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Abstract. The mechanism of self-organization resulting in coordinated collective motion
has received wide attention, in particular because collective behavior emerging out of self-
organization is one of the most striking property of an animal group. In almost all the
associated models, it is assumed that each individual in an animal group tends to align its
direction of motion and velocity with those of its neighbors. The rules of alignment are
often assumed to be of metric type, i.e. depending on the distances between individuals.
The observation of large starlings flocks suggested in [BCC+08] to rather consider nearest
neighbor interactions, and several attempts were done to provide us with such models.

In the present note, we are interested in some properties of such a recent model presented
in [BD16] and [BD17]. This model is a discrete model on velocities of N agents that interact
according to their rank (and not their pairwise distance). In this paper, we present a detailed
analysis of its flocking properties (flocking of the whole population as well as flocking of
some subgroups of the population) and bounds for the flocking time. In the final section
we discuss some consequences and interpretations of these results compared with existing
numerical results in the literature.
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1. Introduction

The mechanism of self-organization resulting in coordinated collective motion has received
wide attention, in particular because collective behavior emerging out of self-organization is
one of the most striking property of an animal group. In almost all the associated models, it
is assumed that each individual in an animal group tends to align its direction of motion and
velocity with those of its neighbors. The rules of alignment are often assumed to be of metric
type, i.e. depending on the distances between individuals. If there are numerous numerical
studies of various models, only few have received a rigorous mathematical treatment.

Among the most known models of this type, let us mention the various Vicsek models (see
[VZ12]) or the Cucker-Smale models ([CS07a, CS07b]) introduced in 2007. These models are
thought as possible predictive models for “flocking”.
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The Cucker-Smale Model.

More precisely, the Cucker-Smale model considers N individuals determined by their respec-
tive positions and velocities (x(t), v(t)) = (x

i

(t), v
i

(t))
i=1,...,N in Rd⌦Rd evolving in time via

the dynamics

dx
i

(t) = v
i

(t) dt

dv
i

(t) = � 1

N

NX

j=1

 (|x
i

(t)� x
j

(t)|) (v
i

(t)� v
j

(t)) dt ; (1.1)

where  is a non-negative and non increasing function. The minus sign in front of (1.1)
facilitates a collective behavior, here the alignment of all velocities with the mean velocity
as time goes to infinity. If in addition all positions stay at a bounded distance of the mean
position (swarming property), this property is called “flocking”.

The classical communication rate is given by (u) = �/(1+u2)r. It was proved in these papers
that for strong interaction (r  1/2) the system is flocking, while for r > 1/2 flocking may or
not happen, depending on the initial configuration. The choice of the communication rate is of
course artificial and no statistical method of calibration has been proposed. A lot of modified
models have then been studied in the deterministic context, including delays, no collisions
and many other features (such as leadership, cone of vision, pattern formation. . . ) Some of
them are presented in the review on Cucker-Smale type models [CHL17]. Among them, it
was proposed in [MT11] to self-normalize the communication rates (instead of dividing by
N). This model is particularely well-adapted to describe the dynamics of distant groups of
various importance in terms of number of agents. In that prospect, it indeed may lead to the
emergence of several flocking subgroups (subflocks).

Many of these models are deterministic, while randomness certainly appears at several levels:
environment, individual degree of freedom or perturbation of the communication rate itself.
Some noisy versions of Cucker-Smale like models have been considered, adding independent
noises (Brownian motions) in [BCnC11, BCnC12, Péd18] in the dynamics of velocities, so
that flocking becomes impossible, or correlated noises in various ways. These “noisy Cucker-
Smale” models allowing flocking have been discussed in a few papers and we refer to [CDP18]
for a first description of the situation and rigorous statements of how the flocking property
may be adapted to the stochastic situation. Some stochatsic Cucker-Smale type models have
also been derived and studied such as delayed equations in [HM18], or stochastic singular
model for collision-avoiding in [HZ22] .

Another main question about these models is the micro-macro transition i.e. the behaviour
of a single, or a finite number of individuals, as the size N of the population grows to infinity.
Since (1.1) is of mean field type, it is expected that, provided the initial configuration is
favorable, each individual will perform the same asymptotic averaged dynamics (McKean-
Vlasov limit) and that any finite number of individuals will become independent in the
limit (chaoticity). This is shown in various works for deterministic or stochastic models with
independent Brownian noises, see e.g. [BCnC11, BCnC12, Péd18]. But of course such studies
for general mean-field stochastic models have a long history, starting with M. Kac and H.P.
McKean Jr. One may refer to [GM99] for a comprehensive survey of stochastic particles
microscopic description of a Boltzmann’s equation and to the very recent general approach
in connection with biological models in [Car18]. Another nice survey of various models and
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tools on the propagation of chaos in microscopic models can be found in [CD22] among the
impressive amount of papers on the subject.

As a model for collective dynamics these models su↵er some defaults. One of the main default
is the following: if an attractive behavior depending on the distance between individuals is
plausible for bacterias or cells (though aggregation type descriptions are presumably more
convincing), it is much less clear for animals that have the option of free will. A human in a
crowd of unknowns will try to join the closest familiar face, whatever the distance. This has
been clearly observed for some birds in [BCC+08] from which we extract the following:

Numerical models indicate that collective animal behavior may emerge from simple local rules
of interaction among the individuals. However, very little is known about the nature of
such interaction, so that models and theories mostly rely on aprioristic assumptions. By
reconstructing the three-dimensional positions of individual birds in airborne flocks of a few
thousand members, we show that the interaction does not depend on the metric distance, as
most current models and theories assume, but rather on the topological distance. In fact, we
discovered that each bird interacts on average with a fixed number of neighbors (six to seven),
rather than with all neighbors within a fixed metric distance. We argue that a topological
interaction is indispensable to maintain a flock’s cohesion against the large density changes
caused by external perturbations, typically predation. We support this hypothesis by numerical
simulations, showing that a topological interaction grants significantly higher cohesion of the
aggregation compared with a standard metric one.

If one can discuss the word “indispensable”, since classical Cucker-Smale models may exhibit
flocking situations, and if one can discuss the fact that “simulation is proof”, these obser-
vations have pointed out the topological nature of interactions for some populations. Once
again some models where interactions between individuals is restricted to nearest neighbors
have been proposed and studied numerically (see e.g. [BFW11, SB14, KB13, CD16] among
others). One can also mention [MNG17] where another type of interaction based on antici-
pation is proposed.

In the recent [KD21], the authors explore numerically the compared e↵ects of metric versus
topological local interactions on the dynamics of flocking in the following simple model :

dx
i

(t) = v
i

(t) dt

dv
i

(t) = � 1

N
int

N

intX

j=1

(v
i

(t)� v
j

(t))dt.

Here, the set {1, . . . , N
int

} represents, in the case of metric interactions, the particles lying
in a ball of fixed radius R centered in x

i

and, in the case of topological interactions, the
N

int

nearest neighbors. Varying the number of interacting particles (i.e the radius R for
metric interactions and the number of interacting neighbors for topological interactions), the
authors evidence that topological interactions seem to be more e↵ective in bringing order in
the agents group.

It is thus interesting to replace interactions depending on distances between individuals by
interactions only depending on their closeness, or their ranks. Replacing metric interactions
my topological ones can be done in di↵erent ways. In taht prospect, in [Has13], the authors
turns the Cucker-Smale deterministic model into a topological one by replacing the interaction
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term  (|x
i

(t)� x
j

(t)|) in (1.1) by,
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,

hence particles are interacting through their ranks and not in a metric way, see the discussion
below. In the spirit of our previous paper [CDP18] one may introduce di↵erent noise in such
a model. Some stochastic models of this kind have been introduced for other purposes, for
instance finance in dimension 1 (see e.g [Shk12, JM08, Rey15]).
Another way to make classical metric interactions asymetric, to introduce leadership or more
complicated interactions is to impose a graph of interactions. The drawback of these models
lies in the proofs of flocking. They indeed usually require invariant in time connectivity
properties in the communication network along the dynamics. In [Mar14] and later in [CD16],
the authors manage to determine practical conditions, depending only on initial data, that
ensure su�cient robustness in the communication network to lead to flocking, or to show
unconditionnal flocking if the number of interacting particles stays su�cient along time. We
refer the reader to [DHJK20] and references therin for more such models.

Recently another stochastic “toy” model was proposed by A. Blanchet and P. Degond ([BD16,
BD17]). This model also adresses the question of topological vs. metric interactions. Let us
describe this model, which will be called the B-D model in the sequel.

The Degond-Blanchet Model.

(1) The dynamics is a succession of free flights and jumps (collisions in Blanchet-Degond
terminology), that is, between two jump times, particles follow straight paths with
constant velocity, i.e. dx

i

(t) = v
i

(t)dt and dv
i

(t) = 0.
(2) Jumps occur according to a Poisson process P (t) with intensity (rate) �(N), i.e. times

between jumps are independent, identically distributed according to an exponential
distribution with parameter �(N).
When the clock of the Poisson process rings (i.e. at each jump time), a particle i is
chosen at random (i.e. uniformly with probability 1/N).

(3) When it “jumps”, particle i chooses its partner j 6= i according to a probability ⇡N

i,j

to be described below, and then (x
i

, v
i

) is changed into (x
i

, v
j

) i.e. i immediately
aligns its velocity on v

j

.

