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We study the limiting behavior of a Schr€odinger�Poisson system describing a three-dimensional
quantum gas that is con¯ned along the vertical z-direction in a ¯ne slab. The starting point is the

three-dimensional Schr€odinger�Poisson system with Dirichlet conditions on two horizontal

planes z ¼ 0 and z ¼ ", where the small parameter " is the scale width of the slab. The limit

"! 0 appears to be an in¯nite system of two-dimensional nonlinear Schr€odinger equations. Our
strategy combines a re¯ned analysis of the Poisson kernel acting on strongly con¯ned densities

and a time-averaging process that allows us to deal with the fast time oscillations.
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1. Introduction

1.1. The singular perturbation problem

In this paper, we study the behavior of a quantum gas that evolves in a ¯ne slab.

These con¯ned electron gas are of great interest for the nanoelectronic industry as the

functioning of many nanoelectronic devices relies on the con¯ned transport of elec-

tron gas. Here, we are interested in monodimensional con¯nement, meaning that the

transport of charged particles remains typically bidimensional. This work is more

precisely devoted to the rigorous derivation of a dynamic two-dimensional quantum

model with space-charge e®ects describing the transport of electrons con¯ned in a ¯ne

slab, say of thickness ".

Even if the transport of the electron gas seems typically bidimensional in our case,

the space-charge e®ects remain three-dimensional. Our starting model is thus the

three-dimensional Schr€odinger�Poisson system. Let " > 0 be a small parameter
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measuring the typical extension of the two-dimensional electron gas in the z direc-

tion, the three-dimensional space variables are denoted by ðx; zÞ 2 R2 � R. The

electron gas is con¯ned along the horizontal x directions and strongly con¯ned along

the vertical z direction between the planes z ¼ 0 and z ¼ ". It is therefore subject to

three di®erent e®ects: both con¯nements along the respective vertical z direction and

the horizontal x directions, and the self-consistent Poisson potential.

In order to model both con¯nements, the ¯rst idea is to introduce, in the three-

dimensional Schr€odinger�Poisson system, two smooth con¯ning exterior potentials

at two di®erent scales.

. The horizontal con¯nement (in the x directions) is modeled by the potential V1ðxÞ,
where V1 is meant to be a real positive function that goes to in¯nity with jxj (the
assumptions on V1 will be made precise later on).

. The vertical con¯nement (in the z direction) is modeled by a smooth potential

V "
2 ðzÞ of the form V "

2 ðzÞ ¼ ð1="2ÞV2ðz="Þ, where V2 is meant to be a smooth

positive function.

Precise assumptions on these con¯nement potentials will be made clear later on. We

therefore start with the following dimensionless Schr€odinger�Poisson system (where

a rescaling in the z direction has been performed):

i@t�
" ¼ ��x þV1ðxÞð Þ�" þ 1

"2
�@ 2

z þ V2ðzÞ
� �

�"

þ V "�"; t > 0; ðx; zÞ 2 �; ð1:1Þ
�"ðt; x; 0Þ ¼�"ðt; x; 1Þ ¼ 0; t > 0; x 2 R

2; ð1:2Þ
�"ð0; x; zÞ ¼� "

0ðx; zÞ; ðx; zÞ 2 �; ð1:3Þ
�@ 2

zV
" � "2�xV

"ðtÞ ¼ j�"ðtÞj2; t > 0; ðx; zÞ 2 �; ð1:4Þ
V "ðt; x; 0Þ ¼V "ðt; x; 1Þ ¼ 0; t > 0; x 2 R

2: ð1:5Þ
The unknown is the pair ð�";V "Þ made of the electronic wave function �" and the

self-consistent potential V " that models the space-charge e®ects. The set � is the

dimensionless set that corresponds to the physical extension R2 � ð0; "Þ of the gas

� :¼ R
2 � ð0; 1Þ:

The main modeling assumptions, in this context, are therefore the choice of a scale

between both con¯nement terms V1ðxÞ and ð1="2ÞV2ðz="Þ as well as precise

assumptions on both functions V1 and V2.

Let us ¯rst give a few words about the rescaling that has been performed to obtain

(1.1)�(1.5). We refer the reader to Refs. 3 and 21 for a model where no Dirichlet

boundary condition is imposed and to Ref. 13 where a magnetic potential is added.

The main idea is to introduce two characteristic energies Etransp and Econf . Thus,

Etransp is chosen as the typical energy of the longitudinal transport (in the x direc-

tions), the con¯nement potential V1, the self-consistant e®ects and the time scale,

whereas the kinetic energy along z and the transversal con¯nement potential V2 are
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set to the scale Econf . Finally, consider the Schr€odinger�Poisson system in physical

variables

i}@tª ¼ � }2

2m
�ªþ eV1ðxÞªþV2ðzÞªþVðx; zÞª; ð1:6Þ

��V ¼ e

�0
jªj2; ð1:7Þ

where m is the e®ective mass, e the elementary charge of the electron and �0 denotes

the electric permittivity of the material. If "2 measures the rate Etrans=Econf , then

(1.6)�(1.7), respectively, becomes

i@t�
" ¼ ð��x þ V1ðxÞÞ�" þ 1

"2
ð�@ 2

z�
" þ V2ðzÞÞ�" þ V "�";

�"2�xV
" � @ 2

zV
" ¼ ex 2

�0Etransp

N"2j�"j2:

In order to avoid a trivial formal limit of the Poisson equation, we choose to work

with high densities and set

N ¼ �0Etransp

e2x 2

1

"2
;

which ¯nally leads to (1.1)�(1.5).

Let us now introduce the following assumptions on both con¯nement potentials

V1 and V2.

Assumption 1.1. Both potentials V1 and V2 are C1 non-negative functions.

Moreover, the longitudinal V1 potential satis¯es

V1ðxÞ�!
jxj!1

1: ð1:8Þ

For later functional analysis purposes, we shall assume a reinforced version of the

longitudinal con¯nement (in the x 2 R2 directions). We will make them clear later on

(see Assumption 1.2). Note that a smooth potential of the form V1ðxÞ ¼ C jxjs for

jxj � jx0j, with C > 0 and s > 0, satis¯es these assumptions. In particular, we keep in

mind, throughout the paper, the example of the harmonic potential V1 ¼ a2jxj2 that
¯ts these conditions. What could be surprising here is, the lack of growth-at-in¯nity

assumptions for the con¯nement potential in the z direction. The point is, the con-

¯nement in the z direction is due to the boundary Dirichlet conditions. In the present

case, the variable z indeed lies in [0,1].

This paper aims at exhibiting an asymptotic bidimensional system for Eqs. (1.1)�
(1.5) as "! 0. Let us now give short bibliographical notes. First, con¯ned quantum

electron gas has been studied in a linear setting for a long time and by several authors

(see Refs. 12, 14, 16, 25 and references therein). Nonlinear problems linked to

the con¯nement of an electron gas have been studied more recently. Indeed, the

approximation of the Schr€odinger�Poisson system describing an electron gas
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constraint in a plane was studied in Refs. 3 and 21, and when the gas is con¯ned along

a line in Ref. 2.

The problem of ¯nding a hierarchy of asymptotic models for the transport of an

electron gas con¯ned along a plane has been treated in Ref. 3. In that paper, the authors

model the con¯nement on a plane with a three-dimensional Schr€odinger�Poisson

system on the whole space R3 singularly perturbed with a con¯nement potential of

form ð1="2ÞVcðz="Þ. The key tools are a re¯ned analysis of the Poisson nonlinearity and
techniques based on the projection upon the eigenmodes of the transverse Hamiltonian.

The main di®erence with our current problem here comes from the fact that the sol-

ution to the Poisson equation is not of the same order whether the equation holds on the

whole spaceR3 or onR2 � ð0; 1Þ. It indeed leads to two di®erent range of densities: high
densities or densities of order 1 (see the further discussion).

In Ref. 13, the authors give an asymptotic model for the Schr€odinger�Poisson

system describing a three-dimensional electron gas con¯ned on a plane and subject to

a strong uniform magnetic ¯eld lying in the transport plane. In order to deal with the

fast oscillations due to the magnetic potential, they use second-order long-time

averaging techniques and a Sobolev scale adapted to the con¯nement operator.

When the nonlinearity depends locally on the density (it is not the case of the

Poisson nonlinearity here), an asymptotic model for con¯ned Bose�Einstein con-

densates is studied in Refs. 4 and 1. In Ref. 7, the authors present a model describing

Bose�Einstein condensation of trapped dipolar quantum gases. This model takes the

form of a time-dependent Schr€odinger equation including a cubic nonlinearity and a

nonlocal nonlinearity under the form of a convolution of the density with a dipole-

interaction kernel.

1.2. Heuristic approach of the asymptotic model

In this section, we aim at heuristically exhibiting an asymptotic model for the

Schr€odinger�Poisson system with Dirichlet conditions (1.1)�(1.5).

First of all, Eqs. (1.4) and (1.5) allow us to expect the formal limit of the three-

dimensional Poisson potential V " to be the solution W ðj "j2Þ of
�@ 2

zW ðt; �Þ ¼ j "ðt; �Þj2; t � 0; ðx; zÞ 2 �;

W ðt; x; 0Þ ¼ W ðt; x; 1Þ ¼ 0; t > 0; x 2 R2:

Consider the following model in which the Poisson equations (1.4) and (1.5) is

replaced by its formal asymptotic. It will be referred to as the intermediate model in

what follows:

i@t 
" ¼Hx 

" þ 1

"2
Hz 

" þW ðj "j2Þ "; t > 0; ðx; zÞ 2 �; ð1:9Þ
 "ðt; x; 0Þ ¼ "ðt; x; 1Þ ¼ 0; t > 0; x 2 R

2; ð1:10Þ
�@ 2

zW ðt; �Þ ¼ j "ðt; �Þj2; t � 0; ðx; zÞ 2 �; ð1:11Þ
W ðt; x; 0Þ ¼W ðt; x; 1Þ ¼ 0; t > 0; x 2 R

2; ð1:12Þ
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where Hx and Hz , respectively, denote the longitudinal Hamiltonian de¯ned by

Hx :¼ ��x þ V1ðxÞ with domain DðHxÞ :¼ fu 2 H 2ðR2Þ;V1u 2 L2ðR2Þg ð1:13Þ
and the transversal Hamiltonian de¯ned by

Hz :¼ �@ 2
z þ V2ðzÞ with homogeneous Dirichlet boundary conditions ð1:14Þ

and with domain DðHzÞ :¼ H 2 \H 1
0 ð0; 1Þ.

In that case, W ðj "j2Þ is explicit and reads, for t > 0 and ðx; zÞ 2 �,

W ðj "j2Þðt; x; zÞ ¼
Z 1

0

Kðz; z 0Þj "ðt; x; z 0Þj2dz 0; ð1:15Þ

where the kernel K denotes

8 z; z 0 2 ð0; 1Þ; Kðz; z 0Þ :¼ zð1� z 0Þ � ðz � z 0Þ1z 0�z :

Remark 1.1. The Dirichlet boundary conditions have here lead us to make high

density assumptions. In Refs. 3, 21 and 13 the authors study the transport of an

electron gas that is strongly con¯ned in the z direction, where no Dirichlet boundary

condition is imposed. They work with low densities and therefore introduce the

following system that will be referred to as the \soft wall potential model" in what

follows:

i@t�
" ¼ ð��x þV1ðxÞÞ�" þ 1

"2
ð�@ 2

z�
" þV2ðzÞÞ�" þ V "�";

�"2�xV
" � @ 2

zV
" ¼ "j�"j2:

The Poisson equation can, in that case, be rewritten with a convolution as

V " ¼ 1

4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxj2 þ "2z 2

p � j�"j2;

whose asymptotic behavior is given by

V "ðt; x; zÞ � 1

4�jxj � j 
"ðt; x; zÞj2 ¼ 1

4�jxj �x
Z
R

j "ðt; �; z 0Þdz 0j2
� �

:

Therefore, the asymptotic of the Poisson potential in the soft-wall potential case does

not depend on z. Note that, on the contrary, in our \hard-wall potential case" the

nonlinearityW ðj "j2Þ de¯ned by (1.15) obviously depends on z. This dependence in z

is crucial as it radically changes the nature of the analysis at hand in our work. It indeed

induces fast oscillating in time terms that will not be dealt with as easily as previously.

