + εHzAm−2Hz + εA1H

m−1
ε + εHm−1

ε A1

where we have applied (Qm−2). Hence, denoting

Am = HzAm−2Hz +A1H
m−1
ε +Hm−1

ε A1 , (A.3)

we obtain
Hm
ε = Hm

z + εAm

and, for all u ∈ Bm, we get from the definition (A.3) that

|(Amu, u)L2 | ≤ |(HzAm−2Hzu, u)L2 |+ 2|(Hm−1
ε u,A1u)|L2 ,

where we used that Hm−1
ε and the operator A1 defined by (A.2) are selfadjoint. It

remains to estimate the two terms in the right-hand side of this inequality. The
first one can be estimated as follows:

|(HzAm−2Hzu, u)L2 | = |(Am−2Hzu,Hzu)L2 | ≤ Cm−2‖Hzu‖2Bm−2 ≤ Cm−2‖u‖2Bm ,
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where we used (Qm−2) and (2.8). The second one can be estimated as follows:

|(Hm−1
ε u,A1u)|L2 =

∣∣(Hm−1
ε u, (i∂x)(−2Bzu+ i∂xu)

)∣∣
L2

=
∣∣∣∣(H m−1

2
ε (i∂xu), H

m−1
2

ε (−2Bzu+ i∂xu)
)∣∣∣∣

L2

≤
∥∥∥∥H m−1

2
ε (i∂xu)

∥∥∥∥
L2

∥∥∥∥H m−1
2

ε (−2Bzu+ i∂xu)
∥∥∥∥
L2

≤ C‖∂xu‖Bm−1‖zu‖Bm−1 + C‖∂xu‖2Bm−1

≤ C‖u‖2Bm ,

where we used that Hε commutes with ∂x, the Cauchy-Schwarz inequality, the
property (Pm−1) and, at the last step, (2.8). Therefore, we have proved that

|(Amu, u)L2 | ≤ Cm‖u‖2Bm ,

which proves (Qm). The proof of the lemma is complete.

Appendix B. Proof of Lemma 2.5

For readability, we introduce in this appendix the following notation:

∀(x, y, z) ∈ R3, ∀α ∈ {0, 1}, ∀ε ∈ (0, 1), rεα(x, y, z) =
√
x2 + y2 + αε2z2.

With this notation, for all u ∈ B1, and α ∈ {0, 1}, the nonlinearity Fα(u) defined
in (2.12) reads

Fα(u) =
(

1
4πrεα

∗ (|u|2)
)
u.

In order to prove the estimates stated in Lemma 2.5, we prove the following
technical lemma on the Poisson nonlinearity.

Lemma B.1. The following estimates hold.
(i) There exists a positive constant C that does not depend on ε ∈ (0, 1] or α ∈ {0, 1}
such that

∀u, v ∈ H1(R3),
∥∥∥∥ 1
rεα
∗ (uv)

∥∥∥∥
L∞
≤ C‖u‖H1‖v‖H1 . (B.1)

(ii) There exists a positive constant C that does not depend on ε ∈ (0, 1] or α ∈ {0, 1}
such that, if D denotes a derivative with respect to x, y or z,

∀u, v ∈ H1(R3), ∀v ∈ H1(R3),
∥∥∥∥D( 1

rεα
∗ (uv)

)∥∥∥∥
L3
x,yL

∞
z

≤ C‖u‖H1‖v‖H1 (B.2)

(iii) For any integer k, let β = (βx, βy, βz) ∈ N3 be a multiinteger of length |β| =
βx + βy + βz = k and let Dβ = ∂βxx ∂

βy
y ∂βzz be the associated derivative. Then there

exists a positive constant Ck depending only on k such that

∀u ∈ Hk,

∥∥∥∥Dβ

(
1
rεα
∗ |u|2

)∥∥∥∥
L3
x,yL

∞
z

≤ Ck‖u‖H1‖u‖Hk . (B.3)

Proof. Noting that, for all (x, y) ∈ R2,∥∥∥∥( 1
rεα
∗ (uv)

)
(x, y, ·)

∥∥∥∥
L∞(R)

≤
∫

R2

1√
(x− x′)2 + (y − y′)2

∥∥uv(x′, y′, ·)
∥∥
L1(R)

dx′dy′,

(B.4)