Remark 1.1. Note that the choice of one Poisson process P (t) with intensity rate �(N) is
equivalent to the choice of N Poisson process P

i

(t) with intensity �(N)/N , all these processes
being independent and P (t) =

P
N

i=1 Pi

(t). In that case, the di↵erent clocks almost surely
ring at only one at the same time. }

Now let us precisely define the probabilities ⇡N

i,j

. As they depend on the rank of j with
respect to i, let us start with the definition of this rank.

Definition 1.2. For each i, consider the increasing ordered set of distances {|x
i

�x
j

|, j 6= i}.
Define RN (i, j) the rank of particle j for this order if j 6= i and RN (i, i) = 0. If distances
are the same for two di↵erent indices or more, one chooses one of the corresponding indices
randomly with uniform probability. We then introduce the normalized rank

rN (i, j) =
RN (i, j)

N � 1
.
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Remark 1.3. First note that, RN (i, i) = 0 and RN (i, j) = 1, ..., N � 1.
Also note that, in the case where there are no tied particles (i.e the distances between any
pair (i, j), i 6= j are di↵erent), one can write

rN (i, j) =
1

N � 1

X

l 6=i,1lN�1

1
B(x

i

,|x
i

�x

j

|)(xl) =
1

N � 1

X

l 6=i,1lN�1

1|x
i

�x

l

|<|x
i

�x

j

| .

}

We now describe the transition process

Definition 1.4. Let kN : [0, 1] ! R+ be continuous.
Define, for all i = 1, . . . , N , ⇡N

i,i

= 0 and for j 6= i,

⇡N

i,j

=
kN (rN (i, j))

P
N�1
l=1 kN (l/N � 1)

,

Note that, because rN
i,i

= 0,
P

N

j=1,j 6=i

⇡N

i,j

= 1, which is consistent with the choice of ⇡N

i,i

= 0,

and that we may also assume, or not, that
R 1
0 k(u)du = 1.

The model, as simple as it may seem, has the following several interesting properties.

(1) It corresponds to the expected notion of topological interactions : if in particular, for
some m  N � 1,

kN (s) = 1(s 2 [0,m/(N � 1)]) , (1.2)

then each particle only interacts with its m-nearest neighbors. When N grows one
can also take m = ↵ (N � 1) so that each particle interacts with a given fraction (↵)
of the whole population.

(2) It is a crucial point to remark that permutation invariance (exchangeability) is pre-
served by the dynamics, since the rank is permutation invariant.

(3) From the mathematical point of view, the use of the rank creates new di�culties.
The first one is the break of symmetry in the interaction. Indeed, in the usual
Cucker-Smale system for instance, it is crucial that the communication term  

i,j

:=
 (|x

i

� x
j

|) is symmetric :  
i,j

=  
j,i

. But, in our case, note that the rank is not
symmetric : RN

i,j

6= RN

j,i

. (think of a case where agent j might be the closest neigbour
of agent i, whereas i is not the closest neighbour of agent i.) Therefore, the transitions
⇡N

i,j

won’t be symmetric except if kN is constant.
(4) Similarly, the usual ”Cucker-Smale” interaction is a pair-wise interaction : the inter-

action term  
i,j

(v
j

� v
i

) only depends on the positions and velocties of agents i and
j, whereas, in this model, the rank RN

i,j

(and therefore ⇡N

i,j

) does not depend only
on both particles but on the whole population of particles so that the “mean field”
nature of the model is not completely clear.

Remarks (3) and (4) have an immediate consequence: the first one for the study of flocking,
the second one for the large population limit.

In this paper, we study the flocking property, i.e. the long time behaviour of the solution
for a fixed N . This problem is not discussed (except via some simulations) in [BD16]. It is
worth noticing that the set of all velocities is always a subset of the initial configuration of
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velocities. Indeed, at each jump time, a particle aligns its velocity on another one : no new
velocity is created, contrary to the usual Cucker-Smale type models. Hence alignment will
mean that all velocities are the same after some almost surely finite stopping time. After this
time the distances between all positions will no more change. It follows that alignment of
velocities automatically implies “swarming” (distances between particles remain bounded),
and is thus enough for flocking. Our main results are the following:

(1) If interaction is allowed with a su�ciently large number of neighbors (more than one
half of the population), in particular with all of them, then the system is almost
surely flocking, whatever the initial configuration is. This is called “unconditional”
flocking. In addition we shall provide theoretical bounds for the mean flocking time
(i.e the first time when all the agents share the same velocity).

(2) In any case, after some almost surely finite stopping time, the population is divided
into several flocking sub-populations that do no more interact one with another. The
size of these subgroups of individuals is random, and we may have situations where
flocking holds with a positive probability while non flocking also holds with a positive
probability. This is somehow di↵erent from what is usually called “conditional”
flocking in the literature (i.e flocking under conditions on the initial positions and
velocities) : here same initial conditions may lead to flocking (or not) with positive
probability.

The large population limit is studied in [BD16] for kN = k independent of N , and in [BD17]
for kN as in (1.2). In both papers the authors show that, for an appropriate choice of the
intensity �(N), the limiting behaviour of the distribution of each particle, as N ! 1, is
given by some kinetic non linear P.D.E. In [DP18], a rigorous proof of convergence is given
when kN = k belongs to some subclass of the analytic functions (including polynomials).
The result is obtained by solving the whole underlying BBGKY hierarchy. Notice that in
[Has13] the large population limit is studied by showing in particular that the associated
“topological” Cucker-Smale model satisfies mean-field like properties.

The paper is organized as follows :

Section 2 is devoted to the case where all particle interact with the whole population, i.e the
intercation kernel k is positive. We show, that in that case, the system amost-surely flocks.

In section 3, we focuse on the special case where k is constant, which means that all the agets
have the same probability to be chosen for velocity alignement. We first draw a parrallel with
the study of Moran birth and death process, deduce an upper-bound for the flocking time
and present numerical simulations.

In section 4, back to the more general case where k is positive, we use the results on birth
and death models to build a slowed process and get a better bound for the flocking time.

Finally, section 5 is devoted to the case where k may cancel and almost sure flocking does
not hold anymore.

We end up with a discussion on the relevance of the model.
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2. Almost sure flocking, case k > 0.

We recall that, for teh rest of the paper, the size N of the population is fixed. We will
therefore suppress the superscripts N in all the notations. In addition we do not indicate the
initial configuration when an estimate is true for all initial configurations.
We start with a few notations that will be usefull in the rest of the paper.

Notations 2.1. Consider the subsequence of jump times (T
n

)
n2N, we denote by V̄ (n) =

{v
i

(T
n

) ; 1  i  N} the set of all velocities at time T
n

.
We also define the skeleton Markov Chain (X(n), V (n)) = (x(T

n

), v(T
n

)), whose transition
probabilities are given by the ⇡

i,j

’s.

As already said, no new velocity is created along the dynamics of the B-D model. It is
therefore clear that V̄ (n) ✓ V̄ (m) for n � m so that the limiting set V̄ (1) exists. Let us
now recall the definition of flocking in our setting.

Definition 2.2. We shall say that the system of particles is (almost surely) flocking if V̄ (1)
is reduced to a single (random) vector v(1). If S1 = inf{n ; #V̄ (n) = 1}, the system flocks
if and only if S1 < +1 almost surely. We will call T1 = T

S1 the flocking time for the
system in the sequel.

It is easy to build situations where flocking does not hold

Example 2.3. For d = 1, N = 4 and k(s) = 31{s1/3}, i.e. an interaction with the
closest neighbor (i.e k(s) = 1(s 2 [0, 1/(N � 1)])), choose x(0) = (�3,�2, 2, 3) and v(0) =
(�2,�1, 1, 2). It is immediately seen that for all t the clusters of particles 1, 2 and 3, 4 remain
unchanged, so that V̄ (1) contains two elements. }

In the Example 2.3, the lack of flocking is due to the fact that two initial clusters of agents
never interact. In the following theorem, we claim that, if any pair of particles has a positive
probability to interact (i.e ⇡

i,j

> 0 as soon as j 6= i) then flocking almost surely happens.

Theorem 2.4. Assume that k(j/N � 1) > 0 for all j = 1, ..., N � 1. Then for any initial
condition, the system is almost surely flocking.

Proof. Note that the assumption on k is equivalent to the positivity of the ⇡
i,j

for any pair
(i, j). With Notations 2.1, denote by F the following event:

F := “at each time T
i

, i = 1, ..., N � 1, agent i is selected and selects agent N to align with :
V
i

(i) jumps to V
N

(i).”

It is clear that, on F , the system is flocking as all the agents have velocity V
N

(0) at T
N�1.

Moreover,

P(F) =

Q
N�1
j=1 ⇡

j,N

NN�1
.

Define

�
N

= min
1jN�1

⇡
j,N

= min
1jN�1

k(j/N � 1)
P

N�1
l=1 k(l/N � 1)

(see Definition 1.4.) (2.1)
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It follows from the assumption of Theorem 2.4 that �
N

> 0 and thus

P(F) �
✓
�
N

N

◆
N�1

:= p > 0 .

Note that p does not depend on the initial condition. Denote by S1 the flocking time for
the skeleton chain. It follows that P(S1 = +1)  (1 � p) ans this lower bound does not
depend on the initial configuration. But using the Markov property we have

P
X(0),V (0)(S1 = +1)  P

X(0),V (0)(1Fc P
X(N),V (N)(S1 = 1))  (1� p)2

so that by induction P(S1 = +1) = 0. Since the T
n

are almost surely growing to infinity,
it follows that P(T1 = +1) = 0. ⇤

The previous proof also gives a first upper bound for the expectation

E(S1) = O

 ✓
N

�
N

◆
N�1

!

which is presumably disastrous. In order to get an estimate for the expecttaion of the system’s
flocking time T1, remember that T1 = T

S1 .
Using Wald identity in the identity

T1 =
S1X

j=1

(T
j

� T
j�1) ,

since S1 and the increments T
j+1 � T

j

are independent, and since the increments T
j+1 � T

j

follow an exponential law of parameter �(N), we deduce

E(T1) =
1

�(N)
O

 ✓
N

�
N

◆
N�1

!
.

