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Abstract

In this paper, we investigate a continuous time version of the Stochastic Langevin Monte Carlo
method, introduced in [39], that incorporates a stochastic sampling step inside the traditional over-
damped Langevin diffusion. This method is popular in machine learning for sampling posterior
distribution. We will pay specific attention in our work to the computational cost in terms of
n (the number of observations that produces the posterior distribution), and d (the dimension
of the ambient space where the parameter of interest is living). We derive our analysis in the
weakly convex framework, which is parameterized with the help of the Kurdyka- Lojasiewicz (KL)
inequality, that permits to handle a vanishing curvature settings, which is far less restrictive when
compared to the simple strongly convex case. We establish that the final horizon of simulation

to obtain an ε approximation (in terms of entropy) is of the order (d log(n)2)(1+r)2 [log2(ε−1) +

n2d2(1+r) log4(1+r)(n)] with a Poissonian subsampling of parameter
(
n(d log2(n))1+r

)−1
, where the

parameter r is involved in the KL inequality and varies between 0 (strongly convex case) and 1
(limiting Laplace situation).
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1 Markovian Stochastic Langevin Dynamics and main results

1.1 Introduction

Motivations In the recent past years, a huge amount of methods have been developed in machine
learning to handle large scale massive datasets with a large number n of observations (X1, . . . , Xn)
embedded in a high dimensional space Rd. These methods generally involve either optimization of a
data-dependent function (for frequentist learning) or sampling a data-dependent measure (for Bayesian
learning with posterior distributions). In both approaches, a bottleneck lies on the size of n and d
that usually generates numerical difficulties for the use of standard algorithms. We are interested
in this paper in the simulation of a posterior distribution following a Bayesian point of view with a
statistical model described by a collection of densities (pθ)θ∈Θ on X , where the parameter of interest
θ⋆ belongs to Θ = Rd and where the (Xi)1≤i≤n are assumed to be i.i.d. observations in X distributed
according to pθ⋆ . A standard Bayesian approach consists in defining a prior distribution π0 on Θ and
then sample the posterior distribution denoted by µn (which will be denoted by exp(−Uνn) below)
using a numerical probabilistic approximation with the help of an over-damped Langevin diffusion:

dθt = −∇Uνn
(t)dt+

√
2dBt.

1We are grateful to Patrick Cattiaux and Arnaud Guillin for helpful discussions and references on functional inequal-
ities and especially on weak log Sobolev inequalities.

1



In this work, we manage to deal with an adaptation of the Langevin Monte Carlo (LMC) algorithm
proposed in [39], that exploits some old ideas of stochastic algorithms introduced in [36]: instead of
using the previous equation, the authors propose a modification of the diffusion that generates a noisy
drift in the LMC due to a sampling strategy among the set of observations (Xi)1≤i≤n. Before we
provide some details on the precise objects and algorithm necessary to properly define this method,
we first give some literature insights related to it.

State of the art Ergodicity and quantitative mixing properties of over-damped LMC and many
other sampling algorithms is a popular subject of research initiated in the probabilistic works around,
roughly speaking, two strategies. The first one relies on pathwise considerations and dynamical proper-
ties of random dynamical system and is built with some coupling argument and Lyapunov controls. We
refer to the seminal contributions [32, 27], that exploits the approach of the Doeblin coupling and total
variation (TV) bounds. Many extensions may be derived from this Lyapunov approach and may lead
to Wasserstein or L2 upper bounds, we refer to [8] and the references therein of the same authors for a
description of the link between Lyapunov conditions and ergodicity. The second strategy derives from
spectral properties of Markov operators and is related to famous functional inequalities (Poincaré and
Log-Sobolev among others). The general idea is to differentiate the distance along the time-evolution
and apply a Gronwall Lemma to obtain a quantitative estimate of the long-time evolution of the semi-
group. We refer to the seminal contributions of [26, 2], and to [3] for an almost exhaustive survey of
all possible inequalities and consequences on the ergodicity of the Markov semi-groups. Finally, let us
emphasize that some strong links exist between the spectral and the Lyapunov approaches, as pointed
out by [9]. If functional inequalities are then strongly related to mixing properties and especially from
a quantitative point of view, it is therefore necessary to develop a machinery that is able to assess these
inequalities carefully, especially with a specific attention to our statistical setting of large n and d in the
completely non-trivial situation where the target measure is log-concave but not strongly log-concave,
which is a common feature of Bayesian posterior distributions.

On the statistical side, the mixing properties of LMC has been largely investigated during the past
decade, strongly motivated by machine learning methods such as Exponentially Weighted Aggregation
introduced by [11], which involves sampling a non log-concave and heavy tailed posterior distribution.
A first paper of Dalalyan [12] establishes the cost of LMC to obtain an ε TV bound in terms of d
and ρ when the target measure is ρ strongly log-concave and proposes a penalized version of LMC to
circumvent the lack of strong log-concavity when the target distribution is only log-concave. Since this
pioneering paper, a huge impressive literature expanded. Among others, we refer to [16] that gives a
careful study of discretized LMC, [14] for a kinetic version of LMC and [15] where the penalized LMC in
non strongly-concave situation is studied in depth. Among all these papers, first, the lack of strong log-
concavity is dealt with a modification of the initial LMC using a surrogate and asymptotically vanishing
penalty. Second, these papers assume that a noiseless gradient of the log-posterior is available at each
iteration of the algorithm, which may not be realistic, especially with large n.

Stochastic LMC (SLMC below) has attracted the interest of several works: [39] introduced this
method and described its efficiency from a numerical point of view in the particular case of Bayesian
learning, which is exactly our framework. Some recent advances and related contributions may be also
cited: [13] studies a noisy version of LMC and derives some non-asymptotic upper bounds (in terms of
Wasserstein distance) of the sampling strategy in presence of a possibly biased noise for strongly log-
concave posterior distribution. The recent contribution of [40] is also related to our work: the authors
develop a machinery for the study of SLMC essentially based on the Poincaré inequality but the way
the lower bound on the spectral gap involved in the LMC is dealt with appears to be inappropriate. In
particular, the diffusion involved in (Stochastic)-LMC is used at a very low-temperature, proportional
to 1/n, which generates some important troubles in the size of the spectral gap in non strongly log-
concave framework. In [35], the authors derives some close bounds to our framework for optimization
purpose, and the authors identify the important dependency of the spectral gap denoted by λ∗ in
their paper with the temperature level 1/β they introduced. They obtain some very highly pessimistic
bounds in some general situations (see their discussion in [35][Section 4]), they conclude their discussion
by the urgent need to find some non-trivial situations where some better lower bounds of λ∗ may be
derived.
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Indeed, the final remark of [35][Section 4]) is related to the well known metastability phenomenon:
at a low temperature, the mixing rates of a lot of reversible and irreversible Markov semi-groups
are strongly deteriorated by the low temperature settings, which is implicitly induced by a Bayesian
posterior sampling problem with a large number n of observations. In a regime of variance noise
of the order O(β−1), the first study of large deviation principle of invariant measures traces back
to [18] where the authors establish the asymptotic of the spectral gap of the over-damped Langevin
diffusion as exp(−Iβ) ( [18][Chapter 6]) where I is an explicit constant that depends on the potential
of the Gibbs field. This result has been extended in depth by [26], which leads to the first precise
analyses of the so-called simulated annealing method (see e.g. [24, 33]). These works, and more recent
contributions with irreversible dynamical systems in a stochastic settings ([22, 19]) show that there
is almost nothing to expect in metastable situations in terms of asymptotic behaviour of the spectral
gap, and indirectly in terms of mixing rate. Hence, the only situation that may lead to reasonable
results is an intermediary situation between the (almost) trivial strongly log-concave case and the
metastable multi-welled case. This is the purpose of the weakly log-concave situation that is described
by the family of Kurdyka- Lojasiewicz inequalities [28, 30] used in optimization theory [5] that have
shown to be efficient for stochastic optimization [20] or for sampling [21]. We also refer to the recent
contributions [6] that derives some functional inequalities within an intermediary framework in which
the curvature ρ is related to their keystone function α that controls the constants involved in the
functional inequalities they are studying.

Taking together the statistical considerations and limitations, we are motivated in this paper in
the study of the continuous time Stochastic Langevin Monte Carlo procedure. This process will be
described precisely in the next paragraph as well as the Kurdyka- Lojasiewicz setup parametrized by a
real value r, which varies between 0 (strongly convex case) and 1 (limiting Laplace asymptotic tail).
We will show that the final horizon of simulation to obtain an ε approximation is of the order:

(d log(n)2)(1+r)2 [log2(ε−1) + n2d2(1+r) log4(1+r)(n)]

with a Poissonian subsampling of parameter 1
n(d log2(n))1+r .

The rest of the introduction consists in the definitions of the algorithm in Subsection 1.2, the way we
assess the quality of our result with an entropy criterion in Subsection 1.3, as well as the quantitative
weakly log-concave assumption in Subsection 1.4. We finally state our main result in Subsection 1.5.

1.2 Continuous time evolution

Below, we briefly remind the continuous time SLMC algorithm for Bayesian learning, for which a
discretized form has been introduced in [39]. For this purpose, we consider a statistical model that
is built with the help of a function (x, θ) 7−→ pθ(x) where θ ∈ Rd encodes the parameter of the
statistical model and x the observation in a space denoted by X . We then assume that we have n i.i.d.
observations denoted by (X1, . . . ,Xn) distributed according to pθ. Given a prior distribution π0 on
Rd, the posterior distribution µn is then defined as:

µn(θ) ∝ π0(θ) ×
n∏

i=1

pθ(Xi).

