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We study the limiting behavior of a Schrodinger—Poisson system describing a three-dimensional
quantum gas that is confined along the vertical z-direction in a fine slab. The starting point is the
three-dimensional Schrodinger—Poisson system with Dirichlet conditions on two horizontal
planes z = 0 and z = ¢, where the small parameter ¢ is the scale width of the slab. The limit
€ — 0 appears to be an infinite system of two-dimensional nonlinear Schrédinger equations. Our
strategy combines a refined analysis of the Poisson kernel acting on strongly confined densities
and a time-averaging process that allows us to deal with the fast time oscillations.
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1. Introduction
1.1. The singular perturbation problem

In this paper, we study the behavior of a quantum gas that evolves in a fine slab.
These confined electron gas are of great interest for the nanoelectronic industry as the
functioning of many nanoelectronic devices relies on the confined transport of elec-
tron gas. Here, we are interested in monodimensional confinement, meaning that the
transport of charged particles remains typically bidimensional. This work is more
precisely devoted to the rigorous derivation of a dynamic two-dimensional quantum
model with space-charge effects describing the transport of electrons confined in a fine
slab, say of thickness €.

Even if the transport of the electron gas seems typically bidimensional in our case,
the space-charge effects remain three-dimensional. Our starting model is thus the
three-dimensional Schrodinger—Poisson system. Let € > 0 be a small parameter
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measuring the typical extension of the two-dimensional electron gas in the z direc-
tion, the three-dimensional space variables are denoted by (z,z) € R? x R. The
electron gas is confined along the horizontal z directions and strongly confined along
the vertical z direction between the planes z = 0 and z = €. It is therefore subject to
three different effects: both confinements along the respective vertical z direction and
the horizontal x directions, and the self-consistent Poisson potential.

In order to model both confinements, the first idea is to introduce, in the three-
dimensional Schrodinger—Poisson system, two smooth confining exterior potentials
at two different scales.

e The horizontal confinement (in the z directions) is modeled by the potential V;(z),
where V] is meant to be a real positive function that goes to infinity with |z| (the
assumptions on V; will be made precise later on).

e The vertical confinement (in the z direction) is modeled by a smooth potential
V5(2) of the form V3 (z) = (1/e%)Vy(z/e), where V, is meant to be a smooth
positive function.

Precise assumptions on these confinement potentials will be made clear later on. We
therefore start with the following dimensionless Schrédinger—Poisson system (where
a rescaling in the z direction has been performed):

1
i0,0° =(—A, + Vy(z))¥* +§(—a§ + Vy(2)) e

+ VEUe >0, (z,2) € Q, (1.1)

Ve(t,z,0) =0(¢t,z,1) =0, t>0, z€R? (1.2)

V0,3, 2) =¥q(z,2), (z2) €Q, (1.3)
—02VE—2A, V() =|UE(8)]2, t>0, (z,2) €9, (1.4)
Ve(t,z,0) =Ve(t,z,1) =0, t>0, z€R>% (1.5)

The unknown is the pair (¥¢, V<) made of the electronic wave function ¥¢ and the
self-consistent potential V¢ that models the space-charge effects. The set €2 is the
dimensionless set that corresponds to the physical extension R? x (0,¢) of the gas

Q:=R?x (0,1).

The main modeling assumptions, in this context, are therefore the choice of a scale
between both confinement terms Vi(z) and (1/e2)V,y(z/e) as well as precise
assumptions on both functions V; and V.

Let us first give a few words about the rescaling that has been performed to obtain
(1.1)—(1.5). We refer the reader to Refs. 3 and 21 for a model where no Dirichlet
boundary condition is imposed and to Ref. 13 where a magnetic potential is added.
The main idea is to introduce two characteristic energies Ei g, and Egy,. Thus,
Eiyansp 1s chosen as the typical energy of the longitudinal transport (in the z direc-
tions), the confinement potential V;, the self-consistant effects and the time scale,
whereas the kinetic energy along z and the transversal confinement potential V, are
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set to the scale F. . Finally, consider the Schrédinger—Poisson system in physical

variables
B2
ho, ¥ = — Z—A\Il + eV ()P + Vy(2)P + V(x,2)P, (1.6)
m
AV = £ w2, (1.7)
€

where m is the effective mass, e the elementary charge of the electron and ¢, denotes
the electric permittivity of the material. If €2 measures the rate Eians/Feons, then
(1.6)—(1.7), respectively, becomes

1
i0,V° = (—A, + Vy(z))¥e +§(—a§\1ﬁ + Vo(2))W° + VEUe,

277e ex? 210,612
—e2A, Ve —-05Ve = ——— Ne?|Ue|2,
6OE’tmnsp
In order to avoid a trivial formal limit of the Poisson equation, we choose to work
with high densities and set
N = 6OEtr_emsp i7
e2z? g2
which finally leads to (1.1)—(1.5).
Let us now introduce the following assumptions on both confinement potentials
Vl and Vz.

Assumption 1.1. Both potentials V; and V, are C* non-negative functions.
Moreover, the longitudinal V; potential satisfies

Vi(z) — oc. (1.8)

|z|—00

For later functional analysis purposes, we shall assume a reinforced version of the
longitudinal confinement (in the z € R? directions). We will make them clear later on
(see Assumption 1.2). Note that a smooth potential of the form V;(z) = C|z|* for
|z| > |7y, with C' > 0 and s > 0, satisfies these assumptions. In particular, we keep in
mind, throughout the paper, the example of the harmonic potential V; = a?|z|? that
fits these conditions. What could be surprising here is, the lack of growth-at-infinity
assumptions for the confinement potential in the z direction. The point is, the con-
finement in the z direction is due to the boundary Dirichlet conditions. In the present
case, the variable z indeed lies in [0,1].

This paper aims at exhibiting an asymptotic bidimensional system for Eqgs. (1.1)—
(1.5) as € — 0. Let us now give short bibliographical notes. First, confined quantum
electron gas has been studied in a linear setting for a long time and by several authors
(see Refs. 12, 14, 16, 25 and references therein). Nonlinear problems linked to
the confinement of an electron gas have been studied more recently. Indeed, the
approximation of the Schrodinger—Poisson system describing an electron gas
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constraint in a plane was studied in Refs. 3 and 21, and when the gas is confined along
a line in Ref. 2.

The problem of finding a hierarchy of asymptotic models for the transport of an
electron gas confined along a plane has been treated in Ref. 3. In that paper, the authors
model the confinement on a plane with a three-dimensional Schrodinger—Poisson
system on the whole space R? singularly perturbed with a confinement potential of
form (1/2) V,(z/¢). The key tools are a refined analysis of the Poisson nonlinearity and
techniques based on the projection upon the eigenmodes of the transverse Hamiltonian.
The main difference with our current problem here comes from the fact that the sol-
ution to the Poisson equation is not of the same order whether the equation holds on the
whole space R? or on R? x (0, 1). It indeed leads to two different range of densities: high
densities or densities of order 1 (see the further discussion).

In Ref. 13, the authors give an asymptotic model for the Schrédinger—Poisson
system describing a three-dimensional electron gas confined on a plane and subject to
a strong uniform magnetic field lying in the transport plane. In order to deal with the
fast oscillations due to the magnetic potential, they use second-order long-time
averaging techniques and a Sobolev scale adapted to the confinement operator.

When the nonlinearity depends locally on the density (it is not the case of the
Poisson nonlinearity here), an asymptotic model for confined Bose—Einstein con-
densates is studied in Refs. 4 and 1. In Ref. 7, the authors present a model describing
Bose—Einstein condensation of trapped dipolar quantum gases. This model takes the
form of a time-dependent Schrodinger equation including a cubic nonlinearity and a
nonlocal nonlinearity under the form of a convolution of the density with a dipole-
interaction kernel.

1.2. Heuristic approach of the asymptotic model

In this section, we aim at heuristically exhibiting an asymptotic model for the
Schrodinger—Poisson system with Dirichlet conditions (1.1)—(1.5).

First of all, Egs. (1.4) and (1.5) allow us to expect the formal limit of the three-
dimensional Poisson potential V¢ to be the solution W (|1°|?) of

—IW(t,-) = [v(t, )|, t>0, (z,2) €9,
W(t,z,0) = W(t,z,1) =0, ¢>0, z€R2%
Consider the following model in which the Poisson equations (1.4) and (1.5) is

replaced by its formal asymptotic. It will be referred to as the intermediate model in
what follows:

1
W0a)° = H )¢ +€—2sz5 + W ?)ys, t>0, (z,2) € Q, (1.9)
Ve(t, 2,0) = (t,2,1) =0, t>0, z€R? (1.10)
—02W(t,-) =[v(t, )%, t>0, (z,2) €Q, (1.11)
W(t,z,0) = W(t,z,1) =0, ¢>0, ze€R? (1.12)



Asymptotic Model for the Transport of an Electron Gas in a Slab 1447

where H, and H,, respectively, denote the longitudinal Hamiltonian defined by
H,:=—A,+ Vi(z) with domain D(H,) := {u € H*(R?), Viu € L*(R?*)} (1.13)
and the transversal Hamiltonian defined by
H,:= -9+ Vy(z) with homogeneous Dirichlet boundary conditions  (1.14)

and with domain D(H,) := H?>N H{(0,1).
In that case, W(|1)°|?) is explicit and reads, for ¢t > 0 and (z, z) € Q,

W(|77!15|2)(t793,z)/0 K(z,2") |y (t, z, 2")|?dz’, (1.15)

where the kernel K denotes

Vz,2'€(0,1), K(z2):=201-2")—(2—2)1,<,.