We may refine the argument in order to improve this upper bound and state the following
proposition.

Proposition 2.5. Under the assumption of Theorem 2.4,

E(T1) =
1

�(N) ((N � 1)!)2)
O

N!1

✓
N

�
N

◆
N�1

.

And thus, using Stirling formula,

E(T1) = O
N!1

✓
e2N

N �(N) (N�
N

)N�1

◆
.

Proof. To refine the previous upper bound, let us study the evolution along time of the
cardinal of a cluster of velocities.
Consider a jump time T

n

and divide the N agents into clusters of di↵erent velocities. We
recall that, at each jump time, a given cluster of velocity can either integrate a new agent
(that has chosen an agent of the cluster to align on), keep the same number of agents or loose
an agent (that has chosen to change its velocity to an other one). Its cardinal at time T

n+1

therefore is
c(n+ 1) = c(n) + " where " 2 {�1, 0,+1}.
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Let us state the following lemma describing the evolution along time of the cardial of a given
cluster of velocity.

Lemma 2.6. Consider at time T
n

a given cluster of velocity v̄ 2 V̄ (n), denote by c(n) its car-
dinal : c(n) = #{i = 1 . . . N, V

i

(n) = v̄} and p(n, r, r+") = P (c(n+ 1) = r + " | c(n) = r).
Without loss of generality, we may number from 1 up to c(n) the agents of the considered
cluster. Then, if 1  r  N ,

8
>>><

>>>:

p(n, r, r + 1) = 1
N

P
N

j=r+1

P
r

i=1
⇡
j,i

p(n, r, r � 1) = 1
N

P
N

j=r+1

P
r

i=1
⇡
i,j

p(n, r, r) = 1� p(n, r, r + 1)� p(n, r, r � 1)

Proof of the Lemma : These formula are straight forward. Indeed, remember that p(n, r, r+1)
is the probability that the cluster of r agent may integrate a new one : it means that at time
T
n

, an agent j is chosen among those not in the cluster (i.e j 2 {r+1, . . . , N}) with probability
1
N

, an agent i is chosen in the cluster (i.e i 2 {1, . . . , r}) that j aligns on, with probability
⇡
j,i

.

Let us now finish the proof of Proposition 2.5. We use Lemma 2.6 choosing C
max

(n) to
be one of the largest clusters at time T

n

. Denoting c
max

(n) = # (C
max

(n)), and with the
definition (2.1) of �

N

, it holds :

p(n, c
max

(n), c
max

(n) + 1) =
X

j>c

max

(n)

⇡
j,1 + ...+ ⇡

j,c

max

(n)

N

� �
N

c
max

(n) (N � c
max

(n))

N
.

Now, introduce the following event E : during N � 1 successive steps c
max

increases of 1 or is
fixed equal to N . What we have done before shows that, for 1  `  N � 1,

P(E|c
max

(0) = `) �
N�1Y

n=`

✓
�
N

n (N � n)

N

◆
�

N�1Y

n=1

✓
�
N

n (N � n)

N

◆
.

Therefore, for any initial configuration :

P(E) �
✓
�
N

N

◆
N�1

((N � 1)!)2 .

We may then argue as we did with the event F and deduce the bounds given in Proposition
2.5. ⇤

In the next subsection we shall study more carefully the expected flocking time in the par-
ticular cas where k = 1.

3. The special case k=1

3.1. Expected flocking time, connection with the neutral Moran model.

We first assume that k = 1. From the modelling point of view it is certainly the less
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interesting situation, but it will help to better understand the general case. It indeed corre-
sponds to a case where any random particle changes its velocity with any other one, regardless
to its rank, position or velocity, i.e for all i 6= j, ⇡

i,j

= 1
N�1 . Notice that in this case, because

the dynamics of the velocities do not depend on the positions, V (n)
n2N is a Markov chain.

It turns out that this new model is (more or less) well known in Evolutionary Dynamics: it
is close to the multi-allele Moran model for an haploid population of size N .

Connection to the Moran Model : The Moran Model for 2 alleles is a birth and death
process that describes the dynamics of a population of constant size N in which two alleles
A and B of a gene are in competition.
At each time-step, a pair of agents (i, j) is chosen with uniform probability : one dies and
one reproduces. Note that the pair (i, i) might be chosen, and in that case, the number of
A-allele bearers and B-allele bearers does not change at this particular time-step. In the
simplest case of Neutral drift, no fitness advantage or disandvantage is given to any of the
alleles.
In that case, counting the number of A-bearers among N agents at each time-step leads to
a Markov chain with the following transition probabilities :

Q(i, i� 1) = Q(i, i+ 1) =
N � i

N

i

N
, Q(i, i) = 1� 2 Q(i, i� 1). (3.1)

In the Moran model, no mutation is taken into account, so, as soon as A bearers have
dispearred (or achieved the whole population), they can’t be any new A-bearer : P0,0 =
P
N,N

= 1. We say that 0 and N are absorbing states for the Markov chain, and the time to
reach N or 0 is called the “fixation time”. In the case of the Moran model, the expression of
the mean fixation time can be computed.

Back to our model : The parrallel with our model is easily drawn, the main di↵erence is
that, in our model, an agent cannot “align its velociy with itself” : ⇡

i,i

= 0, whereas it is
possible in the Moran Model that an agent is chosen to die and reproduce at the same time
step : P

i,i

> 0.
We assume in addition (in order to stick to the Moran model) that #V̄ (0) = 2, i.e. all initial
velocities are equal to either v̄1 or v̄2. Then, the number c1(n) of agents with velocities v̄1 at
time n is a (discrete-time) birth and death Markov chain, whose transition probabilities for
l in {1, ..., N � 1} are given by

Q(l, l + 1) = Q(l, l � 1) =
(N � l)l

N(N � 1)
, Q(l, l) = 1� 2 Q(l, l � 1). (3.2)

and which is absorbed when it hits 0 or N . It can therefore be adapted from Moran’s
computations, that

E(S1|c1(0) = r) = (N � 1)

0

@
rX

y=1

N � r

N � y
+

N�1X

y=r+1

r

y

1

A . (3.3)

Thanks to this equality, we are now able to state the following result in the case where k = 1 :
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Theorem 3.1. Assume that k = 1 (and N � 6). There exists C such that for all initial
configuration (x, v) satisfying #V̄ (0) = m,

(N � 1)(N � 6)

4�(N)
 E(x,v)(T1)  log2(m)N2

�(N)
.

Proof. Due to (3.3), it is easily seen that, for any 1  r  N, E(S1|c1(0) = r)  N2 .
A general lower bound can also be obtained writing

E(S1|c1(0) = r) = (N � 1)

0

@
rX

y=1

N � r

N � y
+

N�1X

y=r+1

r

y

1

A

= (N � 1)(N � r)
N�1X

y=N�r

1

y
+ (N � 1)r

N�1X

y=r+1

1

y

� (N � 1)2

2

N�1X

y=[N/2]+1

1

y

where [y] denotes the integer part of y. We thus deduce that for N � 6, and all r = 1, ..., N�1

E(S1|c1(0) = r) � (N � 1)(N � 6)

4
. (3.4)

More precisely, if r = pN for some 0 < p < 1, as N goes to infinity, using (3.3) and the
asymptotics of the harmonic series, we get

E(S1|c1(0) = r) ⇠ �N2 (p ln p+ (1� p) ln(1� p)).

We did not find in the literature an analogue for more than 2 di↵erent alleles, nor succeeded
in deriving such a formula. We thus will only give somewhat rough upper and lower bounds.

Indeed if the initial set V̄ (0) contains 2a  m < 2a+1 elements, we may divide it into two
blocks of size 2a�1  m0 < 2a and consider all velocities in each block as the same one. This
new chain behaves like the previous one with two initial velocities (k = 1 is of course crucial
here). The fixation time of this new chain has an expectation less than CN2. Iterating the
procedure and using the Markov property, the fixation time of our “m-allele” model has an
expectation less than log2(m)N2.

Also remark that, if Sj

1 denotes the first time the initial velocity v̄
j

disappears or becomes
the unique remaining velocity, then, it appears that

S1 = max
1jm

Sj

1 .

Now, using the fact that k = 1 shows that each of the Sj

1 have the same distribution as
the fixation time for the “2-allele” model, starting for r

j

the number of particles sharing the
initial velocity v̄

j

. We may thus bound from below the expectation of S1 by the one of the
corresponding 2-allele model, use (3.4) and Wald identity to get the anounced estimates.

⇤
Remark 3.2. An explicit (but tedious) computation of the mean flocking time can be done
for small N ( 4) and leads to the exact value (N � 1)2. }
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3.2. Numerical simulations, case k = 1.