The ¯rst step of our work is to prove the well-posedness of both systems (1.1)�
(1.5) and (1.9)�(1.12) and then estimate the di®erence between their respective

solutions in an adapted functional framework. This will a posteriori justify the
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approximation of (1.1)�(1.5) by (1.9)�(1.12). In a second part, we focus on the

asymptotic behavior of the intermediate system (1.9)�(1.12).

By Assumption 1.1, V2ðzÞ is a smooth non-negative function, and thus, the

operator Hz has a discrete spectrum. In what follows, the collection of its eigenvalues

is denoted by Ep � 0 and their associated eigenfunctions, chosen so as to form a

Hilbertian basis of DðHzÞ, are denoted by �pðzÞ, as p runs in N. They satisfy, for any

index p,

Hz�p ¼ ð�@ 2
z þV2ðzÞÞ�p ¼ Ep�p; �pð0Þ ¼ �pð1Þ ¼ 0:

The second step consists in studying the asymptotics of the intermediate model

(1.9)�(1.12) as " tends to zero. The probably most natural approach is to ¯rst project

the Schr€odinger equation (1.9) over the orthonormal basis ð�pÞp�0. Its decomposition

over ð�pÞp�0 reads

 "ðt; x; zÞ ¼
X
p�0

 "
pðt; xÞ�pðzÞ with  "

pðt; xÞ ¼ h "ðt; x; �Þ�pi;

where we used the notation

hf i :¼
Z 1

0

f ðzÞdz:

Now, inserting this decomposition in the Schr€odinger equation (1.9) and formally

projecting over the ð�pÞp�0 basis leads to the following in¯nite system of coupled

nonlinear Schr€odinger equations:

i@t 
"
p ¼ Hx 

"
p þ

Ep

"2
 "

p þ
X
s�0

 "
s W

X
q�0

 "
q�q

�����
�����
2

 !
�s�p

* +
: ð1:16Þ

In view of (1.16), @t 
"
p has size Oð1="2Þ. For this reason, it seems natural to ¯lter

out the time oscillations induced by the ðEp="
2Þ "

p term. Therefore, let �"p be de¯ned

as the ¯ltered  "
p as follows:

�"pðt; xÞ ¼ expðitEp="
2Þ "

pðt; xÞ:
The �"p's then satisfy the ¯ltered system

i@t�
"
p ¼ Hx�

"
p þ

X
s�0

e�itðEs�EpÞ=" 2 W
X
q�0

e�iðt="2ÞEq�"q�q

�����
�����
2

 !
�s�p

* +
�"s : ð1:17Þ

However, according to de¯nition (1.15), we have

W
X
q�0

e�iðt="2ÞEq�"q�q

�����
�����
2

 !
¼W

X
q�0

X
r�0

e�itðEr�EqÞ=" 2�"r �"q�r�q

 !
¼
X
q�0

X
r�0

hKðz; �Þ�r�qie�itðEr�EqÞ="2�"r �"q : ð1:18Þ
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Finally, combining (1.17) with (1.18) allows us to conclude under nice regularity

assumptions, and provided the series at hand in (1.18) converge, that the �"p satisfy

the following in¯nite system:

8 p � 0; i@t�
"
p ¼Hx�

"
p þ

X
s�0

X
q�0

X
r�0

�p;q;r;se
itðEpþEq�Er�EsÞ="2�"r �"q�

"
s ; ð1:19Þ

�"pð0; xÞ ¼ 0;p :¼ h 0ðx; �Þ�pi; ð1:20Þ
where

8 p; q; r; s � 0; �p;q;r;s :¼
Z 1

0

Z 1

0

Kðz; z 0Þ�rðz 0Þ�qðz 0Þ�sðzÞ�pðzÞdzdz 0: ð1:21Þ

Now that each @t�
"
p is of order Oð1Þ, note that the in¯nite system of coupled

nonlinear Schr€odinger equation satis¯ed by the �"p's ðp 2 NÞ is of the form

@tu
" ¼ Au " þ Bðt="2; u "Þ; ð1:22Þ

where the nonlinearity B happens to have some kind of periodicity in time due to the

oscillatory eitðEpþEq�Er�EsÞ="2 factor. More precisely, as we will see in the following

parts, the nonlinearity is almost periodic in time.

It now becomes quite tempting to average in time Eq. (1.17) or, equivalently, the

toy model (1.22). Here, we use a key tool developed in Ref. 1, adapted from the well-

detailed work on the ODEs in Ref. 23 and from Schochet's work Ref. 24. Assume that

the function Bð�; uÞ entering in (1.22) possesses some ergodicity in time, i.e. that one

can de¯ne, in a functional framework (precised later on), the limit

BavðuÞ ¼ lim
T!þ1

1

T

Z T

0

Bð�; uÞd�:

Then, the toy model (1.22) converges, as " tends to zero, toward the following limit

system:

@tu ¼ Au þ BavðuÞ: ð1:23Þ
For these reasons, and despite the di®erential system satis¯ed by the �"p's is

in¯nite, we can expect the �"p's solving (1.17) to converge at least formally towards

the solution of the following in¯nite averaged system:

i@t�p ¼Hx�p þ
XXX

ðq;r;sÞ2�p

�p;q;r;s�r �q�s; t > 0; ðx; zÞ 2 �; ð1:24Þ

�pð0; xÞ ¼ h 0ðx; �Þ�pi; x 2 R
2; ð1:25Þ

where

8 p � 0; �p :¼ fðq; r; sÞ 2 N
3; Ep þ Eq ¼ Er þ Esg: ð1:26Þ

This paper therefore aims at rigorously proving the convergence towards (1.24)

in an appropriate framework.
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1.3. Statement of the main results and sketch of the proof

Let us add the following technical assumptions on the longitudinal con¯nement

potential V1ðxÞ.
Assumption 1.2.

8� 2 N2;
@ �V1

@x �
ðxÞ ¼ O V1ðxÞð Þ as jxj ! 1;

9Mx > 0; V1ðxÞ ¼ O jxjMx
� �

as jxj ! 1;

9M 0
x > 0;

jrxV1ðxÞj
V1ðxÞ

¼ O jxj�M 0
x

� �
as jxj ! 1:

Note that these assumptions are purely technical helps in order to carry out a

functional analysis, inspired by Ref. 2, which will help us identify the Sobolev spaces

well-adapted to our operators Hx and Hz .

Theorem 1.1. Convergence towards the asymptotic model. Under Assumptions 1.1

and 1.2, ¯x " > 0 and consider a function  0ðx; zÞ in
X :¼ fu 2 H 2ð�Þ \H 1

0 ð�Þ;V1u 2 L2ð�Þg ð1:27Þ
equipped with the norm

jjujj 2X :¼ jjujj2H 2ð�Þ þ jjV1ujj2L2ð�Þ: ð1:28Þ
Then, there exists T > 0 depending only on jj 0jjX such that the following holds.

. The initial Schr€odinger–Poisson system (1.1)–(1.5) with initial datum  0 possess a

unique solution denoted by ð ";V "Þ, that is bounded in Cð½0;T �;XÞ uniformly in ".

. The asymptotic system (1.24)–(1.25) with initial datum  0 admits a unique solution

denoted by the set of functions ð�pÞp�0 2 Cð½0;T �;DðHxÞÞ where DðHxÞ is de¯ned

by (1.13).

. If  " and ð�pÞp�0 denote the respective solutions to (1.1)–(1.5) and (1.24)–(1.25),

then the following convergence holds:

 "ðt; x; zÞ �
X
p�0

�pðt; xÞe�itEp="2�pðzÞ
�����

�����
Cð½0;T �;XÞ

�!
"!0

0: ð1:29Þ

Sketch of the proof. The present paper is devoted to rigorously proving the con-

vergence of (1.1)�(1.5) towards (1.24)�(1.25) with given initial data, in three steps.

As a ¯rst step, we follow the ideas already used in Ref. 2 in the case of a Schr€odin-

ger�Poisson equation with a con¯nement potential that models the two-dimensional

con¯nement in a nanowire, and in Ref. 13 in the case of a strongly con¯ned bidi-

mensional electron gas under a strong magnetic ¯eld. The ¯rst key tool is a re¯ned

analysis of the rescaled Poisson potential, de¯ned in (1.4)�(1.5) and its asymptotics.

First, we prove tame estimates for both nonlinearities V " and W , respectively,

de¯ned by (1.4)�(1.5) and (1.11)�(1.12). These estimates allow us to study the
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well-posedness and regularity of solutions to both initial (1.1)�(1.5) and intermediate

(1.9)�(1.12) models (see Lemma 2.4). Then, we rewrite (1.1) as a perturbation of (1.9)

by rewritingV "ðt; x; zÞ as a perturbation ofW and estimating the remainderV " �W

as " tends to zero.

As a second step, we prove the convergence of the solution to the intermediate

system towards the function
P

p �pe
�itEp="

2
�p, where the ð�pÞp�0 solve (1.24)�(1.26).

The di±culty of making the heuristic arguments rigorous is twofold. First, it requires

to decompose  " over the �p's and therefore to write down series expansion of formP
p � � � as in (1.17), (1.18) or (1.19). However, it happens to be very di±cult to

control the convergence of these series expansions, even when nice estimates on the

 "
p's are at hand. This is due to the lack of information on the behavior of the term

hW ðj "j2Þ�r ; �pi for large values of p and r. Secondly, independent of the

Schr€odinger equation, when proving the convergence of systems of form (1.22)

towards (1.23), one usually needs small denominator estimates which turn out to be

very di±cult to handle with in the present context. Here, we follow the same lines as

is done in Ref. 1 in the case of a general nonlinear Schr€odinger equation with a

nonlinearity of the form FðuÞ where F is a C1-function. To sum up, the ¯rst idea is to

¯lter out the time-oscillations in (1.9) by de¯ning

�"ðt; x; zÞ :¼ eitHz="2 "ðt; x; zÞ: ð1:30Þ
It now satis¯es

i@t�
" ¼ Hx�

" þ eitHz="2V je�itHz=" 2�"j2� �
e�itHz=" 2�": ð1:31Þ

Then, introducing the nonlinearity

� � 0 7! Gð�; uÞ :¼ ei�HzW ðje�i�Hzuj2Þe�i�Hzu; ð1:32Þ
Eq. (1.31) can therefore be approached, by the ¯rst step by

i@t�
" ¼Hx�

" þG
t

"2
; �"

� �
; ð1:33Þ

�"ðt; x; 0Þ ¼�"ðt; x; 1Þ ¼ 0; t > 0; x 2 R
2; ð1:34Þ

�"ð0; x; zÞ ¼ 0ðx; zÞ; ðx; zÞ 2 �; ð1:35Þ

which is of form (1.22). The key point is therefore to de¯ne a functional framework,

say a functional space Z such that if u 2 Z , then the to-be-averaged function Gð�; uÞ
is almost-periodic in time with values in Z . This roughly means that Gð�; uÞ has

comptably many frequencies in � , which in fact translates the fact that Hz has a

discrete spectrum. Indeed, the only oscillation terms that appear in the de¯nition of

Gð�; uÞ are due to the propagator e	i�Hz . The important fact about almost-periodic

functions is that they possess a well-de¯ned long time average, and the formula

GavðuÞ ¼ lim
T!1

1

T

Z T

0

Gð�; uÞ d�
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makes sense in appropriate functional spaces. Section 3 is therefore devoted to the

time averaging of Eq. (1.33). In order to carry out the time-averaging procedure, we

prove that we are dealing with almost-periodic nonlinearities (hence the possibility of

de¯ning long-time averages), with values in good Sobolev spaces (spaces that are

adapted to our operators and allow us to carry out the nonlinear analysis). These

spaces are de¯ned in Sec. 2.1, and the properties of almost periodicity of our non-

linearities are proved in Proposition 3.3. The time-averaging process leads to the

convergence result stated in Proposition 3.4 for an initial datum that lies in a reg-

ularized space denoted by Y.
As a third step, Sec. 4 is devoted to gathering the results of both ¯rst and second

step. In this section, we therefore prove Proposition 4.1 that states a convergence

result in X of the initial system towards the limit one with an initial datum in the

regularized space Y. The second part of Sec. 4 ends the proof of the main theorem

with a regularizing procedure.