28 F. DELEBECQUE-FENDT AND F. MÉHATS

we only need estimates for the convolution with 1√
x2+y2

in R2. Here, we refer the

reader to Lemma B.1 of [7] where it was shown that for any f ∈ Lp(R2) ∩ L1(R2)
with 2 < p ≤ ∞, the following bound holds:∥∥∥∥∥ 1√

x2 + y2
∗ f

∥∥∥∥∥
L∞(R2)

≤ Cp‖f‖θLp(R2)‖f‖
1−θ
L1(R2)

(B.5)

where θ = p/(2p − 2). Moreover, from Cauchy-Schwarz and Sobolev embeddings,
we deduce that for all p ∈ [1,+∞),∥∥∥‖uv(x, y, ·)‖L1(R)

∥∥∥
Lp(R2)

≤
∥∥∥‖u(x, y, ·)‖L2(R) ‖v(x, y, ·)‖L2(R)

∥∥∥
Lp(R2)

≤ ‖u‖
L2p
x,yL2

z
‖v‖

L2p
x,yL2

z
≤ ‖u‖H1(R3)‖v‖H1(R3).

Combined with (B.4) and (B.5), this proves Item (i).
In order to prove Item (ii), consider a first order derivative D with respect to x, y

or z and let u, v ∈ H1(R3). Usual properties of the convolution give

D

(
1
rεα
∗ (uv)

)
=

1
rεα
∗D (uv) =

1
rεα
∗ (D(u)v + uD(v)) .

Using (B.4) combined with the generalized Young formula gives∥∥∥∥ 1
rεα
∗ (D(u)v + uD(v))

∥∥∥∥
L3
x,yL

∞
z

≤

∥∥∥∥∥ 1√
x2 + y2

∗ ‖D(u)v + uD(v)‖L1
z

∥∥∥∥∥
L3
x,y

≤ C
∥∥∥‖D(u)v + uD(v)‖L1

z

∥∥∥
L

6/5
x,y

(B.6)

since the function x 7→ 1√
x2+y2

belongs to L2
w(R2). We end the proof of Item (ii)

noting that, thanks to Sobolev embeddings,∥∥∥‖D(u)v + uD(v)‖L1
z

∥∥∥
L

6/5
x,y

≤ C‖D(u)‖L2‖v‖L3
x,yL

2
z

+ C‖D(v)‖L2‖u‖L3
x,yL

2
z

≤ C‖u‖H1‖v‖H1 .

In order to prove Item (iii), we follow the same lines with derivatives of higher
orders. Consider the derivative Dβ where β = (βx, βy, βz) ∈ N3 is a multiinteger of
length |β| = βx + βy + βz = k. Usual properties of the convolution gives∥∥∥∥Dβ

(
1
rεα
∗
(
|u|2
))∥∥∥∥

L3
x,yL

∞
z

=
∥∥∥∥ 1
rεα
∗Dβ

(
|u|2
)∥∥∥∥
L3
x,yL

∞
z

.

Again, using (B.4) combined to the generalized Young’s formula lead to:∥∥∥∥ 1
rεα
∗Dβ

(
|u|2
)∥∥∥∥
L3
x,yL

∞
z

≤

∥∥∥∥∥ 1√
x2 + y2

∗
∥∥∥Dβ

(
|u|2
)∥∥∥
L1
z(R)

∥∥∥∥∥
L3
x,y

≤ C
∥∥∥Dβ

(
|u|2
)∥∥∥
L

6/5
x,yL1

z

.

(B.7)
We now write

Dβ(uu) =
∑
β′≤β

Cβ′D
β′(u)Dβ−β′(u),

where the sum is over the set of multiintegers β′ = (β′x, β
′
y, β
′
z) such that β′x ≤ βx,

β′y ≤ βy and β′z ≤ βz. Thus, combining (B.7) with Sobolev embeddings gives as
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above∥∥∥∥Dβ

(
1
rεα
∗
(
|u|2
))∥∥∥∥

L3
x,yL

∞
z

≤ C
∑
|β′|=k

‖Dβ′(u)‖L2‖u‖L3
x,yL

2
z

+C
∑

|β′|=`, 0≤`<k

‖Dβ′u‖L3
x,yL

2
z
‖Dβ−β′(u)‖L2

≤ C‖u‖Hk‖u‖H1 + C
k−1∑
`=0

‖u‖H`+1‖u‖Hk−` .