In this section, we present a few numerical experiments that we have carried out in or-
der to illustrate Theorem 3.1. Note that in the present case where k = 1, the positions of
the particles do not interfere in the dynamics. We build the following experiment (in one
dimension) :

• Consider N initial positions in [�5, 5], choose a set of initial velocities among {�1,�0.5, 0.5, 1}
(we carry out experiments with 2, 3 or 4 possible initial velocities)

• Simulating a Poisson process with rate �(N) = N we define the sequence of jump
times T

n

.
• Between each jump time, the particles follow straight paths with constant velocity.
• At each jump time, one chooses a particle i uniformly with probability 1

N

and another
one, j uniformly with probability 1

N�1 and one changes v
i

into v
j

.
• At each time step, if the particles have not flocked (i.e all the velocities are the same),
they follow their free flight until the following jump time.

We carry out 100 experiments with the same initial data (especially the same distribution
of velocities) and compute the mean flocking time (i.e the first time when all the particles
flock). We also wonder how the initial proportions of each velocity impact the flocking time
and the “finally chosen velocity”.

Figure 1. Mean flocking time as a function of N, case k = 1
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m = 2 m = 3 m = 4
v1 v2 v1 v2 v3 v1 v2 v3 v4

N = 50 initial prop. 77 23 18 24 58 26 44 10 20
N = 50 final prop. 81 29 17.6 30.4 52 24.5 42.1 10.1 23.3
Mean Flocking time 24.4 41.4 39.6 42.7 34 36.3 37.7 47.2 44.2
N = 70 initial prop. 21 79 18.6 60 21.4 24.3 34.3 28.5 12.9
N = 70 final prop. 19 81 18.8 59.5 21.7 24.1 34.6 28.5 12.8
Mean Flocking time 55.8 29.8 60.6 40.4 60 56 58 57.1 64
N = 100 initial prop. 37 63 15 46 39 30 35 19 16
N = 100 final prop. 38.6 61.4 14.4 45.5 40 27.2, 36.2 20.2 16.4
Mean Flocking time 81 54.8 75.7 96.1 73.8 79.2, 85.3 92.6 91.9

Table 1. Proportion of experiments flocking on each velocity w.r.t N and m

As we can see on Figure 1, regardless to the cardinal m of the initial set of velocities (here
m=2,3,4), the mean flocking time increases linearly with respect to N , as shown in Theorem
3.1 in the case where �(N) = N .

In Table 1 we present, for N = 50, 70, 100 particles and in the cases of 2, 3 or 4 di↵erent
initial velocities the initial percentage of each velocity, the percentage of experiments (we
carried out 1000 experiments with the same initial condition) flocking on each velocity and
the mean flocking time for the experiments flocking on each di↵erent velocity. In the case
of the Moran model, it is well-known that the probability of flocking on a velocity v

i

equals
the proportion of v

i

in the initial data. It appears clearly in Table 1 that the proportion of a
velocity in the initial data is basically the same as the probability to flock on that velocity. It
is not so easy to draw a conclusion about the mean time needed to flock on a given velocity.
It doesn’t really seem to be linked to the initial proportion, even if, of course, it takes a bit
longer to flock on v

i

if there are far less particles with velocity v
i

at initial time.

4. The general k > 0 case : a bound for the expected flocking time.

Using the same idea as before to deduce the general case #V̄ (0) = m from the case #V̄ (0) =
2, we only need to look at the case #V̄ (0) = 2 using Notations 2.1.
In the general case where k > 0 is not constant, V (n) is no more a Markov chain, but c1(n)
(the number of particles with velocity v̄1) still satisfies c1(n + 1) = c1(n) + "(n) where "(n)
takes its values in {�1, 0, 1}. It is thus natural to compare the evolution of c1(.) with a birth
and death process for which we can get an explicit formula for the mean fixation time.
As a first step, we build a “slowed birth and death process” that simulates the worst case of
our dynamics at each time step using lower and upper bounds for the transition probabilities.
We also show that it’s fixation time is greater than the flocking time of our dynamics, and
will thus provide us with an upper bound for T1. As a second step, we compute estimates
for the expectation fixatuion time of the constructed birth and death model.

4.1. Construction of a “slowed birth and death process” to simulate the worst
case.
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Let us assume, for simplicity, that k is positive and non-increasing. In this section, we
aim at constructing a coupling of two di↵erent processes in order to approach the worst pos-
sible case for the dynamics and study the expected flocking time for this coupling.
Let us first, for any fixed j 2 {1, ..., N � 1}, define

�0
j

=

P
j

l=1 k(l/N � 1)
P

N�1
l=1 k(l/N � 1)

, and �
j

=

P
N�1
l=N�j

k(l/N � 1)
P

N�1
l=1 k(l/N � 1)

. (4.1)

Basically, �0
j

(resp. �
j

) represents the probability for a particle to align with one of its j

nearest neighbors, (i.e with normalized rank 1
N�1 ...

j

N�1) (resp. with one of its j most distant

neighbors, i.e neighbors with normalized ranks j+1
N�1 , . . . , N�1

N�1). Now, as k is assumed non
increasing, they also provide us with upper bounds (resp lower bounds) for any sum of j
probabilities ⇡

k,`

.
Let us now consider the number c1(n) of particles with velocity v̄1 at time T

n

. With the same
notations used in Lemma 2.6, combining the equations for p(n, r, r+1) and p(n, r, r�1) given
in Lemma 2.6 and the above remark on �0

j

and �
j

, it holds

8
>>>><

>>>>:

N�r

N

�
r

 p(n, r, r + 1)  N�r

N

�0
r

,

r

N

�
N�r

 p(n, r, r � 1)  r

N

�0
N�r

1
N

((N � r)�
N�r

+ r�
r

)  p(n, r, r)  1
N

�
(N � r)�0

N�r

+ r�0
r

�
.

(4.2)

Let us now construct two coupled processes R0(n) and R(n) as follow : R0(n) is a non-
homogeneous Markov chain with transitions p(n, r, r + 1), p(n, r, r � 1) and p(n, r, r). Of
course the law of the process R0(.) is by definition the same as the one of c1(.).
To define R(n), we keep in mind that our goal is to create a birth and death process {0, ..., N}
that is a somehow “slowed version” of R0(n) : at each time-step, we minimize the probability
to go towards the closest absorbing state (adding or suppressing an agent with velocity v̄1)
and maximize the probability to go towards the other absorbing state. Thus, at each time-
step, we choose the smallest probability to gain (resp loose) a new agent in the cluster of
velocity v̄1 thanks to inequalities (4.2).

We thus define R(n) as a Markov chain with transition matrix Q(i, j) such that, at each time
step :

• if 1  r < N

2 , the probability chosen for Q(r, r � 1) is the smallest possible for the
dynamics. We thus choose the lower bound for p(n, r, r � 1) computed in equation
(4.2) : Q(r, r � 1) = r

N

�
N�r

. On the contrary, the probability chosen for Q(r, r + 1)

is the biggest possible given by equation (4.2) : Q(r, r + 1) = N�r

N

�0
r

. To sum up,

Q(r, r � 1) =
r

N
�
N�r

, Q(r, r + 1) =
N � r

N
�0
r

, (4.3)

• Similarly, if N � 1 � r > N

2 , we define

Q(r, r � 1) =
r

N
�0
N�r

, Q(r, r + 1) =
N � r

N
�
r

, (4.4)
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• Finally, if r = N

2 (in the case where N is even), we decide to choose the lowest possible
probabilities to gain or loose an agent :

Q(r, r � 1) =
r

N
�
N�r

, Q(r, r + 1) =
N � r

N
�
r

, (4.5)

In any case, Q(r, r) = 1�Q(r, r� 1)�Q(r, r+1), and R(n) is stopped as soon as it reaches
0 or N . It is worth noticing that here again, the symmetry (4.9) is satisfied.

Technically, the coupling is performed as follows. Let U
n

be a sequence of i.i.d. random
variables uniformly distributed on [0, 1].

• For N > r � (N + 1)/2, conditionally to R(n) = r, R(n + 1) = r + 1 (resp. r � 1,
resp. r) if U

n

� 1�Q(r, r + 1) (resp. Q(r, r � 1) � U
n

, resp. 1�Q(r, r + 1) � U
n

�
Q(r, r � 1)); conditionally to R0(n) = r, R0(n+ 1) = r + 1 if U

n

� 1� p(n, r, r + 1),
R0(n) = r if p(n, r, r � 1)  U

n

 1 � p(n, r, r + 1) and R0(n + 1) = r � 1 if
U
n

 p(n, r, r � 1) (see figure below).

0
•

1
•

Q(r, r � 1)
•

p(n, r, r � 1)
•

1�Q(r, r + 1)
•

1� p(n, r, r + 1)
•

R(n+ 1) = r � 1

R0(n+ 1) = r � 1

R(n+ 1) = r

R0(n+ 1) = r

R(n+ 1) = r + 1

R0(n+ 1) = r + 1

• For 1  r < N/2, conditionally to R(n) = r, R(n+1) = r� 1 (resp. r, resp. r+1) if
U
n

� 1�Q(r, r�1) (resp. Q(r, r+1)  U
n

 1�Q(r, r�1), resp. U
n

 Q(r, r+1));
conditionally to R0(n) = r, R0(n + 1) = r � 1 if U

n

� 1 � p(n, r, r � 1), R0(n) = r if
p(n, r, r + 1)  U

n

 1� p(n, r, r � 1) and R0(n+ 1) = r + 1 if U
n

 p(n, r, r + 1).
• For r = N/2, conditionally to R(n) = r, R(n + 1) = r � 1 (resp. r, resp. r + 1) if
U
n

� 1�Q(r, r�1) (resp. Q(r, r+1)  U
n

 1�Q(r, r�1), resp. U
n

 Q(r, r+1));
conditionally to R0(n) = r, R0(n+ 1) = r� 1 if U

n

� 1� p(n, r, r� 1), R0(n+ 1) = r
if p(n, r, r + 1)  U

n

 1� p(n, r, r � 1) and R0(n+ 1) = r + 1 if U
n

 p(n, r, r + 1).