2. Approximation by the Intermediate System

In this section, we focus our study on the approximation of the initial system (1.1)�
(1.5) by the intermediate system (1.9)�(1.12). Lemma 2.1 ¯rst introduces a func-

tional framework that is well-adapted to the operators Hx and Hz in order to deal

with both nonlinearities V "ðj "j2Þ andW ðj "j2Þ (de¯ned by (1.4)�(1.5) and (1.11)�
(1.12), respectively). Then, Lemma 2.4 states regularity results for the Poisson

equation that allow us to prove tame estimates on both nonlinearities in Corollary 2.1.

Finally, Proposition 2.1 proves the well-posedness of both systems and estimates, in

this framework, the di®erence between the solutions of the initial system (1.1)�(1.5)

and the intermediate system (1.9)�(1.10).

2.1. Preliminaries: The functional framework

In this section, we aim at de¯ning a Sobolev scale adapted to both operators Hx and

Hz . Indeed, the only uniform-in-" bound at hand on  ", solution to (1.1)�(1.5) reads

jj "jj 2L2ð�Þ þ jjHx 
"jj2L2ð�Þ þ jjHz 

"jj2L2ð�Þ ¼ Oð1Þ
on some nontrivial time interval ½0; t� whenever jj 0jj2L2ð�Þ þ jjHx 0jj2L 2ð�Þ þ jjHz 0jj2L 2ð�Þ
is bounded,  0 denoting the initial datum. All other energy estimates (obtained by

simply applying the operators @z ;rx ;V1ðxÞ or V2ðzÞ to Eqs. (1.1)�(1.5) and inte-

grating by part) give rise to commutators, hence diverging factors of orderOð1="2Þ due
to the term ð1="2ÞHz . Therefore, as they only give access to bounds of order Oð1="Þ,
they are barely useless here. It therefore seems natural to consider the energy space

fu 2 L2ð�Þ; Hxu 2 L2ð�Þ; Hzu 2 L2ð�Þg
equipped with the norm

jjujj2 :¼ jjujj 2L2ð�Þ þ jjHxujj2L 2ð�Þ þ jjHzujj2L2ð�Þ: ð2:1Þ
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The ¯rst task here lies in the identi¯cation of this space and ðX ; jj jjX Þ de¯ned by

Eqs. (1.27) and (1.28). We indeed show that these spaces can be identi¯ed and that

both norms are equivalent. Moreover, we also need a regularization space that we

denote by Y, i.e.
Y :¼ fu 2 L2ð�Þ;Hxu 2 X ;H 1þ�=2

z u 2 L2ð�Þg ð2:2Þ
equipped with the norm

jjujj2Y :¼ jjujj2L2ð�Þ þ jjHxujj2X þ jjH 1þ�=2
z ujj2L2ð�Þ; ð2:3Þ

where � 2 R, such that 0 < � < 1=2, that also needs to be identi¯ed as a Sobolev

space with additional growth at in¯nity assumptions (of kindV
1þ�=2
1 u 2 L2ð�Þ). The

equivalence of both norms jjujjX and jjujj and the identi¯cation of jjujjY may be tech-

nically delicate, yet, it is absolutely crucial here. In that prospect, we refer the reader to

Ref. 1. In this paper, the authors identify the Sobolev scale adapted to their own

operators that are ��x þV1ðxÞ with domain fu 2 L2ðR2Þ;��xu 2 L2ðR3Þ;V1u 2
L2ðR2Þg, and �@ 2

z þV2 with domain fu 2 L2ðRÞ; @ 2
zu 2 L2ðRÞ;V2u 2 L2ðRÞg. The

only di®erence with our situation is therefore the fact that the transverse operator acts

on L2ðRÞ, instead of L2ð0; 1Þwith boundary Dirichlet conditions. The key tool they use

is theWeyl�H€ormander calculus, and, following the same arguments, we can state the

following lemma.

Lemma 2.1. (Equivalence of norms) For all u 2 X , both norms

jjujj2 :¼ jjujj2L2ð�Þ þ jjHxujj2L2ð�Þ þ jjHzujj2L 2ð�Þ

and

jjujj2X :¼ jjujj 2H 2ð�Þ þ jjV1ujj 2L2ð�Þ

are equivalent. Moreover, if u 2 Y de¯ned by (2.2), then the following equivalence

holds:

jjujj 2Y � jjujj 2H 2þ�ð�Þ þ jjHxujj2X : ð2:4Þ

Remark 2.1. Let 0 < � < 1=2 and u ¼Pp�0 up�p be in H 1
0 ð�Þ, with upðxÞ ¼R 1

0
uðx; zÞ�pðzÞdz. Note that, according to Ref. 17 or Ref. 18,

jjH 1þ�=2
z ujj2L2ð�Þ ¼

X
p�0

E 2þ�
p jjupjj2L2ðR 2Þ:

Therefore, de¯nitions (2.1) and (2.3) become

jjujj2 ¼
X
p�0

ð1þ E 2
pÞjjupjj2L2ðR 2Þ þ jjHxujj 2L2ð�Þ

and

jjujj 2Y ¼
X
p�0

ð1þ E 2þ�
p Þjjupjj 2L2ðR 2Þ þ jjHxujj2X : ð2:5Þ
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Combined with the equivalences stated in Lemma 2.1, the following equivalences

hold:

jjujj2X �
X
p�0

ð1þ E 2
pÞjjupjj2L 2ðR 2Þ þ jjHxujj2L2ð�Þ ð2:6Þ

and

jjujj2Y � jjujj2H 2ð�Þ þ jj�xujj2H 2ð�Þ þ jjV 2
1 ujj2L 2ð�Þ þ

X
p�0

E 2þ�
p jjupjj 2L2ðR 2Þ: ð2:7Þ

Proof of Lemma 2.1. This lemma can be proved by combining Proposition 2.5 in

Ref. 1 in order to prove the following equivalence:

Hxu 2 L2ð�Þ , jjujj 2H 2ð�Þ þ jjV1ujj2L 2ð�Þ <1:

Lemma 2.2. (Properties of the Sobolev spaces X and Y) For any ¯xed 0 < � < 1=2,

X and Y are continuously embedded in L1ð�Þ. Moreover, X and Y are algebras, and

the embedding Y 
 X is compact.

Proof. The fact that X and Y are continuously injected in L1ð�Þ readily comes

from the fact that they are continuously embedded in H 2ð�Þ that is continuously

embedded in L1ð�Þ.
Secondly, it is clear that H 2ð�Þ \H 1

0 ð�Þ is an algebra. Therefore, X clearly is an

algebra too according to de¯nition (1.27). As far as Y is concerned, if u; v 2 Y, then,
uv 2 H 2ð�Þ \ H 1

0 ð�Þ and V 2
1 uv 2 L2ð�Þ since V 2

1 u 2 L2ð�Þ and Y 
 L1ð�Þ with

continuous embedding. The same arguments allows us to prove that, if

uv ¼
X
p�0

ðuvÞp�p with ðuvÞp :¼
Z 1

0

uðx; zÞvðx; zÞ�pðzÞdz

then X
p�0

E 2þ�
p jjðuvÞpjj2L2ðR 2Þ � jjujj2L1

X
p�0

E 2þ�
p jjvpjj2L 2ðR 2Þ � C jjujj2Yjjvjj2Y :

In order to prove that uv 2 Y, we also need to prove that �xðuvÞ 2 X . In that view,

let us write

�xðuvÞ ¼ ð�xuÞv þ uð�xvÞ þ 2rxu � rxv:

However, �xu 2 H 2ð�Þ and v 2 H 2ð�Þ, therefore,
ð�xuÞv 2 H 2ð�Þ and jjð�xuÞvjjH 2ð�Þ � jjujj 2Yjjvjj 2Y :

Similarly, uð�xvÞ 2 H 2ð�Þ. Finally, if uv 2 Y, then
rxu;rxv 2 H 2ð�Þ and jjrxu � rxvjj2H 2ð�Þ � 2jjujj2Yjjvjj 2Y :

Consequently,

�xðuvÞ 2 H 2ð�Þ; jj�xðuvÞjjH 2ð�Þ � C jjujjYjjvjjY ;
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where C > 0 does not depend on u or v. To conclude, spaces X and Y are both

algebras and we have

8 u; v 2 X ; jjuvjjX � C jjujjX jjvjjX ;
8 u; v 2 Y; jjuvjjY � C jjujjYjjvjjY ;

where C > 0 does not depend on u and v.

Finally, we clearly have the embedding Y 
 X . Its compactness is due to the fact

that the embedding H 2þ�ð�Þ \ H 1
0 ð�Þ 
 H 2ð�Þ \ H 1

0 ð�Þ is locally compact since

2 < 2þ � < 5=2 together with the fact that V1ðxÞ tends to in¯nity at in¯nity.

We end this section by the following lemma.

Lemma 2.3.

8 u 2 Y; jjrxujj2X � C jjujjX jjujjY :
Proof. In order to prove this estimate, let us consider u 2 Y. Then,

jjrxujj2X � jjH 1=2
x ujj2X ¼ jjH 1=2

x ujj2L2ð�Þ þ jjH 3=2
x ujj2L2ð�Þ þ jjHzH

1=2
x ujj 2L2ð�Þ: ð2:8Þ

However,

jjH 1=2
x ujj 2L2ð�Þ :¼ hH 1=2

x u;H
1=2
x uiL 2ð�Þ ¼ jhHxu; uiL2ð�Þj

� jjHxujjL 2ð�ÞjjujjL2ð�Þ � C jjujj2X ;
jjH 3=2

x ujj 2L2ð�Þ :¼ hH 3=2
x u;H

3=2
x uiL 2ð�Þ ¼ jhH 2

x u;HxuiL2ð�Þj
� jjH 2

x ujjL 2ð�ÞjjHxujjL2ð�Þ � jjujjYjjujjX
and, ¯nally, using the fact that both operators Hx and Hz commute, we obtain

jjHzH
1=2
x ujj 2L2ð�Þ :¼ hHzH

1=2
x u;HzH

1=2
x uiL2ð�Þ ¼ jhHxHzu;HzuiL 2ð�Þj

� jjHzHxujjL2ð�ÞjjHzujjL2ð�Þ � jjujjYjjujjX ;

which combined with (2.8) allows us to conclude.

2.2. A priori estimates

In this subsection, we state a priori estimates on both nonlinearities V " and W

de¯ned in (1.4)�(1.5) and (1.11)�(1.12), respectively. In that view, we state the

following regularity result.

Lemma 2.4. Consider any real number " 2 ½0; 1� and any function f 2 X . Then, the

equations

�@ 2
zu

" � "2�xu
" ¼ f ; ðx; zÞ 2 �; ð2:9Þ

u "ðx; 0Þ ¼ u "ðx; 1Þ ¼ 0; x 2 R
2; ð2:10Þ
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admit a unique solution u " and, for " small enough, there exists C > 0 independent of

" such that the following holds:

jju "jjX �C jjf jjX ; ð2:11Þ
jj@ 2

zu
"jjX �C jjf jjX : ð2:12Þ

To be more readable, the proof of this lemma is postponed to the Appendix.

