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Abstract:

This paper is dedicated to the study of an estimator of the generalized Hoeffd-

ing decomposition. We build such an estimator using an empirical Gram-Schmidt

approach and derive a consistency rate in a large dimensional setting. We then

apply a greedy algorithm with these previous estimators to a sensitivity analysis.

We also establish the consistency of this L2-boosting under sparsity assumptions of

the signal to be analyzed. The paper concludes with numerical experiments, that

demonstrate the low computational cost of our method, as well as its efficiency on

the standard benchmark of sensitivity analysis.
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1. Introduction

In many scientific fields, it is desirable to extend a multivariate regression

model as a specific sum of increasing dimension functions. Functional ANOVA

decompositions and High Dimensional Representation Models (HDMR) (Hooker,

2007; Li et al., 2010) are well known expansions that make it possible to under-

stand model behavior and to detect how inputs interact with each other.

When input variables are independent, Hoeffding establishes the uniqueness

of the decomposition provided that the summands are mutually orthogonal (Ho-

effding, 1948). However, in practice, this assumption is sometimes difficult to

justify, or may even be wrong (see Li and Rabitz (2010) for an application to

correlated ionosonde data, or Jacques et al. (2006), who studied an adjusted
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neutron spectrum inferred from a correlated dependent nuclear dataset).

When inputs are correlated, the orthogonality properties of the classical

Sobol decomposition (Sobol, 1993) are no longer satisfied. As pointed out by

several authors (Hooker, 2007; Da Veiga et al., 2009), a global sensitivity analysis

based on this decomposition may lead to erroneous conclusions. Following the

work of Stone (1994), later applied in Machine Learning by Hooker (2007), and

to sensitivity analysis by Chastaing et al. (2012), we consider a hierarchically

orthogonal decomposition in this paper, whose uniqueness has been proven under

mild conditions on the dependence structure of the inputs (Chastaing et al.,

2012). In other words, any model function can be uniquely decomposed as a sum

of hierarchically orthogonal component functions. Two summands are considered

to be hierarchically orthogonal whenever all of the variables included in one of

them are also involved in the other. For a better understanding of the paper, this

generalized ANOVA expansion will be referred to as a Hierarchically Orthogonal

Functional Decomposition (HOFD).

It is of great importance to develop estimation procedures since the ana-

lytical formulation for HOFD is rarely available. In this paper, we focus on an

alternative method proposed in Chastaing et al. (2013) to estimate the HOFD

components. It consists in constructing a hierarchically orthogonal basis from a

suitable Hilbert orthonormal basis. Inspired by the usual Gram-Schmidt algo-

rithm, the procedure recursively builds a multidimensional basis for each compo-

nent that satisfies the identifiability constraints imposed on this summand. Each

component is then well approximated on a truncated basis, where the unknown

coefficients are deduced by solving an ordinary least-squares regression. Nev-

ertheless, in a high-dimensional paradigm, this procedure suffers from a curse

of dimensionality. Moreover, it is numerically observed that only a few of the

coefficients are not close to zero, meaning that only a small number of predictors

restore the major part of the information contained in the components. Thus, it

is important to be able to select the most relevant representative functions and

to then identify the HOFD with a limited computational budget.

With this in mind, we suggest in this article to transform the ordinary least-

squares regression into a penalized regression, as has been proposed in Chastaing
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et al. (2013). In the present paper, we focus on the L2-boosting to deal with

the ℓ0 penalization, developed by Friedman (2001). The L2-boosting is a greedy

strategy that performs variable selection and shrinkage. The choice of such an

algorithm is motivated by the fact that the L2-boosting is very intuitive and

easy to implement. It is also closely related (from the practical point of view)

to the LARS algorithm proposed by Efron et al. (2004), which solves the Lasso

regression (Tibshirani, 1996; Bühlmann and van de Geer, 2011). The L2-boosting

and the LARS both select predictors using the maximal correlation with the

current residuals.

The question that naturally arises now is the following: provided that the

theoretical procedure of component reconstruction is well tailored, do the es-

timators obtained by the L2-boosting converge to the theoretical true sparse

parameters when the number of observations tends to infinity? The goal of this

paper is to provide an overall consistent estimation of a signal spanned into a

large dimensional dictionary derived from a HOFD. Hence, our work significantly

improves the results of Chastaing et al. (2013): we first address the convergence

rate of the empirical HOFD and then use this result to obtain a sparse estimator

of the unknown signal. We will need to manage sufficient theoretical conditions to

ensure the consistency of our estimator. In addition, we discuss these conditions

and provide some numerical examples in which such conditions are fulfilled.

The article is organized as follows. The notation used in the paper is pre-

sented in Section 2.1. Section 2.2 provides the HOFD representation of the model

function. In Section 2.3, we review the procedure detailed in Chastaing et al.

(2013) that consists in constructing well-tailored hierarchically orthogonal bases

to represent the components of the HOFD. Finally, we highlight the curse of

dimensionality that we are exposed to, and present the L2-boosting. Section 3

describes our main theoretical results on the proposed algorithms. One inter-

esting application of the general theory is the global sensitivity analysis (SA).

In Section 4, we apply the L2-boosting to estimate the generalized sensitivity

indices defined in Chastaing et al. (2012, 2013). After recalling the form of these

indices, we numerically compare the L2-boosting performance with a Lasso strat-

egy and the Forward-Backward algorithm proposed by Zhang (2011). Section 5



4 M. CHAMPION AND G. CHASTAING AND S. GADAT AND C. PRIEUR

contains the conclusion, and the proofs of the two main theorems are given in

the Appendix.

Acknowledgment The authors are indebted to Fabrice Gamboa for his stim-

ulating discussions and his numerous suggestions on the subject.

2. Estimation of the generalized Hoeffding decomposition components

2.1 Notation

We consider a measurable function f of a random real vectorX = (X1, · · · ,Xp)

of Rp, p ≥ 1. The response variable Y is a real-valued random variable defined

as:

Y = f(X) + ε, (2.1)

where ε stands for a centered random variable independent of X and models the

variability of the response around its theoretical unknown value f . We denote

the distribution law of X by PX, which is unknown in our setting, and we assume

that PX admits a density function pX with respect to the Lebesgue measure on

R
p. Note that PX is not necessarily a tensor product of univariate distributions

since the components of X may be correlated.

Furthermore, we suppose that f ∈ L2
R
(Rp,B(Rp), PX), where B(Rp) denotes

the Borel set of Rp. The Hilbert space L2
R
(Rp,B(Rp), PX) is denoted by L2

R
, for

which we use the inner product 〈·, ·〉, and the norm ‖·‖ as follows:

〈h, g〉 =
∫

h(x)g(x)pXdx = E(h(X)g(X))

‖h‖2 = 〈h, h〉 = E
(

h(X)2
)

, ∀h, g ∈ L2
R,

where E(·) stands for the expected value, V (·) = E[(· − E(·))2] denotes the vari-

ance, and Cov(·, ∗) = E[(· − E(·))(∗ − E(∗))] the covariance.

For any 1 ≤ i ≤ p, we denote the marginal distribution of Xi by PXi
and

naturally extend the former notation to L2
R
(R,B(R), PXi

) := L2
R,i.

2.2 The generalized Hoeffding decomposition

Let us denote [1 : k] := {1, 2, · · · , k}, with k ∈ N
∗, and let S be the collection

of all subsets of [1 : p]. We also define S∗ := S \ {∅}. For u ∈ S, the subvector

Xu of X is defined as Xu := (Xi)i∈u. Conventionally, for u = ∅, Xu = 1. The
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marginal distribution (resp. density) of Xu is denoted by PXu (resp. pXu).

A functional ANOVA decomposition consists in expanding f as a sum of

increasing dimension functions:

f(X) = f∅ +
∑p

i=1 fi(Xi) +
∑

1≤i<j≤p fij(Xi,Xj) + · · ·+ f1,··· ,p(X)

=
∑

u∈S fu(Xu),
(2.2)

where f∅ is a constant term, fi, i ∈ [1 : p] are the main effects, fij, fijk, · · · ,
i, j, k ∈ [1 : p] are the interaction effects, and the last component f1,··· ,p is the

residual.

Decomposition (2.2) is generally not unique. However, under mild assump-

tions on the joint density pX (see Assumptions (C.1) and (C.2) in Chastaing

et al. (2012)), the decomposition is unique under some additional orthogonality

assumptions.

More precisely, let us introduce H∅ = H0
∅ as the set of constant functions,

and for all u ∈ S∗, Hu := L2
R
(Ru,B(Ru), PXu). We then define H0

u, u ∈ S \ ∅ as

follows:

H0
u =

{

hu ∈ Hu, 〈hu, hv〉 = 0,∀ v ⊂ u,∀ hv ∈ H0
v

}

,

where ⊂ denotes the strict inclusion.

Definition 1 (Hierarchical Orthogonal Functional Decomposition - HOFD). Un-

der Assumptions (C.1) and (C.2) in Chastaing et al. (2012), the decomposition

(2.2) is unique as soon as we assume fu ∈ H0
u for all u ∈ S.

Remark 1. The components of the HOFD (2.2) are assumed to be hierarchically

orthogonal, that is, 〈fu, fv〉 = 0 ∀v ⊂ u.

To obtain more information about the HOFD, the reader is referred to

Hooker (2007) and Chastaing et al. (2012). In this paper, we are interested

in estimating the summands in (2.2). As underlined in Huang (1998), estimating

all components of (2.2) suffers from a curse of dimensionality, leading to an in-

tractable problem in practice. To bypass this issue, we will assume (without loss

of generality) that f is centered, so that f∅ = 0. Furthermore, most of the mod-

els are only governed by low-order interaction effects, as pointed out in Crestaux

et al. (2009), Blatman (2009) and Li et al. (2010). We thus suppose that f is
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well approximated by:

f(X) ≃
∑

u∈S∗

|u|≤d

fu(Xu), d≪ p, (2.3)

so that interactions of order ≥ d + 1 can be neglected. The choice of d, which

is directly related to the notion of effective dimension in the superposition sense

(see Definition 1 in Wang and Fang (2003)), is addressed in Zuniga et al. (2013),

but is not of great interest in the present article, so that it is assumed to be fixed

by the user. Even by choosing a small d, the number of components in (2.3) can

become prohibitive if the number of inputs p is high. We therefore are interested

in estimation procedures under sparse assumptions when the number of variables

p is large.

In the next section, we recall the procedure to identify components of (2.3).

As a result of this strategy, we highlight the curse of dimensionality when p be-

comes large, and we propose to use a greedy L2-boosting to tackle this issue.

2.3 Practical determination of the Sparse HOFD

General description of the procedure

We propose a two-step estimation procedure in this section to identify the

components in (2.3): the first one is a simplified version of the Hierarchical Or-

thogonal Gram-Schmidt (HOGS) procedure developed in Chastaing et al. (2013),

and the second consists of a sparse estimation in the dictionary learned by the

empirical HOGS.

In the following, we have chosen to use the so-called L2-boosting procedure

instead of the widely used Lasso estimator. This choice is motivated by two

reasons.

• First, from a technical point of view, the empirical HOGS will produce a

noisy estimation of the theoretical dictionary, in which the true signal f is

expanded. Hence, the arguments produced for the Lasso estimation would

have to be completely adjusted to this situation with errors in the variables.

Moreover, as an M-estimator, such a modification is far from being trivial

(see Cavalier and Hengartner (2005) for an example of oracle inequalities

derived from M estimators with noise in the variables). In contrast, the
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approximation obtained in the empirical HOGS can be easily handled with

the boosting algorithm since we just have to quantify how the empirical

inner products built with noisy variables are close to theoretical ones. Our

proofs rely precisely on this strategy: we obtain a uniform bound on our

statistical estimation of the HOGS dictionary, and then take advantage of

the sequential description of the boosting with empirical inner products.

• Second, in order to obtain consistent estimation with the boosting proce-

dure, we do not need to make any coherence assumption on the dictionary

(such as the RIP assumption of Candes and Tao (2007) or the weakest

RE(s, c0) assumption of Bickel et al. (2009)). Such assumptions are gener-

ally necessary to assert some consistency results for the Dantzig and Lasso

procedures, such as Sparse Oracle Inequalities (SOI), for example. Never-

theless, it would be only reasonable here to impose these latter assumptions

on the theoretical version of the HOGS although it seems difficult to deduce

coherence results on the empirical HOGS from coherence results on the the-

oretical version of the HOGS. Our Theorem 2 below will not produce a SOI

in expectation and our results will instead be expressed in probability. We

will discuss the asymptotics involved in our Theorem 2 after its statement,

and underline the differences with the state of the art results on the Lasso

estimator.

To carry out this two-step procedure, we assume that we observe two inde-

pendent and identically distributed samples (yr,xr)r=1,··· ,n1
and (ys,xs)s=1,··· ,n2

from the distribution of (Y,X) (the initial sample can be split into such two

samples). We define the empirical inner product 〈·, ·〉n and the empirical norm

‖·‖n associated with an n-sample as:

〈h, g〉n =
1

n

n
∑

s=1

h(xs)g(xs), ‖h‖n = 〈h, h〉n.

Also, for u = (u1, · · · , ut) ∈ S, we define the multi-index lu = (lu1
, · · · , lut) ∈ N

t.