We now need to show that R(n) indeed simulates a “worst case” of our dynamics in the sense
that it leads to a fixation time that is bigger than the flocking time for R0(n) and then to
estimate this fixation time. In that prospect, let us study the distance of R(n) and R0(n)
to the absorbing states 0 and N . We thus get interested in the evolution of their distance
to {0, N} : defining d0,N (r) = r(N � r) for any r 2 {0, . . . N}, we consider the quantities
D(n) = d(R(n)) = R(n)(N �R(n)) and D0(n) = d(R0(n)) = R0(n)(N �R0(n)).

Lemma 4.1. If, for a given n � 0,the inequality 0 < D0(n)  D(n) holds, then, almost
surely, D0(n+ 1)  D(n+ 1).

Proof. Using the symmetry d0,N (N � r) = d0,N (r), we may assume that R0(n) = r with
N � 1 � r > N/2 or r = N/2 with N even.

Case r = N/2 : This case is simple as r = N

2 realizes the unique maximum of d0,N over [0, N ].

Therefore, as by assumption D0(n)  D(n) = N2/4, thus D(n) = N2/4 and R(n) = N/2.
The possible evolutions at time n+ 1 are :
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• R0(n+ 1) = r = N/2. In that case, knowing that R0(n) = r, the construction gives

Q(r, r+1) =
N � r

N
�
r

 p(n, r, r+1)  U
n

 1�p(n, r, r�1)  1� r

N
�
N�r

= 1�Q(r, r�1)

and thus R(n) = r, which leads to D(n+ 1) = D0(n+ 1) = N2/4.
• R0(n+ 1) = r ± 1 : in both cases, D0(n+ 1) = N2/4� 1. In the same way, whatever
R(n+ 1) is, D(n+ 1) 2 {N2/4, N2/4� 1} which gives D0(n+ 1)  D(n+ 1).

Case r > N/2 :

• if R0(n+1) = r+1, D0(n+1) < D0(n) as d0,N is decreasing over [N/2, N ]. Moreover,
as D0(n)  D(n), then R(n) 2 [N � r, r] and so R(n + 1) 2 [N � r � 1, r + 1], thus
D(n+ 1) � D0(n+ 1).

• if R0(n+ 1) = r, either D(n) > D0(n) or D(n) = D0(n).
– If D(n) > D0(n), then R(n) 2 ]N � r, r[ and so R(n+ 1) 2 [N � r, r] and thus,

D(n+ 1) � D0(n) = D0(n+ 1).
– If D(n) = D0(n), then either R(n) = r or R(n) = N � r. Let us investigate

the case R(n) = r, the other case can be treated the same way thanks to the
constructon and its symmetries. As R0(n) = r = R0(n + 1) by assumption, the
construction of the coupling imposes

p(n, r, r � 1)  u
n

 1� p(n, r, r + 1)

and inequalities (4.2) together with definition (4.4) yields

p(n, r, r � 1)  u
n

 1� p(n, r, r + 1)  1� N � r

N
�
r

= 1�Q(r, r + 1),

and so, as R(n) = r, R(n+ 1) might be r or r � 1. In both cases,
D(n+ 1) � D(n) = D0(n) = D0(n+ 1).

• If R0(n + 1) = r � 1, once again, as D(n) � D0(n) and R0(n) = r, then, R(n) 2
[N � r, r]. Let us investigate di↵erent cases : either R(n) 2]N � r+1, r� 1[, D(n) =
D0(n) = r(N � r) or D0(n) = (r � 1)(N � r + 1).

– If R(n) 2]N�r+1, r�1[, then, whatever R(n+1) is, R(n+1) 2 [N�r+1, r�1]
and so, thanks to d0,N behavior, D(n+ 1) � d0,N (r � 1) = D0(n+ 1).

– If D(n) = r(N � r), i.e R(n) = r or R(n) = N � r. As previously seen, both
cases can be treated with the same arguments thanks to the symmetries at play.
In the case where R(n) = r, then, by construction of the coupling, as R0(n) = r
and R0(n+ 1) = r � 1, and inequalities (4.2) together with definition (4.4)

u
n

 p(n, r, r � 1)  r

N
�0
N�r

= Q(r, r � 1).

Therefore, R(n+ 1) = r � 1, and thus D(n+ 1) = D0(n+ 1).
– If D(n) = (r � 1)(N � r + 1), (i.e R(n) = r � 1 or R(n) = N � r + 1), again,

both cases can be treated with the same arguments thanks to the symmetry. Let
us assume that R(n) = r � 1. It might be possible that r � 1 = N/2 when N
is even, which changes a little bit the following inequalities, but the arguments
are the same than if r � 1 > N/2, which we assume now. Then, the possible
values for R(n) are R(n) = r � 2, r � 1 or r. As r � 2 � N/2, r � 1 > N/2 and
d0,N is decreasing over [N/2, N ], if R(n+ 1) 2 {r � 2, r � 1}, then D(n+ 1) �
D0(n+1) = d0,N (r�1). The only case where D(n+1) could be greater ou equal
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to D0(n+ 1) is the case when R(n+ 1) = r. Let us now prove that it is almost
surely impossible.
Once again, the construction of the coupling gives u

n

 p(n, r, r� 1). Moreover,
given R(n) = r� 1, R(n+ 1) = r if and only if u

n

� 1�Q(r� 1, r). The latter
is of course impossible if

p(n, r, r � 1)  1�Q(r � 1, r) . (4.6)

Moreover, Q(r� 1, r) = N�r+1
N

�
r�1 and p(n, r, r� 1)  r

N

�0
N�r

, thus, condition
(4.6) is fulfilled provided

r�0
N�r

 N � (N � r + 1)�
r�1

which is straight-forward as r 2 ]0, N [ and �0
N�r

+ �
r�1 = 1.

This ends the proof of the lemma. ⇤

We now need to be able to estimate the fixation time of the birth and death process R in
order to get an upper bound of the flocking time of our process R0. In the next subsection,
we provide a computation of the fixation time of any birth and death process, and, in the
last one, we apply it to R and finally state an upper bound for the flocking time of R0.

4.2. Getting an upper-bound for the expected fixation time for Birth and Death
processes.

In this section, let us consider the birth and death process R0(.) with transition Q(i, i+ ")
with " = �1, 0, 1 described in the previous section. The fixation time (denoted by F1) is the
first time when R0 equals 0 or N . The expectation of F1, starting from r :

m(r) := E(F1|R0(0) = r) ,

can in that prospect be explicitly computed as it solves the followig system of equations for
0 < r < N :

m(r) = 1 +Q(r, r + 1)m(r + 1) +Q(r, r)m(r) +Q(r, r � 1)m(r � 1) , (4.7)

with boundary conditions m(0) = m(N) = 0.
Using the fact that Q(r, r) = 1 � Q(r, r � 1) � Q(r, r + 1), it follows that m(r) satisfies the
following recursion, for r = 1 . . . N � 1 :

m(r + 1)�m(r) =
Q(r, r � 1)

Q(r, r + 1)
(m(r)�m(r � 1))� 1

Q(r, r + 1)
. (4.8)

In our case, according to equations (3.1), the transitions are symmetric around N/2 :

Q(r, r0) = Q(N � r,N � r0) , (4.9)

which implies that m(r) = m(N � r) by a simple recursion and equation (4.8). It is therefore
more natural to compute m(r) starting with m(N/2) or m

�
N+1
2

�
.

Case where N is even : We have, using recursion (4.8)

m((N/2)+1)�m(N/2) =
Q(N/2, (N/2)� 1)

Q(N/2, (N/2) + 1)

�
m(N/2)�m((N/2)�1)

�
� 1

Q(N/2, (N/2) + 1)
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so that using, m((N/2) + 1) = m((N/2) � 1) and Q(N/2, (N/2) + 1) = Q(N/2, (N/2) � 1),
we get

m((N/2) + 1)�m(N/2) =
�1

2Q(N/2, (N/2) + 1)
< 0. (4.10)

Similarly,

m((N/2) + 2)�m((N/2) + 1) =
Q((N/2) + 1, N/2)

Q((N/2) + 1, (N/2) + 2)

�
m((N/2) + 1)�m(N/2)

�

� 1

Q((N/2) + 1, (N/2) + 2)
< 0,

and by induction it is easily seen that m is decreasing on {N/2, (N/2) + 1, ..., N}. By sym-
metry, m is therefore maximal at N/2 and m(N/2) furnishes a bound for m over {1, . . . N}.

Case where N is odd : N = 2p+ 1 Equation (4.8) becomes :

m(p+ 2)�m(p+ 1) =
Q(p+ 1, p)

Q(p+ 1, p+ 2)
(m(p+ 1)�m(p))� 1

Q(p+ 1, p+ 2)
,

which, using symmetry m(p+ 1) = m(p) = m((N + 1/2)� 1) leads to

m

✓
N + 1

2
+ 1

◆
�m

✓
N + 1

2

◆
= m(p+ 2)�m(p+ 1) =

�1

Q(p+ 1, p+ 2)
< 0. (4.11)

As before it easily follows that m(r) is decreasing on
�
N+1
2 , N+1

2 + 1, ..., N
 
too, which again

furnishes the maximality of m
�
N+1
2

�
over {1, . . . N} in that case.