We introduce the log-parametrization that leads to the Gibbs form:

Ux(θ) = −[log π0(θ) + n log pθ(x)],

and we then observe that:

µn(θ) ∝ exp

(
− 1

n

n∑
i=1

UXi
(θ)

)
= exp (−Uνn

(θ)) ,

where νn refers to the empirical distribution and Uνn
the average value of UX(θ) when X ∼ νn:

νn(x) =
1

n

n∑
i=1

δXi
(x) and Uνn

(θ) = EX∼νn
[UX(θ)].
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The standard Langevin Monte Carlo approach relies on the ergodic behaviour of the stochastic differ-
ential equation:

dθt = −∇Uνn
(θt)dt+

√
2dBt, (1)

that possesses under some mild assumptions a unique invariant distribution µn.
The SLMC algorithm takes benefit of both sampling with a S.D.E. and homogenization of the drift

that may be written as an expectation on X that is sampled uniformly over the set of observations
according to νn. The leading idea is to replace the expectation in Uνn

that depends on the overall set
of observations (X1, . . . ,Xn) by a single unique observation that is randomized uniformly all along
the evolution of the stochastic differential equation, and modified according to a Markov exponential
clock. That being said, we can write an explicit formal definition of the algorithm as follows. We

define
(
ξ
(n)
j

)
j≥1

an infinite sequence of exponential random variables of mean α−1
n that will be fixed

later on.
We also consider a sequence

{
V

(n)
j

}
j≥0

of i.i.d. random variables uniformly distributed in {1, 2, . . . , n}.

We then define the process (Xt)t≥0 as a jump process that takes its values in {1, 2, . . . , n} such that:

Xt =


X

V
(n)
1
, if 0 ≤ t < ξ

(n)
1 ,

X
V

(n)
j
, if

j−1∑
k=1

ξ
(n)
k ≤ t <

j∑
k=1

ξ
(n)
k , j > 1.

(2)

Informally, (Xt)t≥0 should be understood as follows: the process takes the value of one observation
uniformly chosen from the n observations X1, . . . ,Xn during exponential times with intensity αn. The
stochastic Langevin over-damped diffusion we consider is then given by the joint evolution (θt, Xt)t≥0

and that is defined by:
dθt = −∇θUXt(θt)dt+

√
2dBt, t > 0, (3)

where (Bt)t≥0 is a multivariate standard Brownian Motion.

Algorithm 1: Stochastic Langevin over-damped

Data: (X1, . . . ,Xn) i.i.d. observations, n0 initial distribution, π0 prior distribution
1 t0 = 0
2 Generate θ0 according to n0
3 for k = 0, 1, . . . do
4 Pick Xk uniformly in {X1, . . . ,Xn}
5 Generate ξk according to an Exponential distribution with mean α−1

n

6 tk+1 = tk + ξk

7 θtk+1
= θtk −

∫ tk+1

tk
∇θUXk

(θs)ds+
√

2Bξk

8 end
9 return lim

k→∞
θtk

1.3 Entropic divergence

To assess the long-time behaviour of the SLMC, we introduce several notations related to the pair
(θt, Xt)t≥0. Below, we denote by λd the Lebesgue measure over Rd. The semi-group induced by L
being elliptic on the θ coordinate, trivially irreducible and finitely supported on the x coordinate,
makes the law of (θt, Xt) absolutely continuous with respect to the measure λd ⊗ νn as soon as t > 0.

We introduce the notation of mt to refer to the joint density of (θt, Xt) at time t with respect
to λd ⊗ νn. In the meantime, nt denotes the marginal distribution of θt and mt(·|θ) the conditional
distribution of Xt given θt = θ. That is:

Law(θt, Xt) = mt, nt(θ) =

n∑
i=1

mt(θ,Xi), mt(x|θ) =
mt(θ, x)

nt(θ)
, (4)
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for θ ∈ Rd and x ∈ {X1, . . . ,Xn}.
To show that the SLMC algorithm recovers the correct asymptotic behaviour, i.e. that nt(θ) −→ µn

when t −→ ∞, we consider the relative entropy (or Kullback-Leibler divergence) of nt with respect to
µn that is well defined thanks to the ellipticity, and given by:

Jt = Entµn

(
nt
µn

)
=

∫
Rd

log

(
nt(θ)

µn(θ)

)
dnt(θ). (5)

Jt measures at any time t > 0 a divergence between the instantaneous law of the process at time t
and the (presumably) invariant distribution µn of the process (θt, Xt). It would also be possible to
measure this difference between the two distributions in terms of the L2 or the χ-square distance and
to produce a theoretical analysis with the help of functional analysis but it would rely on stronger
assumptions on the function Uνn

.
In the meantime, we also introduce a weighted L2 distance between the conditional distribution of

Xt given θt = θ and the measure νn. This distance is denoted by It and is defined as:

It =

∫
Rd

n∑
i=1

(
mt(Xi|θ)
νn(Xi)

− 1

)2

νn(Xi)dnt(θ). (6)

This quantity measures the average closeness (w.r.t. θ) of the conditional law of x given θ at time t to
νn.

1.4 Main assumptions

Weak convexity We will study the SLMC into a weakly convex framework, i.e. when Uνn
is assumed

to be convex but not necessarily strongly convex. SLMC has recently received an important interest in
the machine learning community and has been studied essentially in its explicit Euler discretized form
in various situations where functional inequalities are involved. We refer to [38] (uniform Log-Sobolev
inequality), to [35] (uniform Poincaré inequality) where the authors develop a Wasserstein-2 analysis
of the algorithm, and to [40] (uniform Poincaré inequality). In these works, the functional inequalities
play a crucial role to analyze the behaviour of SLMC and these inequalities are assumed, which is an
important hypothesis. Importantly, Poincaré or Log-Sobolev inequalities are not so innocent since they
generally require convexity (see e.g. [4, 3]) to be reasonably dimension-dependent, and even strong
convexity to be dimension free. Otherwise, the constant involved in these functional inequalities are
exponentially degraded by the “temperature” (n−1(d log2β(n))−(1+r) in our case) and the dimension
(d for us) as indicated in [26].

In our work, we have chosen to parameterize this lack of strong convexity with the help of the
Kurdyka- Lojasiewicz inequality [28, 30], which is a standard tool in optimization to describe the tran-
sition between convexity and strong convexity and makes the bounds more explicit. This assumption
allows to observe how the entropy evolves according to the key exponent involved in the KL inequality.
In particular, it makes possible to understand the influence of the lack of strong convexity that is more
or less hidden in the uniform Poincaré or Log-Sobolev inequalities that are assumed in the previous
works. We introduce a parametric form of the KL inequalities following [20].

For this purpose, for any V twice differentiable function, we denote the spectrum of the Hessian
matrix of V as Sp(∇2V (θ)). Furthermore, if V is convex, we denote:

λ∇2V (θ) = inf Sp(∇2V (θ)).

Hypothesis Hr
KL(c, L) We say that a function V : Rd → R satisfies a Hr

KL(c, L)-condition if:

a) V is a C2-function.

b) V is a convex function and minθ∈RdV (θ) = V (θ∗) > 0.

c) ∇V is L-Lipschitz.
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d) There exist some constants 0 ≤ r < 1 and c > 0 such that:

cV −r(θ) ≤ λ∇2V (θ) ∀θ ∈ Rd. (7)

Let us briefly comment this assumption.

• In [21], a slightly different parametrization is used with the introduction of another exponent
q related to λ∇2V (θ) = supSp(∇2V (θ)). The authors also assume the upper bound λ∇2V (θ) ≤
c̃V −q(θ). Here, we have chosen to simplify this assumption and use a rough upper bound on the
eigenvalues of the Hessian matrix given by the Lipschitz constant L, i.e. in the last inequality
we simply use c̃ = L and q = 0.

• We shall observe that if V (θ) = (1 + ∥θ∥22)p with p ∈ [1/2, 1], then V satisfies Hr
KL(c, L) with

r = 1−p
p and c = 2p(1 − 2(1 − p)), see Remark 7 of [21] for further details. In particular, the

larger p, the smaller r, which translates into a better curvature of the potential function V .

• When r = q, we recover a global standard KL inequality (see [20, 5]) and when r = 1 it
corresponds to the limiting Laplace case.

• The case r = 0 is of course associated to the strongly convex situation where the curvature of
the function is uniformly lower bounded by c.

Hence, it is expected that the complexity of SLMC increases with the lack of curvature, i.e. is an
increasing function of r.

In section 4 we recall some important consequences of the KL inequality obtained in Lemma 15 of
[21]. In particular, the growth of any function that satisfies Hr

KL(c, L) is lower and upper bounded by
a positive power of the distance to its minimizer.

If inequality (7) holds for a constant c, then it holds for all positive values less than c. For that

reason, in section 5 we assume c ≤
(

8L
(1+r)

)1+r

.

Assumption on the prior π0 We state below the important consequence of a “population” Hr
KL(c, L)

assumption, but before, let us state some mild assumptions on π0.

Hypothesis Hπ0(ℓ0) π0 is a log-concave C2-function such that minθ∈Rd − log π0(θ) > 0 and θ 7→
∇ log π0(θ) is ℓ0-Lipschitz.

Since the prior distribution is chosen by the user, our Hπ0(ℓ0) hypothesis is not restrictive and
some typical examples satisfy these conditions, such as Gaussian, Weibull and Gamma, both with
shape parameter larger than 1, Gumbel, among others.

Proposition 1.1. We assume Hπ0(ℓ0) and that there exist (c, r) such that for any x: θ 7−→ − log pθ(x)
satisfies Hr

KL(c, L), then Uνn satisfies Hr
KL

(
cn1+r, nL+ ℓ0

)
, and in particular, for any Xi, UXi sat-

isfies Hr
KL

(
cn1+r, nL+ ℓ0

)
.

We introduce the notation a ≲uc b (a ≳uc b) which means a ≤ cb (a ≥ cb) where c is a universal
constant i.e. a positive constant independent of n and d.

We assume that the minimizers of the functions UXi are contained in a ball of radius which depends
of n and d. Additionally, we consider minθ∈RdUXi

to be at most of order d.

Hypothesis Hmin There exists β ≥ 0 such that:

maxi∥ arg minUXi
∥2 ≲uc

√
d logβ(n) and maxi minθ∈Rd UXi

(θ) ≲uc d.

Assumption Hmin is not restrictive. In dimension d = 1, it holds for many concentrated i.i.d.
samples (Xi)1≤i≤n with a suitable sub-Gaussian like behaviour for which the Laplace transform of
min UXi

is upper bounded as:

E[exp(λmin UXi
)] ≤ exp(σ2λk), ∀λ > 0.
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The previous upper bound implies that, in this case, β involved in Hmin is given by β = k−1
k . We

recover in particular the situation where β = 1/2 when k = 2. For larger dimensions, the result may
be extended using that ∥X∥22 ≤ dmax1≤j≤d(Xj)2, where Xj is the j-th component of X. We should
keep in mind from this last discussion that even if Hmin is stated (and makes sense) for any value of
β > 0, it holds in general for β ≤ 1.