We use the notation Span {B} to define the set of all finite linear combinations

of elements of B, also referred to as the linear span of B.

Step 1 and Step 2 of our sparse HOFD procedure will be described in detail

below.
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Remark 2. The procedure could be extended to any higher order approximation,

but we think that the description of the methodology for d = 2 provides a better

understanding. We have thus chosen to only describe this situation for the sake

of clarity.

Step 1: Hierarchically Orthogonal Gram-Schmidt Procedure

For each i ∈ [1 : p], let {1 , ψi
li
, li ∈ N

∗} denote an orthonormal basis of

Hi := L2(R,B(R), PXi
). For L ∈ N

∗, for i 6= j ∈ [1 : p], we set:

HL
∅ = Span {1} and HL

i = Span
{

1, ψi
1, · · · , ψi

L

}

,

as well as:

HL
ij = Span

{

1, ψi
1, · · · , ψi

L, ψ
j
1, · · · , ψj

L, ψ
i
1 ⊗ ψj

1, · · · , ψi
L ⊗ ψj

L

}

,

where ⊗ denotes the tensor product between two elements of the basis. We define

HL,0
u , the approximation of H0

u, as:

HL,0
u =

{

hu ∈ HL
u , 〈hu, hv〉 = 0,∀ v ⊂ u,∀ hv ∈ HL,0

v

}

,

The recursive procedure below aims at constructing a basis for HL,0
i and a basis

for HL,0
ij for any i 6= j ∈ [1 : p].

Initialization For any 1 ≤ i ≤ p, define φili := ψi
li
, li ∈ [1 : L]. Then, as a result

of the orthogonality of {ψi
li
, li ∈ N}, we obtain HL,0

i := Span
{

φi1, · · · φiL
}

. For

this step, we just need the orthogonality of the constant function equal to 1

with each of the ψi
li
, li ∈ N

∗. However, orthogonality is needed for the proof of

the consistency of the L2-boosting procedure (see the proof of Lemma 4 in the

Appendix).

Second order interactions Let u = {i, j}, with i 6= j ∈ [1 : p]. Since the

dimension of HL
ij is equal to L2 + 2L + 1, and the approximation space HL,0

ij

is subject to 2L + 1 constraints, its dimension is then equal to L2. We want to

construct a basis for HL,0
ij , which satisfies the hierarchical orthogonal constraints.

We are looking for such a basis in the form:

φij
lij
(Xi,Xj) = φili(Xi)× φjlj (Xj) +

∑L
k=1 λ

i
k,lij

φik(Xi)

+
∑L

k=1 λ
j
k,lij

φjk(Xj) + Clij ,
(2.4)
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with lij = (li, lj) ∈ [1 : L]2.

The constants (Clij , (λ
i
k,lij

)Lk=1, (λ
j
k,lij

)Lk=1) are determined by resolving the fol-

lowing constraints:

〈φijlij , φ
i
k〉 = 0, ∀ k ∈ [1 : L]

〈φij
lij
, φjk〉 = 0, ∀ k ∈ [1 : L]

〈φijlij , 1〉 = 0.

(2.5)

We first solve the linear system:

Aijλlij = Dlij , (2.6)

with λlij = t
(

λi1,lij · · · λiL,lij λj1,lij · · · λjL,lij

)

, and

Dlij = −



























〈φili × φjlj , φ
i
1〉

...

〈φili × φjlj , φ
i
L〉

〈φili × φjlj , φ
j
1〉

...

〈φili × φjlj , φ
j
L〉



























, Aij =

(

Bii Bij

tBij Bjj

)

, with Bij =









〈φi1, φj1〉 · · · 〈φi1, φjL〉
...

...

〈φiL, φ
j
1〉 · · · 〈φiL, φ

j
L〉









.

As shown in Chastaing et al. (2013), Alij is a definite positive Gramian matrix

and (2.6) provides a unique solution in λlij . Clij is then deduced with:

Clij = −E

[

φili ⊗ φjlj (Xi,Xj) +
L
∑

k=1

λik,lijφ
i
k(Xi) +

L
∑

k=1

λjk,lijφ
j
k(Xj)

]

. (2.7)

Higher interactions This construction can be extended to any |u| ≥ 3. We refer

the interested reader to Chastaing et al. (2013). Just note that the dimension

of the approximation space HL,0
u is given by Lu = L|u|, where |u| denotes the

cardinality of u.

Empirical procedure Algorithm 1 below proposes an empirical version of the

HOGS procedure. It consists in substituting the inner product 〈·, ·〉 by its em-

pirical version 〈·, ·〉n1
obtained with the first dataset (yr,xr)r=1,··· ,n1

.
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Algorithm 1: Empirical HOFD (EHOFD)

Input: Orthonormal system (ψi
li
)Lli=0 of Hi, i ∈ [1 : p], i.i.d. observations

O1 := (yr,xr)r=1,··· ,n1
of (2.1), threshold |umax|

Initialization: for any i ∈ [1 : p] and li ∈ [1 : L], first define φ̂ili,n1
= ψi

li
.

• For any u such that 2 ≤ |u| ≤ |umax|, write the matrix
(

Âu
n1

)

as well as
(

D̂lu
n1

)

obtained using the former expressions with 〈·, ·〉n1
.

• Solve (2.6) with the empirical inner product 〈·, ·〉n1
. Compute

(

λ̂
lij
n1

)

and

Ĉn1

lij
with (2.7).

• The empirical version of the basis given by (2.4) is then:

∀u ∈ [2 : |umax|] ĤL,0,n1

u = Span
{

φ̂u1,n1
, · · · , φ̂u

L|u|,n1

}

.

Step 2: Greedy selection of Sparse HOFD

Each component fu of the HOFD defined in Definition 1 is a projection onto

H0
u. Since, for u ∈ S∗, the space ĤL,0,n1

u well approximates H0
u, it is then natural

to approximate f by:

f(x) ≃ f̄(x) =
∑

u∈S∗

|u|≤d

f̄u(xu), with f̄u(xu) =
∑

lu

βulu φ̂
u
lu,n1

(xu),

where lu is the multi-index lu = (li)i∈u ∈ [1 : L]|u|. For the sake of clarity (since

there is no ambiguity), we will omit the summation support of lu in the sequel.

We now consider the second sample (ys,xs)s=1,··· ,n2
and we attempt to re-

cover the unknown coefficients
(

βulu
)

lu,|u|≤d
on the regression problem:

ys = f̄(xs) + εs, s = 1, · · · , n2.

However, the number of coefficients is equal to
∑d

k=1

(

p
k

)

Lk. When p becomes

large, the usual least-squares estimator is not adapted to estimate the coefficients
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(βulu)lu,u. We then use the penalized regression:

(β̂ulu) ∈ Argmin
βu
lu

∈R

1

n2

n2
∑

s=1

[

ys −
∑

u∈S∗

|u|≤d

∑

lu

βulu φ̂
u
lu,n1

(xs
u)

]2

+ λJ(β11 , · · · , βulu , · · · ),

(2.8)

where J(·) is the ℓ0-penalty, i.e.,

J(β11 , · · · , βulu , · · · ) =
∑

u∈S∗

|u|≤d

∑

lu

1(βulu 6= 0).

Of course, such an optimization procedure is not tractable and we instead

consider the relaxed L2-boosting (Friedman, 2001) to solve this penalized prob-

lem. Mimicking the notation of Temlyakov (2000) and Champion et al. (2013),

we define the dictionary D of functions as:

D = {φ̂11,n1
, · · · φ̂1L,n1

, · · · , φ̂u1,n1
, · · · , φ̂uLu,n1

, · · · }.

The quantity Gk(f̄) denotes the approximation of f̄ at step k as a linear com-

bination of elements of D. At the end of the algorithm, the estimation of f̄ is

denoted by f̂ . The L2-boosting is described in Algorithm 2.

Algorithm 2: The L2-boosting

Input: Observations O2 := (ys,xs)s=1,··· ,n2
, shrinkage parameter γ ∈]0, 1]

and number of iterations kup ∈ N
∗.

Initialization : G0(f̄) = 0.

for k = 1 to kup do

1. Select φ̂uk

luk
,n1

∈ D such that

∣

∣

∣〈Y −Gk−1(f̄), φ̂
uk

luk
,n1

〉n2

∣

∣

∣ = max
φ̂u
lu,n1

∈D

∣

∣

∣〈Y −Gk−1(f̄), φ̂
u
lu,n1

〉n2

∣

∣

∣ . (2.9)

2. Compute the new approximation of f̄ as

Gk(f̄) = Gk−1(f̄) + γ〈Y −Gk−1(f̄), φ̂
uk

luk
,n1

〉n2
· φ̂uk

luk
,n1
. (2.10)

end

Output: f̂ = Gkup(f̄).
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For any step k, Algorithm 2 selects a function from D that provides sufficient

information about the residual Y −Gk−1(f̄). The shrinkage parameter γ is the

standard step-length parameter of the boosting algorithm. It actually smoothly

inserts the next predictor into the model, making a refinement of the greedy

algorithm possible, and statistically guarantees its convergence rate.

Remark 3. In a deterministic setting, the shrinkage parameter is not really

useful and may be set to 1 (see Temlyakov (2000) for further details). It is

particularly useful from a practical point of view to smooth the boosting iterations.

An algorithm for our new sparse HOFD procedure

Algorithm 3 below now provides a simplified description of our sparse HOFD

procedure, whose steps have been described above.

Algorithm 3: Greedy Hierarchically Orthogonal Functional Decomposition

Input: Orthonormal system (ψi
li
)Lli=0 of L2(R,B(R), PXi

), i ∈ [1 : p], i.i.d.

observations O := (yj,xj)j=1...n of (2.1)

Initialization: Split O in a partition O1 ∪ O2 of size (n1, n2).

• For any u ∈ S, use Step 1 with observations O1 to construct the

approximation ĤL,0,n1

u := Span
{

φ̂u1,n1
, · · · , φ̂uLu,n1

}

of HL,0
u (see Algorithm

1).

• Use an L2-boosting algorithm on O2 with the random dictionary

D = {φ̂11,n1
, · · · φ̂1L,n1

, · · · , φ̂u1,n1
, · · · , φ̂uLu,n1

, · · · } to obtain the Sparse

Hierarchically Orthogonal Decomposition (see Algorithm 2).

We now obtain a strategy to estimate the components of the decomposition

(2.3) in a high-dimensional paradigm. We aim to show that the obtained estima-

tors are consistent, and that the two-step procedure (summarized in Algorithm

3) is numerically convincing. The next section is devoted to the asymptotic prop-

erties of the estimators.

3. Consistency of the estimator

In this section, we study the asymptotic properties of the estimator f̂ ob-

tained from Algorithm 3 described in Section 2. To do this, we restrict our study

to the case of d = 2 and assume that f is well approximated by first and second
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order interaction components (see Remark 4 below). Hence, the observed signal

Y may be represented as

Y =
∑

u∈S∗

|u|≤2

∑

lu

βu,0
lu
φulu(Xu) + ε, E(ε) = 0, E(ε2) = σ2,

where β0 =
(

βu,0
lu

)

lu,u
is the true parameter, and the functions

(

φulu
)

lu
, |u| ≤ 2

are constructed according to the HOFD described in Section 2.3. We assume

that we have an n-sample of observations, divided into two samples O1, and

O2. Samples in O1 (resp. in O2) of size n1 = n/2 (resp. of size n2 = n/2) are

used for the construction of
(

φ̂ulu,n1

)

lu,u
described in Algorithm 1 (resp. for the

L2-boosting Algorithm 2 to estimate
(

βulu
)

lu,u

)

.

The goal of this section is to study the consistency of f̂ = Gkn(f̄) when

the sample size n tends to infinity. Its objective is also to determine an optimal

number of steps kn necessary to obtain a consistent estimator from Algorithm 2.

Remark 4. We choose the truncature order d = 2 in order to simplify the

presentation, but it may be extended to arbitrary larger thresholds independent

of the sample size n. This choice is legitimate as soon as the function f is well

approximated by low interaction components and this assumption is well suited

for many practical situations (Rabitz et al., 1999; Sobol, 2001). Indeed, a data-

dependent choice of dn (with dn −→ +∞ as n→ +∞) would rely on a smoothness

assumption on the signal f with respect to the order of the considered interactions

by exploiting the size of the bias term induced by the truncature given in Theorem

5 of Sobol (2001). However, this challenging task is far beyond the scope of this

paper and we have chosen to leave this problem open.

3.1 Assumptions

We first briefly recall some notation: for all sequences (an)n≥0, (bn)n≥0, we

write an = O
n→+∞

(bn) when an/bn is a bounded sequence for large enough n.

Now, for any random sequence (Xn)n≥0, Xn = OP (an) means that |Xn/an| is
bounded in probability.

We have chosen to present our assumptions in three parts to deal with the

dimension, the noise and the sparseness of the entries.
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Bounded Assumptions (Hb) The first set of hypotheses matches the bounded

case and is adapted to the special situation of bounded support for the random

variable X, for example, when each Xj follows a uniform law on a compact set

Kj ⊂ K where K is a compact set of R independent of j ∈ [1 : p]. It is referred

to as (Hb) in the sequel and corresponds to the following three conditions:

(H1
b) M := sup i∈[1:p]

li∈[1:L]

∥

∥φili(Xi)
∥

∥

∞
< +∞,

(H2
b) The number of variables pn satisfies:

pn = O
n→+∞

(exp(Cn1−ξ)), where 0 < ξ ≤ 1 and C > 0.