Remark 1.1. The Dirichlet boundary conditions have here lead us to make high
density assumptions. In Refs. 3, 21 and 13 the authors study the transport of an
electron gas that is strongly confined in the z direction, where no Dirichlet boundary
condition is imposed. They work with low densities and therefore introduce the
following system that will be referred to as the “soft wall potential model” in what
follows:

. - 1 .
1000 = (=8, + Vi(@)T° + 5 (-070° + V(2)) U7 + VO,
—e2A, Ve =92V = £|0e |2
The Poisson equation can, in that case, be rewritten with a convolution as

1
£ __ *| £|2

dmy |z|% + 222

whose asymptotic behavior is given by

)

1 1
Vg(ta Z, Z) ~ 47T|!17| * W)E(tv Z, Z)|2 = m*x <A|¢E(ta B Z/)dzl|2)‘

Therefore, the asymptotic of the Poisson potential in the soft-wall potential case does
not depend on z. Note that, on the contrary, in our “hard-wall potential case” the
nonlinearity W(|1)¢|?) defined by (1.15) obviously depends on z. This dependence in z
is crucial as it radically changes the nature of the analysis at hand in our work. It indeed
induces fast oscillating in time terms that will not be dealt with as easily as previously.

The first step of our work is to prove the well-posedness of both systems (1.1)—
(1.5) and (1.9)—(1.12) and then estimate the difference between their respective
solutions in an adapted functional framework. This will a posteriori justify the
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approximation of (1.1)—(1.5) by (1.9)—(1.12). In a second part, we focus on the
asymptotic behavior of the intermediate system (1.9)—(1.12).

By Assumption 1.1, V5(z) is a smooth non-negative function, and thus, the
operator H, has a discrete spectrum. In what follows, the collection of its eigenvalues
is denoted by E, > 0 and their associated eigenfunctions, chosen so as to form a
Hilbertian basis of D(H,), are denoted by x,(2), as p runs in N. They satisfy, for any
index p,

HZXP = (_62 + V2(Z))Xp = po> Xp(O) = Xp(l) = 0

The second step consists in studying the asymptotics of the intermediate model
(1.9)—(1.12) as € tends to zero. The probably most natural approach is to first project
the Schrodinger equation (1.9) over the orthonormal basis (). Its decomposition
over (Xp)p>0 reads

“(t,z, 2) Z¢ (t,z)xp(2)  with ¢ (t,z) = (¥°(L, z,-)x,),

p=0

where we used the notation

:A}@@

Now, inserting this decomposition in the Schrédinger equation (1.9) and formally
projecting over the (x,),>o basis leads to the following infinite system of coupled
nonlinear Schrodinger equations:

2

>XsXp>- (1.16)

>0
In view of (1.16), 0,1}, has size O(1/e?). For this reason, it seems natural to filter
out the time oscillations induced by the (E,/e2)1;, term. Therefore, let ¢, be defined
as the filtered v}, as follows:

¢y(t, x) = exp(itE,/=*)1y(t, ).
The ¢’s then satisfy the filtered system

S

s>0

waIXq

>0

> e Wy,

>0

2
)szp>¢i- (1.17)
However, according to definition (1.15), we have

2
W( > e G, ) - W(ZZ e B 62¢>i¢_‘2xTX‘I>

q=0 ¢>0 >0

=3 > (K(z,)xexg) e METEE gl (1.18)

¢>0 r>0
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Finally, combining (1.17) with (1.18) allows us to conclude under nice regularity
assumptions, and provided the series at hand in (1.18) converge, that the ¢, satisfy
the following infinite system:

Vp>0, 00, =H,¢,+ Z Z Z ap,qmseit(Ep+Eq*ET*Es)/52d)i(é_z(z)i’ (1.19)

s>0 ¢>0 r>0
¢;(07 ﬂj) :%,p = <¢0($a ')Xp>7 (120)

where

1 1
p7q7{r7827 « 7‘5:: Z,Z XTZXZXSzXzzz’ N
v 0, Cpgr K (2 2)x:(2')x,(# J(2)dd. (121
0 0

Now that each 0,¢}, is of order O(1), note that the infinite system of coupled
nonlinear Schrédinger equation satisfied by the ¢}’s (p € N) is of the form

O,u® = Auf + B(t/e2, u°), (1.22)

where the nonlinearity B happens to have some kind of periodicity in time due to the

B+ B ~E—E)/e* factor. More precisely, as we will see in the following

oscillatory e
parts, the nonlinearity is almost periodic in time.

It now becomes quite tempting to average in time Eq. (1.17) or, equivalently, the
toy model (1.22). Here, we use a key tool developed in Ref. 1, adapted from the well-
detailed work on the ODEs in Ref. 23 and from Schochet’s work Ref. 24. Assume that
the function B(7, u) entering in (1.22) possesses some ergodicity in time, i.e. that one

can define, in a functional framework (precised later on), the limit

Then, the toy model (1.22) converges, as € tends to zero, toward the following limit
system:

Oyu = Au+ B,,(u). (1.23)

For these reasons, and despite the differential system satisfied by the ¢}’s is
infinite, we can expect the ¢}’s solving (1.17) to converge at least formally towards
the solution of the following infinite averaged system:

00y =Hydp + 3 Y Y 000000,0,05, t>0, (1,2) €Q, (1.24)

(g,r,5)€A,
¢,(0,2) = (Po(z,)x,), € R?, (1.25)
where
Vp>0, A,:={(q,r,s)EN’ E,+E,=E, +E}. (1.26)

This paper therefore aims at rigorously proving the convergence towards (1.24)
in an appropriate framework.
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1.3. Statement of the main results and sketch of the proof

Let us add the following technical assumptions on the longitudinal confinement
potential V;(z).

Assumption 1.2.

Va e N2 aax‘:l () = O(Vq(z)) as|z| — oo,
IM, >0, Vi(z)=0(|z|") as|z| — oo,
V. Vi(2)] Y7
IM, >0, —E 0 =0(z| M) as |z| — oco.
L o(jaf) as o

Note that these assumptions are purely technical helps in order to carry out a
functional analysis, inspired by Ref. 2, which will help us identify the Sobolev spaces
well-adapted to our operators H, and H,.

Theorem 1.1. Convergence towards the asymptotic model. Under Assumptions 1.1
and 1.2, fix e > 0 and consider a function y(z, z) in

X:={uec H}Q)NH;(Q), Viue L*(Q)} (1.27)
equipped with the norm
lull% = lull ) + Vil Zeg)- (1.28)
Then, there exists T > 0 depending only on ||1y||x such that the following holds.

o The initial Schrodinger—Poisson system (1.1)—(1.5) with initial datum ), possess a
unique solution denoted by (¢, V<), that is bounded in C([0, T], X) uniformly in e.

o The asymptotic system (1.24)—(1.25) with initial datum 1y admits a unique solution
denoted by the set of functions (¢,),>0 € C([0, T|, D(H,)) where D(H,) is defined
by (1.13).

o If9° and (¢,),>0 denote the respective solutions to (1.1)—(1.5) and (1.24)—(1.25),
then the following convergence holds:

Sketch of the proof. The present paper is devoted to rigorously proving the con-
vergence of (1.1)—(1.5) towards (1.24)—(1.25) with given initial data, in three steps.
As a first step, we follow the ideas already used in Ref. 2 in the case of a Schrédin-
ger—Poisson equation with a confinement potential that models the two-dimensional
confinement in a nanowire, and in Ref. 13 in the case of a strongly confined bidi-
mensional electron gas under a strong magnetic field. The first key tool is a refined
analysis of the rescaled Poisson potential, defined in (1.4)—(1.5) and its asymptotics.
First, we prove tame estimates for both nonlinearities V¢ and W, respectively,
defined by (1.4)—(1.5) and (1.11)—(1.12). These estimates allow us to study the

(b, 2) = Y gyt m)e Ty (2)

p=0

—0. (1.29)

C([0,T],%)
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well-posedness and regularity of solutions to both initial (1.1)—(1.5) and intermediate
(1.9)—(1.12) models (see Lemma 2.4). Then, we rewrite (1.1) as a perturbation of (1.9)
by rewriting V¢ (¢, z, z) as a perturbation of W and estimating the remainder V¢ — W
as € tends to zero.