Corollary 2.1. Let " 2 ½0; 1�, and de¯ne the nonlinearity F "ðuÞ as either V "ðjuj2Þ or
W ðjuj2Þ. Then, the following holds:

8 u 2X ; jjF "ðuÞjjX � C jjujj2X ; ð2:13Þ
8 u 2X ; jjF "ðuÞujjX � C jjujj3X ; ð2:14Þ

8 u; v 2X ; jjF "ðuÞu � F "ðvÞvjjX � C ðjjujj2X þ jjvjj 2XÞjju � vjjX : ð2:15Þ
Moreover,

8 u 2Y; jjW ðjuj2ÞjjY � C jjujjYjjujjX ; ð2:16Þ
8 u; v 2Y; jjW ðuvÞjjY � C jjujjYjjvjjY ; ð2:17Þ
8 u 2Y; jjW ðjuj2ÞujjY � C jjujj2X jjujjY ; ð2:18Þ

8 u; v 2Y; jjW ðjuj2Þu �W ðjvj2ÞvjjY � Cðjjujj 2Y þ jjvjj2YÞjju � vjjY : ð2:19Þ

Proof. In order to prove the ¯rst part of Corollary 2.1, we ¯x " � 0 and u 2 X , and

we apply Lemma 2.4 to the nonlinearity F "ðuÞ. Indeed, V "ðjuj2Þ and W ðjuj2Þ solve
the system (2.9)�(2.10) for f ¼ u, " and " ¼ 0, respectively. We therefore get

jjF "ðuÞjjX � C jjjuj2jjX � C jjujj2X and jjF "ðuÞujjX � C jjujj3X ;
where we used the fact that X is an algebra. Estimates (2.13) and (2.14) are proved.

As far as the estimate (2.15) is concerned, ¯rst note that, if u; v 2 X , then

F "ðuÞu � F "ðvÞv ¼ ðF "ðuÞ � F "ðvÞÞu þ F "ðvÞðv � uÞ: ð2:20Þ
Moreover, F "ðuÞ � F "ðvÞ readily satis¯es the following system:

�@ 2
zðF "ðuÞ � F "ðvÞÞ � "2�xðF "ðuÞ � F "ðvÞÞ ¼ juj2 � jvj2;

ðF "ðuÞ � F "ðvÞÞðx; 0Þ ¼ ðF "ðuÞ � F "ðvÞÞðx; 1Þ ¼ 0:

Therefore, applying Lemma 2.4 yields

jjF "ðuÞ � F "ðvÞjjX �C jjjuj2 � jvj2jjX � C jjðjuj þ jvjÞðjuj � jvjÞjjX
�C jjujjX þ jjvjjXð Þjju � vjjX : ð2:21Þ

Combining (2.20) and (2.21) with (2.13) ¯nally provides us with estimate (2.15).

In order to prove the second part of the corollary, let us consider u 2 Y. We have

already proved that

jjW ðjuj2ÞujjX � C jjujj3X : ð2:22Þ
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Applying operator Hx to Eqs. (1.11)�(1.12) gives

�@ 2
zHxðW ðjuj2ÞÞ ¼ Hxðjuj2Þ; ðx; zÞ 2 �;

HxðW ðjuj2ÞÞðx; 0Þ ¼ HxðW ðjuj2ÞÞðx; 1Þ ¼ 0:

Thus, combining Lemmas 2.4 and 2.3 gives

jjHxðW ðjuj2ÞÞjjX � C jjHxðjuj2ÞjjX � C jjujjYjjujjX : ð2:23Þ
Now, note that

HzðW ðjuj2ÞÞ ¼ �@ 2
zW ðjuj2Þ þV2W ðjuj2Þ ¼ juj2 þ V2W ðjuj2Þ 2 X :

Moreover, we have

jjH 2
z ðW ðjuj2ÞÞjjL2ð�Þ � jjHzðW ðjuj2ÞÞjjX ;

which applying the estimate (2.12) of Lemma 2.4 leads to

jjH 2
z ðW ðjuj2ÞÞjjL2ð�Þ � C jjW ðjuj2ÞjjX þ C jj@ 2

zðW ðjuj2ÞÞjjX � C jjujj 2X : ð2:24Þ
Now, de¯ne

W ðjuj2ÞpðxÞ ¼ hW ðjuj2Þðx; �Þ�pi;
De¯nition (2.5) gives

jjH 1þ�=2
z ðW ðjuj2ÞÞjj2L 2ð�Þ ¼

X
p�0

E 2þ�
p jjW ðjuj2Þpjj2L2ð�Þ

�
X
p�0

E 4
p jjW ðjuj2Þpjj2L 2ð�Þ

 !
1=2

�
X
p�0

E 2�
p jjW ðjuj2Þpjj 2L2ð�Þ

 !
1=2

� jjH 2
z ðW ðjuj2ÞÞjjL 2ð�Þ

X
p�0

E 2
p jjW ðjuj2Þpjj2L 2ð�Þ

 !
1=2

� C jjujj2X jjHzðW ðjuj2ÞÞjjL2ð�Þ � C jjujj4X ;
where we used (2.24), the fact that � < 1=2 and that Ep is increasing and tends to

in¯nity with p. Finally,

jjH 1þ�=2
z ðW ðjuj2ÞÞjjL2ð�Þ � C jjujj 2X : ð2:25Þ

Combining (2.22) with (2.23) and (2.25) ¯nally provides us with the following

tame estimate, according to (2.3):

8 u 2 Y; jjW ðjuj2ÞjjY � C jjujjYjjujjX ;
where C > 0 does not depend on u. Following the exact same lines, (2.17) can also

easily be proved. Now, let us consider any function u 2 Y and prove estimate (2.18)
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by the equivalence (2.4). First, we know that

jjW ðjuj2ÞujjH 2þ�ð�Þ � jjW ðjuj2ÞjjH 2þ�ð�ÞjjujjL1ð�Þ þ jjujjH 2þ�ð�ÞjjW ðjuj2ÞjjL1ð�Þ
� jjW ðjuj2ÞjjYjjujjX þ jjujjYjjW ðjuj2ÞjjX ;

where we used the continuous embeddings X 
 L1ð�Þ and Y 
 H 2þ�ð�Þ. Applying

(2.16) and (2.13) gives

jjW ðjuj2ÞujjH 2þ�ð�Þ � C jjujj2X jjujjY : ð2:26Þ
As far as the norm HxðW ðjuj2ÞuÞ is concerned, we have

HxðW ðjuj2ÞuÞ ¼ HxðW ðjuj2ÞÞu �W ðjuj2Þ�xu � 2rxðW ðjuj2ÞÞ � rxu: ð2:27Þ
However, since X is an algebra,

jjHx W ðjuj2Þ� �
ujjX �C jjHx W ðjuj2Þ� �jjX jjujjX

�C jjujjYjjujj2X ; ð2:28Þ

where we used (2.18) and the equivalence (2.4).

Moreover,

jjW ðjuj2Þ�xujjX �C jjW ðjuj2ÞjjX jj�xujjX
�C jjujjYjjujj2X ; ð2:29Þ

where we used (2.13) and the equivalence (2.4). Finally,

rxðW ðjuj2ÞÞ � rxu ¼
X2
i¼1

@iðW ðjuj2ÞÞ@iu þW ðjuj2Þ@iu: ð2:30Þ

Fix i 2 f1; 2g, we have

@iðW ðjuj2ÞÞ ¼ W ð@iðjuj2ÞÞ
and applying Lemma 2.4 with f ¼ @1ðjuj2Þ and " ¼ 0 yields

jjW ð@iðjuj2ÞÞjjX � C jj@iðjuj2ÞjjX :
Therefore, combined with (2.30), this leads to

jjrxðW ðjuj2ÞÞ � rxujjX � C
X2
i¼1

jj@iðjuj2ÞjjX jj@iujjX � C
X2
i¼1

jj@iujj 2X jjujjX : ð2:31Þ

Applying Lemma 2.3, combined with (2.31) allows us to conclude that

jjrxðW ðjuj2ÞÞ � rxujjX � C jjujj2X jjujjY : ð2:32Þ
Finally, combining (2.32) with (2.27), (2.28) and (2.29) yields

jjHxðW ðjuj2ÞuÞjjX � C jjujj2X jjujjY ;
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which combined with (2.26) and the equivalence (2.4) concludes the proof of (2.18).

Estimates (2.16) and (2.18) are now proved. As far as (2.19) is concerned, we write

W ðjuj2Þu �W ðjvj2Þv ¼ ðW ðjuj2Þ �W ðjvj2ÞÞu þW ðjvj2Þðu � vÞ:
Then, as Y is an algebra,

jjW ðjuj2Þu �W ðjvj2ÞvjjY � jjW ðjuj2Þ �W ðjvj2ÞjjYjjujjY þ jjW ðjvj2ÞjjYjju � vjjY
� jjW ððjuj þ jvjÞju � vjÞjjYjjujjY þ jjW ðjvj2ÞjjYjju � vjjY
� C jjjuj þ jvjjjYjju � vjjYjjujjY þ C jjvjjX jjvjjYjju � vjjY ;

where we used (2.16) and (2.17). Therefore, we get

jjW ðjuj2Þu �W ðjvj2ÞvjjY � C ðjjujj2Y þ jjvjj2YÞjju � vjjY ;
which ends the proof of (2.19).

Now that we have obtained a priori estimates on both V " and W nonlinearities,

we focus on the existence and uniqueness results for both initial (1.1)�(1.5) and

intermediate system (1.9)�(1.12).

2.3. Approximation result

Proposition 2.1. Let " > 0 be ¯xed and consider two initial data  0 2 X and
~ 0 2 Z, where Z denotes either X or Y.
Then, there exists a common T0 > 0 depending only on jj 0jjX and jj ~ 0 jjX (in

particular T0 does not depend on ") such that both initial Schr€odinger�Poisson

system (1.1)�(1.5) and intermediate system (1.9)�(1.12) with initial data  0 and ~ 0 ,

respectively, possess unique solutions denoted by  " 2 Cð½0;T0�;XÞ and ~ " 2
Cð½0;T0�;ZÞ.

Moreover, there exists a common bound M > 0 depending only on jj 0jjX and

jj ~ 0 jjZ such that

sup
0<"<1

ðjj "jjCðð0;T0Þ;XÞ; jj ~ " jjCðð0;T0Þ;ZÞÞ � M : ð2:33Þ

Besides, if ~ 0 2 Y, then the following holds:

8 t 2 ½0;T0�; jj "ðt; �Þ � ~ "ðt; �ÞjjX � C ðjj 0 � ~ 0 jjX þ "2Þ; ð2:34Þ
where C > 0 does not depend on ".

Proof. As a ¯rst step, let us prove the existence and uniqueness of solutions  "

(respectively ~ ") to (1.1)�(1.5) (respectively (1.9)�(1.12)) on time intervals ½0;T"Þ
(respectively ½0; ~T"Þ). In that view, we de¯ne the following problem, in which F "ðu "Þ
denotes either V "ðju "j2Þ or W ðju "j2Þ:

i@tu
" ¼Hxu

" þ 1

"2
Hzu

" þ F "ðu "Þu "; t > 0; ðx; zÞ 2 �; ð2:35Þ
u "ðt; x; 0Þ ¼ u "ðt; x; 1Þ ¼ 0; t > 0; x 2 R

2; ð2:36Þ
u "ð0; x; zÞ ¼ u0; ðx; zÞ 2 �: ð2:37Þ
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Of course, we look for a solution u " of this Cauchy problem as a solution to the

following ¯xed-point equation given by the Duhamel formula:

u "ðt; x; zÞ ¼ e�itH "
u0ðx; zÞ � i

Z t

0

e�iðt�sÞH "
F "ðu "Þu "ðs; x; zÞ ds; ð2:38Þ

where H " :¼ Hx þ ð1="2ÞHz . In order to state the existence of a unique solution in X
or Y on a time interval ½0;T"� to this ¯xed-point equation, we use the tame estimates

(2.15) and (2.19) stated in Corollary 2.1.