(H3,ϑ
b ) The Gram matrices Aij introduced in (2.6) satisfies:

∃C > 0 ∀(i, j) ∈ [1 : pn]
2 det(Aij) ≥ Cn−ϑ,

where det denotes the determinant of a matrix.

Roughly speaking, this will be the favorable situation from a technical point

of view since it will be possible to apply a matricial Hoeffding type inequality. It

may be possible to slightly relax such a hypothesis using a sub-exponential tail

argument. For the sake of simplicity, we have chosen to only restrict our work to

the settings of (Hb).

Regardless of the joint law of the random variables (X1, . . . ,Xp), it is always

possible to build an orthonormal basis (φili)1≤li≤L from a bounded (frequency

truncated) Fourier basis and, therefore, (H1
b) is not as restrictive in practice.

Assumption (H2
b) deals with the high dimensional situation. We are in fact

interested in practical situations where the number of variables can be much

larger than the number of observations n. Hence, in our mathematical study, the

number of variables pn can grow exponentially fast with the number of observa-

tions n. This obviously implies that the collection of subsets u also depends on

n and will now be denoted S∗
n. As a consequence, S∗

n also increases rapidly and

is much larger than n.

Note that Hypothesis (H3,ϑ
b ) stands for a lower bound of the determinant of

the Gram matrices involved in the HOFD. It is shown in Chastaing et al. (2013)

that each of these Gram matrices is invertible and, as a result, each det(Aij) is
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positive. Nevertheless, if ϑ = 0, this hypothesis assumes that such an invertibility

is uniform over all choices of tensor (i, j). This hypothesis may be too strong

for a large number of variables pn → +∞ when ϑ = 0. However, when ϑ > 0,

Hypothesis (H3,ϑ
b

) drastically relaxes the case ϑ = 0 and becomes very weak. The

verification of (H3,ϑ
b ) requires the computation of an order of p2n determinants of

size L2 × L2. We have checked this assumption in our experiments. However,

for very large values of n, this may become impossible from a numerical point of

view.

In the following, the parameters ϑ and ξ will be related to each other and we

will obtain a consistency result of the sparse HOFD up to the condition ϑ < ξ/2.

This constraint implicitly limits the size of pn since log pn = O
n→+∞

(n1−ξ).

Noise Assumption (Hε,q) We will assume the noise measurement ε to obtain

some bounded moments of sufficiently high order, which is true for Gaussian or

bounded noise. This assumption is given by:

(Hε,q) E(|ε|q) <∞, for one q ∈ R+.

Sparsity Assumption (Hs,α) The last assumption concerns the sparse repre-

sentation of the unknown signal described by Y in the basis (φulu(Xu))u. Such a

hypothesis will be useful to assess the statistical performance of the L2-boosting

and will be referred to as (Hs,α) below. It is legitimate due to our high dimension

setting and our motivation to identify the main interactions Xu.

(Hs,α) There exists α > 0 such that the parameter β0 satisfies:

‖β0‖ℓ1 :=
∑

u∈S∗
n

|u|≤d

∑

lu

∣

∣

∣β
u,0
lu

∣

∣

∣ = O
n→+∞

(nα).

3.2 Main results

We recall below that ‖.‖ is the L2 norm on functions decomposed in the

orthonormal basis (φulu)u. We first provide our main result on the efficiency of

the EHOFD (Algorithm 1).

Theorem 1. Assume that (Hb) holds with ξ (resp. ϑ) given by (H2
b) (resp.

(H3,ϑ
b )) and that there exists a constant Λ such that

∥

∥λlij
∥

∥

2
≤ Λ for any couple
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(i, j). Then, if ϑ < ξ/2, the sequence of estimators
(

φ̂ulu,n1

)

u
satisfies:

sup
u∈S∗

n,|u|≤d
lu

∥

∥

∥φ̂ulu,n1
− φulu

∥

∥

∥ = ζn,0 = OP (n
ϑ−ξ/2).

The proof of this theorem can be found in the Appendix.

Let us mention the contribution of Theorem 1 compared to the results ob-

tained in Chastaing et al. (2013). Proposition 5.1 of Chastaing et al. (2013) leads

to an almost sure convergence of their estimator without any quantitative rate

when the number of functions in the HOFD is kept fixed and does not grow with

the number of observations n. In contrast, in our high dimensional paradigm, we

allow S∗
n to grow with n and also obtain an almost sure result associated with a

convergence rate. This will be essential for the derivation of our next result.

Our second main result concerns the L2-boosting that recovers the unknown

f̃ up to a preprocessing estimation of (φ̂ulu,n1
)lu,u on a first sample O1. Such a

result is satisfied provided the sparsity assumption (Hs,α) holds. We assume that

Y = f̃(X) + ε, f̃(X) =
∑

u∈S∗
n

|u|≤d

∑

lu

βu,0
lu
φulu(Xu) ∈ HL

u ,

where β0 = (βu,0lu
)lu,u is the true parameter that expands f̃ . To the best of

our knowledge, such a high dimensional inference with noise in the variables

appears to be novel. As already pointed out above, the greedy boosting seems

to be a well tailored approach to handle noisy dictionaries in comparison to a

penalized regression strategy, which relies on a somewhat unverifiable ”RIP-type”

hypothesis on the learned dictionary.

Theorem 2 (Consistency of the L2-boosting). Consider an estimation f̂ of

f̃ from an i.i.d. n-sample broken down into O1 ∪ O2. Assume that functions
(

φ̂ulu,n1

)

lu,u
are estimated from the first sample O1 under (Hb) with ϑ < ξ/2,

and that there exists a constant Λ such that
∥

∥λlij
∥

∥

2

≤ Λ for any couple (i, j).

f̂ is then defined by (2.10) of Algorithm 2 on O2 as:

f̂(X) = Gkn(f̄), with f̄ =
∑

u∈S∗
n

|u|≤d

∑

lu

βu,0
lu
φ̂ulu,n1

(Xu).
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If we assume that (Hs,α) and (Hε,q) are satisfied with q > 4/ξ and α < ξ/4−ϑ/2,
then a sequence kn := C log n exists, where C < ξ/2−ϑ−2α

2·log 3 such that:

∥

∥

∥f̂ − f̃
∥

∥

∥

P−→ 0,when n→ +∞.

In particular, for Gaussian noises that possess arbitrary large moments, the

constraint on q disappears and Theorem 2 can be applied as soon as ξ < 1.

Let us discuss the asymptotic setting involved in our Theorem. First, our

result is a result in probability, rather than in expectation. It is a frequently

encountered fact that SOI in expectation are derived with additional assumptions

on the coherence of the dictionary; some detailed discussions can be found in

Bickel et al. (2009) and Rigollet and Tsybakov (2011). With some coherence and

boundedness assumptions, Bickel et al. (2009) deduced convergence rates of the

Lasso estimator in expectation as soon as:

‖β0‖ℓ0
log(p)

n
−→ 0. (3.1)

Later, Rigollet and Tsybakov (2011) extended the study of the Lasso behavior

with a result on the Lasso estimator on bounded variables without any coherence

assumption and showed a consistency result in probability when:

‖β0‖ℓ1
√

log(p)

n
−→ 0. (3.2)

Hence, the rate is damaged by the appearance of the
√
. in (3.2) in comparison

with (3.1). Concerning the boosting algorithm, Champion et al. (2013) also

obtained consistency results in probability under the asymptotic setting given

in (3.2) without a coherence assumption. It should be observed that our results

with a noisy dictionary requires that

(

inf
i,j

det(Aij)

)−1

‖β0‖2ℓ1

√

log p

n
−→ 0 asn −→ +∞, (3.3)

which is a stronger assumption in comparison with (3.2). From a technical point

of view, the asymptotic setting is due to inequality (S4.10) where ‖β0‖2ℓ1ζn ap-

pears instead of ‖β0‖ℓ1ζn for boosting algorithms without noise on the variables

(see the proof of Theorem 2 in the Appendix).
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In favorable cases where all linear systems defined through the Gram matrices

Aij are well conditioned, ϑ = 0 and the condition becomes ‖β0‖2ℓ1
√

log p
n −→ 0,

and there is still a price to pay for the preliminary estimation of the elements of

the HOGS. Theorem 2 can be applied only for sequences of coefficients such that

‖βu,0lu
‖L1

. n1/4. Note also that the degeneracy of the Gram determinants must

be strictly larger than n−1/2. For example, when ϑ = 1/4, the norm ‖βu,0
lu

‖L1

cannot be larger than n1/8.

We briefly describe the proof below and provide the technical details in the

Appendix.

Sketch of Proof of Theorem 2. Mimicking the scheme of Bühlmann (2006) and Cham-

pion et al. (2013), the proof first consists in defining the theoretical residual of

Algorithm 2 at step k as:

Rk(f̄) = f̄ −Gk(f̄)

= f̄ −Gk−1(f̄)− γ〈Y −Gk−1(f̄), φ̂
uk

luk
,n1

〉n2
· φ̂uk

luk
,n1

(3.4)

Furthermore, following the work of Champion et al. (2013), we introduce a

phantom residual in order to reproduce the behavior of a deterministic boosting,

studied in Temlyakov (2000). This phantom algorithm is the theoretical L2-

boosting, performed using the randomly chosen elements of the dictionary by

Equations (2.9) and (2.10), but updated using the deterministic inner product.

The phantom residuals R̃k(f̄), k ≥ 0, are defined as follows:

{

R̃0(f̄) = f̄

R̃k(f̄) = R̃k−1(f̄)− γ〈R̃k−1(f̄), φ̂
uk

luk
,n1

〉φ̂uk

luk
,n1
,

(3.5)

where φ̂uk

luk
,n1

has been selected with Equation (2.9) of Algorithm 2. The aim

is to decompose the quantity
∥

∥

∥
f̂ − f̃

∥

∥

∥
to introduce the theoretical residuals and

the phantom ones:

∥

∥

∥
f̂ − f̃

∥

∥

∥
=
∥

∥

∥
Gkn(f̄)− f̃

∥

∥

∥
≤
∥

∥

∥
f̄ − f̃

∥

∥

∥
+
∥

∥

∥
Rkn(f̄)− R̃kn(f̄)

∥

∥

∥
+
∥

∥

∥
R̃kn(f̄)

∥

∥

∥
. (3.6)

We then have to show that each term on the right-hand side of (3.6) converges

towards zero in probability.
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4. Numerical Applications

This section is devoted to the numerical efficiency of the two-step proce-

dure given in Section 2, and primarily focuses on the practical use of the HOFD

through sensitivity analysis (SA). SA aims to identify the most contributive vari-

ables to the variability of a regression model (Saltelli et al., 2000; Cacuci et al.,

2005). The most common quantification is a variance-based index, known as the

Sobol index (Sobol, 1993). This measure relies on the Hoeffding decomposition

that provides an elegant and meaningful theoretical framework when inputs are

known to be independent. However, as mentioned in the introduction, the in-

terpretation of such indices may be irrelevant when strong dependencies arise.

The HOFD presented in Section 2.2 is of great interest in this situation because

it provides a general and rigorous multivariate regression extension that can be

used to define sensitivity indices well-tailored to dependent inputs. As detailed

in Chastaing et al. (2012), the model variance can be expanded as follows:

V (Y ) =
∑

u∈S∗
n



V (fu(Xu)) +
∑

u∩v 6=u,v

Cov(fu(Xu), fv(Xv))





Therefore, to measure the contribution of Xu, for |u| ≥ 1, in terms of model

variability, it is then quite natural to define a sensitivity index Su as follows:

Su =
V (fu(Xu)) +

∑

u∩v 6=u,v Cov(fu(Xu), fv(Xv))

V (Y )
. (4.1)

Furthermore, we deduce the empirical estimation of (4.1) once we have ap-

plied the procedure described in Algorithm 3 to obtain (f̂u, f̂v, u ∩ v 6= u, v).

4.1 Description

We end this paper with a short simulation study, focused primarily on the

performance of the greedy selection algorithm for the prediction of generalized

sensitivity indices. Since the estimation of these indices consists in estimating the

summands of the generalized functional ANOVA decomposition (referred to as

HOFD), we begin by constructing a hierarchically orthogonal system of functions

to approximate the components. As pointed out above (see Assumption (H3,ϑ
b )

in Theorem 1 and 2), the invertibility of each linear system plays an important

role in our theoretical study. For each situation, we therefore measured the

degeneracy of the matrices involved, given by:
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d(A) = inf
i,j∈[1:p]

det(Aij).

We then use a variable selection method to select a sparse number of predic-

tors. The goal is to numerically compare three variable selection methods: the

L2-boosting, the Forward-Backward greedy algorithm (referred to as FoBa be-

low), and the Lasso estimator. As pointed out above, we have an n-sample of i.i.d.

observations (ys,xs)s=1,··· ,n broken down into two samples of size n1 = n2 = n/2.