As a second step, we prove the convergence of the solution to the intermediate
system towards the function Y, ¢, e ~%/=*x,, where the (¢,),¢ solve (1.24)—(1.26).
The difficulty of making the heuristic arguments rigorous is twofold. First, it requires
to decompose ° over the x,’s and therefore to write down series expansion of form
> p--- asin (1.17), (1.18) or (1.19). However, it happens to be very difficult to
control the convergence of these series expansions, even when nice estimates on the

»’s are at hand. This is due to the lack of information on the behavior of the term
(W(|¥5|*) X x,p) for large values of p and r. Secondly, independent of the
Schrodinger equation, when proving the convergence of systems of form (1.22)
towards (1.23), one usually needs small denominator estimates which turn out to be
very difficult to handle with in the present context. Here, we follow the same lines as
is done in Ref. 1 in the case of a general nonlinear Schrodinger equation with a
nonlinearity of the form F'(u) where F is a C*>°-function. To sum up, the first idea is to
filter out the time-oscillations in (1.9) by defining

% (t, z, 2) = eI e (1, 2, 2). (1.30)
It now satisfies
i0,0° = H,o° + etH-/e? V(‘e—itHz/52¢5|2)e—itHz/sZQba' (1.31)
Then, introducing the nonlinearity
T>0— G(r,u) = ™= W(|e Ty e Ty, (1.32)

Eq. (1.31) can therefore be approached, by the first step by

0 =0+ G(.0) (1.3
0 (t,2,0) = ¢°(t,2,1) =0, >0, =€ R, (1.34)
¢>5(0,z, Z) :%(557 Z), (CL‘, Z) € Q? (135)

which is of form (1.22). The key point is therefore to define a functional framework,
say a functional space Z such that if u € Z, then the to-be-averaged function G(7, )
is almost-periodic in time with values in Z. This roughly means that G(7,u) has
comptably many frequencies in T, which in fact translates the fact that H, has a
discrete spectrum. Indeed, the only oscillation terms that appear in the definition of
G(7,u) are due to the propagator e*""#:. The important fact about almost-periodic
functions is that they possess a well-defined long time average, and the formula

Gy (u) —hm—/ G(t,u)d
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makes sense in appropriate functional spaces. Section 3 is therefore devoted to the
time averaging of Eq. (1.33). In order to carry out the time-averaging procedure, we
prove that we are dealing with almost-periodic nonlinearities (hence the possibility of
defining long-time averages), with values in good Sobolev spaces (spaces that are
adapted to our operators and allow us to carry out the nonlinear analysis). These
spaces are defined in Sec. 2.1, and the properties of almost periodicity of our non-
linearities are proved in Proposition 3.3. The time-averaging process leads to the
convergence result stated in Proposition 3.4 for an initial datum that lies in a reg-
ularized space denoted by V.

As a third step, Sec. 4 is devoted to gathering the results of both first and second
step. In this section, we therefore prove Proposition 4.1 that states a convergence
result in X of the initial system towards the limit one with an initial datum in the
regularized space ). The second part of Sec. 4 ends the proof of the main theorem
with a regularizing procedure.

2. Approximation by the Intermediate System

In this section, we focus our study on the approximation of the initial system (1.1)—
(1.5) by the intermediate system (1.9)—(1.12). Lemma 2.1 first introduces a func-
tional framework that is well-adapted to the operators H, and H, in order to deal
with both nonlinearities V¢(|1)%|?) and W (|¢)¢|?) (defined by (1.4)—(1.5) and (1.11)—
(1.12), respectively). Then, Lemma 2.4 states regularity results for the Poisson
equation that allow us to prove tame estimates on both nonlinearities in Corollary 2.1.
Finally, Proposition 2.1 proves the well-posedness of both systems and estimates, in
this framework, the difference between the solutions of the initial system (1.1)—(1.5)
and the intermediate system (1.9)—(1.10).

2.1. Preliminaries: The functional framework

In this section, we aim at defining a Sobolev scale adapted to both operators H, and
H,. Indeed, the only uniform-in-¢ bound at hand on %, solution to (1.1)—(1.5) reads

”'L/JEH%?(Q) + ||H11/JEH%2(Q) + ||Hz¢5||2L2(Q) =0(1)

on some nontrivial time interval [0, ¢] whenever ||1]| %Z(Q) + || Hytby | %Q(Q) + | H, ]| %2(9)
is bounded, 1, denoting the initial datum. All other energy estimates (obtained by
simply applying the operators 0,,V,, Vi(z) or V,(z) to Egs. (1.1)—(1.5) and inte-
grating by part) give rise to commutators, hence diverging factors of order O(1/¢?) due
to the term (1/£2)H,. Therefore, as they only give access to bounds of order O(1/¢),
they are barely useless here. It therefore seems natural to consider the energy space

{u e L*(Q), Hyu e L*(Q), Hyue L*(Q)}
equipped with the norm
a2 = llull F29) + 1Hyull 7200 + | Houll 72(q)- (2.1)
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The first task here lies in the identification of this space and (X, || ||x) defined by
Egs. (1.27) and (1.28). We indeed show that these spaces can be identified and that
both norms are equivalent. Moreover, we also need a regularization space that we
denote by Y, i.e.

V:={ue L*Q),Hue X,H "y e L*(Q)} (2.2)
equipped with the norm
lull3 = llull fo) + [ Houll % + 1 HE 0l 22, (2.3)

where a € R, such that 0 < o < 1/2, that also needs to be identified as a Sobolev
space with additional growth at infinity assumptions (of kind V11 o2y e L%(€2)). The
equivalence of both norms ||u||y and ||u|| and the identification of ||u||;, may be tech-
nically delicate, yet, it is absolutely crucial here. In that prospect, we refer the reader to
Ref. 1. In this paper, the authors identify the Sobolev scale adapted to their own
operators that are —A, + V;(z) with domain {u € L*(R?), —A,u € L*(R?), Viu €
L%*(R?)}, and —92 + V, with domain {u € L*(R),0%u € L*(R), Vou € L*(R)}. The
only difference with our situation is therefore the fact that the transverse operator acts
on L2(R), instead of L2(0, 1) with boundary Dirichlet conditions. The key tool they use
is the Weyl—Hormander calculus, and, following the same arguments, we can state the
following lemma.

Lemma 2.1. (Equivalence of norms) For all u € X, both norms
lull® == llull o) + 1 Hpull Loy + 1Hull 2oy
and
2
lull% == [lull Fr20) + [1Viull 720

are equivalent. Moreover, if u € Y defined by (2.2), then the following equivalence
holds:

2 2 2
ully ~ llullzra@) + [ Hyull %- (24)

Remark 2.1. Let 0 <a <1/2 and u=3,-0uX, be in Hg(Q), with u,(z)=
folu(m, z)X,(2)dz. Note that, according to Ref. 17 or Ref. 18,

1 ul| o) = D Byl | Fore)-

p=0

Therefore, definitions (2.1) and (2.3) become

lull® =D (1+ Byl Zoze) + | Houll Ty

p=0

and

lall> =D+ BZ )yl Toe) + I Hyull . (2.5)

p=>0
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Combined with the equivalences stated in Lemma 2.1, the following equivalences
hold:

lull 3 ~ > (1 + Ep)lluyll 722y + | Houll 720 (2.6)
p=>0
and
ull 5 ~ llull 320y + 1A0ull Gy + 1VE Ul Zo) + D Ep llugll o2 (2.7)
p=>0

Proof of Lemma 2.1. This lemma can be proved by combining Proposition 2.5 in
Ref. 1 in order to prove the following equivalence:

Hyue L*(Q) & HUH%I?(SZ) + HV1U||%2(52) < 0. O

Lemma 2.2. (Properties of the Sobolev spaces X and ))) For any fired0 < o < 1/2,
X and Y are continuously embedded in L> (). Moreover, X and ) are algebras, and
the embedding Y C X is compact.

Proof. The fact that X and ) are continuously injected in L>*(Q) readily comes
from the fact that they are continuously embedded in H?(Q2) that is continuously
embedded in L*(2).

Secondly, it is clear that H2(Q) N H(Q) is an algebra. Therefore, X clearly is an
algebra too according to definition (1.27). As far as ) is concerned, if u, v € ), then,
ww € H2(Q) N HY(Q) and Viuw € L2(Q) since Viu € L3() and Y C L>®(Q) with
continuous embedding. The same arguments allows us to prove that, if

1
u = Z (wv),x, with (uv), := /0 u(z, 2)v(z, 2)x,(2)dz

p=0

then

2 2 2 2 2 20100112
Y By ll(wo),ll Tee) < Nlullis Y By lluplfame) < Cllull3lol3-

p=0 p>0

In order to prove that uv € Y, we also need to prove that A, (uv) € X. In that view,
let us write

Ay (uw) = (Ayu)v+ u(Av) +2V,u- V.
However, A,u € H?(Q2) and v € H2(2), therefore,
(Ayu)v e HA(Q)  and  [[(A,u)vllme o) < llull3lloll3-
Similarly, u(A,v) € H?2(Q). Finally, if uv € ), then
Vou, Voo € HA(Q)  and  [|Vau- Vool ) < 2llull3lvll3-
Consequently,

Ay (w) € H2(Q), (1A, (w)llmz() < Cllullylvly,
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where C > 0 does not depend on u or v. To conclude, spaces X and ) are both
algebras and we have

Vuve X, [w|r < Cllullx|v]x,
Vu,ved, |uwly < Cllullyllvlly,

where C > 0 does not depend on u and wv.

Finally, we clearly have the embedding ) C X. Its compactness is due to the fact
that the embedding H2>**(Q) N Hy(Q) € H*(Q) N Hy(Q) is locally compact since
2 < 24 «a < 5/2 together with the fact that V;(z) tends to infinity at infinity. O

We end this section by the following lemma.
Lemma 2.3.
2
Vuel, |Voullx < Cllullxllully.
Proof. In order to prove this estimate, let us consider u € ). Then,
IVoull % < NHull% = | Hy Pull fo) + 1HY 2ull fo) + 1 HHy Pull fo)- - (28)
However,
1/2 1/2 1/2
| Gy = (2, H ) o) = [(How, w) 20|
< N Hyull 2o llull 2oy < Cllull%,
3/2 3/2 3/2
2l gy = (2, HE ) ooy = [(HZu, By oo
< HZull 2 | Houll 20y < Nullyllulle
and, finally, using the fact that both operators H, and H, commute, we obtain
1/2 1/2 1/2
Ll o) o= (HLH:u, HLH ) 120y = [(H, Hou, Hod o)
< ||H, Hyul| 20 1 H ull 2(0) < ullyllull 2,

which combined with (2.8) allows us to conclude. O

2.2. A priori estimates

In this subsection, we state a priori estimates on both nonlinearities V¢ and W
defined in (1.4)—(1.5) and (1.11)—(1.12), respectively. In that view, we state the
following regularity result.