This Hmin hypothesis together with Hπ0(ℓ0) lead to an almost similar behaviour of the minimizer
and the minimum of Uνn . Details appear in Proposition 4.4.

1.5 Long-time entropy convergence

We introduce for any time t ≥ 0 the density of Law(θt) w.r.t. µn, which is given by:

ft(θ) =
nt(θ)

µn(θ)
,

and n0 is chosen such that ∥f0∥∞ < +∞. The following hypothesis guarantees this result which will
be proved in Proposition 3.5.

Hypothesis Hn0(L, ℓ0) A positive constant σ2 exists such that n0 = N (0, σ2Id). Moreover, there
exist two universal constants c1 and c2 such that 0 < c1 ≤ c2 < 1 and

c1
nL+ ℓ0

≤ σ2 ≤ c2
nL+ ℓ0

.

Futhermore, in Proposition 3.5, as an immediate consequence of the boundedness of ∥f0∥∞, we

obtain that J0 ≲uc nd
1+r log2β(1+r)(n) + d log

(
d
n

)
.

The next result assesses a mixing property in terms of decrease of the entropy and therefore states
the convergence of nt towards the correct measure µn.

Theorem 1.1. Assume Hπ0(ℓ0), Hmin, Hn0(L, ℓ0) and that each θ 7→ − log pθ(Xi) satisfies Hr
KL(c, L),

then

• Uνn satisfies a Poincaré inequality of constant CP (µn), indistinctly denoted as CP .

• Define cn,d := n4
(
d log2β(n)

)1+r

and On,d :=
(
C1d
n

) dr
2 exp

(
C2n

(
d log2β(n)

)1+r
)
, where C1

and C2 are universal constants, then for any t > 0:

Jt ≲uc

(
J0 +

cn,d
αn

[
1 +

(
CP

αn
+
√
CP

)
e

√
CP√
a

+
CP
3αn

]
+On,d

)
(1 + t)1/4e

−
√

Cp√
a

(
√
1+t−1)

. (8)

• For any ε > 0, if αn = 1

n(d log2β(n))
1+r , then:

t ≳uc

(
d log2β(n)

)(1+r)2
[
log2(ε−1) + n2

(
d log2β(n)

)2(1+r)

+ d2 log2 d

]
=⇒ Jt ≤ ε.

If we denote tε the smallest value such that Jtε ≤ ε, then the choice of αn = 1

n(d log2β(n))
1+r

guarantees that the mean number of jumps αntε of the process (Xt)0≤t≤tε is the minimum possible.
In order to proof the main result, we first present in Section 2 the classical tools related to the

Markov semi-group, which could be skipped by the experienced reader in the subject. In Section 3
we prove the main result. Sections 4 and 5 are reserved to the technical results of the Hr

KL(c, L)
hypothesis and Uνn

, and the Markov Dynamics respectively.
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2 Markov tools

It is straightforward to verify that the joint evolution of (θt, Xt)t≥0 exists and is weakly unique (in
law) with the help of the Martingale Problem (MP below). For this purpose, we preliminary define
the operator L that acts on any function f ∈ C2(Rd ×X ) as:

Lf(θ, x) = −⟨∇θUx(θ),∇θf(θ, x)⟩ + ∆θf(θ, x)︸ ︷︷ ︸
:=L1f(θ,x)

+
αn

n

n∑
i=1

[f(θ,Xi) − f(θ, x)︸ ︷︷ ︸
L2f(θ,x)

], (9)

for all (θ, x) ∈ Rd ×X .
The operator L is divided into two terms, L1 acts on the component θ and is associated to the

diffusion part, while L2 is the jump operator that acts on the x component. Thanks to the finiteness
of the number of observations (X1, . . . ,Xn), we can apply the results of Section 4 and 5 of chapter 4
of [17] and deduce the following result:

Proposition 2.1. Assume that for any x ∈ X , Ux is C2(Rd) and ∇θUx is Lx-Lipschitz, then for any
initial distribution ν on Rd ×X , the martingale problem (L, ν) is well-posed.

The associated (weakly) unique process (θt, Xt)t≥0 is a Feller Markov process associated to the
semi-group L. In particular, the θ component verifies the S.D.E. (3).

If we denote by L⋆ the adjoint operator of L in L2(Rd) × νn, the backward Kolmogorov Equation
yields:

∂tmt(θ, x) = L⋆mt(θ, x). (10)

Using the ellipticity of the semi-group L on the θ coordinate, we can use the result of [25] and
deduce that for any t > 0, nt ∈ C∞(Rd,R) and the irreducibility yields ∀t ≥ 0, nt > 0. We will prove

in Proposition 3.5 some sufficient conditions that implies ∥f0∥∞ = ∥ n0(θ)
µn(θ)

∥∞ < +∞ and an important

and standard consequence of the maximum principle, is as follows: if ∥f0∥∞ ≤M , then

∀t ≥ 0, ∥ft∥∞ ≤M.

We defer the details of this result to the Proposition 3.5 as they are not central to our analysis and
are rather technical.

Thanks to this master equation, it is possible to compute the derivative of the semi-group on some
time dependent function of θ. For this purpose, we introduce two keystone operators. The first one
describes the infinitesimal action on the θ coordinate under the average effect of Xt at time t that
applies ∀f ∈ C2(Rd,R) as:

Gtf(θ) = −
n∑

i=1

⟨∇θf(θ),∇θUXi
(θ)⟩mt(Xi|θ) + ∆θf(θ). (11)

The second one is very close to the first one except that the average effect of Xt is replaced by the
targeted ideal distribution νn. It leads to the definition ∀f ∈ C2(Rd,R):

Gf(θ) = −
n∑

i=1

⟨∇θf(θ),∇θUXi(θ)⟩νn(Xi) + ∆θf(θ) = −⟨∇θf(θ),∇θUνn(θ)⟩ + ∆θf(θ). (12)

This derivative is given in the next result, whose proof is deferred to the appendix.

Lemma 2.1. Let be ht a twice differentiable function with uniformly bounded first and second order
derivatives on Rd, then for t > 0:

∂t

{∫
Rd

ht(θ)dnt(θ)

}
=

∫
Rd

∂t{ht(θ)}dnt(θ) +

∫
Rd

Gtht(θ)dnt(θ), (13)

where Gt is the diffusion operator under the average effect of Xt, defined in Equation (11).

8



3 Proof of the main results

3.1 Evolution of the entropy Jt

The entropy satisfies the following differential inequality.

Proposition 3.1. Assume Hmin, Hπ0(ℓ0) and for each Xi, θ → − log pθ(Xi) satisfies Hr
KL(c, L), then

a ”universal” constant C (independent from n and d) exists such that ∀t > 0:

∂t{Jt} ≤ −
∫
Rd

∥∥∥∥∥∇θ

(√
nt(θ)

µn(θ)

)∥∥∥∥∥
2

2

dµn(θ) + CI
1
3
t n

11
3

(
d log2β(n)

)1+r

.

Proof. We shall use the standard preliminary estimate that may be derived from Equation (3.14) of
[29] for elliptic diffusions to apply Lemma 2.1 to ft = log(ntµ

−1
n ). From Equation (13), we have:

∂t{Jt} =

∫
Rd

∂t

{
log

(
nt(θ)

µn(θ)

)}
dnt(θ) +

∫
Rd

Gt log

(
nt(θ)

µn(θ)

)
dnt(θ),

The first term vanishes since:∫
Rd

∂t

{
log

(
nt(θ)

µn(θ)

)}
dnt(θ) =

∫
Rd

∂t{nt(θ)}
nt(θ)

dnt(θ)

=

∫
Rd

∂t {nt(θ)}dθ

= ∂t

(∫
Rd

dnt(θ)

)
= 0.

Then, the derivative is reduced to the second term, and we are led to:

∂t{Jt} =

∫
Rd

Gt log

(
nt(θ)

µn(θ)

)
dnt(θ),

=

∫
Rd

G log

(
nt(θ)

µn(θ)

)
dnt(θ)︸ ︷︷ ︸

J1,t

+

∫
Rd

(Gt − G) log

(
nt(θ)

µn(θ)

)
dnt(θ)︸ ︷︷ ︸

J2,t

. (14)

We study the two terms J1,t and J2,t separately.

• Study of J1,t. Since G is a diffusion operator and µn is the invariant measure associated to G,
then we can use the classical link between J1,t and the Dirichlet form (see [3]):∫

Rd

G log

(
nt(θ)

µn(θ)

)
dnt(θ) =

∫
Rd

nt(θ)

µn(θ)
G log

(
nt(θ)

µn(θ)

)
dµn(θ)

= −4

∫
Rd

∥∥∥∥∥∇θ

(√
nt(θ)

µn(θ)

)∥∥∥∥∥
2

2

dµn(θ). (15)

• Study of J2,t. We use the difference between G and Gt, for any twice differentiable function f :

(Gt − G) f(θ) = −
n∑

i=1

⟨∇θf(θ),∇θUXi(θ)⟩ [mt(Xi|θ) − νn(Xi)]

= −
n∑

i=1

⟨∇θf(θ),∇θUXi(θ)⟩
[
mt(Xi|θ)
νn(Xi)

− 1

]
νn(Xi).

9



Then, the term J2,t may be computed as:

|J2,t| =

∣∣∣∣∫
Rd

(Gt − G) log

(
nt(θ)

µn(θ)

)
dnt(θ)

∣∣∣∣
=

∣∣∣∣∣
∫
Rd

n∑
i=1

⟨∇θ log

(
nt(θ)

µn(θ)

)
,∇θUXi(θ)⟩

[
mt(Xi|θ)
νn(Xi)

− 1

]
νn(Xi) dnt(θ)

∣∣∣∣∣ .
Using the Cauchy-Schwartz inequality with respect to the measure νn(Xi) × dnt(θ) in the first

line, 2ab ≤ a2 + b2 in the second line and ∇ log f = 2∇ log
√
f = 2∇

√
f√
f

in the third line, we

obtain that:

|J2,t| ≤
(∫

Rd

∥∥∥∥∇θ log

(
nt(θ)

µn(θ)

)∥∥∥∥2
2

dnt(θ)

) 1
2
(∫

Rd

n∑
i=1

∥∥∇θUXi
(θ)
∥∥2
2

[
mt(Xi|θ)
νn(Xi)

− 1

]2
νn(Xi) dnt(θ)

) 1
2

≤
3

4

∫
Rd

∥∥∥∥∇θ log

(
nt(θ)

µn(θ)

)∥∥∥∥2
2

dnt(θ) +
1

3

∫
Rd

n∑
i=1

∥∥∇θUXi
(θ)
∥∥2
2

[
mt(Xi|θ)
νn(Xi)

− 1

]2
νn(Xi) dnt(θ)

≤ 3

∫
Rd

∥∥∥∥∥∇θ

(√
nt(θ)

µn(θ)

)∥∥∥∥∥
2

2

dµn(θ) +
1

3

∫
Rd

n∑
i=1

∥∥∇θUXi
(θ)
∥∥2
2

[
mt(Xi|θ)
νn(Xi)

− 1

]2
νn(Xi) dnt(θ).