We conclude noting that, by interpolation, for all ` ≤ k − 1,

‖u‖H`+1‖u‖Hk−` ≤ ‖u‖Hk‖u‖H1 . (B.8)

�

Proof of Lemma 2.5. We first prove (2.15). In that view, let us fix u and v in B1,
ε ∈ (0, 1) and α ∈ {0, 1}, and note that

Fα(u)−Fα(v) =
(

1
4πrεα

∗
[
(|u|+ |v|)(|u| − |v|)

])
u+
(

1
4πrεα

∗
(
|v|2
))

(u− v) (B.9)

Hence (2.15) is a straightforward consequence of the following claim. There exists
a positive constant C such that for all u1, u2 and u3 ∈ B1∥∥∥∥( 1

rεα
∗ (u1u2)

)
u3

∥∥∥∥
B1

≤ C‖u1‖B1‖u2‖B1‖u3‖B1 . (B.10)

Proof of the claim (B.10). According to Lemma 2.3 we have∥∥∥∥( 1
rεα
∗ (u1u2)

)
u3

∥∥∥∥
B1

≤ C
∥∥∥∥( 1

rεα
∗ (u1u2)

)
u3

∥∥∥∥
H1

+C
∥∥∥∥√Vc( 1

rεα
∗ (u1u2)

)
u3

∥∥∥∥
L2

(B.11)

First, applying (B.1) and then Lemma 2.3,∥∥∥∥( 1
rεα
∗ (u1u2)

)
u3

∥∥∥∥
L2

≤
∥∥∥∥ 1
rεα
∗ (u1u2)

∥∥∥∥
L∞
‖u3‖L2 ≤ C‖u1‖B1‖u2‖B1‖u3‖B1 .

(B.12)
Similarly, we have∥∥∥∥√Vc( 1

rεα
∗ (u1u2)

)
u3

∥∥∥∥
L2

≤
∥∥∥∥ 1
rεα
∗ (u1u2)

∥∥∥∥
L∞
‖
√
Vcu3‖L2

≤ C‖u1‖B1‖u2‖B1‖u3‖B1 (B.13)

Moreover, if D denotes any differential operator of order 1,

D

((
1
rεα
∗ (u1u2)

)
u3

)
= D

(
1
rεα
∗ (u1u2)

)
u3 +

(
1
rεα
∗ (u1u2)

)
D(u3). (B.14)

Applying the Hölder inequality leads to∥∥∥∥D( 1
rεα
∗ (u1u2)

)
u3

∥∥∥∥
L2

≤
∥∥∥∥D( 1

rεα
∗ (u1u2)

)∥∥∥∥
L3
x,yL

∞
z

‖u3‖L6
x,yL

2
z

≤ C‖u1‖B1‖u2‖B1‖u3‖B1 , (B.15)

where we used (B.2). Finally, using (B.1),∥∥∥∥( 1
rεα
∗ (u1u2)

)
D(u3)

∥∥∥∥
L2

≤
∥∥∥∥ 1
rεα
∗ (u1u2)

∥∥∥∥
L∞
‖D(u3)‖L2

≤ C‖u1‖B1‖u2‖B1‖u3‖B1 . (B.16)
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We deduce the claim (B.10) by combining (B.11) with (B.12), (B.13), (B.14), (B.15)
and (B.16).

In order to prove (2.16), consider a positive integer m and fix u ∈ Bm. According
to Lemma 2.3, we only need to estimate ‖Fα(u)‖Hm and ‖V m/2

c Fα(u)‖L2 . In that
view, we readily have∥∥∥(1 + V

m/2
c )Fα(u)

∥∥∥
L2(R3)

≤
∥∥∥∥ 1

4πrεα
∗ |u|2

∥∥∥∥
L∞(R3)

‖(1 + V m/2
c )u‖L2(R3)

≤ C‖u‖2B1(R3)‖u‖Bm (B.17)

where we applied (B.1) and Lemma 2.3.
Now, let Dβ denote any derivative of length m and write

Dβ(Fα(u)) =
∑
β′≤β

Cβ′D
β′
(

1
4πrεα

∗ |u|2
)
Dβ−β′(u).