Lemma 2.4. Consider any real number € € [0,1] and any function f € X. Then, the
equations

—9%uf —2Aut =f, (z,2) €, (2.9)

u®(z,0) = u(z,1) =0, z€R? (2.10)
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admit a unique solution u¢ and, for € small enough, there exists C > 0 independent of
€ such that the following holds:

[ullx < Cllfll, (2.11)
1036 |lx < ClIflL- (2.12)

To be more readable, the proof of this lemma is postponed to the Appendix.

Corollary 2.1. Lete € [0,1], and define the nonlinearity F¢(u) as either Ve(|ul?) or
W (|ul?). Then, the following holds:

VuelX, |[|F(u)lx< Cllullk, (2.13)

VueX, [F(uuly< Clul, (2.14)

VuveX, |[|F(w)u—F(v)o]x < C(lullk + o 3)llu—vllx.  (2.15)

Moreover,
Vued, [W(ul*)ly < Cllullyllullx, (2.16)
Vuved, W)y < Cllullylolly, (2.17)
Vued, [W(ul)uly < Cllull¥lully, (2.18)
Vu,o el [W(lul?)u— W(lo|*)lly < C(lull3+ [oll3)]lu— o]y (2.19)

Proof. In order to prove the first part of Corollary 2.1, we fix e > 0 and u € X, and
we apply Lemma 2.4 to the nonlinearity F¢(u). Indeed, V¢(|u|?) and W(|u|?) solve
the system (2.9)—(2.10) for f = u, € and € = 0, respectively. We therefore get

IF=(w)llx < Clllul’llx < Cllull}  and  [|F*(w)ullx < Cllull,
where we used the fact that X is an algebra. Estimates (2.13) and (2.14) are proved.
As far as the estimate (2.15) is concerned, first note that, if u,v € X, then
Fe(u)u — F*(v)v = (F(u) — F*(v))u + F*(v)(v — u). (2.20)
Moreover, F¢(u) — F¢(v) readily satisfies the following system:
—03(Fe(u) — F*(v)) — 2D, (F*(u) — F*(v)) = [u]? — |o]?,
(Fe(u) = F=(v))(,0) = (F=(u) = F*(v))(2,1) = 0.
Therefore, applying Lemma 2.4 yields
1F(w) — F*()llx < Cllul?® = [ol2lx < Cli(lul + [o]) (u] - [o])1x
< C(llullx + llolla)llw = ollx- (2.21)
Combining (2.20) and (2.21) with (2.13) finally provides us with estimate (2.15).

In order to prove the second part of the corollary, let us consider u € ). We have
already proved that

W (|ul*)ullx < Cllull’. (2.22)



Asymptotic Model for the Transport of an Electron Gas in a Slab 1457

Applying operator H, to Egs. (1.11)—(1.12) gives

—O2H,(W(|ul?) = H(ul?), (5,2) €,
H (W ([ul?)(,0) = H(W(|ul?)) (2, 1) = 0.

Thus, combining Lemmas 2.4 and 2.3 gives
I (W (|ul*))llx < CIIH.(lul*)]lx < Cllullyllullx- (2.23)
Now, note that
H(W(|ul*)) = =02 W(|ul®) + VaW(|ul®) = |u]® + V, W (|u|?) € X.
Moreover, we have
2 (W (Jul ) 120) < (W (1ul))]lx,
which applying the estimate (2.12) of Lemma 2.4 leads to
IEZ(W(|ul*))llz20) < CIW(Jul?)llx + CIOZW ([ul*)]lx < CllullZ. (224)
Now, define
W ([ul*),(2) = (W(|ul?)(z,)x,),
Definition (2.5) gives

1+a/2
LW (ul2) o) = Y BEIW([ul2), ] 20

p=0

1/2
< (Z EﬁIW(IUIQ)pII%zm))

p=0

1/2
: (Z E§a||W(|U|2)p||%2(Q)>

p=0

1/2
< U0l 5 BV |
p>0
< Ol 3N (f2)) 550y < Cllul
where we used (2.24), the fact that o < 1/2 and that E, is increasing and tends to
infinity with p. Finally,
B2 W (|0 )|y < Clull?- (2.25)
Combining (2.22) with (2.23) and (2.25) finally provides us with the following
tame estimate, according to (2.3):

Vued, [[W(lul)lly < Cllullylullx.

where C' > 0 does not depend on u. Following the exact same lines, (2.17) can also
easily be proved. Now, let us consider any function u € ) and prove estimate (2.18)
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by the equivalence (2.4). First, we know that

||W(|U\2)U||H2+<Y(Q) < ||W(|U|2)||H2+Q(Q)||u||Lw(Q) + HUHHM(Q)||W(|u|2)||Lx(Q)
< W (|l lIyllella + ally W (ul?)]]x,

where we used the continuous embeddings X C L>(Q) and Y C H***(Q). Applying
(2.16) and (2.13) gives

W (|ul?)ull 2oy < CllullZllully- (2.26)
As far as the norm H,(W(|u|?)u) is concerned, we have
H(W(|ul*)u) = H,(W(|ul*)u— W(lul*)Au = 2V, (W(|ul*) - Vou.  (2.27)
However, since X is an algebra,
I (W (Jul®)) ullx < ClLH, (W (|ul?)) Lxllull v
< Cllullylull, (2.28)

where we used (2.18) and the equivalence (2.4).
Moreover,

W (|ul*)Agullx < CIW (Jul?)2]| A, ullx
< Olfullyllull% (2.29)
where we used (2.13) and the equivalence (2.4). Finally,
2
VoW ([ul*) - Vou=Y " 0:(W(|ul*)diu+ W(|ul*)d;u. (2.30)
=1
Fix i € {1,2}, we have
0i(W (Jul*)) = W(0:(|ul*))
and applying Lemma 2.4 with f = 9;(|u|?) and € = 0 yields
W @i(lul*)llx < Clloi(lul)]lx-

Therefore, combined with (2.30), this leads to
2 2
IV (W (lul®)) - Vyule < €Y 110, Ll@iulle < €Y l105ulZllull.  (2:31)
i=1 i=1

Applying Lemma 2.3, combined with (2.31) allows us to conclude that
V(W ([ul?)) - Voullx < Cllull%[lully- (2.32)
Finally, combining (2.32) with (2.27), (2.28) and (2.29) yields
1H(W (Jul®)w)llx < Cllull3]lully,
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which combined with (2.26) and the equivalence (2.4) concludes the proof of (2.18).
Estimates (2.16) and (2.18) are now proved. As far as (2.19) is concerned, we write
W(lul?)u— W([v]*)v = (W(|ul*) — W(|v]*))u+ W(lv|*)(u— ).

Then, as ) is an algebra,
IW(l2)a — W(jol2)olly < W (i) = Wl lipllally + 170l lplle — ol
< W ((ful + [oDw = oDlIylluly + W (ol *)lyllu = lly
< Cflful + [olllylle = vllyllully + Clivllelvllylle = lly,
where we used (2.16) and (2.17). Therefore, we get
W (ul*)u = W(lol*)elly < C(lull3 + o3l = lly,
which ends the proof of (2.19). O
Now that we have obtained a priori estimates on both V¢ and W nonlinearities,

we focus on the existence and uniqueness results for both initial (1.1)—(1.5) and
intermediate system (1.9)—(1.12).

2.3. Approximation result

Proposition 2.1. Let € > 0 be fized and consider two initial data vy € X and
1/;0 € Z, where Z denotes either X or ).

Then, there exists a common Ty > 0 depending only on |y|lx and ||¢yllx (in
particular T, does not depend on €) such that both initial Schriodinger— Poisson
system (1.1)—(1.5) and intermediate system (1.9)—(1.12) with initial data by and v,
respectively, possess unique solutions denoted by ¥* € C([|0, Tp], X) and 1/;5 €
C([07 TO]7Z)'

Moreover, there exists a common bound M > 0 depending only on |||y and
bz such that

sup (45 [leqo,).2): 19 lle(o. 7)) < M. (2.33)
O<e<1
Besides, if 1y € Y, then the following holds:
Vie0, T, [[05(t,-) — 7 (¢, )llx < Ol — dollx +2), (2.34)

where C > 0 does not depend on ¢.

Proof. As a first step, let us prove the existence and uniqueness of solutions ©
(respectively 1)°) to (1.1)—(1.5) (respectively (1.9)—(1.12)) on time intervals [0, T.)
(respectively [0, T.)). In that view, we define the following problem, in which F=(u?)
denotes either Ve(|u®|?) or W (|u|?):

1
0w = Hyu® +— Hu® + F(u)u®, >0, (z,2) €Q, (2.35)
5

u®(t,2,0) =u(t,r,1) =0, t>0, R (2.36)
u® (0,2, 2) =uy, (z,2) €. (2.37)
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Of course, we look for a solution u® of this Cauchy problem as a solution to the
following fixed-point equation given by the Duhamel formula:

¢
us(t, z,2) = e M yy(z, 2) — z/ e M= e (yf)us (s, x, 2) ds, (2.38)
0

where H® := H, + (1/&%)H,. In order to state the existence of a unique solution in X
or Y on a time interval [0, 7.] to this fixed-point equation, we use the tame estimates
(2.15) and (2.19) stated in Corollary 2.1.