Using Equation (15) and the previous line yields:

∂t{Jt} ≤ −
∫
Rd

∥∥∥∥∥∇θ

(√
nt(θ)

µn(θ)

)∥∥∥∥∥
2

2

dµn(θ) +
1

3

∫
Rd

n∑
i=1

∥∥∇θUXi
(θ)
∥∥2
2

[
mt(Xi|θ)
νn(Xi)

− 1

]2
νn(Xi) dnt(θ)︸ ︷︷ ︸

:=∆t

, (16)

We then focus on the second term of the right hand side. For this purpose, we consider a non-
negative function g(t), which will be fixed later and we split ∆t into two terms as:

∆t =

∫
Rd

n∑
i=1

∥∥∇θUXi
(θ)
∥∥2
2

(
1∥∇θUXi

(θ)∥2≤g(t) + 1∥∇θUXi
(θ)∥2>g(t)

)[mt(Xi|θ)
νn(Xi)

− 1

]2
νn(Xi) dnt(θ)

≤ g2(t)It +

∫
Rd

n∑
i=1

∥∥∇θUXi
(θ)
∥∥2
2
1∥∇θUXi

(θ)∥2>g(t)

[
mt(Xi|θ)
νn(Xi)

− 1

]2
νn(Xi) dnt(θ),

where It has been introduced in Equation (6) and measures the closeness of mt(Xi|θ) to νn. Finally,

for the last term we observe that 0 ≤ mt(Xi|θ) ≤ 1 and
∣∣∣mt(Xi|θ)

νn(Xi)
− 1
∣∣∣ = n

∣∣mt(Xi|θ) − 1
n

∣∣ ≤ n, which

implies that:

∆t ≤ g2(t)It + n2
1

n

∫
Rd

n∑
i=1

∥∇θUXi(θ)∥
2
2 1∥∇θUXi

(θ)∥2>g(t)dnt(θ)︸ ︷︷ ︸
:=∆̃t

. (17)

The Cauchy inequality leads to:

∆̃t ≤

(
1

n

∫
Rd

n∑
i=1

∥∇θUXi(θ)∥
4
2 dnt(θ)

) 1
2
(

1

n

∫
Rd

n∑
i=1

1∥∇θUXi
(θ)∥2>g(t)dnt(θ)

) 1
2

=

(
1

n

n∑
i=1

E
[
∥∇θUXi(θt)∥

4
2

]) 1
2
(

1

n

n∑
i=1

P (∥∇θUXi(θt)∥2 > g(t))

) 1
2

. (18)

We then use Proposition 4.1 and obtain that:

∆̃t ≤

(
1

n

n∑
i=1

E
[(

2(nL+ ℓ0)U2
Xi

(θt)
)]) 1

2
(

1

n

n∑
i=1

P
(
2(nL+ ℓ0)UXi

(θt) > g2(t)
)) 1

2

≤ 2(nL+ ℓ0)
(
nE[U2

νn
(θt)]

) 1
2

(
1

n

n∑
i=1

2(nL+ ℓ0)

g2(t)
E [UXi(θt)]

) 1
2

≤ [2(nL+ ℓ0)]
3
2n

1
2
E
[
U2
νn

(θt)
] 1

2 E [Uνn
(θt)]

1
2

g(t)
,

10



where we used the Markov’s inequality and the relation ∥.∥2 ≤ ∥.∥1 in Rn. We apply Proposition 5.1
with α = 2 and α = 1 and obtain that a constant C > 0 exists (whose value may change from line to
line) such that:

∆̃t ≤ C
n

7
2

(
d log2β(n)

) 3(1+r)
2

g(t)
.

We use this last bound in (17) and we deduce that:

∆t ≤ g2(t)It + C
n

11
2

(
d log2β(n)

) 3(1+r)
2

g(t)
.

Optimizing this last bound with respect to g(t) leads to the upper bound:

∆t ≤ CI
1
3
t n

11
3

(
d log2β(n)

)1+r

, ∀t ≥ 0.

3.2 Evolution of the weighted L2 distance It

The quantity It involved in Proposition 3.1 measures how close to νn the conditional distribution of
Xt|θt is. To study It, we first remark that it may be rewritten in a simpler way.

It =

∫
Rd

n∑
i=1

(
mt(Xi|θ)
νn(Xi)

− 1

)2

νn(Xi) dnt(θ)

=

∫
Rd

n∑
i=1

(
m2

t (Xi|θ)
ν2n(Xi)

− 2
mt(Xi|θ)
νn(Xi)

+ 1

)
νn(Xi) dnt(θ)

=

∫
Rd

n∑
i=1

(
m2

t (Xi|θ)
νn(Xi)

− 2mt(Xi|θ) + νn(Xi)

)
dnt(θ)

=

∫
Rd

(
n∑

i=1

m2
t (Xi|θ)
νn(Xi)

− 1

)
dnt(θ)

=

∫
Rd

n∑
i=1

m2
t (Xi|θ)
νn(Xi)

dnt(θ) − 1.

Using that mt(Xi|θ)nt(θ) = mt(θ,Xi) and νn(Xi) = 1
n for i = 1, 2, . . . , n, we obtain that:

It = n

∫
Rd

n∑
i=1

m2
t (θ,Xi)

nt(θ)
dθ − 1. (19)

The next proposition then assesses how fast It decreases to 0 as t −→ +∞.

Proposition 3.2. For any t ≥ 0:

It ≤ I0e
−2αnt ≤ (n− 1)e−2αnt. (20)

Proof. Our starting point is Equation (19). We compute its derivative with respect to t:

∂t{It} = 2n

∫
Rd

n∑
i=1

mt(θ,Xi)

nt(θ)
∂tmt(θ,Xi)dθ − n

∫
Rd

n∑
i=1

m2
t (θ,Xi)

n2t (θ)
∂tnt(θ)dθ

= 2n

∫
Rd

n∑
i=1

mt(Xi|θ)∂tmt(θ,Xi)dθ − n

∫
Rd

n∑
i=1

m2
t (Xi|θ)∂tnt(θ)dθ.

11



Using the Kolmogorov backward equation in the first line and L = L1 + L2 in the second one where
L1 and L2 are defined in Equation (9), we have:

∂t{It} = 2n

∫
Rd

n∑
i=1

Lmt(Xi|θ) mt(θ,Xi)dθ − n

∫
Rd

n∑
i=1

m2
t (Xi|θ)∂tnt(θ)dθ

= 2n

∫
Rd

n∑
i=1

L1mt(Xi|θ) mt(θ,Xi)dθ︸ ︷︷ ︸
:=I3,t

+ 2n

∫
Rd

n∑
i=1

L2mt(Xi|θ) mt(θ,Xi)dθ︸ ︷︷ ︸
:=I1,t

−n
∫
Rd

n∑
i=1

m2
t (Xi|θ)∂tnt(θ)dθ︸ ︷︷ ︸
:=I2,t

. (21)

Then, ∂t{It} may be splitted into three terms that are studied separately.

• Study of I1,t. We observe that:

L2mt(Xi|θ) =
αn

n

n∑
j=1

[mt(Xj |θ) −mt(Xi|θ)] =
αn

n
− αn mt(Xi|θ). (22)

We then use this last equation in the definition of I1(t) and obtain that:

I1,t = 2n

∫
Rd

n∑
i=1

L2mt(Xi|θ) mt(θ,Xi)dθ

= 2αn

∫
Rd

n∑
i=1

mt(θ,Xi)dθ − 2αnn

∫
Rd

n∑
i=1

mt(Xi|θ)mt(θ,Xi)dθ

= 2αn − 2αnn

∫
Rd

n∑
i=1

m2
t (θ,Xi)

nt(θ)
dθ

= −2αnIt. (23)

• Study of I2,t. Using the definition of nt, we obtain that:

I2,t = −n
∫
Rd

n∑
i=1

m2
t (Xi|θ)∂tnt(θ)dθ

= −n
∫
Rd

n∑
i=1

m2
t (Xi|θ)∂t

 n∑
j=1

mt(θ,Xj)

dθ

= −n
∫
Rd

n∑
j=1

n∑
i=1

m2
t (Xi|θ)∂tmt(θ,Xj)dθ

= −n
∫
Rd

n∑
j=1

(
n∑

i=1

Lm2
t (Xi|θ)

)
mt(θ,Xj)dθ

= −n
∫
Rd

n∑
i=1

Lm2
t (Xi|θ) dnt(θ).

where we used the Kolmogorov backward equation in the fourth line and again the definition of
nt in the last line. Again, the decomposition L = L1 + L2 yields:

I2,t = −n
∫
Rd

n∑
i=1

L1m
2
t (Xi|θ) dnt(θ) − n

∫
Rd

n∑
i=1

L2m
2
t (Xi|θ) dnt(θ).

12



We repeat some similar computations as those developed in Equation (22) to study the action
of the jump component induced by L2 on m2

t . We obtain that:

L2m
2
t (Xi|θ) =

αn

n

n∑
k=1

[m2
t (Xk|θ) −m2

t (Xi|θ)] =
αn

n

n∑
k=1

m2
t (Xk|θ) − αn m

2
t (Xi|θ).