Thus, let us now get some upper bound for m(N/2) or m
�
N+1
2

�
. Since the expressions are

similar we only give the formulas for N even. After the dust settles one gets

m(N/2) =
1

2Q(N/2, (N/2) + 1)

0

@1 +

(N/2)�1X

l=1

lY

j=1

Q((N/2) + j, (N/2) + j � 1)

Q((N/2) + j, (N/2) + j + 1)

1

A

+

(N/2)�1X

i=1

1

Q((N/2) + i, (N/2) + i+ 1)
⇥ (4.12)

0

@1 +

(N/2)�1�iX

l=1

lY

j=1

Q((N/2) + i+ j, (N/2) + i+ j � 1)

Q((N/2) + i+ j, (N/2) + i+ j + 1)

1

A .

4.3. Expected flocking time in the worst case.

It follows from the lemma that, if N > R(0) = R0(0) > 0, the flocking time S1 (equal
to the hitting time of 0 by D0(n)) is bounded by the hitting time F1 of {0, N} by R(.)
(fixation time for the birth and death process). Thanks to Equation (4.12), we can state an
upper bound for T1.
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Theorem 4.2. Assume that k is non increasing, strictly positive and #V̄ (0) = m. Then
there exists a constant C such that for any N � 4,

E(T1)  CN2 log2(m)

�(N)

P
N�1
l=1 k(l/N � 1)

P
N�1
l=[N+1/2] k(l/N � 1)

(1 +B
N

)

where

B
N

=
N�1Y

r=[N/2]

r
P

N�r

z=1 k(z/N � 1)

(N � r)
P

N�1
z=N�r

k(z/N � 1)
.

Proof. Since k is non-increasing, suppose r > N/2, then, by definition,
8
>>><

>>>:

Q(r, r � 1) = r

N

P
N�r

`=1 k(`/N�1)
P

N�1
`=1 k(`/N�1)

� r(N � r)k
⇣
N�r

N�1

⌘

Q(r, r + 1) = N�r

N

P
N�1
`=N�r

k(`/N�1)
P

N�1
`=1 k(`/N�1)

 r(N � r)k
⇣
N�r

N�1

⌘
.

and thus

Q(r, r � 1)

Q(r, r + 1)
� 1 . (4.13)

Note that the equality holds for r = N/2 and for every 1  r  N � 1 when k is constant. It
follows that there exists a constant C such that for N � 4,

m(N/2)  CN A
N

P
N�1
j=1 k(j/N � 1)

P
N�1
j=N/2 k(j/N � 1)

with

A
N

= 1 +

N/2�1X

l=1

lY

j=1

(j + (N/2))
P

N/2�j

z=1 k(z/N � 1)

(N/2� j)
P

N�1
z=N/2�j

k(z/N � 1)
.

Note that for k constant we get the good order N2 for m(N/2). Using a rough bound for
A

N

we have thus obtained the desired bound. ⇤

Of course P
N�r

z=1 k(z/N � 1)
P

N�1
z=N�r

k(z/N � 1)
 1

r �
N

,

and in the worse case i.e when k(z/N�1)P
N�1
z=1 k(z/N�1)

= �
N

for all z � 2 and N�
N

⌧ 1, this rough

bound is the best possible. We thus have

Corollary 4.3. Assume that k is non increasing and that �
N

given by (2.1) is positive. Let
#V̄ (0) = m. Then for large N ,

E(T1) = O

 
log2(m)

R 1
0 k(u)du

R 1
1/2 k(u)du

N2

�(N)

✓
e

2N�
N

◆
N/2

!
.
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Notice that the previous result is better (for large N) than the one obtained in Proposition
2.5. Indeed �

N

N  1, and up to a power of N we replace (e/�
N

N)N by its square root.
However we still have an exponential in N bound.

We can modify the previous bound noticing that for r � N/2,
P

N�r

z=1 k(z/N � 1)
P

N�1
z=N�r

k(z/N � 1)


P
N/2
z=1 k(z/N � 1)

P
N�1
z=N/2 k(z/N � 1)

.

Using Stirling formula again, we obtain for k > 0 and then any k by taking limits

Corollary 4.4. Assume that k is non increasing and that
R 1
1/2 k(u)du > 0. Let #V̄ (0) = m.

Then for large N ,

E(T1) = O

0

@log2(m)

R 1
0 k(u)du

R 1
1/2 k(u)du

N3/2

�(N)

 
4

R 1/2
0 k(u)du
R 1
1/2 k(u)du

!
N/2

1

A .

In particular if k is non increasing and
R 1
1/2 k(u)du > 0, the flocking time is almost surely

finite.

We have thus obtained a more general su�cient condition for flocking. We shall get another
proof for this condition as a consequence of the general study of the behaviour of the system
in the next subsection 5.1.

Remark 4.5. In [DM09] another explicit expression for the expectation E(T 0
1) corresponding

to the continuous time birth and death process, is obtained. It is equal to the sum of the
inverse of the elements of the spectrum, hence it is bounded by N times the inverse of the
spectral gap. Of course it remains to estimate this spectral gap. }

4.4. Numerical simulations.

In that section we aim at illustrating the bounds proved in Corollaries 4.3 and 4.4. As
they both only give an upper bound for the mean flocking time, our goal is to test if these
bounds can be “optimal” or not. We therefore have carried out the following experiments,
in one or two dimensions :

One dimensional case : Consider N particles with positions randomly chosen in [�", "]
(with uniform probability), for N = 50, 100, 200. Their velocities are uniformly chosen in
{�1, 1}.

• Simulating a Poisson process with rate �(N) = N we define a sequence of jump times
T
n

.
• Between two jump times the particles follow straight paths with constant velocity.
• At each jump time, one chooses a particle i uniformly with probability 1

N

, compute
the ranks (by ordering kx

i

� x
j

k for all j 6= i) and therefore the probabilities ⇡
i,j

for
all j 6= i. One chooses a particle j 6= i with probability ⇡

i,j

and changes v
i

into v
j

.
In the following simulations, we have tested di↵erent kernels k . Note that, for these
functions, we don’t have

R 1
0 k(x)dx = 1 which is not really necessary in this work
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(as said in the introduction) the important point being the normalization of the
probabilities ⇡

ij

.
* k(r) = 1� r (note that in this case k(1) = 0)
* k(r) = 1.01� r (a strictly positive approximation of the preceeding case)
* k(r) = 8

(2+2r)3

* k(r) = N if r 2 [0, 1
N�1 [ and k(r) = 1

N

if r 2 [ 1
N�1 , 1]

• If the particles have not flocked (i.e all the velocities are not identical yet), one
computes a free-flight until the following jump time.

For a given initial data, we carry out 500 experiments and compute the mean flocking time
in each case. The results are given in Table 2

k(r) = 1.01� r k(r) = 1� r k(r) = 8
(2+2r)3 k(r) 2 {N, 1

N

}
N = 50 20.5 18.04 27.32 623.63
N = 100 38.52 36.27 50.35 2240
N = 200 82.5 79.7 85.41 9721.8

Table 2. Mean flocking time for di↵erent kernels k depending on N .

What can be deduced from Table 2 is first that, for some k the flocking time seems to be
basically linear in N , as previously when we took k = 1 in section 3.2, ( or even better ? )
for the first functions. An interesting point is that, in the case where

k(r) = N if r 2 [0,
1

N � 1
[ and k(r) =

1

N
if r 2 [

1

N � 1
, 1]

the flocking time grows very fast with N and requires a huge number of iteration of the
process before flocking. It was so long for N = 100 that we decided to carry out only 120
experiments and only 25 in the case N = 200. This can be understood using Corollary 4.4
which states that in the general case, E(T1) may grow up to exponentially with N .

Two dimensional case : Consider N = 12p particles, p being a positive integer. We carry
out two di↵erent kind of simulations :

• half of them (i.e 6p) are initially equally distributed at the vertices of a regular
hexagon (p particles are located at each vertex) and the other 6p are located at the
center of the hexagon

• all the particles are equally distributed at the vertices of the hexagone (none of them
is in the center of the hexagone anymore).

The particles located at the vertices of the hexagon have their velocities directed by the line
joining the vertex and the center of the hexagon and with norm 1. The particles located at
the center of the hexagon have ~0 velocity (see top left of Figure 5)

With this initial data, we test the exact same functions k as for the one dimensional case,
and an additional one :

k(r) = N if r 2 [0,
1

N � 1
[, k(r) =

1

N
if r 2 [

1

N � 1
,
N � 10

N � 1
[ and 0 else.

Note that in the case where N = 12, we only cancel the four last rank to guarantee almost
sure flocking. Of course, in this particular example k is compactly supported (and therefore
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does not fall into this section’s scope (k > 0), but it will give us clues for the next section
where we investigate cases where k vanishes for some ranks). We carry out 100 experiments
(25 in the two last case that are much more costly in time) with these initial data (agents
in the center or no agents in the center) and then compute the mean flocking time for these
experiments. The results are presented in Table 3 and Table 4. In that case, as in the
previous one the mean flocking time seems to grow linearly with N for the linear or cubic
decreasing k showing that our bound is presumably disastrous. The cases where k is strong
for the nearest neighbor and weak for the others takes much more time to flock. It is also
interesting to see that the case where the agents are located at the vertices and the initial
data equally distributed between them takes much more time to flock than the situation
where, from the start, half of the agents already have the same velocity (which is, therefore
much more likely to be chosen to align on).

k(r) = 1� r k(r) = 8
(2+2r)3 k(r) 2 {N, 1

N

} k compact. supp.