Even more, if ¢ > 0 is fixed and if u, v € C([0, t), X), then by the fact that e is
unitary in X (as H, and H, commute with H¢), the following Lipschitz estimate holds
true:

/0 e [Fe (w)u(s) — F=(v)o(s)]ds )
< tx sup [|[F(u)u(s) — F=(v)v(s)||x

s€[0,t]

StXx C(||U||(2:([o,t],;c) + ||U||(2:<[o,t],x))||u - UHC([O,t]‘X),

where we used the tame estimate (2.15) at hand on F¢(u). Similarly, we prove by
the tame estimate (2.19) at hand for W (|u®|?) that, for all u, v € C([0,t),)),

H/ W (ul?)uls) = W(oP?)o(s))ds|

< tx C(llulléo.q.) + 10l Eg0.n) 1w = vllego.n.y

It is now easy (see, for example, Ref. 11) to conclude that, for any £ > 0, there exists a
possibly small time 7, > 0, and a unique solution u¢ € C([0, T.], X) to the integral
equation (2.38), and this solution incidently provides the unique solution to the
nonlinear Schrédinger system (2.35)—(2.37). We similarly prove the existence and
uniqueness on a possibly small time interval [0, 7.] of a solution u¢ € C([0, T.],Y) to
the system (2.35)—(2.37), where uy € Y and F¢(u®) = W(|u?|?). This task is left to
the reader.

Let us now prove that there is a common lower bound 7|, for all these 7. as ¢
fluctuates, i.e. T. > T, for any € > 0. If u® is the solution of the integral equation
given by the Duhamel formula (2.38) with initial datum uy € X, then

HuE(t)ll;cSIIUoIvaL/0 1F=(u)u(s)||x ds

t
< llwllx + C / us(8)]| % ds, (2.39)
0

where we applied (2.14). Hence, we get

[u lleqo,g.2) < llolle + Celluf]|Eo.q.0)
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Therefore, by a bootstrap argument (see, for example, Lemma 5.5 in Ref. 7), we prove
the existence of such a T}, and we obtain

Vite (07 T0)7 ||u5(t, )”X < CH“’OHX? (240)

where C' > 0 does not depend on ¢.

In the case where uy € Y and F#(u¢) = W(|u?|?), the previous work ensures that
(2.40) still holds true. Let ¢ € (0, Tj;) be fixed. Using the Duhamel formula (2.38), the
tame estimate (2.18) at hand on W (|u|?)u in J and (2.40) leads to

t
1wz (®)lly < luglly + C / ()12 () ds
t
< Jolly + Cluol% / us(s) |y ds.

The Gronwall lemma allows us to conclude that there exists a common existence time
T, < T, that only depends on |||/ and that

Vie (0, Ty), [lu(t-)lly < Clluglly,

where C' does not depend on e. Both estimates therefore also provide us with a com-
mon bound M > 0 that only depends on |||+ and |4, || and end the proof of (2.33).

In order to prove the convergence result (2.34), we set ¢y, € X and 1/;0 € Y. Consider
the initial Schrodinger—Poisson system (1.1)—(1.5) and the intermediate system
(1.9)—(1.12), with initial datum ), and o, respectively. We have already proved the
existence and uniqueness of their respective solutions denoted by ¢ € C([0, T], X)
and ¢ € C([0, Ty), ). The difference w® := )¢ — ) satisfies the following equation:

0w = Hew® + V(|97 |2y — V([§° ) + (V([¢°]?) — W(|¥e|?)9e,
ws(0,2,2) = Yy(z,2) — 1&0 (z,2), (z,2) €.

According to the Duhamel formula,
~ t . ~ ~ ~
w(t) = e " (o — 1) — ’/0 e IV (|9 2)y — VE([2 )90 ) (5) + f2(s)ds,

where

Fo(s) = (V([=|*) = W (|9 |%))e*
Since e " is unitary on X (by the fact that H, and H, commute with H¢) and
(X, || |lx) is an algebra, then we have

~ ¢
o= ()l <l — Gollx + C /0 Vel
~ ~ t
V() wds + / 175(5)]l s
0

~ t t
< llvbo — ol + CM? / Jw(5) L ds + / E(eds,  (2.41)

where we used (2.15) and the uniform bound M given by (2.33).
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In order to estimate ||f<(s)||x, we write

=) e < V(192 [2)(5) = W) () laelldbe (8) - (2.42)
Note that ve(|1)5]2) == Ve([4p5]?)(s) — W([1)5]?)(s) satisfies

—020% (|12 |?) — 20,07 ([0F]%) = 2 A, W([4¢]?), te (0, Ty), (z,2) €Q, (2.43)
vf ([9F|2)(t, 2,0) = v (|9 |?) (t,2,1) =0, t€(0,Ty), = € R (2.44)
and therefore applying Lemma 2.4 to Eqgs. (2.43)—(2.44) gives, for all t € (0, T),

lo* (|2 ) (B)llx < C?1A, W ([0 ]) (D)l < C*IW(192]%) (D)l
< Ce?[ge (D)3 < CMe?, (2.45)

where we used (2.16) and the uniform bound M given by (2.33). Finally, combining
(2.41) with (2.42), (2.45) and (2.33) leads to

- t
w2 (0)llx < o — ol + Ce2 + C / = (5)]L e ds,
0

which by the Gronwall lemma concludes the proof of (2.34). O

3. Time Averaging of the Intermediate System

In this section, we focus on the intermediate system (1.9)—(1.10). In order to filter
out the time oscillations, we denote by ¢¢ the filtered wave function as in (1.30),
which solves system (1.33)—(1.35). In order to state almost-periodicity properties for
the nonlinearity G defined by (1.32), we first recall various known facts about almost-
periodic functions (in time) with values in Z (in space) that will be generally denoted
as O(7). The key fact is the existence of their long-time averaging

and the point is, no small divisor estimate is needed to define these long-time
averages, as recalled in Proposition 3.2. Then, Proposition 3.3 states several key facts
about the nonlinearity G, in particular, we state some tame estimates on G (see (3.1)
and (3.2)) and we prove that G is almost periodic in time with values in Z (see
Proposition 3.3(i)). It therefore has a long-time average G,, (see (3.3)), computed in
(3.4) which inherits the tame estimates at hand for G (see (3.5) and (3.6)).

This proposition therefore allows us to state existence, uniqueness and regularity
results for both intermediate and averaged systems in Corollary 3.1. Finally,
Proposition 3.4 states the convergence of the filtered intermediate model towards the
limit model in X with additional ) regularity assumptions on the initial datum. This
point will be solved in the next section by a regularization procedure. Let us begin
with the following definition, borrowed from Refs. 1 and 20.
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Definition 3.1. Let Z denote either X or ). A function © : 7 € R +— O(7), with
O € C(R, Z), is said to be almost-periodic, and we note © € AP(R, Z), whenever the
set of translates

{T— O(t+h), heR}
has compact closure in the norm L>(R, Z).

This definition using the precompactness criterion is usually referred to as
Bochner’s criterion for almost-periodicity. It is proved, for example, in Ref. 20 and
recalled in Ref. 1, that this definition is equivalent to a criterion based on the
approximation by trigonometric polynomials.

Proposition 3.1. Equivalently, © € AP(R, Z) if and only if ©(7) is the strong limit
of trigonometric polynomials, i.e. for any 6 >0, there exists a trigonometric
polynomial

Ns
O(r) = O, se™7  such that sgﬂgne(f) —0%(1)]lz <6,
n=1 T

where the 0, 5's belong to Z, the A, s's belong to R and Nj is some finite integer.

With this definition, it turns out that one may be willing to do some kind of
Fourier analysis on almost-periodic functions, and, in particular, the long-time
averaging (that stands for the mean mode in the Fourier analysis) is well-defined as is
stated in the following proposition borrowed from Refs. 1 and 20.

Proposition 3.2. Consider © € AP(R, Z). Then, the following strong limit exists
n Z,
US|

0,, = Tlgr;o i T@(T)dT.

Moreover, for any A € R, the Fourier-like coefficient

is well-defined as a limit in Z. Last, the following Bessel-like inequality holds: for any
sequence {\, }neny € RY, we have

—~ ) 1 T
S IBOWIS < Jim / 101 2dr < O] .2

neN T—+oo T

Note that a simple particular case of almost-periodic functions is given by quasi-
periodic functions, that is, functions which, for any given finite-dimensional frequency
vector w = (wy,...,wy) whose components are assumed to be pairwise rationally
independent, can be written as the finite sum of N trigonometric monomials.

Let us now state a few consequences of Propositions 3.1 and 3.2 that will be of
great use in the study of the to-be-averaged nonlinearity G.