The first sample is used to construct the system of functions according to Algo-

rithm 1. The second sample is used to solve the penalized regression problem

given by (2.8) and illustrated here:

(β̂ulu)lu,u ∈ Argmin
βu
lu

∈R

1

n2

n2
∑

s=1

[

ys −
∑

u∈S
|u|≤d

∑

lu

βulu φ̂
u
lu,n1

(xs
u)

]2

+ λJ(β11 , · · · , βulu , · · · ).

We will now briefly describe how we use the Lasso, the FoBa and the Boosting.

4.2 Feature selection Algorithms

FoBa procedure The FoBa algorithm, as well as the L2-boosting, use a greedy

exploration to minimize the previous criterion when J(·) is a ℓ0 penalty, i.e.,

J(β11 , · · · , βulu , · · · ) =
∑

u∈S∗
n

|u|≤d

∑

lu

1(βulu 6= 0).

This algorithm is an iterative scheme that sequentially selects or deletes an el-

ement of D that has the least impact on the fit, i.e., that significantly reduces

the model residual. This algorithm is described in Zhang (2011) and used for

HOFD in Chastaing et al. (2013). We refer to these references for a more in-

depth description of this algorithm. This procedure depends on two shrinkage

parameters, ǫ and δ. The parameter ǫ is the stopping criterion that predeter-

mines if a large number of predictors is going to be introduced into the model.

The second parameter, δ ∈]0, 1], offers a flexibility in the backward step since it

allows the algorithm to smoothly eliminate a predictor at each step.

In our numerical experiments, we found a well-suited behavior of the FoBa

procedure with ǫ = 10−2 and δ = 1/2.
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Calibration of the Boosting As previously reported by Champion et al. (2013),

we fixed the shrinkage parameter to γ = 0.7 since it provides a suitable value for

high dimensional regression, even though we did not find any extreme differences

when γ varies in [0.5; 1[. Since the optimal value for kup is unknown in practice,

we use a Cp Mallows-type criterion to fix the optimal number of iterations. This

stopping criterion is much more important than the choice of the shrinkage pa-

rameter. It is, of course, induced by γ since it depends on the sequence of the

boosting iterations.

Like in the LARS algorithm, we follow the recommendations of Efron et al.

(2004) to select the best solution. First, we define a large number of iterations,

say K. For each step k ∈ {1, · · · ,K}, the boosting algorithm computes an

estimation of the solution β̂(k). On the basis of this, we compute the following

quantity:

EBoost
k =

1

n

n2
∑

s=1

[

ys −
∑

φ̂u
lu,n1

∈D

β̂ulu(k)φ̂
u
lu,n1

(xs
u)

]2

− n2 + 2k,

where the implied set of functions φ̂ulu,n1
has been selected through the first

k steps of the algorithm. Finally, we choose the optimal number of selected

functions k̂up such that:

k̂up = Argmin
k=1,··· ,K

EBoost
k .

Lasso algorithm Since the ℓ0 strategy is very difficult to handle and may suffer

from a lack of robustness, the ℓ0 penalty is often replaced by the λ× ℓ1 strategy

that yields the Lasso estimator for a given penalization parameter λ > 0, i.e.,

J(β11 , · · · , βulu , · · · ) =
∑

u∈S∗
n

|u|≤d

∑

lu

∣

∣βulu 6= 0
∣

∣ .

Several algorithms have been proposed in the literature to solve the Lasso re-

gression. One of the most popular is the LARS method, described in Efron et al.

(2004), because it performs a solution that coincides with the theoretical regu-

larization path {β̂(λ), λ ∈ R
+}. However, the LARS strategy is very expensive

in large Lasso problems. To make a good numerical comparison with the greedy

algorithms, we choose to perform a coordinate descent algorithm proposed by Fu
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(1998), and Friedman et al. (2007) because of its low computational cost com-

pared to the LARS implementation. The tuning parameter λ is first selected by

generalized cross-validation, and the Lasso Coordinate Descent (LCD) algorithm

is performed with the R lassoshooting package.

4.3 Datasets

Each experiment on each dataset was randomly reproduced 50 times to com-

pute the Monte-Carlo errors. Since each dataset has very few instances, the size

L of the initial orthonormal systems has to be small. Here, we arbitrarily choose

5 ≤ L ≤ 8 and the approximation performance do not suffer from the sensitivity

of L in these models.

First Dataset: the Ishigami function Well known in sensitivity analysis, the

analytical form of the Ishigami model is given by:

Y = sin(X1) + a sin2(X2) + bX4
3 sin(X1),

where we set a = 7 and b = 0.1, and where it is assumed that the inputs are

independent. In the numerical experiment, we consider the following cases:

1. For all i = 1, 2, 3, the inputs are uniformly distributed on [−π, π]. We

choose n = 300 observations, with the first eight Legendre basis functions

(L = 8).

2. For all i = 1, 2, 3, the inputs are uniformly distributed on [−π, π]. We

choose n = 300 observations, with the first eight Fourier basis functions.

Each time, the number of predictors is mn = pL+
(

p
2

)

L2 = 408 ≥ n.

Second Dataset: the g-Sobol function This function is referred to in Saltelli

et al. (2000), and is given by:

Y =

p
∏

i=1

|4Xi − 2|+ ai
1 + ai

, ai ≥ 0,

where the inputs Xi are independent and uniformly distributed over [0, 1]. The

analytical Sobol indices are given by

Su =
1

D

∏

i∈u

Di, Di =
1

3(1 + ai)2
, D =

p
∏

i=1

(Di + 1)− 1, ∀ u ⊆ [1 : p].
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Here, we take p = 25 and a = (0, 0, 0, 1, 1, 2, 3, 4.5, 4.5, 4.5, 9, 9, 9, 9, 9, 99, · · · , 99).
For the construction of the hierarchical basis functions, we choose the first five

Legendre polynomials (L = 5). We use n = 2000 evaluations of the model and

the number of predictors mn = pL +
(p
2

)

L2 = 7625, which clearly exceeds the

sample size n.

Third dataset: dependent inputs The third data set stands for a rarely in-

vestigated situation, where the inputs are correlated. As proposed by Mara and

Tarantola (2012), we generate a sample set according to the following distribu-

tion: X1 and X2 are uniformly sampled in the set S:

S :=
{

(x1, x2) ∈ [−1, 1]2 | 2x21 − 1 ≤ x2 ≤ 2x21
}

.

Furthermore, X3 is also sampled uniformly in [−1; 1]. Then, Y is built following

Y = X1 +X2 +X3.

The inputs X1 and X2 are clearly not independent and we do not exactly know

the analytical Sobol indices. We choose n = 100 observations, with the first six

Legendre basis functions (L = 6).

4.4 The tank pressure model

This real case study concerns a shell closed by a cap and subject to an

internal pressure. Figure 4.1 illustrates a simulation of tank distortion. We are

interested in the von Mises stress, detailed in von Mises (1913) on the point y

indicated in Figure 4.1. The von Mises stress makes it possible to predict material

yielding that occurs when the material yield strength is reached. The selected

point y corresponds to the point for which the von Mises stress is maximal in the

tank. Therefore, we want to prevent the tank from material damage induced by

plastic deformations. In order to provide a large panel of tanks able to resist the

internal pressure, a manufacturer wants to know the parameters that contribute

the most to the von Mises criterion variability. In the model that we propose, the

von Mises criterion depends on three geometrical parameters: the shell internal

radius (Rint), the shell thickness (Tshell), and the cap thickness (Tcap). It also

depends on five physical parameters concerning Young’s modulus (Eshell and

Ecap) and the yield strength (σy,shell and σy,cap) of the shell and the cap. The
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last parameter is the internal pressure (Pint) applied to the shell. There exists

some strong correlations between some of the inputs of the system owing to the

constraints of manufacturing processes, for instance between the shell radius and

its thickness. The system is modeled by a 2D finite element ASTER code. Input

distributions are provided in Table 4.1.

Figure 4.1: Tank distortion at point y

The geometrical parameters are uniformly distributed because of the large

choice left for tank construction. The correlation γ between the geometrical pa-

rameters is induced by the constraints linked to manufacturing processes. The

physical inputs are normally distributed and their uncertainty is due to the man-

ufacturing process and the properties of the elementary constituent variabilities.

The large variability of Pint in the model corresponds to the different internal

pressure values that could be applied to the shell by the user.

To measure the contribution of the correlated inputs to the output variability, we

estimate the generalized sensitivity indices. We do n = 1000 simulations. We use

the first Hermite basis functions, whose maximum degree is 5 for every parameter.
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Inputs Distribution

Rint U([1800; 2200]), γ(Rint, Tshell) = 0.85

Tshell U([360; 440]), γ(Tshell, Tcap) = 0.3

Tcap U([180; 220]), γ(Tcap, Rint) = 0.3

Ecap αN(µ,Σ) + (1− α)N(µ,Ω)

σy,cap α = 0.02, µ =







210

500






, Σ =







350 0

0 29






, Ω =







175 81

81 417







Eshell αN(µ,Σ) + (1− α)N(µ,Ω)

σy,shell α = 0.02, µ =







70

300






, Σ =







117 0

0 500






, Ω =







58 37

37 250







Pint N(80, 10)

Table 4.1: Description of inputs of the shell model

4.5 Results

We consider both the estimation of the sensitivity indices, the ability to select

the good representation of the different signals, and the computation time needed

to obtain the sparse representation. ”Greedy” refers to the Foba procedure and

”LCD” refers to the Lasso coordinate descent method. Our method is, of course,

referred to as ”Boosting”.

Sensitivity estimation Figures 4.2 and 4.3 provide the dispersion of the sensi-

tivity indices estimated by our three methods on the Ishigami function. We can

see that the three methods behave well with the two basis functions. Note that

handling the Fourier basis is, as expected, more suitable for the Ishigami function

than the Legendre basis (see the sensitivity index S3 in Figures 4.2 and 4.3). For

the sake of clarity, Figure 4.4 only represents the first ten sensitivity indices. We

can also draw similar conclusions with Figure 4.4, where the three methods lead

to the same conclusion. It should also be noted that the standard deviations

of each method seem to be relatively equivalent. Figure 4.5 represents the esti-

mated sensitivity indices when the inputs are correlated. The analytical results
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Figure 4.2: Representation of the first-order components on the First dataset (Ishigami

function) described through the Legendre basis.

are obviously unknown, but we obtain similar results for the three methods.

Finally, as illustrated in Figure 4.6, the most contributive parameter to the

von Mises criterion variability is the internal pressure Pint, which is not surpris-

ing. Concerning the geometric characteristics, the main parameters of the three

methods are cap thickness, Tcap, and shell thickness, Tshell, using their expensive

code, although the shell internal radius does not seem to be that important.

Computation time and accuracy The performances of the three methods are

illustrated in Table 4.2, on the basis of their computational cost and the accuracy

of the feature selection.

Regarding the statistical accuracy, it should be noted that each estimator of

high dimensional regression possesses a comparable dispersion on all the datasets

and performs quite similarly on the first dataset. The Lasso estimator seems a

little bit unprecise in the third data-set in comparison with the FoBa and Boost-

ing methods. At last, the LCD method is also outperformed on the third data-set

(with dependent inputs): it selects a significantly larger number of sensitivity in-
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Figure 4.3: Representation of the first-order components on the First dataset (Ishigami

function) described through the Fourier basis.
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Figure 4.4: Representation of the first-order components on the Second dataset (g-Sobol

function).
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Figure 4.5: Representation of the first-order components on the third dataset (dependent

inputs).

dices in comparison with Boosting and FoBa methods (for instance, the indices

S13 and S23 are certainly equals to 0 owing to the definition of Y ). This may

be due to the influence of the dependency among the inputs X1 and X2 in this

data-set on the Lasso estimator.

Furthermore, it clearly appears in Table 4.2 that our proposed L2-boosting

is the fastest method. This is particularly true on the 25-dimension g-Sobol

function where the fraction of additional time required by the LCD algorithm

in comparison to the L2-boosting is about 100. Although we do not have access

to the theoretical support recovery ‖β‖0, we can observe that the results of the

L2-boosting are equivalent to those of other algorithms in terms of its feature

selection ability. Hence, for the same degree of accuracy, our method seems to

be much faster.
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Figure 4.6: Dispersion of the first order sensitivity indices of the tank model parameters

for the 3 methods.
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Dataset Procedure
∥

∥

∥β̂

∥

∥

∥

0
Elapsed Time (in sec.)

Ishigami

function

Case 1

L2-boosting 19 0.0941

FoBa 21 2.2917

LCD 20 2.25

Ishigami

function

Case 2

L2-boosting 15 0.0884

FoBa 12 1.0752

LCD 13.9 0.41

g-Sobol

function

L2-boosting 99 49.8

FoBa 22.4 827.9

LCD 91.8 5047.4

Dependent

inputs

L2-boosting 4.14 0.028

FoBa 4.76 0.1056

LCD 24.1 0.061

Tank

pressure

model

L2-boosting 10 0.0266

FoBa 22 0.3741

LCD 23 0.15

Table 4.2: Features of the three algorithms

Note that we have computed the maximal ”degeneracy” that is involved

in the resolution of the linear systems and quantified by Assumption (H3,ϑ
b ) in

column 2 of Table 4.3. In many cases, we obtain a significantly larger value than

0. The third column of Table 4.3 shows the admissible size of the parameter

ϑ, and we can check that the number of variables pn allowed by (H2
b) and the

balance between ξ and ϑ (ξ should be greater than 2ϑ in our theoretical results)

is not restrictive since n1−2ϑ is always significantly greater than log(mn) in Table

4.3.