Even more, if t > 0 is ¯xed and if u; v 2 Cð½0; tÞ;XÞ, then by the fact that eitH" is

unitary in X (as Hz and Hx commute with H "), the following Lipschitz estimate holds

true: Z t

0

e�iðt�sÞH " ½F "ðuÞuðsÞ � F "ðvÞvðsÞ�ds
���� ����X

� t � sup
s2½0;t�

jjF "ðuÞuðsÞ � F "ðvÞvðsÞjjX
� t � C ðjjujj2Cð½0;t�;XÞ þ jjvjj2Cð½0;t�;XÞÞjju � vjjCð½0;t�;XÞ;

where we used the tame estimate (2.15) at hand on F "ðu "Þ. Similarly, we prove by

the tame estimate (2.19) at hand for W ðju "j2Þ that, for all u; v 2 Cð½0; tÞ;YÞ,Z t

0

e�iðt�sÞH " ½W ðjuj2ÞuðsÞ �W ðjvj2ÞvðsÞ�ds
���� ����Y

� t � C ðjjujj2Cð½0;t�;YÞ þ jjvjj2Cð½0;t�;YÞÞjju � vjjCð½0;t�;YÞ:

It is now easy (see, for example, Ref. 11) to conclude that, for any " > 0, there exists a

possibly small time T" > 0, and a unique solution u " 2 Cð½0;T"�;XÞ to the integral

equation (2.38), and this solution incidently provides the unique solution to the

nonlinear Schr€odinger system (2.35)�(2.37). We similarly prove the existence and

uniqueness on a possibly small time interval ½0;T"� of a solution u " 2 Cð½0;T"�;YÞ to
the system (2.35)�(2.37), where u0 2 Y and F "ðu "Þ ¼ W ðju "j2Þ. This task is left to

the reader.

Let us now prove that there is a common lower bound T0 for all these T" as "

°uctuates, i.e. T" � T0; for any " > 0. If u " is the solution of the integral equation

given by the Duhamel formula (2.38) with initial datum u0 2 X , then

jju "ðtÞjjX � jju0jjX þ
Z t

0

jjF "ðu "Þu "ðsÞjjXds

� jju0jjX þ C

Z t

0

jju "ðsÞjj 3Xds; ð2:39Þ

where we applied (2.14). Hence, we get

jju "jjCð½0;t�;XÞ � jju0jjX þ Ctjju "jj3Cð½0;t�;XÞ:
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Therefore, by a bootstrap argument (see, for example, Lemma 5.5 in Ref. 7), we prove

the existence of such a T0, and we obtain

8 t 2 ð0;T0Þ; jju "ðt; �ÞjjX � C jju0jjX ; ð2:40Þ
where C > 0 does not depend on ".

In the case where u0 2 Y and F "ðu "Þ ¼ W ðju "j2Þ, the previous work ensures that

(2.40) still holds true. Let t 2 ð0;T0Þ be ¯xed. Using the Duhamel formula (2.38), the

tame estimate (2.18) at hand on W ðjuj2Þu in Y and (2.40) leads to

jju "ðtÞjjY � jju0jjY þ C

Z t

0

jju "ðsÞjj2X jju "ðsÞjjYds

� jju0jjY þ C jju0jj2X
Z t

0

jju "ðsÞjjYds:

The Gronwall lemma allows us to conclude that there exists a common existence time

T1 < T0 that only depends on jju0jjX and that

8 t 2 ð0;T1Þ; jju "ðt; �ÞjjY � C jju0jjY ;
where C does not depend on ". Both estimates therefore also provide us with a com-

mon boundM > 0 that only depends on jj 0jjX and jj ~ 0 jjY and end the proof of (2.33).

In order to prove the convergence result (2.34), we set  0 2 X and ~ 0 2 Y. Consider
the initial Schr€odinger�Poisson system (1.1)�(1.5) and the intermediate system

(1.9)�(1.12), with initial datum  0 and ~ 0 , respectively. We have already proved the

existence and uniqueness of their respective solutions denoted by  " 2 Cð½0;T0�;XÞ
and ~ " 2 Cð½0;T0�;YÞ. The di®erence !" :¼  " � ~ " satis¯es the following equation:

i@t!
" ¼ H "!" þ V "ðj "j2Þ " � V ðj ~ " j2Þ ~ " þ ðV ðj ~ " j2Þ �W ðj ~ " j2ÞÞ ~ ";

!"ð0; x; zÞ ¼  0ðx; zÞ � ~ 0ðx; zÞ; ðx; zÞ 2 �:

According to the Duhamel formula,

!"ðtÞ ¼ e�itH "ð 0 � ~ 0Þ � i

Z t

0

e�iðt�sÞH "ðV "ðj "j2Þ " � V "ðj ~ " j2Þ ~ "ÞðsÞ þ f "ðsÞds;

where

f "ðsÞ :¼ ðV ðj ~ " j2Þ �W ðj ~ " j2ÞÞ ~ ":
Since e�itH "

is unitary on X (by the fact that Hx and Hz commute with H ") and

ðX ; jj jjX Þ is an algebra, then we have

jj!"ðtÞjjX � jj 0 � ~ 0 jjX þ C

Z t

0

jjV "ðj "j2Þ "

�V "ðj ~ " j2Þ ~ " jjXds þ
Z t

0

jjf "ðsÞjjXds

� jj 0 � ~ 0 jjX þ CM 2

Z t

0

jj!"ðsÞjjXds þ
Z t

0

jjf "ðsÞjjXds; ð2:41Þ

where we used (2.15) and the uniform bound M given by (2.33).
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In order to estimate jjf "ðsÞjjX , we write

jjf "ðsÞjjX � jjV "ðj ~ " j2ÞðsÞ �W ðj ~ " j2ÞðsÞjjX jj ~ "ðsÞjjX : ð2:42Þ
Note that v "ðj ~ " j2Þ :¼ V "ðj ~ " j2ÞðsÞ �W ðj ~ " j2ÞðsÞ satis¯es
�@ 2

z v
"ðj ~ " j2Þ � "2�xv

"ðj ~ " j2Þ ¼ "2�xW ðj ~ " j2Þ; t 2 ð0;T0Þ; ðx; zÞ 2 �; ð2:43Þ

v "ðj ~ " j2Þðt; x; 0Þ ¼ v "ðj ~ " j2Þðt; x; 1Þ ¼ 0; t 2 ð0;T0Þ; x 2 R
2 ð2:44Þ

and therefore applying Lemma 2.4 to Eqs. (2.43)�(2.44) gives, for all t 2 ð0;T0Þ,
jjv "ðj ~ " j2ÞðtÞjjX �C"2jj�xW ðj ~ " j2ÞðtÞjjX � C"2jjW ðj ~ " j2ÞðtÞjjY

�C"2jj ~ "ðtÞjj2Y � CM 2"2; ð2:45Þ

where we used (2.16) and the uniform bound M given by (2.33). Finally, combining

(2.41) with (2.42), (2.45) and (2.33) leads to

jj!"ðtÞjjX � jj 0 � ~ 0 jjX þ C"2 þ C

Z t

0

jj!"ðsÞjjXds;

which by the Gronwall lemma concludes the proof of (2.34).

3. Time Averaging of the Intermediate System

In this section, we focus on the intermediate system (1.9)�(1.10). In order to ¯lter

out the time oscillations, we denote by �" the ¯ltered wave function as in (1.30),

which solves system (1.33)�(1.35). In order to state almost-periodicity properties for

the nonlinearityG de¯ned by (1.32), we ¯rst recall various known facts about almost-

periodic functions (in time) with values in Z (in space) that will be generally denoted

as �ð�Þ. The key fact is the existence of their long-time averaging

�av :¼ lim
T!þ1

1

T

Z T

0

�ð�Þd�;

and the point is, no small divisor estimate is needed to de¯ne these long-time

averages, as recalled in Proposition 3.2. Then, Proposition 3.3 states several key facts

about the nonlinearity G, in particular, we state some tame estimates on G (see (3.1)

and (3.2)) and we prove that G is almost periodic in time with values in Z (see

Proposition 3.3(i)). It therefore has a long-time average Gav (see (3.3)), computed in

(3.4) which inherits the tame estimates at hand for G (see (3.5) and (3.6)).

This proposition therefore allows us to state existence, uniqueness and regularity

results for both intermediate and averaged systems in Corollary 3.1. Finally,

Proposition 3.4 states the convergence of the ¯ltered intermediate model towards the

limit model in X with additional Y regularity assumptions on the initial datum. This

point will be solved in the next section by a regularization procedure. Let us begin

with the following de¯nition, borrowed from Refs. 1 and 20.
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De¯nition 3.1. Let Z denote either X or Y. A function � : � 2 R 7! �ð�Þ, with
� 2 CðR;ZÞ, is said to be almost-periodic, and we note � 2 APðR;ZÞ, whenever the
set of translates

f� 7! �ð� þ hÞ; h 2 Rg
has compact closure in the norm L1ðR;ZÞ.

This de¯nition using the precompactness criterion is usually referred to as

Bochner's criterion for almost-periodicity. It is proved, for example, in Ref. 20 and

recalled in Ref. 1, that this de¯nition is equivalent to a criterion based on the

approximation by trigonometric polynomials.

Proposition 3.1. Equivalently, � 2 APðR;ZÞ if and only if �ð�Þ is the strong limit

of trigonometric polynomials, i.e. for any � > 0, there exists a trigonometric

polynomial

��ð�Þ :¼
XN�

n¼1

�n;�e
i	n;�� such that sup

�2R
jj�ð�Þ ���ð�ÞjjZ � �;

where the �n;�'s belong to Z, the 	n;�'s belong to R and N� is some ¯nite integer.

With this de¯nition, it turns out that one may be willing to do some kind of

Fourier analysis on almost-periodic functions, and, in particular, the long-time

averaging (that stands for the mean mode in the Fourier analysis) is well-de¯ned as is

stated in the following proposition borrowed from Refs. 1 and 20.

Proposition 3.2. Consider � 2 APðR;ZÞ. Then, the following strong limit exists

in Z,

�av :¼ lim
T!1

Z T

0

1

T
�ð�Þd�:

Moreover, for any 	 2 R, the Fourier-like coe±cient

b�ð	Þ :¼ lim
T!1

1

T

Z T

0

�ð�Þe�i	�d�;

is well-de¯ned as a limit in Z. Last, the following Bessel-like inequality holds: for any

sequence f	ngn2N 2 RN, we haveX
n2N

jjb�ð	nÞjj2Z � lim
T!þ1

1

T

Z T

0

jj�ð�Þjj 2Zd� � jj�jj 2L1ðR;ZÞ:

Note that a simple particular case of almost-periodic functions is given by quasi-

periodic functions, that is, functions which, for any given ¯nite-dimensional frequency

vector ! ¼ ð!1; . . . ; !N Þ whose components are assumed to be pairwise rationally

independent, can be written as the ¯nite sum of N trigonometric monomials.

Let us now state a few consequences of Propositions 3.1 and 3.2 that will be of

great use in the study of the to-be-averaged nonlinearity G.
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Proposition 3.3. Consider any function u 2 Z, then the following conditions hold:

(i) G is in APðR;ZÞ: If W ðje�i�Hzuj2Þ is de¯ned by (1.11)–(1.12), then

� 7! ei�HzW ðje�i�Hzuj2Þe�i�Hzu :¼ Gð�; uÞ
belongs to APðR;ZÞ.