1464 F. Delebecque

Proposition 3.3. Consider any function u € Z, then the following conditions hold:

(1)

(i)

(iii)

(iv)

G is in AP(R, Z): If W(|e " H:u

T — eiTHZ W(|6_iTqu

%) is defined by (1.11)—(1.12), then

2)e_"THZU = G(7,u)

belongs to AP(R, Z).
Tame estimate for G in Z: uw — G(7,u) is locally Lipschitz in Z and satisfies the
following tame estimates:

VueZ, Vr>0, [G(r,u)z < Clulkllulz (3.1)

and,
Vu,ve Z, V>0,

1G(r,u) = G(7,v)l|z < C(lullZ + [0l Z)]lw = o]z, (3.2)
where C is a positive constant that only depends on the nonlinearity G.
Long-time averaging for G(1,u) in Z: one may define its long-time averaging as
the strong limit in Z,

Gy (u) := lim — G(,u)dr. (3.3)

Moreover, G,,(u) is given by

Gav(“) = Z Z Z O‘pqrsu_q’u'rusXp (34)

p=0 (q,rs)€A,
where, for all k>0, u, = (u,xx)12001), Ny :=1{(¢,7,8) eN3 E, +E,=E, +
E.} and
1,1
e = [ [ K2 g e 2)
o Jo

Tame estimate for G, in Z: the function u € Z — G, (u) is locally Lipschitz in
Z and satisfies the following tame estimates:

Vue Z, ||Gu(u)lz < Cllull3lullz (3.5)

and

Vu,v€ Z, || Gu(u) = Gu(v)llz < C(lullZ + 0] %) 1w — o]z, (3.6)

where C' is a positive constant that only depends on the nonlinearity G.

Gathering these properties on the nonlinearities G and G,, now allows us to state

the following corollary that proves the existence, uniqueness and smoothness results
for both filtered intermediate and averaged system.

Corollary 3.1. Let € >0 be fized and consider any function 1y in Z. There
exists Ty > 0 that only depends on ||¢||x such that the filtered intermediate system
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(1.32)—(1.35) and the averaged system,

i0,0(t) = Hyo(t) + Gor(6(1)), t>0, (z,2) €, (3.7)
6(t,2,0) = d(t,2,1) =0, ¢>0, z€R2 (3.8)
¢(0a z, Z) = wo(% Z)a (‘Ta Z) € (), (39)

both admit a unique solution in C([0, Ty], Z), respectively, denoted by ¢° and ¢.
Moreover, there exists M > 0 depending only on |||z such that

oiugl(||¢5\|cv<[o,To],2) + [1#lleoo, z,2)) < M. (3.10)

Proof of Proposition 3.3. (i) and (iii) We first claim that, given any © €
AP(R, Z), the function 7 — e*":@ also belongs to AP(R, Z). In that view, applying
Proposition 3.1, we use the characterization of almost-periodic functions as the
strong limit in ¢ of trigonometric polynomials. Fix a small § > 0 and © € AP(R, Z),
we may find a trigonometric polynomial

Ns
Q1) = Z 0,5e™7  such that [|© — ©°|| g z) < 0, (3.11)
n=1
where the 6,5 belong to Z and the ), s are real numbers. As the operator e

preserves the Z norm, we obtain

”eihHZ@ _ eiiTH166||L°°(R,Z) S 5.

Now, since the 6, s’s coincide with the Fourier-like coefficients (:)\5 (Ans) defined in
Proposition 3.2, the Bessel-like inequality (3.1) reads

Ns
Z 16,55 < 10| (R, 2)-
n=1

Besides, for ¢ small enough, we clearly have from (3.11) the uniform in time following
bound:

10~ r.2) < C, (3.12)

where C' does not depend on 6. By the equivalence stated in Lemma 2.1 and
Remark 2.1 and to definition (2.3), estimate (3.12) reads

N Ns
Z Z(l + E§+Q)H<9n,67Xp>”%2(R2) + Z Z(l + E122)H<Hz‘9n,6>Xp>”%2(R2)

n=1 p>0 n=1 p>0

Ns
3 IHZ 0 s x| 22y < C (3.13)

n=1 p>0
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Let us now approximate the infinite sum ©°% =% -,(6%, x,)x, by a finite sum. In
that view, one may find Ps € N such that

Ny Ns
3 “ n,6y Xp %Z(Rz) ]% zYn,6» Xp %2(]1%2)
1+ B, )06, x) + (1+ E})[IKH b5, X,

n=1 p>Ps n=1 p>Ps

Ns
+ Z Z CH 20,5, )| F2m2) < 6

n=1 p>P;

In particular, with this choice for Ps, and by (2.6) and (2.5), we recover the estimate

Ps
sup 66(7) - Z<®6(7)3Xp>)(p < 57
TER =0 z
which leads to
sup :EZTHz(._.) Z ej:z‘rE 7Xp X, < 6.
TER p= 0 z

Finally, the function
Py ‘ N, Py
Z TE(O8 X )Xo ZZ B (0,5 %) X
=0 n=0 p=0

provides us with a trigonometric polynomial with coefficients in Z that is a good
approximation of e*"#:0(7) in Z. Indeed, it satisfies the estimate

Ny Ps
sup eTiTH, @( Z Z +ir(E,+X,5) <0 5 Xp>X < 26.
TER =0 p=0 z

This proves that the function 7 +— e*7#:0(7) belongs to AP(R, Z).

To finish the proof of point (i), we only need to prove that, given © € AP(R, Z),
then W(|©|?) still belongs to AP(R, Z). In that view, we recall the explicit form of
W(|©]?) given in (1.15):

W(|@\2)(t,x,z):/o K(z )0t 2, 2)|? dz" (3.14)

Fix 7 € R, then, in order to approximate |©|? by a trigonometric polynomial with
coefficients in H*, we use (3.11):

Ie(n)? = [0°(1)%(lz < (I8()llz + 1©°(NI)IIO(r) — ©°(7)||=2
< (I18ll=r,z) + 0% 1~ 2) IO — O%|l1xr z) < (2C + 6)6,

where we applied (3.11) and (3.12), and where [|O||,~® z) < C. Moreover, as Z is an
algebra, then it is obvious that |©%(7)|? is a trigonometric polynomial in time with
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coefficients in Z. To conclude, by (3.14), it is clear that

/Kzz|@ 7)|2d’

is a trigonometric polynomial with coefficients in Z that approaches
W(|©(7)|?)(t, z, z) in L*(R, Z) as § tends to zero. Finally, since © € AP(R, Z), © is
the limit in L*(R, Z) of trigonometric polynomials ©°(7) as in (3.11), using the fact
that Z is an algebra, for each 6 > 0, the function

w(le°(n)|*)e’(r)
is a trigonometric polynomial (in time) with coefficient in Z that approaches

W(|O(7)]?)O(7) as § — 0 in the space L>(R, Z). This ends the proof of (i).

Combining this point (i) and Proposition 3.2, one may define the long-time
averaging of G in Z, which proves the first part of point (iii). In order to prove (3.4),
consider u € Z. Then, if ©(7) denotes O(7) := e~y € Z, then © € AP(R, 2).
Indeed, as u € Z and (x,), is an Hilbertian basis of L?(0,1), then

U(l‘, Z) = Z<’U/(1,', ')7 Xp>Xp(Z) = Z up(z)Xp(z)7

p=0 p=0

where the limit holds in Z. As a consequence, O(7) = Y 50 u,(z) e x,(2) can be
approached in Z, for any fixed 6 > 0 by a finite sum

Ps
O (1) ==Y ue By, (3.15)

Therefore, we are here in a simple case where the frequencies of the approaching
sequence of trigonometric polynomials do not depend on 6.
Computing e W(|©%|2)0° with (3.15) leads to

>TSS w@ueme G B 6, (316)
p=0 0<gq,r,s<Ps

which can be approached uniformly in time, choosing as previously an appropriate
truncation P for the first sum in (3.16), by

Z Z Z Z u, () us(x)u_q(x)e_i(ET+E;_Eq_EP)TO‘pqrsXp(z)'

0<p,q,7,5<Ps
Now, its long-time average is given by

Z Z Z Z ) Uq () pgrsXp(2)

0<p,qr,s<Ps
(q,7, )€,

where a,,,,, and A, are defined by

pqrs

1 1
Qpars ::A /0 K(Z7z/)Xr(z/)Xq(z/)Xs(z)Xp(z)dz/dz
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and
Vp>0, A,:={(¢g,r ) € N3, E,+E,=E,.+E}.

As the convergence of e W (|©%|2)0¢ toward e W (|©|%)O is uniform in time,
the limit 6 — 0 and the average procedure can easily be interverted, which leads to
formula (3.4) and ends the proof of (iii).

iTH,

(ii) and (iv) Consider any u € Z, and fix 7 > 0. Then, since e~#: is unitary in the

Z-norm, we have
1G(r w)llz < [W(le” ™ ul?) e ™ ul 5
and, using (2.18), we get

IG(r, wllz < Clle” ™ ull e ™ ullz < Clull %ull 2.