Dataset Degeneracy d(A) ϑ ≥ log(1/d(A))
log(n) n1−2ϑ log(mn)

Ishigami function Case1 0.6388 [0.0786,+∞[ 122.3821 6.0113

Ishigami function Case1 0.76 [0.0481,+∞[ 173.3094 6.0113

g-Sobol function 0.9745 [0.0034,+∞[ 1899 8.9392

Dependent inputs 0.628 [0.101,+∞[ 39.4457 4.8363

Table 4.3: Degeneracy of the linear systems and admissible size of mn (n1−2ϑ should be

greater than log(mn).

5. Conclusions and Perspectives
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This paper provides a rigorous framework for the hierarchically orthogonal

Gram-Schmidt procedure in a high-dimensional paradigm, with the use of the

greedy L2-boosting. Overall, the procedure falls into the category of sparse esti-

mation with a noisy dictionary, and we demonstrate its consistency up to some

mild assumptions on the structure of the real underlying basis. From a mathe-

matical point of view, assumption (H1
b) presents a restrictive condition, and to

relax it would open a wider class of basis functions for applications. We leave

this development open for a future study, which could be based either on the

development of a concentration inequality for unbounded random matrices or

on a truncating argument. It also appears that our algorithm produces very

satisfactory numerical results through our three datasets as a result of its very

low computational cost. It can also be extended with some further numerical

work to a larger truncation order of d ≥ 3. Such an improvement may also be

of interest from a theoretical point of view when dealing with a function that

smoothly depends on the interaction order. In particular, a data-driven adaptive

choice of d may be of practical interest in the future.
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Supplementary Material

We present here the proofs of Theorem 1 and Theorem 2 of the main document.
Section S1 sets the notation that will be used all along the document. Section S2 quotes
a concentration inequality on random matrices that will be exploited in the rest of the
work. We develop the proofs of Theorem 1 and 2 in Section S3 and Section S4.

S1 Notation and reminder

Let us first recall some standard notations on matricial norms. For any square matrix
M , its spectral radius ρ(M) will refer to as the largest absolute value of the elements of
its spectrum:

ρ(M) := max
α∈Sp(M)

|α|.

Moreover, |||M |||
2
is the euclidean endomorphism norm and is given by

|||M |||
2
:=
√

ρ(tMM),

where tM is the transpose of M . Note that for self-adjoint matrices, |||M |||
2
= ρ(M). At

last, the Frobenius norm of M is given by

‖M‖F :=
(
Tr(tMM)

)1/2
,

where Tr(M) is the trace of the matrix M .
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S2 Hoeffding ’s type Inequality for random bounded

matrices

For the sake of completeness, we quote here Theorem 1.3 of Tropp (2012). Denote � the
semi-definite order on self-adjoint matrices, which is defined for all self-adjoint matrices
M1 and M2 of size q as:

M1 � M2 iff ∀u ∈ R
q, tuM1u ≤ tuM2u.

Theorem 1 (Matrix Hoeffding: bounded case). Consider a finite sequence (Xk)1≤k≤n

of independent random self-adjoint matrices with dimension d, and let (Ak)1≤k≤n a
deterministic sequence of self-adjoint matrices. Assume that

∀1 ≤ k ≤ n EXk = 0 and X2
k � A2

k a.s.

Then, for all t ≥ 0

P

(

λmax

(
n∑

k=1

Xk

)

≥ t

)

≤ de−t2/8σ2

, where σ2 = ρ

(
n∑

k=1

A2
k

)

.

In our work, a more precise concentration inequality such as the Bernstein one (see
Theorem 6.1 of Tropp (2012)) is useless since we do not consider any asymptotic on L
(the number of basis functions for each variables Xj). Such asymptotic setting is far
beyond the scope of the paper and we let this problem open for a future work.

S3 Proof of Theorem 1

Consider any subset u = (u1, ..., ut) ∈ S∗
n with t ≥ 1 and remark that if u = {i}, i.e.

t = 1, the Initialization of Algorithm 1 is such that

φ̂i
li,n1

= φi
li , ∀ li ∈ [1 : L],

Therefore, we obviously have that sup i∈[1:p]
li∈[1:L]

∥
∥
∥φ̂i

li,n1
− φi

li

∥
∥
∥ = 0.

Now, for t = 2, let u = {i, j}, with i 6= j ∈ [1 : p], and lij = (li, lj) ∈ [1 : L]2, and

remind that φij
lij

is defined as:

φij
lij

(xi, xj) = φi
li(xi)× φj

lj
(xj) +

L∑

k=1

λi
k,lijφ

i
k(xi) +

L∑

k=1

λj
k,lij

φj
k(xj) + Clij ,

where (Clij , (λ
i
k,lij

)k, (λ
j
k,lij

)k) are given as the solutions of:

〈φij
lij

, φi
k〉 = 0, ∀ k ∈ [1 : L]

〈φij
lij

, φj
k〉 = 0, ∀ k ∈ [1 : L]

〈φij
lij

, 1〉 = 0.

(S3.1)
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When removing Clij , the resolution of (S3.1) leads to the resolution of a linear
system of the type:

Aijλlij = Dlij , (S3.2)

with λlij = t
(

λi
1,lij

· · ·λi
L,lij

λj
1,lij

· · ·λj
L,lij

)

and

Aij =

(
Bii Bij

tBij Bjj

)

, Bij =






〈φi
1, φ

j
1〉 · · · 〈φi

1, φ
j
L〉

...

〈φi
L, φ

j
1〉 · · · 〈φi

L, φ
j
L〉




 , Dlij = −















〈φi
li
× φj

lj
, φi

1〉
...

〈φi
li
× φj

lj
, φi

L〉
〈φi

li
× φj

lj
, φj

1〉
...

〈φi
li
× φj

lj
, φj

L〉















.

Consider now φ̂ij
lij ,n1

that is decomposed on the dictionary as follows:

φ̂ij
lij ,n1

(xi, xj) = φi
li
(xi)× φj

lj
(xj) +

∑L
k=1 λ̂

i
k,lij ,n1

φi
k(xi) +

∑L
k=1 λ̂

j
k,lij ,n1

φj
k(xj) + Ĉn1

lij
,

where (Ĉn1

lij
, (λ̂i

k,lij ,n1
)k, (λ̂

j
k,lij ,n1

)k) are given as solutions of the following random equal-
ities:

〈φ̂ij
lij ,n1

, φi
k〉n1 = 0, ∀ k ∈ [1 : L]

〈φ̂ij
lij ,n1

, φj
k〉n1 = 0, ∀ k ∈ [1 : L]

〈φ̂ij
lij ,n1

, 1〉n1 = 0.

(S3.3)

When removing Ĉn1

lij
, the resolution of (S3.3) can also lead to the resolution of a

linear system of the type:

Âij
n1
λ̂
lij

n1
= D̂lij

n1
, (S3.4)

where λ̂
lij

n1
= t

(

λ̂i
1,lij ,n1

· · · λ̂i
L,lij ,n1

λ̂j
1,lij ,n1

· · · λ̂j
L,lij ,n1

)

and Âij
n1

(resp. D̂
lij
n1 ) are ob-

tained from Aij (resp. Dlij ) by changing the theoretical inner product by its empirical
version.

Remark 1. Remark that each Aij depends on (i, j) as well as λlij and Dlij depend on
(i, j) and lij , but we will deliberately omit these indexes in the sequel for the sake of con-
venience (when no confusion is possible). For instance, when a couple (i, j) is handled,
we will frequently use the notation A,λ, D,C, λi

k, λ
j
k instead of Aij ,λlij , Dlij , Clij , λ

i
k,lij

and λj
k,lij

. This will be also the case for the estimators Ân1 , λ̂n1 , D̂n1 , Ĉ
n1 , λ̂i

k,n1
and

λ̂j
k,n1

.

Then, the following useful lemma compares the two matrices Ân1 and A.
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Lemma 1. Under Assumption (Hb), and for any ξ given by (H2
b), one has

sup
1≤i,j≤pn

∣
∣
∣

∣
∣
∣

∣
∣
∣Ân1 −A

∣
∣
∣

∣
∣
∣

∣
∣
∣
2

= OP (n
−ξ/2).

Proof. First consider a couple (i, j) and note that
∣
∣
∣

∣
∣
∣

∣
∣
∣Ân1 −A

∣
∣
∣

∣
∣
∣

∣
∣
∣
2

= ρ(Ân1 − A), since

Ân1 − A is self-adjoint. To obtain a concentration inequality on the matricial norm
∣
∣
∣

∣
∣
∣

∣
∣
∣Ân1 −A

∣
∣
∣

∣
∣
∣

∣
∣
∣
2

, we use the result of Tropp (2012) (see Theorem 1), which give concentration

inequalities for the largest eigenvalue of self-adjoint matrices (see section 6.2).

Remark that Ân1 −A can be written as follows:

Ân1 −A =
1

n1

n1∑

r=1

Θr,ij , Θr,ij =

(
Θii

r Θij
r

tΘij
r Θjj

r

)

, ∀ r ∈ [1 : n1],

where, for all k,m ∈ [1 : L], (Θi1i2
r )k,m = φi1

k (xr
i1
)φi2

m(xr
i2
) − E[φi1

k (Xi1)φ
i2
m(Xi2)] with

i1, i2 ∈ {i, j}. Since the observations (xr)r=1,··· ,n1 are independent, Θ1,ij , · · · ,Θn1,ij is
a sequence of independent, random, centered, and self-adjoint matrices. Moreover, for
all u ∈ R

2L, all r ∈ [1 : n1],

tuΘ2
r,iju = ‖Θr,iju‖22 ≤ ‖u‖2

2
‖Θr,ij‖2F ,

where

‖Θr,ij‖2F ≤ (2L)2
(
maxk,m∈[1:L] |(Θr,ij)k,m|

)2

≤ (2L)2

(

max k,m∈[1:L]
i1,i2∈{i,j}

|φi1
k (xr

i1 )φ
i2
m(xr

i2 )− E[φi1
k (Xi1)φ

i2
m(Xi2)]|

)2

≤ 16L2M4 by (H1
b).

We then deduce that each element of the sum satisfies X2
l,ij � 16L2M4IL2 , where IL2

denotes the identity matrix of size L2.

Applying now the Hoeffding’s type Inequality stated as Theorem 1.3 of Tropp (2012)
to our sequence Θ1,ij , · · · ,Θn1,ij , with σ2 = 16n1L

2M4, we then obtain that

∀t ≥ 0 P

(

ρ

(

1

n1

n1∑

r=1

Θr,ij

)

≥ t

)

≤ 2Le−
(n1t)2

8σ2 ,

Considering now the whole set of estimators Ân1 , we obtain

∀t ≥ 0 P

(

sup
1≤i,j≤pn

ρ

(

1

n1

n1∑

r=1

Θr,ij

)

≥ t

)

≤ 2Lp2ne
−

(n1t)2

8σ2 ,
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We take t = γn−ξ/2, where γ > 0, and 0 < ξ ≤ 1 is given in (H2
b). Then, the following

inequality holds:

P

(

sup
1≤i,j≤pn

ρ
(

Ân1 −A
)

≥ γn−ξ/2

)

≤ 2Lp2ne
−

n1
1−ξγ2

128L2M4 . (S3.5)

Since n1 = n/2, and pn = O
n→+∞

(exp(Cn1−ξ)) by Assumption (H2
b), the right-hand side

of the previous inequality becomes arbitrarily small for n sufficiently large and γ > 0
large enough. The end of the proof follows using Inequality (S3.5).

Similarly, we can show that the estimated quantity D̂n1 is not far from the theoret-
ical D, with high probability.

Lemma 2. Under Assumptions (Hb), and for any ξ given by (H2
b), one has

sup
i,j,lij

∥
∥
∥D̂n1 −D

∥
∥
∥

2

= OP (n
−ξ/2).

Proof. First consider one couple (i, j). We aim to apply another concentration inequality

on
∥
∥
∥D̂n1 −D

∥
∥
∥

2

. Remark that
∥
∥
∥D̂n1 −D

∥
∥
∥

2

can be written as:

∥
∥
∥D̂n1 −D

∥
∥
∥

2

=

(
∑L

k=1

(

〈φi
li
× φj

lj
, φi

k〉n1 − 〈φi
li
× φj

lj
, φi

k〉
)2

+

∑L
k=1

(

〈φi
li
× φj

lj
, φj

k〉n1 − 〈φi
li
× φj

lj
, φj

k〉
)2
)1/2

≤ ∑L
k=1

∣
∣
∣
1
n1

∑n1

r=1 φ
i
li
(xi

r)φj
lj
(xj

r)φi
k(xi

r)− 〈φi
li
× φj

lj
, φi

k〉
∣
∣
∣+

∑L
k=1

∣
∣
∣
1
n1

∑n1

r=1 φ
i
li
(xi

r)φj
lj
(xj

r)φj
k(xj

r)− 〈φi
li
× φj

lj
, φj

k〉
∣
∣
∣ .