We use this last equation and obtain that:

I2,t = −n
∫
Rd

n∑
i=1

L1m
2
t (Xi|θ) dnt(θ) − αn

∫
Rd

n∑
i=1

n∑
k=1

m2
t (Xk|θ) dnt(θ)

+αnn

∫
Rd

n∑
i=1

m2
t (Xi|θ) dnt(θ)

= −n
∫
Rd

n∑
i=1

L1m
2
t (Xi|θ) dnt(θ) − αnn

∫
Rd

n∑
k=1

m2
t (Xk|θ) dnt(θ)

+αnn

∫
Rd

n∑
i=1

m2
t (Xi|θ) dnt(θ)

= −n
∫
Rd

n∑
i=1

L1m
2
t (Xi|θ) dnt(θ). (24)

• Study of I2,t + I3,t. We observe that this sum involves only L1 (see Equation (9). We first
compute:

L1mt(Xi|θ) = −⟨∇θUXi
(θ),∇θmt(Xi|θ)⟩ + ∆θmt(Xi|θ),

and similarly:

L1m
2
t (Xi|θ) = −⟨∇θUXi

(θ),∇θm
2
t (Xi|θ), ⟩ + ∆θm

2
t (Xi|θ)

= −2mt(Xi|θ)⟨∇θUXi(θ),∇θmt(Xi|θ)⟩ + 2∥∇θmt(Xi|θ)∥22 + 2mt(Xi|θ)∆θmt(Xi|θ).

Using these two equations into I2,t + I3,t and mt(Xi|θ)nt(θ) = mt(θ,Xi), we get:

I2,t + I3,t
n

= 2

∫
Rd

n∑
i=1

⟨∇θmt(Xi|θ),∇θUXi
(θ)⟩mt(θ,Xi)dθ

− 2

∫
Rd

n∑
i=1

∥∇θmt(Xi|θ)∥22 nt(θ)dθ − 2

∫
Rd

n∑
i=1

∆θmt(Xi|θ) mt(θ,Xi)dθ

− 2

∫
Rd

n∑
i=1

⟨∇θmt(Xi|θ),∇θUXi(θ)⟩mt(θ,Xi)dθ + 2

∫
Rd

n∑
i=1

∆θmt(Xi|θ) mt(θ,Xi)dθ

= −
∫
Rd

n∑
i=1

∥∇θmt(Xi|θ)∥22 dnt(θ) ≤ 0.

Gathering this last inequality with (23) into Equation (21) yields:

∂t{It} ≤ −2αnIt.

We conclude with a direct application of the Gronwall lemma while observing that I0 ≤ n− 1.

3.3 Functional (weak) log-Sobolev inequalities

3.3.1 Related works on functional inequalities

A straightforward consequence of Proposition 3.1 and Proposition 3.2 is the following differential
inequality on the relative entropy Jt:

∂t{Jt} ≤ −
∫
Rd

∥∥∥∥∥∇θ

(√
nt(θ)

µn(θ)

)∥∥∥∥∥
2

2

dµn(θ) + cn,de
− 2αn

3 t, (25)
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where cn,d is defined as:

cn,d ≲uc n
4
(
d log2β(n)

)1+r

. (26)

At this stage, we should observe that a standard approach consists in finding a functional inequality
that relates the key Dirichlet form E(f) defined by:

E(f) =

∫
Rd

∥∇θf(θ)∥22dµn(θ), (27)

to Entµn(f2), the entropy itself with respect to µn. These approaches rely on the initial works of [23]
where Logarithmic Sobolev Inequality (LSI for short) were introduced. The consequences of LSI to
exponential ergodicity has then been an extensive field of research and we refer to [3] for an overview
on this topic. A popular sufficient condition that ensures LSI is the log strong-convexity of the targeted
measure (see among other [2]) and an impressive amount of literature has been focused on the existing
links between these functional inequalities, ergodicity of the semi-group, transport inequalities and
Lyapunov conditions. We refer to [8, 1] (these two works are far from being exhaustive). The great
interest of LSI has then been observed in machine learning and statistics more recently as testified by
the recent works in Monte Carlo samplings of [31, 34]. A popular way to extend LSI from the strongly
convex situation to a more general case relies on the “strong convexity outside a ball” hypothesis using
the perturbation argument of the seminal contributions of [26]. If this method proves to be suitable
for the study of the simulated annealing process in [33], [26], it appears to be doubtful for the study
of sampling problems with convex potentials that satisfies Hr

KL(c, L) as this settings do not imply an
asymptotic strong convexity of θ 7−→ U(θ) for large values of ∥θ∥2. That being said, and maybe an
even worst consequence of such approach, is the unavoidable dependency on the dimension for the LSI
constant when using a perturbation approach, which leads to a serious exponential degradation of the
convergence rates with the dimension of the ambient space.

To overcome these difficulties, we have chosen to use a slightly different functional inequality that
may be considered as an innocent modification of LSI, but that indeed appears to be well suited
to weakly log-concave setting described through an Hr

KL(c, L) assumption. For this purpose, we
shall use weak log-Sobolev inequalities (WLSI for short below) that have been introduced in [37]
and whose interest has been extensively studied in many works to obtain exponentially sub-linear
rates of mixing, see among others for example [7]. To derive such inequalities, our starting point
will be the contribution of [10] that makes the link between Lyapunov conditions and WLSI. Our
approach based on Hr

KL(c, L) certainly shares some similarities with the recent work of [6] where
some functional inequalities (Poincaré and Transport inequalities) are obtained within a framework of
variable curvature bound.

3.3.2 Weak log Sobolev inequalities

We briefly introduce the key theoretical ingredients, that are exhaustively described in [3]. We intro-
duce the following assumption, that will be suitable for the setting of bounded functions.

Definition 3.1 (Weak Log-Sobolev Inequality ). For any measurable space (Ω,F , µ) and for any nice
function f , let us define:

Entµ(f2) :=

∫
Ω

f2 log(f2)dµ−
∫
Ω

f2dµ log

(∫
Ω

f2dµ

)
.

The measure µ satisfies a WLSI if a non-increasing function φWLS : (0,+∞) 7→ R+ exists such that
for any f ∈ C1b (Ω):

Entµ(f2) ≤ φWLS(s)E(f) + sOsc2(f), (28)

where Osc(f) := sup f − inf f .

Before establishing how to use this functional inequality, we first state the important relationship
between Poincaré Inequality and WLSI.
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Proposition 3.3. Assume that µ satisfies a Poincaré Inequality of constant CP , i.e. for any smooth
integrable function f :

Cp(µ)V arµ(f) = Cp(µ)

∫
Ω

(f − µ[f ])2dµ ≤
∫
Ω

|∇f |2dµ,

then if log c = 3
14e2

(
1
e + 1

2

)
+ 1 + log

(
14
3

)
, then µ satisfies a WLSI with:

φWLS(s) =

{
0, s > 1

e + 1
2

32
CP

log
(
c
s

)
, s ≤ 1

e + 1
2

.

For the sake of readability, we introduce a universal a > 0 such that:

φWLS(s) =

{
0, s > 1

e + 1
2

a
1+log( 1

s )
CP

, s ≤ 1
e + 1

2

. (29)

Proof of Proposition 3.3. The proof of how the Poincaré Inequality implies the WLSI in the bounded
setting described in Definition 28 is given for the sake of completeness. Technical details are skipped
and we refer to the references below. We use the measure-capacity inequality (see [3], Section 8.3).
We know that the Poincaré Inequality implies a capacity inequality (Proposition 8.3.1 of [3]) with a
constant equal to 2CP . Then, we can apply Theorem 2.2 of [7] that induces a WLSI which is based
on the function φWLS given in the statement of the proposition.

3.3.3 Weak log Sobolev inequalities under Hr
KL(c, L)

Of course, in the previous result, the only important dependency will be the one induced by CP , which
will deserve an ad-hoc study under Assumption Hr

KL(c, L). The numbers 32 and log(c) will be dealt
with as “universal constants” in what follows.

The next proposition states two lower bounds on the Poincaré constant within the Hr
KL(c, L)

framework. The first one always holds, regardless the value of (X1, . . . , Xn) that may be been randomly
sampled. The second one has to be considered with high probability, with respect to the sampling
process (X1, . . . , Xn).

Proposition 3.4. Assume Hmin,Hn0(L, ℓ0), Hπ0(ℓ0) and for any x, θ 7→ − log pθ(x) satisfies Hr
KL(c, L),

then:

i) For any sample (X1, . . . , Xn), it holds:

CP (µn) ≳uc
1(

d log2β(n)
)(1+r)2

ii) Assume that θ 7→ Pθ is injective and θ0 exists such that (X1, . . . , Xn) ∼ Pθ0 . If locally around
θ0, θ 7→ |θ − θ0|−αW1(Pθ,Pθ0) does not vanish, then:

E(X1,...,Xn)∼Pθ0
[CP (µn)] ≳uc

(
n

Ld log n

)α

.

We are finally led to upper bound the oscillations of the function involved in the WLSI introduced

in (28), i.e. we are looking for an upper bound of Osc2
(√

nt

µn

)
for any time t > 0. For this purpose,

we observe that the Markov semi-group induces that ft = nt

µn
= Ptf0 where f0 = n0

µn
. The next

proposition implies the boundedness of ft over Rd when n0 is chosen as a Gaussian distribution with
a carefully tuned covariance matrix.

Proposition 3.5. Assume Hmin,Hn0(L, ℓ0), Hπ0(ℓ0) and that, for any x, θ 7→ − log pθ(x) satisfies
Hr

KL(c, L), then:
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i) Two positive constants C1 and C2 exist, which are independent from n and d and such that:

∥f0∥∞ ≲uc

(
C1d

n

) dr
2

exp
(
C2nd

1+r log2β(1+r)(n)
)
.

ii) As a consequence:

Osc2(
√
ft) ≤ Osc2(

√
f0) ≲uc

(
C1d

n

) dr
2

exp
(
C2nd

1+r log2β(1+r)(n)
)
.

iii) Moreover, a straightforward consequence of i) is:

J0 =

∫
Rd

log (f0(θ)) dn0(θ) ≲uc nd
1+r log2β(1+r)(n) + d log

(
d

n

)
.

3.4 Entropic convergence of the SLMC

The purpose of this paragraph is to prove the main result of the paper, i.e. Theorem 1.1 that guarantees
the convergence of the SLMC algorithm.