(ii) Tame estimate for G in Z: u 7! Gð�; uÞ is locally Lipschitz in Z and satis¯es the

following tame estimates:

8 u 2 Z; 8 � > 0; jjGð�; uÞjjZ � C jjujj2X jjujjZ ð3:1Þ
and,

8 u; v 2 Z; 8 � > 0;

jjGð�; uÞ �Gð�; vÞjjZ � C ðjjujj2Z þ jjvjj2ZÞjju � vjjZ ; ð3:2Þ
where C is a positive constant that only depends on the nonlinearity G.

(iii) Long-time averaging for Gð�; uÞ in Z: one may de¯ne its long-time averaging as

the strong limit in Z,

GavðuÞ :¼ lim
T!1

1

T

Z T

0

Gð�; uÞd�: ð3:3Þ

Moreover, GavðuÞ is given by

GavðuÞ ¼
X
p�0

XXX
ðq;r;sÞ2�p

�pqrsuqurus�p ð3:4Þ

where, for all k � 0, uk :¼ hu; �kiL2ð0;1Þ, �p :¼ fðq; r; sÞ 2 N3; Ep þ Eq ¼ Er þ
Esg and

�pqrs ¼
Z 1

0

Z 1

0

Kðz; z 0Þ�rðz 0Þ�qðz 0Þ�sðzÞ�pðzÞ dz 0dz:

(iv) Tame estimate for Gav in Z: the function u 2 Z 7! GavðuÞ is locally Lipschitz in

Z and satis¯es the following tame estimates:

8 u 2 Z; jjGavðuÞjjZ � C jjujj 2X jjujjZ ð3:5Þ
and

8 u; v 2 Z; jjGavðuÞ �GavðvÞjjZ � C ðjjujj2Z þ jjvjj 2ZÞjju � vjjZ ; ð3:6Þ
where C is a positive constant that only depends on the nonlinearity G.

Gathering these properties on the nonlinearities G and Gav now allows us to state

the following corollary that proves the existence, uniqueness and smoothness results

for both ¯ltered intermediate and averaged system.

Corollary 3.1. Let " > 0 be ¯xed and consider any function  0 in Z. There

exists T0 > 0 that only depends on jj 0jjX such that the ¯ltered intermediate system
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(1.32)�(1.35) and the averaged system,

i@t�ðtÞ ¼Hx�ðtÞ þGavð�ðtÞÞ; t > 0; ðx; zÞ 2 �; ð3:7Þ
�ðt; x; 0Þ ¼�ðt; x; 1Þ ¼ 0; t > 0; x 2 R

2; ð3:8Þ
�ð0; x; zÞ ¼ 0ðx; zÞ; ðx; zÞ 2 �; ð3:9Þ

both admit a unique solution in Cð½0;T0�;ZÞ, respectively, denoted by �" and �.

Moreover, there exists M > 0 depending only on jj 0jjZ such that

sup
0<"<1

ðjj�"jjC 0ð½0;T0�;ZÞ þ jj�jjC 0ð½0;T0�;ZÞÞ � M : ð3:10Þ

Proof of Proposition 3.3. (i) and (iii) We ¯rst claim that, given any � 2
APðR;ZÞ; the function � 7! e	i�Hz� also belongs toAPðR;ZÞ. In that view, applying

Proposition 3.1, we use the characterization of almost-periodic functions as the

strong limit inH‘ of trigonometric polynomials. Fix a small � > 0 and � 2 APðR;ZÞ,
we may ¯nd a trigonometric polynomial

��ð�Þ ¼
XN�

n¼1

�n;�e
i	n;�� such that jj����jjL1ðR;ZÞ � �; ð3:11Þ

where the �n;� belong to Z and the 	n;� are real numbers. As the operator e	i�Hz

preserves the Z norm, we obtain

jje	i�Hz�� e	i�Hz��jjL1ðR;ZÞ � �:

Now, since the �n;�'s coincide with the Fourier-like coe±cients c��ð	n;�Þ de¯ned in

Proposition 3.2, the Bessel-like inequality (3.1) reads

XN�

n¼1

jj�n;�jj 2X � jj�jjL1ðR;ZÞ:

Besides, for � small enough, we clearly have from (3.11) the uniform in time following

bound:

jj��jjL1ðR;ZÞ � C ; ð3:12Þ

where C does not depend on �. By the equivalence stated in Lemma 2.1 and

Remark 2.1 and to de¯nition (2.3), estimate (3.12) reads

XN�

n¼1

X
p�0

ð1þ E 2þ�
p Þjjh�n;�; �pijj2L 2ðR 2Þ þ

XN�

n¼1

X
p�0

ð1þ E 2
pÞjjhHx�n;�; �pijj2L2ðR2Þ

þ
XN�

n¼1

X
p�0

jjhH 2
x �n;�; �pijj2L2ðR 2Þ � C : ð3:13Þ
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Let us now approximate the in¯nite sum �� ¼Pp�0h��; �pi�p by a ¯nite sum. In

that view, one may ¯nd P� 2 N such that

XN�

n¼1

X
p>P�

ð1þ E 2þ�
p Þjjh�n;�; �pijj2L2ðR 2Þ þ

XN�

n¼1

X
p>P�

ð1þ E 2
pÞjjhHx�n;�; �pijj2L2ðR2Þ

þ
XN�

n¼1

X
p>P�

jjhH 2
x �n;�; �pijj2L2ðR2Þ � �:

In particular, with this choice for P�, and by (2.6) and (2.5), we recover the estimate

sup
�2R

��ð�Þ �
XP�
p¼0

h��ð�Þ; �pi�p

�����
�����
Z
� �;

which leads to

sup
�2R

e	i�Hz��ð�Þ �
XP�
p¼0

e	i�Eph��; �pi�p

�����
�����
Z
� �:

Finally, the functionXP�
p¼0

e	i�Eph��; �pi�p ¼
XN�

n¼0

XP�
p¼0

e	i�ðEpþ	n;�Þh�n;�; �pi�p

provides us with a trigonometric polynomial with coe±cients in Z that is a good

approximation of e	i�Hz�ð�Þ in Z. Indeed, it satis¯es the estimate

sup
�2R

e	i�Hz�ð�Þ �
XN�

n¼0

XP�
p¼0

; e	i�ðEpþ	n;�Þh�n;�; �pi�p

�����
�����
Z
� 2�:

This proves that the function � 7! e	i�Hz�ð�Þ belongs to APðR;ZÞ.
To ¯nish the proof of point (i), we only need to prove that, given � 2 APðR;ZÞ,

then W ðj�j2Þ still belongs to APðR;ZÞ. In that view, we recall the explicit form of

W ðj�j2Þ given in (1.15):

W ðj�j2Þðt; x; zÞ ¼
Z 1

0

Kðz; z 0Þj�ðt; x; z 0Þj2 dz 0: ð3:14Þ

Fix � 2 R, then, in order to approximate j�j2 by a trigonometric polynomial with

coe±cients in H‘, we use (3.11):

j�ð�Þj2 � j��ð�Þj2k kZ � jj�ð�ÞjjZ þ jj��ð�ÞjjZð Þ �ð�Þ ���ð�Þk kZ
� jj�jjL1ðR;ZÞ þ jj��jjL1ðR;ZÞ
� �jj����jjL1ðR;ZÞ � ð2C þ �Þ�;

where we applied (3.11) and (3.12), and where jj�jjL1ðR;ZÞ � C . Moreover, as Z is an

algebra, then it is obvious that j��ð�Þj2 is a trigonometric polynomial in time with
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coe±cients in Z. To conclude, by (3.14), it is clear thatZ 1

0

Kðz; z 0Þj��ð�Þj2dz 0

is a trigonometric polynomial with coe±cients in Z that approaches

W ðj�ð�Þj2Þðt; x; zÞ in L1ðR;ZÞ as � tends to zero. Finally, since � 2 APðR;ZÞ, � is

the limit in L1ðR;ZÞ of trigonometric polynomials ��ð�Þ as in (3.11), using the fact

that Z is an algebra, for each � > 0, the function

W ðj��ð�Þj2Þ��ð�Þ
is a trigonometric polynomial (in time) with coe±cient in Z that approaches

W ðj�ð�Þj2Þ�ð�Þ as � ! 0 in the space L1ðR;ZÞ. This ends the proof of (i).

Combining this point (i) and Proposition 3.2, one may de¯ne the long-time

averaging of G in Z, which proves the ¯rst part of point (iii). In order to prove (3.4),

consider u 2 Z. Then, if �ð�Þ denotes �ð�Þ :¼ e�i�Hzu 2 Z, then � 2 APðR;ZÞ.
Indeed, as u 2 Z and ð�pÞp is an Hilbertian basis of L2ð0; 1Þ, then

uðx; zÞ :¼
X
p�0

huðx; �Þ; �pi�pðzÞ :¼
X
p�0

upðxÞ�pðzÞ;

where the limit holds in Z. As a consequence, �ð�Þ ¼Pp�0 upðxÞe�i�Ep�pðzÞ can be

approached in Z, for any ¯xed � > 0 by a ¯nite sum

��ð�Þ :¼
XP�
p¼0

upe
�iEp��p: ð3:15Þ

Therefore, we are here in a simple case where the frequencies of the approaching

sequence of trigonometric polynomials do not depend on �.

Computing ei�HzW ðj��j2Þ�� with (3.15) leads toX1
p¼0

XXX
0�q;r;s�P�

urðxÞusðxÞuq ðxÞe�iðErþEs�Eq�EpÞ��pqrs�pðzÞ; ð3:16Þ

which can be approached uniformly in time, choosing as previously an appropriate

truncation P� for the ¯rst sum in (3.16), byXXXX
0�p;q;r;s�P�

urðxÞusðxÞuq ðxÞe�iðErþEs�Eq�EpÞ��pqrs�pðzÞ:

Now, its long-time average is given byXXXX
0 � p; q; r; s � P�

ðq; r; sÞ2�p

urðxÞusðxÞuq ðxÞ�pqrs�pðzÞ

where �pqrs and �p are de¯ned by

�pqrs :¼
Z 1

0

Z 1

0

Kðz; z 0Þ�rðz 0Þ�qðz 0Þ�sðzÞ�pðzÞdz 0dz
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and

8 p � 0; �p :¼ fðq; r; sÞ 2 N
3; Ep þ Eq ¼ Er þ Esg:

As the convergence of ei�HzW ðj��j2Þ�� toward ei�HzW ðj�j2Þ� is uniform in time,

the limit � ! 0 and the average procedure can easily be interverted, which leads to

formula (3.4) and ends the proof of (iii).

(ii) and (iv) Consider any u 2 Z; and ¯x � > 0. Then, since e�i�Hz is unitary in the

Z-norm, we have

jjGð�; uÞjjZ � jjW ðje�i�Hzuj2Þe�i�HzujjZ
and, using (2.18), we get

jjGð�; uÞjjZ � C jje�i�Hzujj2X jje�i�HzujjZ � C jjujj2X jjujjZ :
Similarly, consider u; v 2 Z and ¯x � > 0, then

jjGð�; uÞ �Gð�; vÞjjZ � jjW ðje�i�Hzuj2Þe�i�Hzu �W ðje�i�Hz vj2Þe�i�Hz vjjZ :
Now, applying (2.19) leads to

jjGð�; uÞ �Gð�; vÞjjZ � C ðjjujj2Z þ jjvjj2ZÞjju � vjjZ
which ends the proof of point (ii). Let us now prove that these tame estimates hold

true when we average the nonlinearity G. Consider any u 2 Z. Since Gav is de¯ned in

(3.3) as a strong limit in Z, then

GavðuÞk kZ ¼ lim
T!1

1

T

Z T

0

Gð�; uÞd�
���� ����Z � sup

�2R
jjGð�; uÞjjZ � C jjujj 2X jjujjZ

which proves (3.5). A similar computation gives

jjGavðuÞ �GavðvÞjjZ � jjGð�; uÞ �Gð�; vÞjjL1ðR;ZÞ

� C ðjjujj 2Z þ jjvjj 2ZÞjju � vjjZ :
This ends the proof of point (iv).