Now, Bernstein’s Inequality (see Birgé and Massart (1998) for instance) implies that, for
all γ > 0,

P
(

n
ξ/2
1

∥
∥
∥D̂n1 −D

∥
∥
∥

2

≥ γ
)

≤ P
(

n
ξ/2
1

∑L
k=1

∣
∣
∣
1
n1

∑n1

r=1 φ
i
li
(xr

i )φ
j
lj
(xr

j)φ
i
k(x

r
i )− 〈φi

li
× φj

lj
, φi

k〉
∣
∣
∣ > γ/2

)

+ P
(

n
ξ/2
1

∑L
k=1

∣
∣
∣
1
n1

∑n1

r=1 φ
i
li
(xr

i )φ
j
lj
(xr

j)φ
i
k(x

r
i )− 〈φi

li
× φj

lj
, φi

k〉
∣
∣
∣ > γ/2

)

≤ 4L exp

(

− 1
8

γ2n1−ξ
1

M6+M3γ/6n
−ξ/2
1

)

,

which gives:

P

(

sup
i,j,lij

∥
∥
∥D̂n1 −D

∥
∥
∥

2

≥ γn
−ξ/2
1

)

≤ 4L× L2p2n exp

(

−1

8

γ2n1
1−ξ

M6 +M3γ/6n1
−ξ/2

)

. (S3.6)

Now, since n1 = n/2, Assumption (H2
b) implies that the right-hand side of Inequality

(S3.6) can also become arbitrarily small for n sufficiently large, which concludes the
proof.
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The next lemma then compares the estimated λ̂n1 with λ.

Lemma 3. Under Assumptions (Hb) with ϑ < ξ/2, we have

sup
i,j,lij

∥
∥
∥λ̂n1 − λ

∥
∥
∥

2

= OP (n
ϑ−ξ/2).

Proof. Fix any couple (i, j), λ and λ̂n1 satisfy Equations (S3.2) and (S3.4). Hence,

A(λ̂n1 − λ)−Aλ̂n1 = −D = D̂n1 −D − D̂n1

= (D̂n1 −D)− Ân1 λ̂n1

⇔ A(λ̂n1 − λ) = (D̂n1 −D) + (A− Ân1)λ̂n1

⇔ λ̂n1 − λ = A−1[(A− Ân1)λ̂n1 ] +A−1(D̂n1 −D),

since the matrix A is positive definite. It follows that

λ̂n1 − λ = A−1(A− Ân1)(λ̂n1 − λ) +A−1(A− Ân1)λ +A−1(D̂n1 −D),

and
(

I−A−1(A− Ân1)
)

(λ̂n1 − λ) = A−1(A− Ân1)λ +A−1(D̂n1 −D), (S3.7)

Remark that
∣
∣
∣

∣
∣
∣

∣
∣
∣Ân1 −A

∣
∣
∣

∣
∣
∣

∣
∣
∣
2

= OP (n
−ξ/2) by Lemma 1. Hence, with high probability

and for n large enough I − A−1(A − Ân1) is invertible, and Inequality (S3.7) can be
rewritten as:

λ̂n1 − λ =
(

I−A−1(A− Ân1)
)−1 (

A−1(A− Ân1)λ+A−1(D̂n1 −D)
)

.

We then deduce that,

∥
∥
∥λ̂n1 − λ

∥
∥
∥

2

≤
∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

(

I−A−1(A− Ân1)
)−1

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
2

×
(∣
∣
∣

∣
∣
∣

∣
∣
∣A−1[A− Ân1 ]

∣
∣
∣

∣
∣
∣

∣
∣
∣
2

‖λ‖
2
+
∥
∥
∥A−1(D̂n1 −D)

∥
∥
∥

2

)

≤
∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

(

I−A−1(A− Ân1)
)−1

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
2

×
(∣
∣
∣
∣
∣
∣A−1

∣
∣
∣
∣
∣
∣
2

∣
∣
∣

∣
∣
∣

∣
∣
∣A− Ân1

∣
∣
∣

∣
∣
∣

∣
∣
∣
2

‖λ‖
2
+
∣
∣
∣
∣
∣
∣A−1

∣
∣
∣
∣
∣
∣
2

∥
∥
∥D̂n1 −D

∥
∥
∥

2

)

.

(S3.8)

A uniform bound for
∣
∣
∣
∣
∣
∣A−1

∣
∣
∣
∣
∣
∣
2
(over all the couples (i, j)) can be easily obtained

since A (and obviously A−1) is Hermitian.

∣
∣
∣
∣
∣
∣A−1

∣
∣
∣
∣
∣
∣
2
≤ max

(i′,j′)∈[1:pn]2
ρ

((

Ai′j′
)−1

)
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Simple algebra then yields

ρ

((

Ai′j′
)−1

)

≤ Tr

((

Ai′j′
)−1

)

=
Tr
(

Com(Ai′j′)t
)

det(Ai′j′ )
=

1

det(Ai′j′ )

∑

k=1:2L

Com(Ai′j′)k,k

where Com(Aij) is the cofactor matrix associated to Aij . Now, recall the classical
inequality (that can be found in Bullen (1998)): for any symetric definite positive matrix
squared S of size Q×Q

det(S) ≤
Q
∏

ℓ=1

|Sℓℓ|.

This last inequality applied to the determinant involved in Com(Ai′j′)k,k associated with
(H1

b) implies

∀k ∈ [1 : 2L]
∣
∣
∣Com(Ai′j′)k,k

∣
∣
∣ ≤ {M2}2L−1.

We then deduce from (H3,ϑ
b ) that there exists a constant C > 0 such that:

∣
∣
∣
∣
∣
∣A−1

∣
∣
∣
∣
∣
∣
2

≤ max(i,j)∈[1:pn]2
2LM4L−2

det(Ai′j′ )

≤ 2C−1LM4L−2nϑ.
(S3.9)

Similarly, if we denote ∆n1 = A− Ân1 , we have
∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

(

I−A−1(A− Ân1)
)−1

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
2

= ρ
((

I −A−1∆n1

)−1
)

= max
α∈Sp(A−1∆n1)

1

|1− α| ,

using the fact that A− Ân1 is self-adjoint. We have seen that ρ(A−1) ≤ 2C−1LM4L−2nϑ

and Lemma 1 yields ρ (∆n1) = OP (n
−ξ/2). As a consequence, we have

max
α∈Sp(A−1∆n1)

|α| ≤ ρ(A−1)ρ (∆n1) = OP (n
ϑ−ξ/2).

At last, remark that

max
α∈Sp(A−1∆n1)

1

|1− α| − 1 = max
α∈Sp(A−1∆n1)

1− |1− α|
|1− α|

We know that for n large enough, each absolute value of α ∈ Sp(A−1∆n1) becomes
smaller than 1/2 with a probability tending to one. Hence, we have with probability
tending to one

max
α∈Sp(A−1∆n1)

∣
∣
∣
∣

1− |1− α|
|1− α|

∣
∣
∣
∣
≤ max

α∈Sp(A−1∆n1)

|α|
1− α

≤ 2ρ(A−1∆n1).

Since ρ(A−1∆n1) = OP (n
ϑ−ξ/2), we deduce that

sup
i,j,lij

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

(

I−A−1(A− Ân1)
)−1

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
2

≤ 1 + 2LM4L−2C−1OP (n
ϑ−ξ/2). (S3.10)



S8 M. CHAMPION AND G. CHASTAING AND S. GADAT AND C. PRIEUR

To conclude the proof, we can now apply the same argument as the one used in
Lemmas 1 and 2 with Bernstein’s Inequality, using Equations (S3.9), (S3.10) and the
assumption on the uniform bound ‖λ‖

2
< Λ over all the couples (i, j) for the norm

∥
∥
∥λ

lij
∥
∥
∥

2

.

The last lemma finally compares the constant Ĉn1 with C.

Lemma 4. Under Assumptions (Hb), we have:

sup
i,j,lij

∣
∣
∣Ĉn1 − C

∣
∣
∣ = OP (n

−ξ/2).

Proof. For any couple (i, j), remark that constants Ĉn1 and C satisfy:

C = −〈φi
li × φj

lj
, 1〉 and Ĉn1 = −〈φi

li × φj
lj
, 1〉n1 .

If we denote

∆i,j,lij :=
1

n1

n1∑

r=1

φi
li(xi

r)φj
lj
(xj

r)− E(φi
li (Xi)φ

j
lj
(Xj)),

we can apply again Bernstein’s Inequality on (φi
li
(xi

r)φj
lj
(xj

r))r=1,··· ,n1 . From (H1
b),

these independent random variables are bounded by M2 and

P

(

sup
i,j,lij

∣
∣∆i,j,lij

∣
∣ ≥ γn

−ξ/2
1

)

≤
∑

i,j,lij

P
(∣
∣∆i,j,lij

∣
∣ ≥ γn

−ξ/2
1

)

≤
∑

i,j,lij

2 exp

(

−1

2

γ2n1−ξ
1

M4 +M2γ/3n
−ξ/2
1

)

≤ 2L2p2n exp

(

−1

2

γ2n1−ξ
1

M4 +M2γ/3n
−ξ/2
1

)

.

Under Assumption (H2
b), the right-hand side of this inequality can be arbitrarly

small for n large enough, which ends the proof.

To finish the proof of Theorem 1, remark that:

∥
∥
∥φ̂

ij
lij ,n1

− φij
lij

∥
∥
∥ =

∥
∥
∥
∑L

k=1(λ̂
i
k,n1

− λi
k)φ

i
k +

∑L
k=1(λ̂

j
k,n1

− λj
k)φ

j
k + (Ĉn1 − C)

∥
∥
∥

≤
∥
∥
∥
∥
∥

L∑

k=1

(λ̂i
k,n1

− λi
k)φ

i
k +

L∑

k=1

(λ̂j
k,n1

− λj
k)φ

j
k

∥
∥
∥
∥
∥

︸ ︷︷ ︸

I

+
∣
∣
∣Ĉn1 − C

∣
∣
∣ .
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Moreover,

I2 =
∫ (∑L

k=1(λ̂
i
k,n1

− λi
k)φ

i
k +

∑L
k=1(λ̂

j
k,n1

− λj
k)φ

j
k

)2

pXi,Xj (xi, xj)dxidxj

=

∫
(

L∑

k=1

(λ̂i
k,n1

− λi
k)φ

i
k

)2

pXi(xi)dxi

︸ ︷︷ ︸

I1

+

∫
(

L∑

k=1

(λ̂j
k,n1

− λj
k)φ

j
k

)2

pXj (xj)dxj

︸ ︷︷ ︸

I2

+2

∫
(

L∑

k=1

(λ̂i
k,n1

− λi
k)φ

i
k

)(
L∑

k=1

(λ̂i
k,n1

− λi
k)φ

i
k

)

pXi,Xj (xi, xj)dxidxj

︸ ︷︷ ︸

I3

.

Using the inequality 2ab ≤ a2 + b2, we deduce that I3 ≤ I1 + I2, and

I1 =
∫ ∑L

k=1

∑L
m=1(λ̂

i
k,n1

− λi
k)(λ̂

i
m,n1

− λi
m)φi

k(xi)φ
i
m(xi)pXi(xi)dxi

=
∑L

k=1(λ̂
i
k,n1

− λi
k)

2 by orthonormality.

The same equality is satisfied for I2: I2 =
∑L

k=1(λ̂
j
k,n1

− λj
k)

2.

Consequently, we obtain

∥
∥
∥φ̂

ij
lij ,n1

− φij
lij

∥
∥
∥ ≤

√

2
[
∑L

k=1(λ̂
i
k,n1

− λi
k)

2 +
∑L

k=1(λ̂
j
k,n1

− λj
k)

2
]

+
∣
∣
∣Ĉn1 − C

∣
∣
∣

=
√
2
∥
∥
∥λ̂n1 − λ

∥
∥
∥

2

+
∣
∣
∣Ĉn1 − C

∣
∣
∣ .

(S3.11)

The end of the proof follows with Lemmas 3 and 4.

�

S4 Proof of Theorem 2

We recall first that 〈, 〉 denotes the theoretical inner product based on the law PX (and
‖‖ is the derived Hilbertian norm). A careful inspection of the Gram-Schmidt procedure
used to build the HOFD shows that

M∗ := sup
u,lu

∥
∥φu

lu
(Xu)

∥
∥
∞

< ∞,

provided that (H1
b) holds.
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Now, remark that the EHOFD is obtained through the first sample O1 which de-
termines the first empirical inner product 〈, 〉n1 , although the L

2-boosting depends on
the second sample O2. Indeed, O2 determines the second empirical inner product 〈, 〉n2 .
Hence, 〈, 〉n2 uses observations which are independent to the ones used to build the
HOFD.

We begin this section with a lemma which establishes that the estimated functions
φ̂u
lu,n1

(which result in the EHOFD) are bounded.

Lemma 5. Under Assumption (Hb), define

Nn1 := sup
u,lu

∥
∥
∥φ̂u

lu,n1
(Xu)

∥
∥
∥
∞

.

Then, we have:
Nn1 −M∗ = OP (n

ϑ−ξ/2).