Hence,∥∥∥DβFα(u)
∥∥∥
L2(R3)

≤ C
∑
|β′|=m

∥∥∥∥ 1
4πrεα

∗ |u|2
∥∥∥∥
L∞
‖Dβ′u‖L2

+C
∑

1≤|β′|≤m

∥∥∥∥Dβ′
(

1
4πrεα

∗ |u|2
)∥∥∥∥

L3
x,yL

∞
z

‖Dβ−β′(u)‖L6
x,yL

2
z
(B.18)

≤ C‖u‖2H1‖u‖Hm + C

m∑
`=1

‖u‖H1‖u‖H`‖u‖Hm−`+1

where we applied (B.1), (B.3) and Sobolev embeddings. Using the interpolation
estimate (B.8) gives

‖DmFα(u)‖L2(R3) ≤ C‖u‖
2
H1‖u‖Hm ≤ C‖u‖2B1‖u‖Bm . (B.19)

We conclude the proof of (2.16) combining (B.17) and (B.19). This ends the proof
of Lemma 2.5. �

Appendix C. Proof of Lemma 2.7

In this section, we set for simplicity X = (x, y) ∈ R2. In order to prove estimate
(2.23), we first study the difference between both convolution kernels.
First Step: Difference between the convolution kernels
Let u, v be two functions of B2. Denote

δ(u, v)(X, z) =
∫

R2

∫
R

(
1√

|X −X ′|2 + ε2(z − z′)2
− 1
|X −X ′|

)
u(X ′, z′)v(X ′, z′)dz′dX ′.

(C.1)
We split the integral as follows:

δ(u, v)(X, z) = δ+(u, v)(X, z) + δ−(u, v)(X, z) =
∫
X′∈Ω+

∫
z′∈R

+
∫
X′∈Ω−

∫
z′∈R

,

where

Ω+ = {X ′ ∈ R2, |X −X ′| > ε}, Ω− = {X ′ ∈ R2, |X −X ′| < ε}.
For all η, µ ∈ R, and X ′ 6= X, we have

1√
|X −X ′|2 + ε2η2

− 1√
|X −X ′|2 + ε2µ2

=
∫ εη

εµ

−ξ
(|X −X ′|2 + ξ2)3/2

dξ (C.2)
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and
1√

|X −X ′|2 + ε2η2
− 1√

|X −X ′|2 + ε2µ2
≤ 2
|X −X ′|

, (C.3)

Besides, a simple study gives

∀X ′ 6= X, ∀ξ ∈ R,
|ξ|

(|X −X ′|2 + ξ2)3/2
≤ 2

3
√

3
1

|X −X ′|2
. (C.4)

Equation (C.2), combined with (C.3) and (C.4) allows us to claim that for all
θ ∈ (0, 1),∣∣∣∣∣ 1√

|X −X ′|2 + ε2η2
− 1√

|X −X ′|2 + ε2µ2

∣∣∣∣∣ ≤ Cεθ|η − µ|θ 1
|X −X ′|1+θ

. (C.5)

Now, applying (C.5) with η = z − z′, µ = z′ and θ = 3/8 leads to∣∣∣∣∣
∫

Ω+

∫
R

(
1√

|X −X ′|2 + ε2(z − z′)2
− 1√

|X −X ′|2 + ε2z′2

)
u(X ′, z′)v(X ′, z′)dz′dX ′

∣∣∣∣∣
≤ Cε3/8|z|3/8

∫
Ω+

1
|X −X ′|11/8

‖u(X ′, ·)v(X ′, ·)‖L1
R
dX ′

≤ Cε3/8|z|3/8 1
ε1/24

‖u‖L6
XL

2
z
‖v‖L6

XL
2
z
≤ Cε1/3|z|3/8‖u‖B1‖v‖B1 .

where we used the Hölder inequality and Sobolev embeddings. Similarly, applying
(C.5) with η = z′ , µ = 0 and θ = 3/4 leads to∣∣∣∣∣
∫

Ω+

∫
R

(
1√

|X −X ′|2 + ε2z′2
− 1
|X −X ′|

)
|u(X ′, z′)||v(X ′, z′)|dz′dX ′

∣∣∣∣∣
≤ Cε3/4

∫
Ω+

1
|X −X ′|7/4

‖|z′|3/4u(X ′, ·)v(X ′, ·)‖L1
R
dX ′

≤ Cε3/4 1
ε5/12

‖z3/8u‖L6
XL

2
z
‖v‖L6

XL
2
z

≤ Cε1/3‖u‖B2‖v‖B1 .