Proof of Corollary 3.1. The existence, regularity and uniqueness result is an easy

task. Indeed, the existence of a common existence time for the solutions to the

intermediate system has already been established in Proposition 2.1. We obtain the

associated solution of the ¯ltered intermediate system by ¯ltering out the time

oscillations due to the operator Hz as in (1.30).

Now, as far as the averaged system is concerned, the result of existence, uniqueness

and regularity is an immediate corollary of Proposition 3.3. Indeed, as already seen in

the proof of Proposition 2.1 the key ingredients in order to prove the existence and

uniqueness of a local-in-time solution to the nonlinear Schr€odinger equation (3.7) is

the fact that the mapping

u 2 Z 7! GavðuÞ 2 Z
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is locally Lipschitz, which is the case here by the estimates (3.5) and (3.6), given by

Proposition 3.3, combined with the fact that the propagator e�it�x is unitary in Z.

We again refer to Ref. 11 on these matters.

Gathering all these properties allows us to perform the standard nonlinear analysis

of the equation obtained by averaging in time the ¯ltered equation (1.33)�(1.34),

and we state the following proposition.

Proposition 3.4. Let " > 0 be ¯xed and consider any  0 2 Y. If �" and � denote the

respective solutions to both ¯ltered intermediate system (1.32)�(1.35) and averaged

system (3.7)�(3.9) in C0ð½0;T0�;YÞ, de¯ned by Corollary 3.1, then the following

convergence holds:

jj�" � �jjCð½0;T0�;XÞ �!
"!0

0:

Remark 3.1. First, note that though the solutions of Proposition 3.1 have the

smoothness C0ð½0;T0�;YÞ, the convergence of the solution �" of the ¯ltered

intermediate system toward the solution � of the averaged equation only holds in

the weaker space C0ð½0;T0�;XÞ. The fact that �" ! � in C0ð½0;T0�;XÞ provided  0

only belongs to X is proven in the next section.

Proof of Proposition 3.4. In order to prove this convergence result, we follow

the same lines as in Ref. 1. In that view, let us introduce a \large time" that we

denote Tð"Þ in order to approach the averaged nonlinearity Gavð�Þ :¼
limT!1ð1=TÞ R T

0
Gð�;�Þd� by

~G "ðt;�Þ :¼ 1

Tð"Þ
Z tþTð"Þ

t

Gð�;�Þd�: ð3:17Þ

As a ¯rst step, we de¯ne the auxiliary solution ~�
"
to

i@t ~�
" ¼Hx

~�
" þ ~G "

t

"2
; ~�

"

� �
; ð3:18Þ

~�
"ðx; 0Þ ¼ ~�

"ðx; 1Þ ¼ 0 ~�
"ð0Þ ¼  0 ð3:19Þ

and ¯nd some preliminary bounds.

Step 1. Some preliminary bounds:

Fix � 2 Y and � > 0. From (3.1), there exists C > 0, independent of " such that

jj ~G "ð�;�ÞjjY � 1

Tð"Þ
Z �þTð"Þ

�

jjGðs;�ÞjjYds � C jj�jj2X jj�jjY :

Using the exact same arguments than in the proof of Proposition 2.1, there exist a

common existence time, still denoted by T0, independent of " to the intermediate

system (1.33)�(1.35), the auxiliary system (3.18)�(3.19) and the limit system (3.7)�
(3.9) and a common upper-bound M > 0 in Y:

sup
0<"<1

jj�"jjCðð0;T0Þ;YÞ þ jj ~�"jjCðð0;T0Þ;YÞ þ jj�jjCðð0;T0Þ;YÞ
� 	 � M : ð3:20Þ
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Moreover, the following uniform Lipschitz property may be stated:

sup
0<"<1

sup
0���T0

" 2

sup
jjujjY�M
jjvjjY�M

½jjGð�; uÞ �Gð�; vÞjjZ þ jj ~G "ð�; uÞ � ~G "ð�; vÞjjZ

þ jjGavð�; uÞ �Gavð�; vÞjjZ� � CM 2jju � vjjZ ; ð3:21Þ
where C > 0 does not depend on ".

Step 2: Estimating ~�
" � � in X :

In order to estimate the di®erence jj~�" � �jjCðð0;T0Þ;XÞ, we ¯rst estimate, for any

given u 2 Y, the di®erence jj ~G "ð t
" 2 ; uÞ �GavðuÞjjCðð0;T0Þ;XÞ. In that view, we follow the

third and fourth steps of Ref. 1 and, for any u ¯xed in Y, let us introduce the following
convergence rate:

�ð"; uÞ :¼ sup
0���2T0="2

"2

2T0

Z �

0

½Gð
; uÞ �GavðuÞ�d

���� ����X : ð3:22Þ

Inspired by Lemma 4.3 in Ref. 1, we state the following lemma.

Lemma 3.1. (i) For any given u 2 Y, we have �2ð"; uÞ�!"!0
0:

(ii) Fix M > 0 as in (3.20), and introduce the uniform convergence rate

�M ð"Þ :¼ sup
jjvjjY�M

�ð"; vÞ; then �M ð"Þ�!
"!0

0: ð3:23Þ

(iii) Assume that, for " small enough, "2Tð"Þ � T0, if M > 0 is ¯xed as in (3.20), then

sup
jjujjY�M

~G "

t

"2
; u

� �
�GavðuÞ

���� ����C 0ðð0;T0Þ;XÞ
� 2T0

�M ð"Þ
"2Tð"Þ : ð3:24Þ

Remark 3.2. (a) As the proof of this lemma follows the one of Lemma 4.3 in Ref. 1,

we refer the reader to this reference. The key argument appears in the proof of point

(ii). It indeed lies on the compactness of the embedding Y 
 X . The need of this

compact embedding, as well as the loss of two derivative, motivates the choice of the

regularization space Y.
(b) The right-hand side term in (3.24) does not necessarily tend to zero with ". It

provides us with a necessary condition for the choice of Tð"Þ in order for it to tend to

zero. In fact, we will choose Tð"Þ such that "2Tð"Þ ! 0 as "! 0 (note that "2Tð"Þ ¼ffiffiffiffiffiffiffiffiffi
�2;M

p
will do).

Now, for any t 2 ð0;T0Þ, !"ðtÞ :¼ ~�
"ðtÞ � �ðtÞ satis¯es

i@t!
"ðtÞ ¼ Hx!

"ðtÞ þ ~G "

t

"2
; ~�

"ðtÞ
� �

�Gavð�ðtÞÞ;
!"ðx; 0Þ ¼ !"ðx; 1Þ ¼ 0; !"ð0; x; zÞ ¼ 0

and therefore, for all t 2 ð0;T0Þ,

jj!"ðtÞjjX �
Z t

0

~G "

s

"2
; ~�

"ðsÞ

 �

�Gavð�ðsÞÞ
��� ���

X
ds:
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Inserting ~G "ð s
"2 ; �ðsÞÞ in the di®erence and combining the Lipschitz estimate (3.21)

with the uniform bound (3.20) at hand for � and ¯nally applying point (ii) of

Lemma 3.1, we recover

jj!"ðtÞjjX � CM 2

Z t

0

jj!"ðsÞjjXds þ 2T 2
0

�M
"2Tð"Þ :

By Gronwall lemma, there ¯nally exists CðT0;M Þ > 0 such that

8 0 � t � T0; jj~�"ðtÞ � �ðtÞjjX � C
�M

"2Tð"Þ : ð3:25Þ

Step 3. Estimating �" � ~�
"
:

This estimate is more delicate to handle with than the previous one as it relies on

an appropriate integration by part in time. Let us ¯x 0 < T < T0, here, T is meant to

be close to T0: we need to have T þ "2Tð"Þ < T0 which holds true for " small enough.

The di®erence ~!"ðtÞ :¼ �"ðtÞ � ~�
"ðtÞ satis¯es

i@t~!
"ðtÞ ¼ Hx ~!

" þG
t

"2
; �"ðtÞ

� �
� ~G"

t

"2
; ~�

"ðtÞ
� �

; ~!"ð0Þ ¼ 0:

The Duhamel formula, together with (3.21) yields, for all t 2 ½0;T �,

jj~!"ðtÞjjX �CM 2

Z t

0

jj~!"ðsÞjjXds

þ
Z t

0

eiðt�sÞHx G
s

"2
; �"ðsÞ

� �
� ~G"

s

"2
; �"ðsÞ

� �� 
ds

���� ����
X
: ð3:26Þ

Following the same arguments as in Ref. 1, we getZ t

0

eiðt�sÞHx ~G "

s

"2
; �"ðsÞ

� �
�G

s

"2
; �"

� �� �
ds ¼ R "

1 þ R "
2 þ R "

3; ð3:27Þ

where the remainders R "
1;R

"
2 and R "

3 are to be estimated.

First, R "
1 is given by

R "
1 :¼

Z 1

0

Z t

0

eiðt�sÞHx

� �G
s þ "2Tð"Þu

"2
; �"ðs þ "2Tð"ÞuÞ

� �
þG

s þ "2Tð"Þu
"2

; �"ðsÞ
� �� 

;

which by estimate (3.2) gives

jjR "
1jjX � CM 2

Z 1

0

Z t

0

jj�"ðs þ "2Tð"ÞuÞ � �"ðsÞjjXduds

� CM 2"2Tð"Þjj@t�"jjCð½0;Tþ" 2Tð"Þ�;XÞ:

Yet, Eq. (1.33), together with the bounds at hand for �" in Cð½0;T þ "2Tð"Þ�;YÞ and
the uniform Lipschitz property (3.1) satis¯ed by Gðs="2; �Þ, implies

jj@t�"jjC 0ð½0;Tþ" 2Tð"Þ�;XÞ � C
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for some C > 0 that does not depend on ", which ¯nally provides

jjR "
1jjX � C"2Tð"Þ: ð3:28Þ

Now, R "
2 is de¯ned by

R "
2 :¼

Z 1

0

Z tþ"2Tð"Þu

" 2Tð"Þu
eiðt�sÞHx � eiðt�sþ"2Tð"ÞuÞHx
� 	

G
s

"2
; �"ðsÞ

� �
dsdu: ð3:29Þ

Note that

R "
2 ¼

Z 1

0

Z tþ" 2Tð"Þu

" 2Tð"Þu

Z " 2Tð"Þu

0

d

d

eiðt�sÞ
HxG

s

"2
; �"ðsÞ

� �� �
d
dsdu

and therefore, by the uniform Lipschitz estimate (3.21) and the uniform bound (3.20)

at hand for �",

jjR "
2jjX � ðT þ "2Tð"ÞÞ"2Tð"Þ HxG

s

"2
; �"ðsÞ

� ����� ����C 0ð½0;Tþ"2Tð"Þ�;XÞ

� "2Tð"ÞðT þ "2Tð"ÞÞ G
s

"2
; �"ðsÞ

� ����� ����C 0ð½0;Tþ" 2Tð"Þ�Þ;YÞ
�CM 3"2Tð"Þ: ð3:30Þ

Finally,

R "
3 :¼ �

Z 1

0

Z "2Tð"Þu

0

eiðt�sÞHxG
s

"2
; �"ðsÞ

� �
dsdu

þ
Z 1

0

Z tþ"2Tð"Þu

t

eiðt�sÞHxG
s

"2
; �"ðsÞ

� �
dsdu;

and again applying (3.21) and (3.20) gives

jjR "
3jjX � C"2Tð"ÞM 3: ð3:31Þ

Combining (3.26) with (3.27), (3.28), (3.30) and (3.31), and applying the Gronwall

lemma gives

8 0 � t � T ; jj�"ðtÞ � ~�
"ðtÞjjX � C"2Tð"Þ; ð3:32Þ

for some C > 0, which does not depend on ".