Proof. Using the decomposition of φ̂u
lu,n1

on the dictionary, Assumption (H2
b) and Cauchy-

Schwarz Inequality, there exists a fixed constant C > 0 such that for all u ∈ S, lu:

∀x ∈ R
p |φ̂u

lu,n1
(x)− φu

lu
(x)| ≤ CM

√
L

√
∥
∥
∥λ̂n1 − λ

∥
∥
∥

2

+
∥
∥
∥Ĉn1

lu
− Clu

∥
∥
∥ .

The conclusion then follows using Lemmas 3 and 4.

We now present a key lemma which compares the elements (φu
lu
)lu,u with their

estimated version (φ̂u
lu ,n1

)lu,u.

Lemma 6. Assume that (Hb) holds with ξ ∈ (0, 1), that the noise ε satisfies (Hε,q) with
q > 4/ξ and that (Hs,α) is fullfilled. Then, the following inequalities hold,

(i)

sup
u,v,lu,lv

|〈φ̂u
lu,n1

, φ̂v
lv ,n1

〉 − 〈φu
lu
, φv

lv
〉| = ζn,1 = OP (n

ϑ−ξ/2)

(ii)

sup
u,v,lu,lv

|〈φ̂u
lu,n1

, φ̂v
lv ,n1

〉n2 − 〈φu
lu
, φv

lv
〉| = ζn,2 = OP (n

ϑ−ξ/2)

(iii)

sup
u,v,lu,lv

|〈ε, φ̂u
lu,n1

〉n2 | = ζn,3 = OP (n
−ξ/2)

(iv)

sup
u,lu

∣
∣
∣〈f̃ , φ̂u

lu,n1
〉n2 − 〈f̃ , φ̂u

lu,n1
〉
∣
∣
∣ = ‖β0‖L1OP (n

−ξ/2)

In the sequel, we will denote ζn := maxi∈[1:3]{ζn,i}.
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Proof. Assertion (i) Let u, v ∈ S, lu ∈ [1 : L]|u| and lv ∈ [1 : L]|v|. Then, we have
∣
∣
∣〈φ̂u

lu,n1
, φ̂v

lv ,n1
〉 − 〈φu

lu
, φv

lv
〉
∣
∣
∣ ≤

∣
∣
∣〈φ̂u

lu,n1
− φu

lu
, φ̂v

lv ,n1
〉 − 〈φu

lu
, φv

lv
− φ̂v

lv ,n1
〉
∣
∣
∣

≤
∥
∥
∥φ̂u

lu,n1
− φu

lu

∥
∥
∥

∥
∥
∥φ̂v

lv ,n1

∥
∥
∥+

∥
∥φu

lu

∥
∥

∥
∥
∥φ̂v

lv ,n1
− φv

lv

∥
∥
∥

≤
∥
∥
∥φ̂u

lu,n1
− φu

lu

∥
∥
∥

(∥
∥
∥φ̂v

lv ,n1
− φv

lv

∥
∥
∥+ 1

)

+
∥
∥
∥φ̂v

lv ,n1
− φv

lv

∥
∥
∥ ,

and the conclusion holds applying Theorem 1.

Assertion (ii) We breakdown the term in two parts:
∣
∣
∣〈φ̂u

lu,n1
, φ̂v

lv ,n1
〉n2 − 〈φu

lu
, φv

lv
〉
∣
∣
∣ ≤

∣
∣
∣〈φ̂u

lu ,n1
, φ̂v

lv ,n1
〉n2 − 〈φ̂u

lu,n1
, φ̂v

lv ,n1
〉
∣
∣
∣

︸ ︷︷ ︸

I

+
∣
∣
∣〈φ̂u

lu,n1
, φ̂v

lv ,n1
〉 − 〈φu

lu
, φv

lv
〉
∣
∣
∣

︸ ︷︷ ︸

II

.

Assertion (i) implies that,

sup
u,v,lu,lv

|II| = OP (n
ϑ−ξ/2).

To control sup
u,v,lu,lv

|I|, we use Bernstein’s inequality to the family of independent random

variables
(

φ̂u
lu,n1

(xs
u)φ̂

v
lv ,n1

(xs
v)
)

s=1...n2

and we denote

∆u,v,lu,lv =

∣
∣
∣
∣
∣

1

n2

n2∑

s=1

φ̂u
lu,n1

(xs
u)φ̂

v
lv ,n1

(xs
v)− E(φ̂u

lu ,n1
(Xu)φ̂

v
lv ,n1

(Xv))

∣
∣
∣
∣
∣
.

Then, Bernstein’s inequality implies that

P

(

sup
u,v,lu,lv

∆u,v,lu,lv ≥ γn
−ξ/2
2

)

≤ P

(

sup
u,v,lu,lv

∆u,v,lu,lv ≥ γn
−ξ/2
2 &Nn1 < M∗ + 1

)

+P

(

sup
u,v,lu,lv

∆u,v,lu,lv ≥ γn
−ξ/2
2 &Nn1 > M∗ + 1

)

≤ 64L4p4n exp

(

−1

2

γ2n2
1−ξ

(M∗ + 1)4 + (M∗ + 1)2γ/3n2
−ξ/2)

)

+P (Nn1 > M∗ + 1)

Lemma 5 and Assumption (H2
b) yields (ii).

Assertion (iii) The proof follows the roadmap of (ii) of Lemma 1 of Bühlmann
(2006). We define the truncated variable εt for all s ∈ [1 : n2],

εst =

{
εs if |εs| ≤ Kn

sg(εs)Kn if |εs| > Kn
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where sg(ε) is the sign of ε. Then, for γ > 0, we have:

P

(

n
ξ/2
2 sup

u,lu

∣
∣
∣〈φ̂u

lu,n1
, ε〉n2

∣
∣
∣ > γ

)

≤ P

(

n
ξ/2
2 sup

u,lu

∣
∣
∣〈φ̂u

lu,n1
, εt〉n2 − 〈φ̂u

lu,n1
, εt〉

∣
∣
∣ > γ/3

)

+P

(

n
ξ/2
2 sup

u,lu

∣
∣
∣〈φ̂u

lu,n1
, ε− εt〉n2

∣
∣
∣ > γ/3

)

+P

(

n
ξ/2
2 sup

u,lu

∣
∣
∣〈φ̂u

lu,n1
, εt〉

∣
∣
∣ > γ/3

)

= I + II + III

Term II: We can bound II using the following simple inclusion:
{

n
ξ/2
2 sup

u,lu

∣
∣
∣〈φ̂u

lu,n1
, εt〉n2 − 〈φ̂u

lu ,n1
, εt〉

∣
∣
∣ > γ/3

}

⊂ {there exists s such that εs − εst 6= 0}

= {there exists s such that |εs| > Kn}

Hence,

II ≤ P (some |εs| > Kn)

≤ n2P (|ε| > Kn) ≤ n2K
−q
n E(|ε|q) = O

n→+∞
(n1−qξ/4),

where n2 = n/2 with the choice Kn := nξ/4, since q > 4/ξ by Assumption of the Lemma.
Hence, II can become arbitrarily small.

Term I: Using again Bernstein’s Inequality to the family of independent random
variables (φ̂u

lu,n1
(xs

u)ε
s
t )s=1,··· ,n2 and considering the two events {Nn1 > M∗ + 1} and

{Nn1 < M∗ + 1}, we have that:

I ≤ 2Lpn exp

(

−1

2

(γ2/9)n2
1−ξ

(M∗ + 1)4σ2 + (M∗ + 1)Knγ/9n2
−ξ/2

)

+ P (Nn1 > M∗ + 1),

where σ2 := E(|ε|2). We can then make the right-hand side of the previous inequality
arbitrarily small owing to (H2

b) with Kn = nξ/2.

Term III: by assumption, E(φu
lu
(Xu)ε) = 0. We then have:

III ≤ P

(

n
ξ/2
2 sup

u,lu

∣
∣
∣E[(φ̂u

lu ,n1
− φu

lu
)(Xu)εt]

∣
∣
∣ > γ/6

)

+ P

(

n
ξ/2
2 sup

u,lu

∣
∣E[φu

lu
(Xu)(ε− εt)]

∣
∣ > γ/6

)

= III1 + III2,
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with,

III1 = P

(

n
ξ/2
2 sup

u,lu

∣
∣
∣E[(φ̂u

lu ,n1
− φu

lu
)(Xu)]

∣
∣
∣ |E(εt)| > γ/6

)

≤ P

(

n
ξ/2
2 sup

u,lu

∣
∣
∣E[(φ̂u

lu ,n1
− φu

lu
)(Xu)]

∣
∣
∣ |E(εt)| > γ/6

)

≤ 1
{n

ξ/2
2 sup

u,lu

∣

∣

∣
E[(φ̂u

lu,n1
−φu

lu
)(Xu)]

∣

∣

∣
|E(εt)|>γ/6}

Moreover, one has

|E(εt)| =
∣
∣
∣

∫

|x|≤Kn
xdPε(x) +

∫

|x|>Kn
sg(x)KndPε(x)

∣
∣
∣ =

∣
∣
∣

∫

|x|>Kn
(sg(x)Kn − x)dPε(x)

∣
∣
∣

≤
∫
1|x|>Kn

(Kn + |x|)dPε(x)

≤ KnPε(|ε| > Kn) +
∫
|x|1|x|>Kn

dPε(x)

≤ K1−t
n E(|ε|t) + E(ε2)1/2K

−t/2
n E(|ε|t)1/2 by the Tchebychev Inequality

≤ O(K1−t
n ) +O(K

−t/2
n ) = o(K−2

n )
(S4.1)

since 0 < ξ < 1 and t > 4/ξ > 4. With the choice Kn = nξ/4, we obtain:

n
ξ/2
2

∥
∥
∥φ̂u

lu,n1
− φu

lu

∥
∥
∥ |E(εt)| ≤ n

ξ/2
2 o(1)o(n−ξ/2) = o(1),

when o is the usual Landau notation of relative insignificance.

Hence, III1 = 0 for n large enough. For III2, one has

III2 ≤ 1
{n

ξ/2
2 sup

u,lu

|E[φu
lu

(Xu)(ε−εt)]|>γ/6}
,

and, by independance,

∣
∣E[φu

lu
(Xu)(ε− εt)]

∣
∣ =

∣
∣E[φu

lu
(Xu)]

∣
∣ |E(ε− εt)| ≤ M∗ |E(ε− εt)| .

Equation (S4.1) then implies,

|E(ε− εt)| =
∣
∣
∣
∣
∣

∫

|x|>Kn

(sg(x)Kn − x)dPε(x)

∣
∣
∣
∣
∣
≤ o(K−2

n ) = o(n−ξ/2)

Thus, III is arbitrarily small for n and γ large enough and (iii) holds.

Assertion (iv) Remark that,

sup
u,lu

∣
∣
∣〈f̃ , φ̂u

lu,n1
〉n2 − 〈f̃ , φ̂u

lu,n1
〉
∣
∣
∣ ≤ ‖β0‖L1sup

u,lu

∣
∣
∣〈φv

lv
, φ̂u

lu,n1
〉n2 − 〈φv

lv
, φ̂u

lu,n1
〉
∣
∣
∣ .
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Now, (Hs,α) and Bernstein’s Inequality implies

P

(

sup
u,lu

∣
∣
∣〈φv

lv
, φ̂u

lu,n1
〉n2 − 〈φv

lv
, φ̂u

lu,n1
〉
∣
∣
∣ ≥ γn

−ξ/2
2

)

≤ P (Nn1 > M∗ + 1)

+2Lpn exp

(

−1

2

γ2n2
1−ξ

(M∗ + 1)4 + (M∗ + 1)2γ/3n2
−ξ/2

)

,

which implies with Assumption (H2
b) that:

sup
u,lu

∣
∣
∣〈φv

lv
, φ̂u

lu,n1
〉n2 − 〈φv

lv
, φ̂u

lu,n1
〉
∣
∣
∣ = OP (n

−ξ/2).

The following lemma, similar to Lemma 2 of Bühlmann (2006), holds:

Lemma 7. Under Assumptions (Hb), (Hε,q) with q > 4/ξ, there exists a constant
C > 0 such that, on the set Ωn = {ω, |ζn(ω)| < 1/2}:

sup
u,lu

|〈Y −Gk(f̄), φ̂
u
lu,n1

〉n2 − 〈R̃k(f̄), φ
u
lu
〉| ≤

(
5

2

)k

(1 + C‖β0‖L1)ζn.