Similarly, consider u, v € Z and fix 7 > 0, then
1G(r, 1) — G(r,0)||z < |W (e THu|?)e ooy — W(|e~THy

Q)E—iTHZ,U

|z
Now, applying (2.19) leads to
1G(7,w) = G(7, )|z < C(llullZ + 0| Z)]lw - vz

which ends the proof of point (ii). Let us now prove that these tame estimates hold
true when we average the nonlinearity G. Consider any u € Z. Since G,, is defined in
(3.3) as a strong limit in Z, then

1 T
Tlgrolo? /0 G(1,u)dr
which proves (3.5). A similar computation gives
1Gay (1) = Gou (V)2 < |G(7, ) = G(7, )| L= (r.2)

< C(lullz + llollZ)llw = ol 5

|Gl = \ < sup||G(r, w1z < Cllul%]ullz
Z TeR

This ends the proof of point (iv). O

Proof of Corollary 3.1. The existence, regularity and uniqueness result is an easy
task. Indeed, the existence of a common existence time for the solutions to the
intermediate system has already been established in Proposition 2.1. We obtain the
associated solution of the filtered intermediate system by filtering out the time
oscillations due to the operator H, as in (1.30).

Now, as far as the averaged system is concerned, the result of existence, uniqueness
and regularity is an immediate corollary of Proposition 3.3. Indeed, as already seen in
the proof of Proposition 2.1 the key ingredients in order to prove the existence and
uniqueness of a local-in-time solution to the nonlinear Schrédinger equation (3.7) is
the fact that the mapping

u€ Z— Gy(u)€Z
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is locally Lipschitz, which is the case here by the estimates (3.5) and (3.6), given by
Proposition 3.3, combined with the fact that the propagator e
We again refer to Ref. 11 on these matters. O

is unitary in Z.

Gathering all these properties allows us to perform the standard nonlinear analysis
of the equation obtained by averaging in time the filtered equation (1.33)—(1.34),
and we state the following proposition.

Proposition 3.4. Lete > 0 be fixred and consider any 1y € V. If ¢ and ¢ denote the
respective solutions to both filtered intermediate system (1.32)—(1.35) and averaged
system (3.7)—(3.9) in C°([0, Ty],Y), defined by Corollary 3.1, then the following
convergence holds:

167 = Slleqo. ) —; 0

Remark 3.1. First, note that though the solutions of Proposition 3.1 have the
smoothness C°([0, Ty],)), the convergence of the solution ¢° of the filtered
intermediate system toward the solution ¢ of the averaged equation only holds in
the weaker space C%([0, Ty], X). The fact that ¢° — ¢ in C°([0, Ty], X) provided v
only belongs to X is proven in the next section.

Proof of Proposition 3.4. In order to prove this convergence result, we follow
the same lines as in Ref. 1. In that view, let us introduce a “large time” that we
denote T(¢) in order to approach the averaged nonlinearity G,, (V) :=
limp_(1/T) fOTG(T,\I/)dT by

- 1 t+T(e)
G (t, ¥ ::—/ G(m,¥)dr. 3.17
(=g [ ey (317)
As a first step, we define the auxiliary solution ¢° to
iatg)a :HT&E+ és (%’ngf)’ (318)
€

and find some preliminary bounds.

Step 1. Some preliminary bounds:

Fix © € Y and 7 > 0. From (3.1), there exists C' > 0, independent of ¢ such that

- 1 7+ T(e) )
1G-(T,0)lly < @ / 1G(s,0)[lyds < C||O] %[Oy

Using the exact same arguments than in the proof of Proposition 2.1, there exist a
common existence time, still denoted by T, independent of € to the intermediate
system (1.33)—(1.35), the auxiliary system (3.18)—(3.19) and the limit system (3.7)—
(3.9) and a common upper-bound M > 0 in )

sup [16%llo 2 + 19 o 9 + I0lleqo ] < M. (3:20)
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Moreover, the following uniform Lipschitz property may be stated:

sup  sup sup [|G(7,u) = G(7,)|z + || Ge(r, u) = G(7, )| 2
O<e<l <7<l H‘l‘t\‘l‘yéﬂfl\l
2 en

+ || Gav(Tﬂ u) - Gav(Tﬂ U)HZ} < CM?”” - U”Zv (321)
where C' > 0 does not depend on €.

Step 2: Estimating ¢° — ¢ in X:

In order to estimate the difference 6" — Bllcqo, 1))
given u € Y, the difference || G.(&, u) — Guy(w)]lc(0, 7)) -
third and fourth steps of Ref. 1 and, for any u fixed in ), let us introduce the following
convergence rate:

we first estimate, for any
In that view, we follow the

2 T
§(e,u) = sup |—m / (G0, w) — Gy (w)]do (3.22)
o<r<2y/e2 1210 Jo X
Inspired by Lemma 4.3 in Ref. 1, we state the following lemma.
Lemma 3.1. (i) For any given u € Y, we have 6y(e, u) - 0.
(ii) Fiz M > 0 as in (3.20), and introduce the uniform convergence rate
6y(e) :== sup 6(e,v), then 6y(e) — 0. (3.23)

[[olly<M

(iii) Assume that, fore small enough, 2T (g) < Ty, if M > 0 is fized as in (3.20), then
- [t )
’ Gs (E_Qv u) - Gav(u) x

comy e T(E)
Remark 3.2. (a) As the proof of this lemma follows the one of Lemma 4.3 in Ref. 1,
we refer the reader to this reference. The key argument appears in the proof of point
(ii). It indeed lies on the compactness of the embedding Y C X. The need of this
compact embedding, as well as the loss of two derivative, motivates the choice of the
regularization space ).

sup
[ully<m

(3.24)

(b) The right-hand side term in (3.24) does not necessarily tend to zero with e. It
provides us with a necessary condition for the choice of T'(¢) in order for it to tend to
zero. In fact, we will choose T'(¢) such that €2 T'(e) — 0 ase — 0 (note that e2T(e) =

A/ 52,M will dO)

Now, for any t € (0, Ty), w®(t) := ¢ (t) — ¢(t) satisfies
+

0w (t) = Hyw* (1) =
wé(z,0) = w(z,1) =0, w(0,2,2)=0

and therefore, for all t € (0, Tj),

o0l < [ t
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Inserting C:'S(C—"; ,®(8)) in the difference and combining the Lipschitz estimate (3.21)
with the uniform bound (3.20) at hand for ¢ and finally applying point (ii) of
Lemma 3.1, we recover

t 1)
oA (Ol < 2 [ (o) Luds +275 .

By Gronwall lemma, there finally exists C(T,, M) > 0 such that

~e 6
VOt Ty (167 - 6(Dllx < C - (3.25)

Step 3. Estimating ¢¢ — ¢
This estimate is more delicate to handle with than the previous one as it relies on
an appropriate integration by part in time. Let us fix 0 < T < Tj, here, T is meant to
be close to Tj: we need to have T+ ¢2T(g) < Ty, which holds true for € small enough.
The difference &°(t) := ¢°(t) — ¢ (t) satisfies
i0,5°(1) = Hyo + G(E—’;,gﬁf(t)) el (E%,éf(t)), 5°(0) = 0.

The Duhamel formula, together with (3.21) yields, for all ¢ € [0, T,

t
2% ()]l < CM? / 15°(3)]leds

/Oteiu—s)Hm {G<€_‘Z,¢E(s)> el <Ei2’¢5(5))]ds

Following the same arguments as in Ref. 1, we get

t 3
/ pilt-9)H, <G€ <€%7¢5(5)> _ G<€_82,¢6>)d3 = RS+ R + RS, (3.27)
0

where the remainders R, R5 and RS are to be estimated.
First, R] is given by

1 t
i = / / ei(t—s)H,
0 0

. {_G<w,¢5(s+ €2T(s)u)> + G(Mﬁg(s))}

2

+ ’ (3.26)

X

which by estimate (3.2) gives
1ot
Rilw< oy [ [ 6%(s+ 2 T(e)u) = 6°(6) aduds
0 Jo

< CM22T(€)]|0,0% e (o, T+e2 () ) -

Yet, Eq. (1.33), together with the bounds at hand for ¢¢ in C([0, T + 2T (¢)],Y) and
the uniform Lipschitz property (3.1) satisfied by G(s/g2,-), implies

10:6%(lcoo, r1e27(e.20) < €
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for some C > 0 that does not depend on &, which finally provides
|Ri|lx < Ce2T(e). (3.28)
Now, Rj5 is defined by

L pt+e?T(e)u ) i s
R; — / / [ez(tfs)Hl _ el(tfers T(E)U)H[} G<€_27¢5(s)> dsdu. (329)
0 €

2T(e)u

1 pt+e?T()u pe?T(e)u g ) s
£ = / / / — (el(’fS)UHx G (—2 , ¢>5(s)>> dodsdu
0 Je2T(e)u 0 do €

and therefore, by the uniform Lipschitz estimate (3.21) and the uniform bound (3.20)

at hand for ¢°,
s £
HIG<€—27¢’(8)>

<e?T(e)(T + aQT(e))H G<i2,¢5(8)>
€ CO([0,T+e2T(2)]),Y)

< OM3%T(e). (3.30)

L re?T(e)u s
R5 = 7/ / ez(t_“’)HzG(—z,ng(s)) dsdu
0o Jo €
1 tHe?T(e)u s
+/ / ellt=9 i G <52 , (;Sg(s)) dsdu,
o Ju

and again applying (3.21) and (3.20) gives
|R5||x < Ce2T(e)M?. (3.31)

Note that

IRzl < (T +e*T(e))e* T(e)

CO([0,T+&2T(¢)].X)

Finally,

Combining (3.26) with (3.27), (3.28), (3.30) and (3.31), and applying the Gronwall
lemma gives

VYOSt T, |¢°(t)— o (H)|lx < Ce2T(e), (3.32)

for some C > 0, which does not depend on ¢.