N = 12 4.6 6.54 13.82 16.43
N = 24 6.80 11.93 120.12 129.93
N = 36 10.26 16.48 364.6 227.67
N = 72 14.45 22.74 1505.47 936.08
N = 108 15.04 26 2846.52 2010.76

Table 3. Mean flocking time for di↵erent kernels k depending on N in the
2D hexagonal case with agents at the center of the hexagone.

k(r) = 1� r k(r) = 8
(2+2r)3 k(r) 2 {N, 1

N

} k compact. supp.

N = 12 8.08 10.19 57.24 115.07
N = 24 16.19 20.32 182.56 454.73
N = 36 24.62 26.93 397.67 557.97
N = 72 53.45 54.34 1929.10 1750.27
N = 108 71.89 90.15 3768.14 3414.1

Table 4. Mean flocking time for di↵erent kernels k depending on N in the
2D hexagonal case without agents at the center.

What can also be said on these experiments is the behavior of the probability to flock on
the di↵erent velocities. In the case where half of the agents are initially located in the center
with velocity ~0, we only care about the probability to flock on velocity ~0 (which means that
the particles stop). Again, things are very di↵erent in the case where k is strong for the
nearest neighbors and weak for the other ones. Indeed, in the cases where k(r) = 1 � r or
k(r) = 8

(2+2r)3 , the probability to flock on ~0 is more than 90%, whatever N is, whereas in the

last case, this probability varies between 54% and 69%. In the case where no agent is in the
center, the probability to flock on a velocity is basically the same for all the velocities which
is rather reasonable as all the velocities play the same role in that example.

On the following figures, we represent the evolution along time of the trajectories of each 12
agents. In that prospect, at each jump time the position (in the plane) of each particle is
drawn with a circle until flocking time, for di↵erent kernels k.
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Figure 2. Di↵erent trajectories in the case N = 12. Top : initial data,
Bottom k(r) = 1 � r left : agents at the center, V

f

= (0, 0), T
f

= 8.15, right
no agent at the center : T

f

= 3.26, V
f

= (� cos(⇡/6), 1/2)

5. The general case: sub-flocking.

5.1. What can be proved. . .

In this subsection we do no more assume that k is everywhere positive. For simplicity
and because it is very natural (the closest particles are, the strongest their interaction) we
shall nevertheless assume that k is non-increasing. Hence we assume that k(s) > 0 for
s 2 [0, a[ and k(s) = 0 on [a, 1] and state the following result

Theorem 5.1. Assume that k is non increasing and that k(s) > 0 for s 2 [0, a[ and k(s) = 0
on [a, 1]. Then for almost all ! there exists an n(!) such that for t � T

n(!),

v(t) = v(T
n(!)) = v(1)

i.e. the process v(t) is constant after time T
n(!).

Furthermore if j

N�1 < a  j+1
N�1 , for each i = 1, ..., N , #{l ; v

l

(1) = v
i

(1)} � j + 1.
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Figure 3. Di↵erent trajectories in the case N = 12, k cubic, left : agents at
the center, T

f

= 9.8, V
f

= (� cos(⇡/6), 1/2), right : T
f

= 5.53, V
f

= (0,�1)

Figure 4. Di↵erent trajectories in the case N = 12, k 2 {1, N}, left : agents
at the center, T

f

= 35.25, V
f

= (cos(⇡/6),�1/2), right : T
f

= 33.28, V
f

=
(0,�1)

Remark 5.2. It is worth noticing that the final set of velocities V (1) depends on !. The
theorem states that, almost surely, velocities are all kept fixed after some random time.
Moreover, as soon as the final distribution of speeds is reached, any cluster of velocity in
V̄ (1) contains at least j + 1 agents. }

Proof. We choose j such that k(j/(N � 1)) > k(j + 1/(N � 1)) = 0. Hence a given particle
chosen at a jump time aligns on the velocity of one of its j nearest neighbors. At each time
t we can divide the set of velocities V (t) into c̄(t) = #V (t) clusters, each cluster gathering
all particles with the same velocity. Along the dynamics, c̄(t) is by construction a non
increasing sequence of integers, hence it is stationary : there exists t1 > 0 such that for
t � t1, c̄(t) = c̄(1). We first claim
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Figure 5. Di↵erent trajectories in the case N = 12, k compactly supported,
right : T

f

= 19.8, V
f

= (0, 0), left : T
f

= 62.63, V
f

= (� cos(⇡/6),�1/2)

Lemma 5.3. Let k be non-increasing and such that k(j/N � 1) > k(j+1/N � 1) = 0. Then
there exists a time t01 such that for t � t01 all clusters have at least j + 1 elements.

Proof. of the lemma. Let t > t1, C(t) be one cluster and assume that #C(t) = `  j. Then
any particle in C has its neighbor(s) with rank j that does not belong to C. Let us show
that, in that case, it is possible to “empty” C(t) by choosing at each jump time an agent
of C(t) and force him to align with its neighbor with rank j (thus outside of C) and thus
“leave” C(t).
Introduce event G = { At each of the ` first jumping times T

k

following t > t1, one chooses
an agent of C to align with its neighbor with rank j }. We have

P(G) =
(k(j/N � 1))`

N ` (
P

N�1
i=1 k(i/N � 1))`

= p > 0 .

Hence, using the Markov property again, if there exists an infinite number of random times
t > t1 such that #C(t) = l  j, G will be satisfied almost surely after time t1. But when G
is satisfied, the cluster C disappears, which is in contradiction with the fact that after time
t1 the number of clusters is fixed. Since the possible number of `’s and of clusters is finite,
we get the lemma. ⇤

From now on we assume that t > t01 that is for all cluster C(t), #C(t) � j + 1. Consider
c
min

(t) = #C
min

(t) where C
min

(t) is the smallest cluster at time t. Then, (c
min

(T
n

_ t01))
n

is a bounded sequence taking its values in N⇤. Let c⇤ = lim inf
n

c
min

(T
n

_ t01).
First of all, according to Lemma 5.3, c⇤ � j+1. Second, there exists at most a finite number
of n such that c

min

(T
n

_ t01) < c⇤. We shall look only at t larger than the maximum of these
T
n

say t”1, so that we may assume that t > t”1, i.e. c
min

(t) � c⇤.
But since c⇤ is a limit point there exists an n0 such that c

min

(T
n0) = c⇤. At time T

n0+1 the
size of the cluster is either c⇤ or c⇤ + 1. If the latter never occurs, the cluster C does no
more change, hence it is stationary, and we may repeat the argument for the new system of
particles where we have erased all particles of this cluster.
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Hence it remains to study the case where c
min

(T
n0) = c⇤ and c

min

(T
n0+1) = c⇤ + 1. For

simplicity we may assume that the indices of these particles are 1, ..., c⇤ + 1. Take some
l > c ⇤ +1. As long as these particles have no jump, x

i

(t) = tv
i

+ x
i

(T
n0+1) so that for

1  i,m  c ⇤+1 the distance |x
i

(t)� x
m

(t)| is unchanged equal to |x
i

(T
n0+1)� x

m

(T
n0+1)|,

while |x
i

(t)� x
l

(t)| grows like t|v
i

� v
l

| for large t. It follows that, as long as these particles
have no jump, for t � A, A being large enough, |x

i

(t) � x
l

(t)| > |x
i

(t) � x
m

(t)| for all
i = 1, ..., c⇤ + 1 and all l > c⇤ + 1. Since c⇤ is the lim inf, the first time T , T > T

n0+1 such
that x(T ) = c⇤ is almost surely finite. T can be chosen as a jump time of the Poisson process,
and so P(T � T

n0+1 > A) > 0. According to what precedes, on the set {T � T
n0+1 > A} the

size of the cluster cannot decrease, yielding a contradiction.

The proof is completed. ⇤

We immediately deduce from the second part of the Theorem, the following flocking result

Corollary 5.4. If each particle only interacts with its j nearest neighbors, but j  N  2j+1,
then the system is almost surely flocking.

We thus recover the second part of Corollary 4.4.

5.2. Illuminating examples and simulations in one dimension, nearest neighbor
case.

In the spirit of example 2.3, let us describe some situations. For simplicity we assume
that d = 1. Consider the case where each particle may only interact with its nearest neigh-
bor (resp. j nearest neighbors). Then if for each i, #{l, v

l

(0) = v
i

(0)} � 2 (resp. j + 1), the
probability for these initial velocities to never change is positive. Indeed if t > T for some
T large enough, whatever the initial positions, the potential positions x

i

(t) = x
i

(0) + t v
i

(0)
will be organized in such a way that nearest neighbors always have the same velocity. Hence,
since the probability for always choosing a partner with the same velocity before time T is
positive, we get the result. Of course if the initial velocities are not all the same, this means
that there is no flocking.
At the same time, it is also possible to flock with a positive probability i.e 0 < P(flock) < 1.

Example 5.5. In this example, we take

X1(0) = (1� 2", 1� ", 1, 5� "), and V1(0) = (1, 1, 1,�1).

and discuss the di↵erence between deterministic and random jump times following a Poisson
process of parameter �(N) = N when the particles only interact with their nearest neighbor.
In the case where time steps are deterministic, it can be shown that there is flocking with
probability 5

8 .