Proof of Theorem 1.1. Our starting point is the semi-group inequality (25) associated with the func-
tional WLSI inequality (28). Using cn,d defined in (26), we obtain for any s > 0:

∂t{Jt} ≤ −E
(√

nt
µn

)
+ cn,de

− 2αn
3 t

≤ − Jt
φWLS(s)

+
s

φWLS(s)
Osc2

(√
nt
µn

)
+ cn,de

− 2αn
3 t

≤ − Jt
φWLS(s)

+
sOn,d

φWLS(s)
+ cn,de

− 2αn
3 t,

where we applied Proposition 3.5 in the last line with On,d ≲uc

(
C1d
n

) dr
2 exp

(
C2nd

1+r log2β(1+r)(n)
)

and C1 and C2 two universal constants. We then choose s (that depends on t) such that:

st = e−A
√
t+1 with A > 1 that will be chosen later on.

We observe that st < e−1 + 1/2, so that Equation (29) of Proposition 3.3 yields:

φWLS(st) = a
1 + log

(
1
st

)
CP

= a
1 +A

√
1 + t

CP
.

We introduce ψ(t) = exp
(

CP

a

∫ t

0
du

1+A
√
1+u

)
and deduce that

ψ(t) = exp

CP

a

2A(
√

1 + t− 1) − 2 log
(

1+A
√
1+t

1+A

)
A2

 ≤ exp

(
2CP

aA
(
√

1 + t− 1)

)
.

We now apply the Gronwall Lemma:

∂t {ψ(t)Jt} =

(
CP

a(1 +A
√

1 + t)
Jt + J ′

t

)
ψ(t)

≤

[
CPOn,d

a

e−A
√
t+1

1 +A
√

1 + t
+ cn,de

− 2αn
3 t

]
ψ(t)

≤ CPOn,d

a
e−(A− 2CP

aA )
√
1+t + cn,de

2CP
aA (

√
1+t−1)− 2αn

3 t.
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We denote by t0 the positive real value that solves the equation 2CP

aA

√
1 + t0 = αnt0

3 . We then observe
that: ∫ t

0

e
2CP
aA (

√
1+u−1)− 2αn

3 udu ≤
∫ t0

0

e
2CP
aA

√
1+udu+

∫ +∞

t0

e−
αn
3 udu

≤ t0e
2CP
aA

√
1+t0 +

3

αn
= t0e

αnt0
3 +

3

αn
.

If A is chosen such that A > 2CP

aA , we then deduce that:

Jt ≤
(
J0 + cn,dt0e

αnt0
3 +

3cn,d
αn

)
ψ(t)−1 +

CPOn,d

a
ψ(t)−1

∫ t

0

e
−
(
A− 2CP

aA

)√
1+u

du

≤
(
J0 + cn,dt0e

αnt0
3 +

3cn,d
αn

)
ψ(t)−1 +

2CPOn,d

a
(
A− 2CP

aA

)2ψ(t)−1,

where we used in the previous line the bound:∫ t

0

e−b
√
1+udu ≤

∫ +∞

0

e−b
√
1+udu ≤ 2

b2
.

To obtain the lowest upper bound, we are led to choose A such that 2CP

aA as large as possible and
below A, which naturally drives to the choice:

2CP

aA
=
A

2
=⇒ A =

2√
a

√
CP .

Using this value of A in the previous bound, we observe that t0 ≤ 3
√
CP

αn
√
a

+ CP

α2
n

, so that a constant C

exists such that:

Jt ≤ C

(
J0 +

cn,d
αn

[
1 +

(
CP

αn
+
√
CP

)
e

√
CP√
a

+
CP
3αn

]
+On,d

)
(1 + t)1/4e

−
√

Cp√
a

(
√
1+t−1)

. (30)

In Proposition 3.4 we obtained CP ≥ κ

(d log2β(n))
(1+r)2

. If instead of using the constant CP , we use

directly κ

(d log2β(n))
(1+r)2

with κ < 1, then all the previous computations remain the same only replacing

CP by its lower bound and:

Jt ≤ C

J0 +
cn,d
αn

e

√
κ

(
1√
a

+ 1
3αn

)
(d log2β(n))(1+r)2/2

+On,d

 (1 + t)1/4e
−

√
κ(

√
1+t−1)

√
a(d log2β(n))(1+r)2/2

. (31)

Using the values of On,d, cn,d and the upper bound of J0, we finally observe that if αn =
1

n(d log2β(n))
1+r , then:

t ≥ ℵ
(
d log2β(n)

)(1+r)2
[
log2(ε−1) + n2

(
d log2β(n)

)2(1+r)

+ d2 log2 d

]
=⇒ Jt ≤ ε.

4 Technical results on KL and Uνn

4.1 Growth properties under the Kurdyka- Lojasiewicz inequality

We remind here some important consequences of the KL inequality that implies several relationships
between the function and the norm of its gradient. The proof of these inequalities may be found in
Lemma 15 of [21] (a small mistake appears and we correct the statement with a factor 2 in our work).
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Proposition 4.1. Assume that a function V satisfies Hr
KL(c, L), then:

2c

1 − r

[
V 1−r(θ) − min(V )1−r

]
≤ ∥∇V (θ)∥22 ≤ 2L [V (θ) − min(V )] , ∀θ ∈ Rd.

It is furthermore possible to assess a minimal and maximal growth property of any function that
satisfies Hr

KL(c, L), which is necessarily lower and upper bounded by a positive power of the distance
to its minimizer.

Proposition 4.2. Assume that a function V satisfies Hr
KL(c, L), then, ∀θ ∈ Rd:

V 1+r(θ) − min(V )1+r ≥ (1 + r)c

2
∥θ − arg minV ∥22,

and

V (θ) − min(V ) ≤ L

2
∥θ − arg minV ∥22.

A straightforward consequence of the first inequality is then

Proposition 4.3. Assume that a function V satisfies Hr
KL(c, L), then, ∀θ ∈ Rd:

V (θ) ≥ 2−
r

1+r

(
min(V ) +

(
(1 + r)c

2

) 1
1+r

∥θ − arg minV ∥
2

1+r

2

)
.

4.2 Properties of Uνn

Proof of Proposition 1.1. First, we observe that if each θ 7→ ∇ log pθ(Xi) is L-Lipschitz and θ 7→
∇ log π0 is ℓ0-Lipschitz, then the triangle inequality implies that

∥∇Uνn
(θ1) −∇Uνn

(θ2)∥2 ≤ (nL+ ℓ0)∥θ1 − θ2∥2.

Second, we consider the lower-bound property on the curvature and observe that:

λ∇2Uνn (θ) = inf
e∈Rd:|e|=1

eT (∇2Uνn
)(θ)e ≥ 1

n

n∑
i=1

inf
e∈Rd:|e|=1

eT (∇2UXi
)(θ)e.

The log concavity of the prior yields

λ∇2Uνn (θ) ≥
1

n

n∑
i=1

λ∇2(−n log pθ(Xi))
=

n∑
i=1

λ∇2(− log pθ(Xi))
.

Then, the Hr
KL(c, L) property applied to each term of the sum above and minθ∈Rd − log π0(θ) > 0

yields

λ∇2Uνn (θ) ≥ c

n∑
i=1

[− log pθ(Xi)]
−r ≥ cnr

n∑
i=1

U−r
Xi

(θ) = cn1+r

(
1

n

n∑
i=1

U−r
Xi

(θ)

)
.

From the Jensen inequality, we finally deduce that:

λ∇2Uνn (θ) ≥ cn1+r

(
1

n

n∑
i=1

U−r
Xi

(θ)

)
≥ cn1+rU−r

νn
(θ).

We conclude that Uνn
satisfies Hr

KL

(
cn1+r, nL+ ℓ0

)
. For UXi

, the proof is similar.

Proposition 4.4. We assume Hπ0(ℓ0), Hmin and that for any x: θ 7−→ − log pθ(x) satisfies Hr
KL(c, L),

then:
∥ arg minUνn∥2 ≲uc d

1+r
2 logβ(1+r)(n) and minθ∈Rd Uνn(θ) ≲uc nd log2β(n).
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Proof. Proposition 1.1 shows that Uνn satisfies Hr
KL

(
cn1+r, nL+ ℓ0

)
. Therefore, we can apply Propo-

sition 4.2 with θ = 0 and deduce that:

∥ arg minUνn
∥22 ≤ 2

(1 + r)cn1+r

(
U1+r
νn

(0) − min U1+r
νn

)
.

To obtain an upper bound of Uνn(0) we first bound UXi(0) using Proposition 4.2, for all i, as follows:

UXi(0) ≤ min UXi +
nL+ ℓ0

2
∥ arg minUXi∥22 ≲uc d+ nd log2β(n) ≲uc nd log2β(n),

then Uνn
(0) ≲uc nd log2β(n). We deduce that:

∥ arg minUνn
∥22 ≤ 2

(1 + r)cn1+r
U1+r
νn

(0) ≲uc d
1+r log2β(1+r)(n).

The second part comes from min Uνn ≤ Uνn(0).

5 Smoothness and boundedness of the semi-group

Proof of Proposition 3.4. i). The proof relies on an argument set up with a ”fixed” sample (X1, . . . , Xn).
Our starting point is Proposition 4.2 and the consequences of the Kurdyka- Lojasiewicz inequality.
Since Hπ0(ℓ0) and θ 7→ − log pθ(Xi) satisfies Hr

KL(c, L), then Proposition 1.1 shows that Uνn satisfies
Hr

KL

(
cn1+r, nL+ ℓ0

)
. Therefore, we can apply Proposition 4.2 and deduce that:

∥θ − arg minUνn
∥22 ≤ 2

(1 + r)cn1+r

(
U1+r
νn

(θ) − minU1+r
νn

)
≤ 2

(1 + r)cn1+r
U1+r
νn

(θ).

If Id refers to the identity map, we use the fact that for any distribution µ, we have V ar[µ] ≤ µ[∥Id−a∥22]
for any a ∈ Rd so that a straightforward consequence with a = arg minUνn

is then:

V ar(µn) ≤
∫
Rd

∥θ − arg minUνn∥22dµn(θ) ≤ 2

(1 + r)cn1+r
µn[U1+r

νn
].

We then use the ergodic behaviour of (θt)t≥0 and observe that there exists a constant C independent
from n and d such that:

V ar(µn) ≤ 2

(1 + r)cn1+r
lim sup

t≥0
E[U1+r

νn
(θt)]

≤ C
(
d log2β(n)

)(1+r)2

,

where the last inequality comes from Proposition 5.1. We now use the Bobkov bound on the Poincaré
constant for log-concave distribution (see Theorem 1.2 of [4]) and deduce that a universal constant K
exists such that:

CP (µn) ≥ 1

4K2V ar(µn)
.