We have proved that

|δ+(u, v)(X, z)| ≤ Cε1/3(1 + |z|3/8)‖u‖B2‖v‖B1 (C.6)

Consider now δ−. Using (C.2) again leads to

|δ−(u, v)(X, z)| ≤
∫

Ω−

∫
R

∫
R

|ξ|
(|X −X ′|2 + ξ2)3/2

|u(X ′, z′)||v(X ′, z′)|dξdz′dX ′.

(C.7)
Moreover, a simple computation gives∫

R

|ξ|
(|X −X ′|2 + ξ2)3/2

dξ =
2

|X −X ′|
.

Hence, (C.7) gives

|δ−(u, v)(X, z)| ≤ C

∫
Ω−

∫
R

1
|X −X ′|

|u(X ′, z′)||v(X ′, z′)|dz′dX ′

≤ Cε1/3‖u‖L6
XL

2
z
‖v‖L6

XL
2
z

≤ Cε1/3‖u‖B1‖v‖B1 . (C.8)
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Combining (C.6) and (C.8) allows to conclude that

|δ(u, v)(X, z)| ≤ Cε1/3(1 +
√
Vc(z))‖u‖B2‖v‖B1 , (C.9)

where we have used z3/8 ≤ C(1 +
√
Vc(z)), deduced from (1.17).

Step 2: Difference between the nonlinearities. In order to prove Lemma 2.7, we need
to estimate the following quantity in B1:

F1(u)− F0(u) = δ(u, u)u, (C.10)

where u ∈ B2 is given. According to Lemma 2.3, we have

‖F1(u)− F0(u)‖B1 ≤ C‖
√
Vc (F1(u)− F0(u)) ‖L2 + C‖F1(u)− F0(u)‖H1 .

First, we deduce from (C.9) that

‖(1 +
√
Vc)δ(u, u)u‖L2 ≤ Cε1/3‖(1 + Vc)u‖L2‖u‖B2‖v‖B1 ≤ Cε1/3‖u‖3B2 , (C.11)

where we used Lemma 2.3. Let now D denote a first order derivative with respect
to x, y or z. We clearly have

‖D (F1(u)− F0(u)) ‖L2

≤

∥∥∥∥∥
(

1√
|X|2 + ε2z2

− 1
|X|

)
∗ (D(u)u+ uD(u))u

∥∥∥∥∥
L2

+ ‖δ(u, u)D(u)‖L2

≤ 2|δ(u,D(u))u‖L2 + ‖δ(u, u)D(u)‖L2 . (C.12)

According to (C.9), we have

‖δ(u,D(u))u‖L2 ≤ Cε1/3‖(1 +
√
Vc)u‖L2‖u‖B2‖D(u)‖B1 ≤ Cε1/3‖u‖3B2 (C.13)

and

‖δ(u, u)D(u)‖L2 ≤ Cε1/3‖(1 +
√
Vc)D(u)‖L2‖u‖B2‖u‖B1 ≤ Cε1/3‖u‖3B2 , (C.14)

where we used again Lemma 2.3. Combining (C.10), (C.11), (C.12),(C.13) and
(C.14) gives (2.23). The proof of Lemma 2.7 is complete. �

Appendix D. Proof of the technical Lemmas 3.4 and 3.5

Let us develop the operators a andA defined by (3.12) and (3.15) on the eigenbasis
χp. We have

a(τ)u = −
∑
p≥0

∑
q≥0

eiτ(Ep−Eq)apq i∂xuq χp

where we have introduced the coefficients

apq = 〈2Bzχpχq〉 . (D.1)

Recall that, by Assumption 1.1, the potential Vc is even, so for all p, the function
(χp(z))2 is even. Therefore, we have

∀p ∈ N, app =
〈
2Bzχ2

p

〉
= 0,

thus
a(τ)u = −

∑
p≥0

∑
q 6=p

eiτ(Ep−Eq)apq i∂xuq χp . (D.2)

Let us now integrate this formula in order to compute the operator A defined by
(3.15):

A(τ)u = i
∑
p≥0

∑
q 6=p

eiτ(Ep−Eq) − 1
Ep − Eq

apq i∂xuq χp . (D.3)
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Before proving Lemmas 3.4 and 3.5, let us give a useful estimate on coefficients apq.
For all p ∈ N, q ∈ N, k ∈ N we have

|apq| ≤ C
E

(k+1)/2
q

E
k/2
p

. (D.4)