1� 2"
•
1 2

1� "
•

1
•
3

5� "
•
4

Indeed, as soon as particle 4 is chosen, it aligns with a particle of velocity 1 and there is
flocking. If particle 4 is not chosen until time T3, at time T3, the situation is the following :
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2� 2"
•
3 24

2� "
•

2
•
1

Now, if particle 4 is chosen, it has to align with 2 and the system flocks. If particle 3 is
chosen (and the same occurs with particle 1), it can stay with velocity 1 or align with 4 and
get velocity �1. If particle 2 is chosen, it aligns with 4 and takes velocity �1. The di↵erent
possibilities at time T4 are therefore the following :

1� 2"
•
3 4

1� "
•

3� "
•
2

3
•
1

1� "
•
4 1

1
•

3� 2"
•
3

3� "
•
2

2 4

1� "
•

3� "
•
3

3
•
1

which all lead to sub-flocking of to groups of 2 particles moving away from each other (and
therefore, thanks to the “nearest neighbor” interaction, not interacting with each other any-
more).

What is highlighted here is the importance of the choice of deterministic/stochastic time
steps. Indeed, if the time steps become random, then we cannot foresee where particle 4 in
our example will arrive and therefore, we cannot draw the di↵erent possibilities anymore. If
particle 4 is not chosen and crosses particles 1, 2 and 3 without arriving between them, i.e,
if, at one time step 4 has a coordinate that is greater than the others and, at the following
step, its coordinate has become much smaller than all the others, then, as soon as 4 is chosen,
it has to align with the others. If the particle with the smallest coordinate between 1, 2 and
3 is chosen (say 1 for example), its nearest neighbor will be 2 or 3 and the situation won’t
change until 4 is chosen. Such a case necessarily leads to flocking. Let’s make it simple with
two drawings :

4
• • • •

will necessarily lead to flocking whereas a situation like

•
4
• • •

may lead, or not, to flocking.

Numerical experiments on example 5.5 : We carry out the same experiments as in the
previous example and get the following results :

• If the time steps are deterministic (T
n

= n), then the estimated flocking probability
is 0.622 (theoretically 5

8 = 0.625).
• If the time steps are random with �(N) = N , then we get the following results
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" = 0.01 " = 0.1 " = 0.3 " = 0.6
flocking probability 0.996 0.974 0.956 0.951

Example 5.6. It is also possible to slightly modify the initial data of example 5.5 in order
to have almost surely flocking with deterministic time steps and di↵erent possibilities with
random time steps :

X0(0) = (�2", �", 0, 4 + 5"), and V0(0) = (1, 1, 1,�1).

In the case of deterministic jump times (say for example that T
n

= n), it is possible to show
that :

• if " < 1
4 , there is flocking on velocity 1 with probability 1

• if " � 1
4 , there is flocking with positive probability (if " = 1

4 the flocking probability
can be explicitly computed and is 119

128 ' 0.93)

Numerical experiments on example 5.6 : In order to estimate the flocking probability,
starting with the same initial data, we run the algorithm and decide if there is flocking or
not. Then, we count the number of experiments needed until the first one flocks and we do
this 100 times and compute the mean number of experiments needed to flock. Doing so, we
estimate the expectation the first success in a Bernoulli scheme (X = 0 if flock, 1 otherwise),
which is 1

p

if p denotes the probability of non-flocking.

Carrying these numerical experiments leads to the following results

• If the time steps are deterministic (T
n

= n) and " < 1
4 , then the system flocks with

probability 1.
• If the time steps are deterministic (T

n

= n) then the system flocks with the following
probability depending on " :

" = 0.25 " = 0.251 " = 0.28 " = 0.29 " = 0.3 " = 0.6
flocking probability 0.9309 0.862 0.856 0.714 0.663 0.626

• If the time steps are random (and �(N) = N), we get the following results, and we
see that the flocking probability does not really change with " for random time steps :

" = 0.01 " = 0.1 " = 0.3 " = 0.6
flocking probability 0.996 0.98 0.983 0.994

6. Biological relevance of the model. Discussion and conclusion.

The B-D model can be viewed as a discrete version of the model of trail formation proposed in
[BDM13]. In the latter work the change of direction in the motion of ants is continuous, the
new direction being chosen according to some probability distribution on the circle. The goal
of [BDM13] was to explain the mechanism of trail formation, due to pheromone depository,
through an individual-based model.
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As we said, if it looks like a toy-model, due to the finite set of allowed velocities, the B-D
model nevertheless furnishes a very interesting attempt to understand collective motions in
the situation of nearest neighbors interactions for at least three reasons.

First the intermediate free flights appear as a convincing issue integrating the fact that an
individual cannot continuously adapt its own motion.

Second, it integrates natural randomness both for the times between jumps and for the choice
of a new velocity. For some statistical issues of other type of randomness see [NM18]. As we
have seen in examples, deterministic or random time jumps can yield very di↵erent behavior
depending on the initial conditions.

The final reason is not detailed in the present work, but is easy to explain: the model is not
too di�cult to calibrate. Indeed starting with a set of observations, one can easily perform
successively the following three statistical steps:

• Estimate the intensity � of the Poisson process of jumps via the inverse empirical
mean of the number of observed jumps,

• Estimate the number q of interacting neighbors, by looking at the maximal rank of
interactions, according to the following procedure. Each time a jump occurs, take the
chosen particle i and consider its new velocity v. Among all particles with velocity
v, choose the nearest from i and compute its rank. A natural estimator for q is then
the maximum of all observed such ranks. Of course it has to be proved that this
estimator is consistent.

• eventually, perform a parametric estimation of the interactions strengths, i.e. of k,
using the maximum likelihood estimator.

Of course such a program can only be performed with real data and not using comparison
with simulated data obtained via di↵erent models. Except the seminal [BCC+08], we did
not find such a statistical approach in many papers on the subject.

What kind of informations can we deduce from the rigorous study of the B-D model ? In our
previous work on Cucker-Smale models with noise ([CDP18]), we observed (at the theoretical
level) that noise can help to flock (in some specific cases). Here we observed that stabilization
(towards a finite number of subflocks) always occurs and that flocking occurs as soon as each
individual interacts with more than one half of the whole population. This result seems to
be a little bit disappointing in view of the claims in [BCC+08] or the model in [SB14, KB13],
we shall discuss later. However, contrary to the usual metric interactions, it is not needed
that an individual interacts with all individuals in the population.

This latter assertion has to be tempered. What should be an analogue metric model ?
Keeping the same procedure for jumps and choice of the jumping particle, we could turn the
transition probability ⇡

i,j

into a metric one as follows: choosing this time a non-increasing
function k taking values in R+, define the transition probability

⇡
i,j

=
k(|x

i

� x
j

|)P
l

k(|x
i

� x
l

|) .

Due to the self normalization, this model (referred to as M-T model below) is not a purely
metric model, but an intermediate model between topological and metric interactions: the
strength of the interaction depends on the relative distance between individuals. In the
usual context of deterministic dynamical systems à la Cucker-Smale, this self normalization
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has been introduced and studied in [MT11]. It is particularly adapted to the study of the
emergence of subflocks. Up to our knowledge, there is no noisy version of this model.

A quick exploration of the proofs in subsections 4 and 5.1 show that they cannot be adapted
to the self normalized metric interaction introduced above. For instance (4.1) and (4.2)
do no more furnish universal upper and lower bounds allowing us to compare to the worst
case, because even if particles i and j are close (with a rank larger than 2), the transition
probability from i to j can be as small as we want. This will easily furnish situations where
the system does not flock. For instance, starting with the following initial configuration

�10� "
•
3 4

�10
•

10
•
2

10 + "
•
1

we know that the B-D 2 nearest neighbors dynamics flocks, while it is easy to see that the
M-T model does not flock as soon as the function k is too rapidly decaying at infinity (as in
the standard Cucker-Smale case).

Of course as for the Cucker-Smale model, if we assume that the system is swarming (i.e. all
positions stay in a bounded domain, as assumed in many papers), we may mimic the proofs
we have done and get the flocking property.

Hence, at the level of these toy models, topological interaction improves on (self normalized)
metric interactions and furnishes a more stable flocking property.

In a sense, though very di↵erent, the closest model (numerically) studied in the literature is
the one in [BFW11]. A similar random selection is done and alignment holds, at deterministic
times, with individuals in a given subarea of the plane (a vision cone). The alignment
probability is inversely proportional to the distance between particles (introducing thus a
metric aspect). Numerical results are compared with the observations in [BCC+08]. Other
references are based on continuous mathematical models. In [BCC+08, CCG+12], where the
authors are trying to get an idea on how many neighbors have to interact in order to get
stable flocks (w.r.t. external perturbations like predator attacks for instance), the underlying
mathematical model is (a slight modification of) Vicsek’s model continuous, i.e. the set of
allowed velocities is the circle.

In all these works, it appears that the number of interacting individuals can be reduced to
a fixed one between 6 and 10 (also see [SB14, KB13] for this number but for a di↵erent
dynamics directly expressed on the graph of connectivities).

What the examples we have detailed show is that there is no theoretical evidence that com-
munication with only 6 to 10 nearest neighbors may lead to flock. It does not mean that
animals do not respect such a rule, but this rule does not necessarily imply flocking.

In particular, sensitivity to the initial configuration is of key importance and hardly ever
studied. Nevertheless for continuous models starting from a not too chaotic initial config-
uration (in our examples initial velocities have an opposite sign on the line, hence are in a
sense too di↵erent), one can expect to get such a type of conditional almost flocking for large
times. This will be the aim of future works.
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