Step 4. Conclusion:

Gathering the estimates (3.25) in Step 3 and (3.32) in Step 4, we recover

8 0 � t � T ; jj�"ðtÞ � �ðtÞjjX � C "2Tð"Þ þ �2;M ð"Þ
"2Tð"Þ

� �
:

According to the choice for Tð"Þ made in Remark 3.2, we conclude that

jj�" � �jjCð½0;T0�;XÞ � C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
�2;M ð"Þ�!

"!0
0: ð3:33Þ

1472 F. Delebecque



4. Proof of the Main Theorem

Proposition 4.1. Consider any  0 2 Y, then there exists T0 > 0 depending only on

jj 0jjX such that  " and �, the respective solutions to both initial Schr€odinger�
Poisson system (1.1)�(1.5) and averaged system (3.7)�(3.9) with initial datum  0

exist and are unique in Cð½0;T0�;YÞ. Moreover, the following convergence holds:

jj " � e�itHz="2�jjCð½0;T0�;XÞ �!
"!0

0:

Proof. This proposition is easily proved gathering the convergence results that we

obtained in Secs. 2 and 3. Indeed, by Proposition 2.1, there exists T1 > 0 depending

only on jj 0jjX such that both initial Schr€odinger�Poisson system (1.1)�(1.5) and

intermediate system (1.9)�(1.12) with initial datum  0 possess unique solutions,

respectively, denoted by  " 2 Cð½0;T1�;XÞ and ~ " in Cð½0;T1�;YÞ. Moreover, the

following holds:

jj " � ~ " jjCð½0;T1�;XÞ � C"2;

where C > 0 does not depend on ".

Moreover, applying Corollary 3.1 with the initial datum 0, there existsT2 > 0 that

only depends on jj 0jjX such that both ¯ltered intermediate system (1.33)�(1.35) and

averaged system (3.7)�(3.9) admit unique solutions in Cð½0;T2�;YÞ that we denote by
�" and �. Now, as e�itHz="

2
 " satis¯es (1.33)�(1.35), if T0 ¼ minðT1;T2Þ, then, using

the unicity of �", we get

8 t 2 ½0;T0�; ~ "ðtÞ ¼ e�itHz="2�"ðtÞ:
Moreover, by Proposition 3.4, we get

8 t 2 ½0;T2�; jj�"ðtÞ � �ðtÞjjX �!
"!0

0:

Therefore, for all t 2 ½0;T0�,
jj "ðtÞ � e�itHz="2�ðtÞjjX � jj "ðtÞ � e�itHz="2�"ðtÞjjX

þ jje�itHz="
2
�"ðtÞ � e�itHz="

2
�ðtÞjjX

and ¯nally

jj " � e�itHz="2�jjCð½0;T0�;XÞ �!
"!0

0

which ends the proof.

Proof of the main theorem. Take  0 2 X and ¯x a small � > 0. Now, pick a

regularization  0;� 2 Y of  0 such that

jj 0 �  0;�jjX � �: ð4:1Þ
Associated to the initial datum  0;�, let us de¯ne the functions  "

� and ��ðtÞ that,

respectively, solve the initial Schr€odinger�Poisson system (1.1)�(1.5) and the

averaged equation (3.7)�(3.8) with initial datum  0;�. Similarly, associated to the
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initial datum  0, let us de¯ne  ", ~ " , �" and � that, respectively, solve the initial

Schr€odinger�Poisson system (1.1)�(1.5) the intermediate system (1.9)�(1.12), the

intermediate ¯ltered equation (1.33)�(1.34) and the averaged equation (3.7)�(3.8).

Indeed, we already know that, by Proposition 2.1 and Corollary 3.1, there exists

T1 > 0 that only depends on jj 0jjX such that  " and ~ " exist and are unique in

Cð½0;T1�;XÞ, and T2 depending only on jj 0jjX such that �"ðtÞ and �ðtÞ exist and are

unique in Cð½0;T2�;XÞ. If T0 :¼ minðT1;T2Þ, then we, moreover, know that they

belong to C0ð½0;T0�;XÞ uniformly in " by the estimates (2.33) and (3.10).

Applying Proposition 4.1, we also know that, for each � > 0, there exists T0;� > 0

depending only on jj 0;�jjX such that  "
� and �� belong to C0ð½0;T0;��;YÞ uniformly in

". Since jj 0;�jjX � jj 0jjX þ �, we may ensure that jj 0;�jjX is as close as we wish to

jj 0jjX , so that T0;� may in turn be assumed as close as needed to T0. For this reason,

we may safely assume for the remaining part of the argument that all the functions

 "; �;  "
� and �� are de¯ned on the same time interval ½0;T0�. Similarly, according to

(2.33) and (3.10), we may safely assume that they are bounded by a common M > 0

depending only on jj 0jjX :
sup
0<"<1

sup
0<�<1

ðjj "jjC 0ð½0;T0�;XÞ þ jj "
�jjC 0ð½0;T0�;XÞ

þ jj�jjC 0ð½0;T0�;XÞ þ jj��jjC 0ð½0;T0�;XÞÞ � M : ð4:2Þ
We have

jj " � e�itHz="
2
�jjCð½0;T0�;XÞ � jj " �  "

�jjCð½0;T0�;XÞ
þ jj "

� � e�itHz="2��jjCð½0;T0�;XÞ þ jj�� � �jjCð½0;T0�;XÞ: ð4:3Þ
On the one hand, Proposition 4.1 asserts that

jj "
� � e�itHz="

2
��jjC 0ð½0;T0�;XÞ �!

"!0
0: ð4:4Þ

On the other hand,  " �  "
� satis¯es equation

i@tð " �  "
�Þ ¼ H "ð " �  "

�Þ þ V "ðj "j2Þ " � V "ðj "
�j2Þ "

�

with the initial datum  0 �  0;�. Therefore, for all t 2 ð0;T0Þ,

jj "ðtÞ �  "
�ðtÞjjX � jj 0 �  0;�jjX þ

Z t

0

jjV "ðj "j2Þ "ðsÞ �V "ðj "
�j2Þ "

�ðsÞjjXds:

Applying (2.15) (in the case where FðuÞ denotes V ðjuj2Þ) and (4.2) gives

jjV "ðj "j2Þ "ðsÞ � V "ðj "
�j2Þ "

�ðsÞjjX � CM 2jj "ðsÞ �  "
�ðsÞjjX :

Finally, by the Gronwall lemma, we have

jj " �  "
�jjCð½0;T0�;XÞ � eCM

2T0�: ð4:5Þ
Similarly, as � and �� both solve the equation

i@tu ¼ ��xu þGavðuÞ
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with initial data  0 and  0;�, respectively, �� �� satis¯es

i@tð�� ��Þ ¼ ��xð�� ��Þ þGavð�Þ �Gavð��Þ
with initial datum  0 �  0;�. Using the Duhamel formula and the tame estimate at

hand on Gav given by (3.6) leads to

jj�� � �jjCð½0;T0�;XÞ � �eCM
2T0 : ð4:6Þ

Finally, combining (4.3)�(4.6), having " tend to zero, and then choosing � small

enough allows us to conclude this regularization procedure. The main theorem can be

deduced applying the identi¯cation of Gav given in (3.4) and projecting on the pth

eigenmode of the operator Hz .

Appendix. Proof of Lemma 2.4

The existence of a unique solution in L2ð�Þ comes straightforward as (2.9)�(2.10) is

an elliptic equation when " > 0, and, when " ¼ 0, the unique solution is explicit.

Let us prove the regularity results. In that view, we denote by ûð�; zÞ the Fourier
transform in the x 2 R2 directions of function uð�; zÞ, z being ¯xed in ð0; 1Þ. We apply

this longitudinal Fourier transform to Eqs. (2.9)�(2.10) and we get

�@ 2
z ûð�; zÞ þ "2j�j2ûð�; zÞ ¼ f̂ ð�; zÞ; ð�; zÞ 2 �; ðA:1Þ

ûð�; 0Þ ¼ ûð�; 1Þ ¼ 0; � 2 R
2: ðA:2Þ

Multiplying Eq. (A.1) by ûð�; zÞ and integrating along the z variable over (0, 1)

gives

jj@z ûð�; �Þjj2L 2
z
þ "2j�j2jjûð�; �Þjj2L 2

z
� jjf̂ ð�; �ÞjjL 2

z
jjûð�; �ÞjjL 2

z
:

We combine with the Poincar�e inequality (as û satis¯es (A.2)), and, thus, there exists

C > 0, which does not depend on " such that, a.e. in � 2 R2,

jjûð�; �ÞjjL 2
z
þ "2j�j2jjûð�; �ÞjjL 2

z
� C jjf̂ ð�; �ÞjjL 2

z
: ðA:3Þ

We therefore getZ
�

ð1þ j�j2Þjûð�; zÞj2d�dz � C

Z
�

ð1þ j�j2Þjf̂ ð�; zÞj2d�dz � C jjf jj2X :

Combining (A.1) with (A.3) also leads to

jj@ 2
z ûð�; �ÞjjL 2

z
� jjf̂ ð�; �ÞjjL 2

z
þ "2j�j2jjûð�; �ÞjjL 2

z
� C jjf̂ ð�; �ÞjjL 2

z
;

which gives Z
�

ð1þ j�j2Þj@ 2
z ûð�; zÞj2d�dz � C jjf jj2X
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and

"2jjj�j2@ 2
z ûjjL 2ð�Þ � C jjj�j2 f̂ jjL2ð�Þjj � C jjf jjX : ðA:4Þ

Finally, let us derive twice Eq. (A.1) with respect to the z variable

@ 4
z ûð�; zÞ ¼ �@ 2

z f̂ ð�; zÞ þ "2j�j2@ 2
z ûð�; zÞ:

Combined with (A.4), it leads to

jj@ 4
z ûjjL2ð�Þ � C jjf jjX :

Now that we have obtained the H 2-estimate for u and @ 2
zu, let us now consider

! :¼ V1u. We need to prove independent of " L2-estimates for ! and @ 2
z!. In that

prospect, a simple computation gives

�@ 2
z!� "2�x! ¼V1f � 2"2rx! � rxV1

V1

þ "2
j2rV1j2

V 2
1

� �xV1

V1

� �
!; ðx; zÞ 2 �: ðA:5Þ

According to Assumption 1.2, rxV1=V1, jrV1j2=V 2
1 and �xV1=V1 are bounded on

� by a positive constant A. Multiplying (A.5) by ! and integrating over � yields

jj@z!jj2L2ð�Þ þ "2jjrx!jj2L 2ð�Þ � jjV1f jjL 2ð�Þjj!jjL 2ð�Þ þ 4A"2jj!jj2L2ð�Þ
þ 2A"2jjrx!jjL2ð�Þjj!jjL2ð�Þ:

Noticing that

2"2jjrx!jjL2ð�Þjj!jjL2ð�Þ � "3jjrx!jj2L 2ð�Þ þ "jj!jjL2ð�Þ

and combining with Poincar�e inequality, we ¯nally get

ð1� 4A"2 � A"Þjj!jj 2L2ð�Þ þ ð1� A"Þ"2jjrx!jj2L 2ð�Þ � jjV1f jjL2ð�Þjj!jjL2ð�Þ:

Therefore, there exists C > 0 such that, for " small enough,

jj!jjL2ð�Þ � C jjf jjX and "jjrx!jjL2ð�Þ � C jjf jjX : ðA:6Þ

Now, multiplying (A.5) by �@ 2
z! and integrating over � easily leads to

jj@ 2
z!jj2L2ð�Þ þ "2jj@zrx!jj2L 2ð�Þ � C jjf jjX jj@ 2

z!jjL2ð�Þ þ 2A"2jjrx!jjL2ð�Þjj@ 2
z!jjL2ð�Þ

þ 3A"2jj!jjL2ð�Þjj@ 2
z!jjL2ð�Þ:

Combined with (A.6), this allows us to conclude that there exists C > 0, for " small

enough, such that

jj@ 2
z!jjL2ð�Þ � C jjf jjX ;

which ends the proof.
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