Step 4. Conclusion:
Gathering the estimates (3.25) in Step 3 and (3.32) in Step 4, we recover

62.1(¢)
521‘1{(5))'

VOSeS T 160 - o0l < 2T +
According to the choice for T'(¢) made in Remark 3.2, we conclude that

9% = Bllcqo, 1y x) < C/ 02, (€) — 0 (3.33)
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4. Proof of the Main Theorem

Proposition 4.1. Consider any v, € ), then there exists T, > 0 depending only on
ltbollx such that ¥¢ and ¢, the respective solutions to both initial Schrodinger—
Poisson system (1.1)—(1.5) and averaged system (3.7)—(3.9) with initial datum
exist and are unique in C([0, Ty, V). Moreover, the following convergence holds:

e = e~/ Blleqo, 7)) — O

Proof. This proposition is easily proved gathering the convergence results that we
obtained in Secs. 2 and 3. Indeed, by Proposition 2.1, there exists T} > 0 depending
only on |[1)y]|x such that both initial Schrédinger—Poisson system (1.1)—(1.5) and
intermediate system (1.9)—(1.12) with initial datum ¢, possess unique solutions,
respectively, denoted by ¢ € C([0, T1], X) and ¢ in C([0, T}], ). Moreover, the
following holds:

195 = %% leqo,7,2) < Ce2,

where C' > 0 does not depend on ¢.

Moreover, applying Corollary 3.1 with the initial datum 1), there exists Ty > 0 that
only depends on [|1)y]| v such that both filtered intermediate system (1.33)—(1.35) and
averaged system (3.7)—(3.9) admit unique solutions in C([0, T5], ))) that we denote by
#° and ¢. Now, as e~ ":/="y)¢ satisfies (1.33)—(1.35), if Ty = min( T}, T), then, using
the unicity of ¢¢, we get

Ve [0, Ty), °(t) = e /=g (¢).

Moreover, by Proposition 3.4, we get

Vie (0, Ta],  [lo°(t) — o(t)x — 0.

e—0

Therefore, for all t € [0, Ty,
162(8) — e~/ Gl < [[9°(8) — = (1)
+[le= I pe (1) — eI (8 |
and finally
l[9° = e bl oo, 7)) —0
which ends the proof. -

Proof of the main theorem. Take ¢y € X and fix a small § > 0. Now, pick a
regularization 1y s € ) of 1) such that

llwbo — 1o sllx < 6. (4.1)

Associated to the initial datum g, let us define the functions 5 and ¢;(t) that,
respectively, solve the initial Schrodinger—Poisson system (1.1)—(1.5) and the
averaged equation (3.7)—(3.8) with initial datum 1), 4. Similarly, associated to the
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initial datum 1, let us define 9, 1/;5 , ¢ and ¢ that, respectively, solve the initial
Schrodinger—Poisson system (1.1)—(1.5) the intermediate system (1.9)—(1.12), the
intermediate filtered equation (1.33)—(1.34) and the averaged equation (3.7)—(3.8).

Indeed, we already know that, by Proposition 2.1 and Corollary 3.1, there exists
T, > 0 that only depends on |[)y||x such that ©¢ and ¢ exist and are unique in
C([0, 1], X), and T, depending only on ||¢)y]|x such that ¢(t) and ¢(t) exist and are
unique in C([0, Ty], X). If Ty := min(7}, Ty), then we, moreover, know that they
belong to C°([0, Ty], X) uniformly in € by the estimates (2.33) and (3.10).

Applying Proposition 4.1, we also know that, for each 6 > 0, there exists Tj 5 > 0
depending only on ||t} 4[|+ such that ¢5 and ¢;s belong to C°([0, Tp 5], V) uniformly in
e. Since [[¢gs|lx < |[thollx + 6, we may ensure that |1 | is as close as we wish to
|4 v, s0 that Tj s may in turn be assumed as close as needed to Tp. For this reason,
we may safely assume for the remaining part of the argument that all the functions
), ¢, 15 and ¢s are defined on the same time interval [0, Tp]. Similarly, according to
(2.33) and (3.10), we may safely assume that they are bounded by a common M > 0
depending only on ||¢g]| v:

sup su € + ||
0<g£>10<651(||1/} lleoo, 7o) + 1¥5lleo o, 7))

+ [|@lleoo, 7.x) + 1Bslleoo, 7.x)) < M. (4.2)
We have
llv° — e_itHZ/52¢||c([0,T0],X) <Y = Yslleqo,1).0)
+ [[vs — e_itHZ/EQ¢6||C([0,T0],X) +1los — Plleqo, 7). (4:3)
On the one hand, Proposition 4.1 asserts that
5 — e~ /%" gl oo, 7,).) 0 (4.4)
On the other hand, ¢ — 1§ satisfies equation
0,(° —p5) = H (" — v5) + V(|9 )9 — VE([95]*)vs
with the initial datum 1y — v s. Therefore, for all ¢ € (0, Tj),
t
[9°(t) — ¥5()llx < o — osllx +/ V(e 12)9(s) = VE([95]*)ws(s) || v ds.
0
Applying (2.15) (in the case where F(u) denotes V(|u|?)) and (4.2) gives
IVE(9e12)97(s) = VE(W51°)05()llx < OMP([9h°(s) — ¥5(s)|x-
Finally, by the Gronwall lemma, we have
05 — ¥illeqo.my ) < e 6. (4.5)

Similarly, as ¢ and ¢s both solve the equation
i0u = —A,u+ G, (u)
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with initial data vy and 1) 5, respectively, ¢ — ¢; satisfies
Zat(¢ - ¢5) = _Aa'(gb - ¢6) + Gax(¢) - Gav(¢6)

with initial datum vy — 1)y 5. Using the Duhamel formula and the tame estimate at
hand on G,, given by (3.6) leads to

16° = blleqo. 7,),2) < 6eM* T (4.6)

Finally, combining (4.3)—(4.6), having ¢ tend to zero, and then choosing § small
enough allows us to conclude this regularization procedure. The main theorem can be
deduced applying the identification of G,, given in (3.4) and projecting on the pth
eigenmode of the operator H,. O

Appendix. Proof of Lemma 2.4

The existence of a unique solution in L?(Q2) comes straightforward as (2.9)—(2.10) is
an elliptic equation when € > 0, and, when € = 0, the unique solution is explicit.

Let us prove the regularity results. In that view, we denote by @(¢, z) the Fourier
transform in the z € R? directions of function u(-, z), z being fixed in (0, 1). We apply
this longitudinal Fourier transform to Egs. (2.9)—(2.10) and we get

—020(E, 2) + 2|¢Pu(E, 2) =f(&,2), (£2) €Q, (A1)
a(€,0) = (&, 1) =0, £eR% (A2)

Multiplying Eq. (A.1) by 4(¢, 2) and integrating along the z variable over (0, 1)
gives

10:a(&; -] 12 < FE Azl .

7o +2lg2a(, )|

We combine with the Poincaré inequality (as @ satisfies (A.2)), and, thus, there exists
C > 0, which does not depend on ¢ such that, a.e. in £ € R?,

(€, )22+ €71%E 22 < CIFE )]

L2 (A.3)
We therefore get

/Q(l + €[, 2)|?dédz < C/Q(l +[€17)If (& 2)|*dedz < C| Il
Combining (A.1) with (A.3) also leads to

1928 ez < IFE ) uz + 2l alE )|

12 < Clf ()]

2
L

which gives

/Q (1+ €2)|0%ae, ) dedz < CIIf|%
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and

e2[[1€1?0% |2y < CNIEPf 2@l < Cllfllx- (A4)
Finally, let us derive twice Eq. (A.1) with respect to the z variable

D€, 2) = —02f (& 2) + €2)€2D%u(E, 2).
Combined with (A.4), it leads to
10%illz2(0) < ClIfll-

Now that we have obtained the HZ2-estimate for u and 9%u, let us now consider
w := Viu. We need to prove independent of ¢ L2-estimates for w and 9%w. In that
prospect, a simple computation gives

V.V,
—0%w — 2 A w=Vif — 22V, w - —=-1

1

2 2 A
2<| VVIQ' _ ;/Ifl)w, (2,2) € Q. (A5)
1

According to Assumption 1.2, V, V,/V;, |[VV;|2/VE and A, V,/V; are bounded on
2 by a positive constant A. Multiplying (A.5) by @ and integrating over 2 yields

10011720 + €2IVawll T2y < I Vifllzalwll () + 4422wl 72
Jr21‘152HVIW”L2 o) llwll 20 -

Noticing that
26|Vl 2 1l 2oy < €3 IVall T2 + ellwll o)
and combining with Poincaré inequality, we finally get
(1 —44e% — Ae)|wl|F2q) + (1 — Ae)e? |V, 0l T2y < Vil ol z2(0)-
Therefore, there exists C' > 0 such that, for € small enough,
[wlizz0) < Clliflle - and  el| Vw2 0) < Cllf[l2- (A.6)
Now, multiplying (A.5) by Tﬁw and integrating over € easily leads to

||33WH2L2(Q) + 52Hazva¢w”2L2(Q) < Clflxll@3wllzz(o) + 24|V ,wl| p20) 102wl £2(0)
+3A52|\w||L2(Q)||a§w||L2(Q>

Combined with (A.6), this allows us to conclude that there exists C' > 0, for £ small
enough, such that

”8§WHL2(Q) < O|Ifll xs

which ends the proof. O
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