Indeed, we have∣∣∣Ek/2p apq

∣∣∣ = 2B
∣∣∣(Hk/2

z χp, zχq

)
L2

∣∣∣ = 2B
∣∣∣(χp, Hk/2

z (zχq)
)
L2

∣∣∣
≤ 2B‖Hk/2

z (zχq)‖L2

≤ 2B‖zχq‖Bk
≤ C‖χq‖Bk+1 ≤ CE(k+1)/2

q ,

where we applied Lemma 2.3.

Proof of Lemma 3.4. Let n0 be as in Assumption 1.2, let ` ∈ N and u ∈
C0([0, T ], B2n0+8+`). Denoting

up = 〈uχp〉 , µ2
p = ‖upχp‖2C0([0,T ],B2n0+8+`)

, (D.5)

we have
‖u‖2

C0([0,T ],B2n0+8+`)
=
∑
p≥0

µ2
p < +∞. (D.6)

From (D.3), we obtain

‖A
(
t

ε2

)
u(t)‖C0([0,T ],B`) ≤ C

∑
p≥0

∑
q 6=p

(1 + q)n0 |apq| ‖uqχp‖C0([0,T ],B`+1) ,

where we used Assumption 1.2. Besides, applying Lemma 2.3 gives

‖uq‖C0([0,T ],Hs(R2)) =
1

E
n0+4+(`−s)/2
q

‖Hn0+4+(`−s)/2
z (I + (−∆x,y)s/2)(uqχq)‖C0([0,T ],L2)

≤ C E
s/2
q

E
n0+4+`/2
q

µq (D.7)

for all s ≤ 2n0 + 8 + `. Hence, from the definition (1.37), we get

‖uqχp‖C0([0,T ],B`+1) ≤ CE(`+1)/2
p ‖uq‖C0([0,T ],L2(R2)) + C‖uq‖C0([0,T ]H`+1(R2))

≤ CE
(`+1)/2
p + E

(`+1)/2
q

E
n0+4+`/2
q

µq.

and, by using (D.4) and (3.9),

(1+q)n0 |apq| ‖uqχp‖C0([0,T ],B`+1) ≤ C
En0
q

E2
p

|apq|
E

(`+5)/2
p + E

(`+1)/2
q E2

p

E
n0+4+`/2
q

µq ≤ C
1
E2
p

µq
Eq
.

Therefore,

‖A
(
t

ε2

)
u(t)‖C0([0,T ],B`) ≤ C

∑
p≥0

1
E2
p

∑
q≥0

µq
Eq

 ≤ C
∑
p≥0

1
E2
p

3/2∑
q≥0

µ2
q

1/2

by Cauchy-Schwarz. To conclude, it suffices to use (3.9) and (D.6): the series
converge and we obtain the desired estimate (3.22).
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Proof of Lemma 3.5. Let m = 4n0 + 17 and let u ∈ C0([0, T ], Bm) such that
∂tu ∈ C0([0, T ], Bm−2). Denoting now

up = 〈uχp〉 , ν2
p = ‖upχp‖2C0([0,T ],Bm) + ‖∂tupχp‖2C0([0,T ],Bm−2), (D.8)

we have
‖u‖2C0([0,T ],Bm) + ‖∂tu‖2C0([0,T ],Bm−2) =

∑
p≥0

ν2
p < +∞. (D.9)

Applying Lemma 2.3 as above yields

E(m−s)/2
p ‖up‖C0([0,T ],Hs(R2)) + E(m−2−s)/2

p ‖∂tup‖C0([0,T ],Hs(R2)) ≤ Cνp (D.10)

for all s ≤ m. By composing the expressions (D.3) and (D.2) for A and a, we obtain

A(τ)a(τ)u = i
∑
p≥0

∑
q 6=p

∑
n6=q

eiτ(Ep−Eq) − 1
Ep − Eq

eiτ(Eq−En)apqaqn ∂
2
xun χp

= i
∑
p≥0

∑
q 6=p

1− eiτ(Eq−Ep)

Ep − Eq
(apq)2 ∂2

xup χp

+i
∑
p≥0

∑
q 6=p

∑
n 6= q
n 6= p

eiτ(Ep−En) − eiτ(Eq−En)

Ep − Eq
apqaqn ∂

2
xun χp

Now, remark that, by (1.24) and (D.1), we have for all p ∈ N the identity

1 +
∑
q 6=p

(apq)2

Ep − Eq
= αp.