Using the upper bound of the variance, we deduce that a universal κ > 0 exists such that:

CP (µn) ≥ κ(
d log2β(n)

)(1+r)2
.

ii). For the second point, we consider a situation on average over the samples and the result uses the
concentration of the posterior distribution around its mean. We know from Theorem 3 of [21] that a
constant c > 0 exists such that:

E(X1,...,Xn)∼Pθ0
[Var(µn)] ≤ cϵ2n,d,

with ϵn,d =
(

Ld logn
n

)α−1

. The result follows using the Jensen inequality and the Bobkov bound.
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Proof of Proposition 3.5. i). We first establish the boundedness of f0. From our assumptions, we

apply Proposition 1.1 and obtain that Uνn
satisfies Hr

KL

(
cn1+r, nL+ ℓ0

)
. If θ⋆n = arg minUνn

, we
then deduce from Proposition 4.2 that:

f0(θ) =
n0(θ)

µn(θ)
=
Zne

− ∥θ∥22
2σ2 +Uνn (θ)

(2π)d/2σd
≤ Zne

− ∥θ∥22
2σ2 +Uνn (θ⋆

n)+
(nL+ℓ0)

2 ∥θ−θ⋆
n∥

2
2

(2π)d/2σd
. (32)

We compute an upper bound of Zn and use the lower bound of Uνn
induced by Proposition 4.3:

Zn =

∫
Rd

e−Uνn (θ)dθ

≤
∫
Rd

e
−2

− r
1+r

[
Uνn (θ⋆

n)+n( (1+r)c
2 )

1
1+r ∥θ−θ⋆

n∥
2

1+r
2

]
dθ

≤ e−2
− r

1+r Uνn (θ⋆
n)

∫
Rd

e−nar∥θ∥
2

1+r
2 dθ,

with ar = ((1+r)c)
1

1+r

2 . Using the well known equality:∫
Rd

e−a|θ|ℓdθ =
dπd/2Γ(d/ℓ)

ℓad/ℓΓ(d/2 + 1)
, ∀a > 0, ∀ℓ > 0.

we then deduce with a = nar and ℓ = 2
1+r that:

Zn ≤ e−2
− r

1+r Uνn (θ⋆
n)

∫
Rd

e−nar∥θ∥
2

1+r
2 dθ ≤ d(1 + r)

2

πd/2

(nar)
d(1+r)

2

Γ
(

d(1+r)
2

)
Γ
(
d
2 + 1

) .
From standard relationships on the Gamma function:

Zn ≤ 2

(
21+rπ

cn1+r

) d
2

d
dr
2 . (33)

We gather Equations (32) and (33) and obtain that:

f0(θ) ≤ 2eUνn (θ⋆
n)

(
2

cσ2n1+r

) d
2

d
dr
2 e−

∥θ∥22
2σ2 +

(nL+ℓ0)
2 ∥θ−θ⋆

n∥
2
2 .

For all σ2 < 1
nL+ℓ0

, a straightforward optimization on θ yields :

∥f0∥∞ ≤ 2eUνn (θ⋆
n)

(
2

cσ2n1+r

) d
2

d
dr
2 exp

(
(nL+ ℓ0)

2(1 − σ2(nL+ ℓ0))
∥θ⋆n∥22

)
.

Then, the choice c1
nL+ℓ0

≤ σ2 ≤ c2
nL+ℓ0

, where 0 < c1 ≤ c2 < 1 in Hn0(L, ℓ0) and the bounds of ∥θ⋆n∥22
and Uνn(θ⋆n) in Proposition 4.4 lead to :

∥f0∥∞ ≤ 2

(
C1d

n

) dr
2

exp
(
C2nd

1+r log2β(1+r)(n)
)
,

where C1 and C2 are universal constants.
ii). This result is an almost standard consequence of the maximum principle for a Markov semi-group
property with a Brownian diffusion. For any bounded measurable h > 0, we observe that Pth > 0
using the Markov property, and we are led to define gt as the following function gt :=

√
Pth. We then

introduce θ(t) and θ(t) as:

θ(t) = arg max gt(θ) and θ(t) = arg min gt(θ).
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The chain rule yields:

d

dt
Osc(gt) =

d

dt

(
gt(θ(t)) − gt(θ(t))

)
=

dgt
dt

(θ(t)) +

〈
∇gt(θ(t)),

dθ(t)

dt

〉
− dgt

dt
(θ(t)) −

〈
∇gt(θ(t)),

dθ(t)

dt

〉
. (34)

We compute:

dgt
dt

(θ) =
1

2
√
Pth

dPth

dt
(θ)

=
1

2
√
Pth

GtPth(θ)

=
1

2
√
Pth(θ)

[
−

n∑
i=1

⟨∇θPth(θ),∇θUXi
(θ)⟩mt(Xi|θ) + ∆θPth(θ)

]
. (35)

Now, we use that θ(t) = arg max gt = arg maxPth, (a similar argument holds for θ(t)):

∇θgt(θ(t)) = 0, ∇θPth(θ(t)) = 0 and ∆θPth(θ(t)) ≤ 0.

then:

d

dt
Osc(gt) =

dgt
dt

(θ(t)) − dgt
dt

(θ(t))

=
∆θPth

2
√
Pth

(θ(t)) − ∆θPth

2
√
Pth

(θ(t)) (36)

≤ 0.

We have therefore shown that Osc(
√
Pth) is decreasing in t ≥ 0, which ends the proof.

Proof of Lemma 2.1. We proceed as in Proposition 3 of [33] to justify the use of the Lebesgue domi-
nated convergence theorem for the derivation of the integral involved in our statement. We can then
deduce that:

∂t

{∫
Rd

ft(θ)dnt(θ)

}
=

∫
Rd

∂t{ft(θ)}dnt(θ) +

∫
Rd

ft(θ)∂t{nt(θ)}dθ.

We leave the first term unchanged and now focus on the second term:∫
Rd

ft(θ)∂t{nt(θ)}dθ =

∫
Rd

ft(θ)∂t

{
n∑

i=1

mt(θ,Xi)

}
dθ

=

∫
Rd

n∑
i=1

ft(θ)∂t{mt(θ,Xi)}dθ

=

∫
Rd

n∑
i=1

Lft(θ) mt(θ,Xi)dθ,

where we used the definition of nt in the first step and Kolmogorov backward equation (10) in the last
one. Since the function ft(θ) does not depend on x, we observe that L2ft(θ) = 0 and we only need to
compute the remaining term L1ft(θ):∫

Rd

ft(θ)∂t{nt(θ)}dθ =

∫
Rd

n∑
i=1

L1ft(θ) mt(θ,Xi)dθ (37)

=

∫
Rd

n∑
i=1

[−⟨∇θft(θ),∇θUXi(θ)⟩ + ∆θft(θ)]mt(θ,Xi)dθ

= −
∫
Rd

n∑
i=1

⟨∇θft(θ),∇θUXi(θ)⟩mt(Xi|θ)dnt(θ) +

∫
Rd

∆θft(θ)dnt(θ)

=

∫
Rd

Gtft(θ)dnt(θ), (38)
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where we used the fact that mt(θ,Xi) = mt(Xi|θ)nt(θ).

5.1 Moments upper bounds

Proposition 5.1. Assume Hn0(L, ℓ0), Hπ0(ℓ0), Hmin and that for each Xi, θ 7→ − log pθ(Xi) satisfies
Hr

KL(c, L). Then:

i) Three positive constants C1, C2 and C3, independent from n and d, exist such that for any t > 0:

E

[
e

(1+r)nc
1

1+r

16 (∥θt∥2
2+1)

1
1+r

]
≤ C1

(
d log2β(n)

) r
1+r

eC2nd log2β(n) + Cd
3e

(1+r)nc
1

1+r

16 .

ii) For any t > 0 and for any α ≥ 1:

E[Uα
νn

(θt)] ≲uc n
α
(
d log2β(n)

)α(1+r)

.

Proof of i). We consider the function f(θ) = exp
(
a
2 (∥θ∥22 + 1)ρ

)
where 0 < ρ < 1, which is twice

differentiable. The gradient of f is computed as:

∇f(θ) = aρ(∥θ∥22 + 1)ρ−1f(θ)θ.

The Laplace operator is given as:

∆f(θ) = aρ(∥θ∥22 + 1)ρ−2f(θ)
[
aρ(∥θ∥22 + 1)ρ∥θ∥22 + (d+ 2ρ− 2)∥θ∥22 + d

]
.

We then deduce that for any θ ∈ Rd:

Gtf(θ) = −
n∑

i=1

⟨∇UXi
,∇f(θ)⟩mt(Xi|θ) + ∆f(θ)

= aρ(∥θ∥22 + 1)ρ−2f(θ)
[
− (∥θ∥22 + 1)

n∑
i=1

⟨θ,∇θUXi
(θ)⟩mt(Xi|θ)

+aρ(∥θ∥22 + 1)ρ∥θ∥22 + (d+ 2ρ− 2) ∥θ∥22 + d
]

≤ aρ(∥θ∥22 + 1)ρ−2f(θ)
[
− (∥θ∥22 + 1)

n∑
i=1

(UXi
(θ) − UXi

(0))mt(Xi|θ)

+aρ(∥θ∥22 + 1)ρ+1 + d
(
∥θ∥22 + 1

) ]
≤ aρ(∥θ∥22 + 1)ρ−1f(θ)

[
−

n∑
i=1

(UXi
(θ) − UXi

(0))mt(Xi|θ) + aρ(∥θ∥22 + 1)ρ + d

]
,

where we used the convexity of Ux for any position x.
Let us establish the bounds of UXi

(θ) and UXi
(0). We denote by θi = arg minUXi

and from
Hypothesis Hmin, there exist two positive constants K1 and K2 independent on n and d such that:

maxi ∥θi∥22 ≤ K1d log2β(n) and maxi UXi
(θi) ≤ K2d.

We apply Proposition 4.2 to each non-negative function UXi
that satisfies Hr

KL

(
cn1+r, nL+ ℓ0

)
, then

we obtain that:

UXi
(θ) ≥ n

[
(1 + r)c

2

] 1
1+r

∥θ − θi∥
2

1+r

2 .