Proof. Denote An(k, u) = 〈Y −Gk(f̄), φ̂
u
lu,n1

〉n2 −〈R̃k(f̄), φ
u
lu
〉. Assume first that k = 0,

sup
u,lu

|An(0, u)| = sup
u
|〈Y, φ̂u

lu,n1
〉n2 − 〈f̄ , φu

lu
〉|

≤ sup
u,lu

{∣
∣
∣〈f̃ , φ̂u

lu,n1
〉n2 − 〈f̃ , φ̂u

lu,n1
〉
∣
∣
∣+
∣
∣
∣〈f̃ − f̄ , φ̂u

lu,n1
〉
∣
∣
∣ +
∣
∣
∣〈f̄ , φ̂u

lu,n1
− φu

lu
〉
∣
∣
∣

}

+sup
u,lu

∣
∣
∣〈ε, φ̂u

lu,n1
〉n2

∣
∣
∣

≤ (1 + 4‖β0‖L1)ζn by (iii)− (iv) of Lemma 6 and Theorem 1

From the main document, we remind that

Gk(f̄) = Gk−1(f̄) + γ〈Y −Gk−1(f̄), φ̂
uk

luk
,n1

〉n2 · φ̂uk

luk
,n1

, (S4.2)

Rk(f̄) = f̄ −Gk(f̄)

= f̄ −Gk−1(f̄)− γ〈Y −Gk−1(f̄), φ̂
uk

luk
,n1

〉n2 · φ̂uk

luk
,n1

(S4.3)

and
{

R̃0(f̄) = f̄

R̃k(f̄) = R̃k−1(f̄)− γ〈R̃k−1(f̄), φ̂
uk

luk
,n1

〉φ̂uk

luk
,n1

.
(S4.4)
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The recursive relations (S4.2) and (S4.4) leads to, for any k ≥ 0:

An(k, u) = 〈Y −Gk−1(f̄)− γ〈Y −Gk−1(f̄), φ̂
uk

luk
,n1

〉n2 · φ̂uk

luk
,n1

, φ̂u
lu,n1

〉n
−〈R̃k−1(f̄)− γ〈R̃k−1(f̄), φ̂

uk

luk
,n1

〉φ̂uk

luk
,n1

, φu
lu
〉

≤ An(k − 1, u)

−γ
(

〈Y −Gk−1(f̄), φ̂
uk

luk
,n1

〉n2 − 〈R̃k−1(f̄), φ
uk

luk

〉
)

〈φ̂uk

luk
,n1

, φ̂u
lu,n1

〉n2

︸ ︷︷ ︸

I

+γ 〈R̃k−1(f̄), φ
uk

luk

〉
(

〈φ̂uk

luk
,n1

, φu
lu
〉 − 〈φ̂uk

luk
,n1

, φ̂u
lu,n1

〉n2

)

︸ ︷︷ ︸

II

+γ 〈R̃k−1(f̄), φ̂
uk

luk
,n1

− φuk

luk

〉〈φ̂uk

luk
,n1

, φu
lu
〉

︸ ︷︷ ︸

III

.

On the one hand, using assertion (ii) of Lemma 6, and the Cauchy-Schwarz inequality
(with

∥
∥φu

lu

∥
∥ = 1), it comes

sup
u,lu

|I| ≤ sup
u,lu

|〈φ̂uk

luk
,n1

, φ̂u
lu,n1

〉n2 |sup
u,lu

|An(k − 1, u)|

≤ (sup
u,lu

|〈φuk

luk

, φu
lu
〉|+ ζn)sup

u,lu

|An(k − 1, u)|

≤ (1 + ζn)sup
u,lu

|An(k − 1, u)|.

Consider now the phantom residual, from its recursive relation, we can show that
∥
∥
∥R̃k(f̄)

∥
∥
∥

2

=
∥
∥
∥R̃k−1(f̄)

∥
∥
∥

2

− γ(2− γ)〈R̃k−1(f̄), φ̂
uk

luk
,n1

〉2 ≤
∥
∥
∥R̃k−1(f̄)

∥
∥
∥

2

and we deduce

∥
∥
∥R̃k(f̄)

∥
∥
∥

2

≤
∥
∥f̄
∥
∥
2
. (S4.5)

Then,

sup
u,lu

|II| ≤
∥
∥
∥R̃k−1(f̄)

∥
∥
∥

∥
∥
∥φuk

luk

∥
∥
∥ sup

u,lu

|〈φ̂uk

luk
,n1

, φu
lu
〉 − 〈φ̂uk

luk
,n1

, φ̂u
lu,n1

〉n2 |

≤
∥
∥f̄
∥
∥ sup

u,lu

|〈φ̂uk

luk
,n1

, φu
lu
〉 − 〈φ̂uk

luk
,n1

, φ̂u
lu,n1

〉n2 |,

with

|〈φ̂uk

luk
,n1

, φu
lu
〉 − 〈φ̂uk

luk
,n1

, φ̂u
lu,n1

〉n2 | ≤ |〈φ̂uk

luk
,n1

, φ̂u
lu,n1

〉n2 − 〈φuk

luk

, φu
lu
〉|

+|〈φuk

luk

− φ̂uk

luk
,n1

, φu
lu
〉|.

Using again assertion (ii) from Lemma 6 and Theorem 1, we obtain the following bound
for II,

sup
u,lu

|II| ≤
∥
∥f̄
∥
∥ (ζn + sup

u,lu

∥
∥
∥φu

lu
− φ̂u

lu,n1

∥
∥
∥)

≤ 2ζn
∥
∥f̄
∥
∥ .
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Finally, Theorem 1 gives

sup
u,lu

|III| ≤ sup
u,lu

∥
∥
∥R̃k−1(f̄)

∥
∥
∥

∥
∥
∥φ̂uk

luk
,n1

− φuk

luk

∥
∥
∥

∥
∥
∥φ̂uk

luk
,n1

∥
∥
∥

∥
∥φu

lu

∥
∥

≤
∥
∥f̄
∥
∥ ζn.

Our bounds on I, II and III, and γ < 1 yields on Ωn = {ζn < 1/2} that

sup
u,lu

|An(k, u)| ≤ sup
u,lu

|An(k − 1, u)|+ (1 + ζn)sup
u,lu

|An(k − 1, u)|+ 3ζn
∥
∥f̄
∥
∥

≤ 5

2
sup
u,lu

|An(k − 1, u)|+ 3ζn
∥
∥f̄
∥
∥ .

A simple induction yields:

sup
u,lu

|An(k, u)| ≤
(
5

2

)k

sup
u,lu

|An(0, u)|
︸ ︷︷ ︸

≤(1+4‖β0‖L1)ζn

+3ζn
∥
∥f̄
∥
∥

k−1∑

ℓ=0

(
5

2

)ℓ

≤
(
5

2

)k

ζn

(

1 + ‖β0‖L1

(

4 + 6

∞∑

ℓ=1

(
5

2

)−ℓ
))

,

which ends the proof with C = 14.

We then aim at applying Theorem 2.1 from Champion et al. (2013) to the phantom
residuals (R̃k(f̄))k. Using the notation of Champion et al. (2013), this will be possible if
we can show that the phantom residuals follows a theoretical boosting with a shrinkage
parameter ν ∈ [0, 1]. Thanks to Lemma 7 and by definiton of φ̂uk

luk
,n1

, one has

|〈Y −Gk−1(f̄), φ̂
uk

luk
,n1

〉n2 | = sup
u,lu

|〈Y −Gk−1(f̄), φ̂
u
lu,n1

〉n2 |

≥ sup
u,lu

{

|〈R̃k−1(f̄), φ
u
lu
〉| − C

(
5

2

)k−1

ζn‖β0‖L1

}

. (S4.6)

Applying again Lemma 7 on the set Ωn, we obtain:

|〈R̃k−1(f̄), φ
uk

luk

〉| ≥ |〈Y −Gk−1(f̄), φ̂
uk

luk
,n1

〉n2 | − C

(
5

2

)k−1

ζn‖β0‖L1

≥ sup
u,lu

|〈R̃k−1(f̄), φ
u
lu
〉| − 2C

(
5

2

)k−1

ζn‖β0‖L1 . (S4.7)

Consider now the set

Ω̃n =

{

ω, ∀k ≤ kn, sup
u,lu

|〈R̃k−1(f̄), φ
u
lu
〉| > 4C

(
5

2

)k−1

ζn‖β0‖L1

}

.
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We deduce from Equation (S4.7) the following inequality on Ωn ∩ Ω̃n:

|〈R̃k−1(f̄), φ
uk

luk

〉| ≥ 1

2
sup
u,lu

|〈R̃k−1(f̄), φ
u
lu
〉|. (S4.8)

Consequently, on Ωn ∩ Ω̃n, the family (R̃k(f̄))k satisfies a theoretical boosting, given by
Algorithm 1 of Champion et al. (2013), with constant ν = 1/2 and we have:

∥
∥
∥R̃k(f̄)

∥
∥
∥ ≤ C′

(

1 +
1

4
γ(2− γ)k

)− 2−γ
2(6−γ)

. (S4.9)

Consider now the complementary set

Ω̃C
n =

{

ω, ∃ k ≤ kn sup
u,lu

|〈R̃k−1(f̄), φ
u
lu
〉| ≤ 4C

(
5

2

)k−1

ζn‖β0‖L1

}

.

Remark that

∥
∥
∥R̃k(f̄)

∥
∥
∥

2

= 〈R̃k(f̄), f̄ − γ
∑k−1

j=0 〈R̃j(f̄), φ̂
uj

luj
,n1

〉φ̂uj

luj
,n1

〉
≤ ‖β0‖L1sup

u,lu

∣
∣
∣〈R̃k(f̄), φ̂

u
lu,n1

〉
∣
∣
∣+ γ

∑k−1
j=0

∣
∣
∣〈R̃j(f̄), φ̂

uj

luj
,n1

〉
∣
∣
∣ sup
u,lu

∣
∣
∣〈R̃k(f̄), φ̂

u
lu ,n1

〉
∣
∣
∣ .

Moreover,

sup
u,lu

∣
∣
∣〈R̃k(f̄), φ̂

u
lu,n1

〉
∣
∣
∣ ≤ sup

u,lu

∣
∣
∣〈R̃k(f̄), φ

u
lu
〉
∣
∣
∣+ sup

u,lu

∣
∣
∣〈R̃k(f̄), φ̂

u
lu,n1

− φu
lu
〉
∣
∣
∣

≤ sup
u,lu

∣
∣
∣〈R̃k(f̄), φ

u
lu
〉
∣
∣
∣+ 2‖β0‖L1ζn by Theorem 1 and (S4.5)

We hence have

∥
∥
∥R̃k(f̄)

∥
∥
∥

2

≤



‖β0‖L1 + γ
k−1∑

j=0

∣
∣
∣〈R̃j(f̄), φ̂

uj

luj
,n1

〉
∣
∣
∣





(

sup
u,lu

∣
∣
∣〈R̃k(f̄), φ

u
lu
〉
∣
∣
∣+ 2‖β0‖L1ζn

)

≤ ‖β0‖L1 (1 + 2γk)

(

sup
u,lu

∣
∣
∣〈R̃k(f̄), φ

u
lu
〉
∣
∣
∣ + 2‖β0‖L1ζn

)

≤ 4C‖β0‖2L1ζn (1 + 2γk)

(
5

2

)k

on Ω̃C
n (S4.10)

Finally, on the set (Ωn ∩ Ω̃n) ∪ Ω̃C
n , by Equations (S4.9) and (S4.10),

∥
∥
∥R̃k(f̄)

∥
∥
∥

2

≤ C′2

(

1 +
1

4
γ(2− γ)k

)− 2−γ
6−γ

+ 4C‖β0‖2L1ζn (1 + 2γk)

(
5

2

)k

(S4.11)
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To conclude the first part of the proof, remark that

P
(

(Ωn ∩ Ω̃n) ∪ Ω̃C
n

)

≥ P (Ωn) −→
n→+∞

1.

On this set, Inequality (S4.11) holds almost surely, and for kn < c log(n) with

c < ξ/2−ϑ−2α
2 log(3) , we get

∥
∥
∥R̃kn(f̄)

∥
∥
∥

P−−−−−→
n→+∞

0. (S4.12)

Consider now Ak :=
∥
∥
∥Rk(f̄)− R̃k(f̄)

∥
∥
∥ for k ≥ 1. By definitions reminded in (S4.3)-

(S4.4), we have:

Ak ≤ Ak−1 + γ|〈Y −Gk−1(f̄), φ̂
uk

luk
,n1

〉n2 − 〈R̃k−1(f̄), φ̂
uk

luk
,n1

〉|

≤ Ak−1 + γ|〈Y −Gk−1(f̄), φ̂
uk

luk
,n1

〉n2 − 〈R̃k−1(f̄), φ
uk

luk

〉| (S4.13)

+γ|〈R̃k−1(f̄), φ̂
uk

luk
,n1

− φuk

luk

〉|.

By Lemma 7, we then deduce the following inequality on Ωn:

Ak ≤ Ak−1 + γ

(
5

2

)k−1
(
1 + C‖β0‖L1

)
ζn + 2γ‖β0‖L1ζn. (S4.14)

Since A0 = 0, we deduce recursively from Equation (S4.14) that, on Ωn,

Akn

P−−−−−→
n→+∞

0.

Finally, as

∥
∥
∥f̂ − f̃

∥
∥
∥ =

∥
∥
∥Gkn(f̄)− f̃

∥
∥
∥ ≤

∥
∥
∥f̄ − f̃

∥
∥
∥+

∥
∥
∥Rkn(f̄)− R̃kn(f̄)

∥
∥
∥+

∥
∥
∥R̃kn(f̄)

∥
∥
∥ ,

it remains to deal with the term
∥
∥
∥f̄ − f̃

∥
∥
∥. But remark that

∥
∥
∥f̄ − f̃

∥
∥
∥ ≤ ‖β0‖L1

∥
∥
∥φu

lu
− φ̂u

lu,n1

∥
∥
∥ ,

and the proof follows using (Hs,α) with α < ξ/4− ϑ/2 and Theorem 1. �
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