Therefore we get, using the definition (3.3),(
A(τ)a(τ) + i∂2

x

)
u = −iA0u

−i
∑
p≥0

∑
q 6=p

eiτ(Eq−Ep) (apq)2

Ep − Eq
∂2
xup χp

+i
∑
p≥0

∑
q 6=p

∑
n 6= q

n 6= p

(
eiτ(Ep−En) − eiτ(Eq−En)

) apqaqn
Ep − Eq

∂2
xun χp

and, integrating,∫ t

0

(
A
( s
ε2

)
+ i∂2

x

)
a
( s
ε2

)
u(s)ds+ i

∫ t

0
A0u(s)ds

= −i
∑
p≥0

∑
q 6=p

(apq)2

Ep − Eq
χp

∫ t

0
eis(Eq−Ep)/ε2 ∂2

xup(s) ds (D.11)

+i
∑
p≥0

∑
q 6=p

∑
n 6= q
n 6= p

apqaqn
Ep − Eq

χp

∫ t

0

(
eis(Ep−En)/ε2 − eis(Eq−En)/ε2

)
∂2
xun(s) ds

In order to estimate the right-hand side of this identity, we claim that, for all p ∈ N,
p ∈ N and λ 6= 0, we have∥∥∥∥χp(z) ∫ t

0
eiλs/ε

2
∂2
xuq(s, x, y) ds

∥∥∥∥
C0([0,T ],B1)

≤ CT
ε2

|λ|
E

1/2
p + E

1/2
q

E
(m−4)/2
q

νq (D.12)

where CT only depends on T and νn is defined by (D.8). This claim is proved below.
As a consequence, we can estimate (D.11) as follows:
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∥∥∥∥∫ t

0

(
A
( s
ε2

)
a
( s
ε2

)
+ i∂2

x

)
u(s)ds+ i

∫ t

0
A0u(s)ds

∥∥∥∥
C0([0,T ],B1)

≤ Cε2
∑
p≥0

∑
q 6=p

(apq)2

|Ep − Eq|2
1

E
(m−5)/2
p

νp

+Cε2
∑
p≥0

∑
q 6=p

∑
n 6= q
n 6= p

|apq||aqn|
|Ep − Eq|

(
1

|Ep − En|
+

1
|Eq − En|

)
E

1/2
p + E

1/2
n

E
(m−4)/2
n

νn

≤ Cε2
∑
p≥0

∑
q≥0

E3
p

E2
q

(1 + p)2n0

E
(m−5)/2
p

νp

+Cε2
∑
p≥0

∑
q≥0

∑
n≥0

(1 + q)n0(1 + n)n0
E
n0+11/2
n

E2
pE

n0+2
q

1

E
(m−4)/2
n

νn

≤ Cε2
∑
p≥0

∑
q≥0

1
(1 + q2)

νp
1 + p3

+ Cε2
∑
p≥0

∑
q≥0

∑
n≥0

1
(1 + p2)

1
(1 + q2)

νn
1 + n

where we used Assumption 1.2, (D.4), (3.9) and recall that m = 4n0 +17. Hence we
deduce (3.23) by using Cauchy-Schwarz and (D.9). It remains to prove the claim.

Proof of the claim (D.12). Let

v(t, x, y, z) = χp(z)
∫ t

0
eiλs/ε

2
∂2
xuq(s, x, y) ds, (D.13)

for p ∈ N, q ∈ N and λ 6= 0. An integration by parts in (D.13) yields

v(t, x, y, z) = i
ε2

λ
χp

(∫ t

0
eiλs/ε

2
∂2
x∂tuq(s, x, y) ds+ eiλt/ε

2
∂2
xuq(t, x, y)− ∂2

xuq(0, x, y)
)
.

Hence, by using (D.10), we obtain

‖v‖C0([0,T ],B1) ≤ CT
ε2

|λ|
E

1/2
p + E

1/2
q

E
(m−4)/2
q

νq,

where CT only depends on T . This concludes the proof of (D.12).
The proof of Lemma 3.5 is complete. �
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