Since 2
1+r > 1, the Jensen inequality yields (u + v)

2
1+r ≤ 2

1−r
1+r

[
u

2
1+r + v

2
1+r

]
, for all (u, v) ∈ R2

+ and

we deduce that:

∥θ − θi∥
2

1+r

2 ≥ 2
r−1
1+r ∥θ∥

2
1+r

2 − ∥θi∥
2

1+r

2 ≥ 2
r−1
1+r ∥θ∥

2
1+r

2 −
(
K1d log2β(n)

) 1
1+r

.
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Then we use this inequality to obtain a lower bound of UXi :

UXi(θ) ≥ 2n

[
(1 + r)c

8

] 1
1+r

∥θ∥
2

1+r

2 − n

[
(1 + r)c

2

] 1
1+r

(K1d log2β(n))
1

1+r .

Moreover an upper bound of maxUXi
(0) comes from Proposition 1.1 and 4.2 as follows:

UXi
(0) ≤ UXi

(θi) +
nL+ ℓ0

2
∥θi∥22 ≤ K2d+

K1(nL+ ℓ0)d log2β(n)

2
.

Using the previous bounds and the fact that
∑n

i=1mt(Xi|θ) = 1, it yields:

n∑
i=1

(UXi(θ) − UXi(0))mt(Xi|θ)

≥ 2n

[
(1 + r)c

8

] 1
1+r

∥θ∥
2

1+r

2 − n

[
(1 + r)c

2

] 1
1+r

(K1d log2β(n))
1

1+r −K2d−
K1(nL+ ℓ0)d log2β(n)

2

≥ nc
1

1+r

4
∥θ∥

2
1+r

2 − nc
1

1+r (K1d log2β(n))
1

1+r −K2d−
K1(nL+ ℓ0)d log2β(n)

2
,

where we used some uniform upper bounds when r ∈ [0, 1). We then choose ρ = 1
1+r and we deduce

that:

Gtf(θ) ≤ a

1 + r
(∥θ∥22 + 1)−

r
1+r f(θ)

[
−nc

1
1+r

4
∥θ∥

2
1+r

2 + nc
1

1+r (K1d log2β(n))
1

1+r + K2d

+
K1(nL+ ℓ0)d log2β(n)

2
+

a

(1 + r)
(∥θ∥22 + 1)

1
1+r + d

]

≤ a

1 + r
(∥θ∥22 + 1)−

r
1+r f(θ)

[
−

(
nc

1
1+r

4
− a

(1 + r)

)
∥θ∥

2
1+r

2 + nc
1

1+r (K1d log2β(n))
1

1+r

+(K2 + 1)d+
K1(nL+ ℓ0)d log2β(n)

2
+

a

(1 + r)

]
,

where we used (∥θ∥22 + 1)
1

1+r ≤ ∥θ∥
2

1+r

2 + 1 in the second line.

We now fix a = n(1+r)c
1

1+r

8 and deduce that:

Gtf(θ)

f(θ)
≤ n2c

2
1+r

64
(∥θ∥22 + 1)−

r
1+r

[
−∥θ∥

2
1+r

2 + 8(K1d log2β(n))
1

1+r +

+
8(K2 + 1)d+ 4K1(nL+ ℓ0)d log2β(n)

nc
1

1+r

+ 1

]
. (39)

We then study two complementary situations and below, we denote by Kn,d the radius of the key
compact set involved by the previous Lyapunov contraction:

K
2

1+r

n,d = Cd log2β(n).

• When ∥θ∥2 is large enough (∥θ∥2 ≥ Kn,d), we observe that a large enough C > 0 independent from
n and d exists such that:

∥θ∥
2

1+r

2 ≥ Cd log2β(n) =⇒ Gtf(θ)

f(θ)
≤ −

n2
(
d log2β(n)

) 1
1+r

c
2

1+r

128
= −an,d. (40)
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• When ∥θ∥2 is upper bounded (∥θ∥2 ≤ Kn,d), we use the upper bound stated in Equation (39) and
obtain that a universal C1 (whose value may change from line to line) exists such that :

∥θ∥
2

1+r

2 ≤ Cd log2β(n) =⇒

Gtf(θ) ≤ C1n
2f(θ)

[
8(K1d log2β(n))

1
1+r +

8(K2 + 1)d+ 4K1(nL+ ℓ0)d log2β(n)

nc
1

1+r

+ 1

]

≤ C1n
2d log2β(n) exp

(
(C + 1)c

1
1+r nd log2β(n)

8

)
≤ bn,de

δn,d . (41)

We then use Equations (40) and (41) as follows. We define the function ψn,d as ψn,d(t) = E[f(θt)] and
use Lemma 2.1:

ψ′
n,d(t) = E[Gtf(θt)]

= E
[
Gtf(θt)

[
1∥θt∥2≥Kn,d

+ 1∥θt∥2≤Kn,d

]]
≤ E

[
−an,df(θt)1∥θt∥2≥Kn,d

+ bn,de
δn,d1∥θt∥2≤Kn,d

]
≤ −an,dψn,d(t) + an,d sup

∥θ∥2≤Kn,d

f(θ) + bn,de
δn,d

≤ −an,dψn,d(t) + (an,d + bn,d)eδn,d .

We apply the Gronwall Lemma and obtain that:

∀t > 0 ψn,d(t) ≤
(

1 +
bn,d
an,d

)
eδn,d + ψn,d(0)e−an,dt. (42)

Using that n0 is a Gaussian distribution, which was fixed in Hn0(L, ℓ0) hypothesis, we find an
upper bound for ψn,d(0) = E[f(θ0)] =

∫
Rd f(θ)dn0(θ) as follows :

ψn,d(0) =
(
2πσ2

)− d
2

∫
Rd

e
a
2 (∥θ∥2

2+1)
1

1+r − ∥θ∥22
2σ2 dθ

≤
(
2πσ2

)− d
2 e

a
2

∫
Rd

e−
∥θ∥22

2 ( 1
σ2 −a)dθ,

if σ2 ≤ 1
a = 8

n(1+r)c
1

1+r
then the integral above is finite. Since c2 < 1 ≤ 8L

(1+r)c
1

1+r
, it guarantees

σ2 < 1
a , then:

ψn,d(0) ≤
(
1 − aσ2

)− d
2 e

a
2

≤ Cd
3e

(1+r)nc
1

1+r

16 ,

where C3 is a constant independent from n and d.
Finally, using the value of an,d and bn,d in (42), we deduce that:

E

[
e

(1+r)nc
1

1+r

16 (∥θt∥2
2+1)

1
1+r

]
≤ C1

(
d log2β(n)

) r
1+r

eC2nd log2β(n) + Cd
3e

(1+r)nc
1

1+r

16 , ∀t > 0.

where C2 is another universal constant, which concludes the proof.

Proof of ii). We consider α > 1 and below, C > 0 refers to a “constant” independent from n and d,
whose value may change from line to line. Our starting point is the upper bound of the exponential
moments obtained in i). Proposition 1.1 shows that Uνn satisfies Hr

KL

(
cn1+r, nL+ ℓ0

)
, then thanks

to Proposition 4.2:

E[Uα
νn

(θt)] ≤ E
[(

minUνn
+ Cn∥θt − θ∗n∥22

)α] ≤ E
[(

minUνn
+ Cn∥θ∗n∥22 + Cn∥θt∥22

)α]
,
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where θ∗n = arg minUνn .
By using Proposition 4.4 and the inequality derived from the Jensen inequality (a+b)β ≤ cβ(aβ+bβ)

for (a, b) ∈ R2
+ and β ≥ 1, we obtain that:

(minUνn
+ Cn∥θ∗n∥22 + Cn∥θt∥22

)α
≤ C

[
nd log2β(n) + nd1+r log2β(1+r)(n) + n∥θt∥22

]α
≤ Cnα

[(
d log2β(n)

)α(1+r)

+ ∥θt∥2α2
]

≤ Cnα
[(
d log2β(n)

)α(1+r)

+ k−α(1+r) logα(1+r)

(
ek∥θt∥

2
1+r
2

)]
≤ Cnα

[(
d log2β(n)

)α(1+r)

+ k−α(1+r) logα(1+r)

(
eα(1+r)−1+k∥θt∥

2
1+r
2

)]
.

The Jensen inequality and the concavity of x 7→ logp(x) on [ep−1,+∞[ when p ≥ 1 yield

E[Uα
νn

(θt)]

≤ Cnα
[(
d log2β(n)

)α(1+r)

+ k−α(1+r)E
[
logα(1+r)

(
eα(1+r)−1+k∥θt∥

2
1+r
2

)]]
≤ Cnα

[(
d log2β(n)

)α(1+r)

+ k−α(1+r) logα(1+r)

[
E
(
eα(1+r)−1+k∥θt∥

2
1+r
2

)]]
≤ Cnα

[(
d log2β(n)

)α(1+r)

+ k−α(1+r)

[
α(1 + r) − 1 + logE

(
ek∥θt∥

2
1+r
2

)]α(1+r)
]

≤ Cnα

[(
d log2β(n)

)α(1+r)

+ k−α(1+r)

[
α(1 + r) − 1 + logE

(
ek(∥θt∥

2
2+1)

1
1+r

)]α(1+r)
]
,

where we used in the last inequality that ∥θ∥22 ≤ ∥θ∥22 + 1.

We then apply i) in Proposition 5.1, we choose k = (1+r)nc
1

1+r

16 and obtain that:

E[Uα
νn

(θt)]

≤ Cnα

(d log2β(n)
)α(1+r)

+
1

nα(1+r)

[
1 + logE

(
e

(1+r)nc
1

1+r

16 (∥θt∥2
2+1)

1
1+r

)]α(1+r)


≤ C

[
nα
(
d log2β(n)

)α(1+r)

+
1

nαr

[
1 + log

[
C1

(
d log2β(n)

) r
1+r

eC2nd log2β(n) + Cd
3e

(1+r)nc
1

1+r

16

]]α(1+r)


≤ Cnα
(
d log2β(n)

)α(1+r)

,

where we used in the previous lines simple algebra and log(a+ b) ≤ log(2)+ log(a)+ log(b) when a ≥ 1
and b ≥ 1. This concludes the proof.
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