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I - 1 Optimization - Motivations : Statistical problems
§ Objective : minimize a function f : Rd

ÝÑ R`

f pθq :“ Erf pθ,Xqs “
ż

X
f pθ, xqdQpxq

§ Motivation : minimization originates from a statistical estimation problem
§ M-estimation point of view : observations X1, . . . ,XN and

θ̂N :“ arg min fNpθq

fN may be seen as a stochastic approximation of a hidden f .
§ Among others, classical statistical problems :

§ Supervised regression : Linear Models

§ Supervised classification : Logistic regression

§ Other problems : Quantile estimation

§ . . .
§ Important way of thinking :

§ the situations we are expecting to deal with are on-line

§ Why ? May be the core of the application ( !)

§ Why ? Too much observations to handle all of them in a single pass



I - 1 Optimization - Motivations : Supervised regression
Assume pXi, Yiq1ďiďN comes from the statistical model

@i P t1 . . .Nu Yi “ xXi, θ
‹
y ` εi.

You observe pXi, Yiq1ďiďN . Xi P Rp and Yi P R. θ‹ is unknown.

You assume that pεiq1ďiďN are centered and i.i.d.
§ Gaussian settings : if pεiq1ďiďN are N p0, 1q, the log-likelihood leads to the

minimization of the sum of squares :

fNpθq “
N
ÿ

i“1

}Yi ´ xXi, θy}
2.

§ You can choose to minimize fN regardless any assumption on ε.
Important point :

E
„

fNpθq

N



“ EX,Y r}Y ´ xX, θy}2
s

looooooooooomooooooooooon

:“f pθq

and θ‹ “ arg min f .



I - 1 Optimization - Motivations : Supervised classification

Assume pXi, Yiq1ďiďN comes from
the statistical model :

§ Xi are i.i.d. whose distribution
is Q over Rp (p=2 on the left)

§ Yi P t´1,`1u and

PrYi “ `1 |X “ xs “
1

1` e´ăx,θ‹ą .

You observe pXi, Yiq1ďiďN . Xi P Rp and Yi P R. θ‹ is unknown.
Write the log-likelihood to estimate θ‹ :

fNpθq “
N
ÿ

i“1

log
´

1` e´YiăXi,θą
¯

Important point :

E
„

fNpθq

N



“ EX,Y log
´

1` e´YăX,θą
¯

loooooooooooooomoooooooooooooon

:“f pθq

and θ‹ “ arg min f .



I - 1 Optimization - Motivations : Recursive quantile estimation

We observe pXiq1ďiďN distributed according to Q over R.

Assume that Q has a density q w.r.t. λ (not necessarily compactly supported
and lower bounded on this compact set).

Given any α ą 0, find qα such that
ż qα

´8

p “ 1´ α.

Find the minimum of f such that f 1pθq “
şθ

qα
p :

f pθq :“

ż θ

qα

„
ż u

qα

ppsqds


du



I - 1 Optimization - Motivations : large scale estimation problems ?

f pθq :“ Erf pθ,Xqs “
ż

X
f pθ, xqdQpxq

§ A lot of observations that may be observed recursively : large N

Goal : manageable from a computational point of view.

§ We handle in this talk only smooth problems :

f is assumed to be differentiable ùñ no composite problems

§ Noisy/stochastic minimization :

§ the N observations are i.i.d. and are gathered in a channel of information
§ they feed the computation of the target function fN , that mimics f
§ Idea : use at each iteration only one arrival in the channel

fNpθq “ fN´1pθq ` `pXN ,YNqpθq ùñ θN “ θN´1 ´ γNgpθN´1,XN , YNq



I - 2 Optimization - convexity

§ Smooth minimization C2 problem

arg min
Rd

f .

Generally, f is also assumed to be convex/strongly convex
Quadratic loss/Logistic loss :

§ First order deterministic methods (with t evaluations of ∇f ) :
§ when f is assumed to be convex, polynomial rates (NAGD) :

Op1{t2q

§ when f is strongly convex, linear rates (NAGD) :

Ope´ρtq

§ Last observation : minimax paradigm. Worst case in the class of
functions with a fixed horizon t



I - 3 Stochastic Optimization - convexity

§ Smooth minimization C2 problem

arg min
Rd

f .

Generally, f is also assumed to be convex/strongly convex
Quadratic loss/Logistic loss :

§ First order stochastic methods (with ∇f ` ξ with Erξs “ 0) (NY83) :
§ when f is assumed to be convex :

Op1{
?

tq

§ when f is strongly convex :
Op1{tq

§ Last observation : minimax paradigm. Worst case in the class of
functions with a fixed horizon t



I - 3 Stochastic Optimization - convexity
Smooth minimization C2 problem

θ‹ :“ arg min
Rd

f .

Build a recursive optimization method pθnqně1 with noisy gradients and ...
Current hot questions ?

§ Beyond convexity/strong convexity ?
Example : recursive quantile estimation problem.
Use of KL functional inequality ? Multiple wells situations ?

§ Adaptivity of the method ?
Methods independent on/robust to some unknown quantities :
Hessian at the target point.

§ Non asymptotic bound ? Exact/sharp constant ?

@n ě N E}θn ´ θ
‹
}

2
ď

TrpVq
n

` A{n1`ε,

TrpVq : asymptotic incompressible variance (Cramer-Rao lower bound.)
§ Large deviations ?

@n ě N @t ě 0 P p}θn ´ θ
‹
} ě bpnq ` tq ď e´Rpt,nq

§ Lp loss ?
E}θn ´ θ

‹
}

2p
ď

Ap

np ` Bp{np`ε



I - 4 No novelty in this talk, as usual !

We will consider some well known methods in this talk ( ! !)

§ Stochastic Gradient Descent (SGD)
§ Heavy Ball with Friction (HBF)
§ Polyak Averaging (pθnqně1)
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II - 1 Stochastic Gradient Descent (SGD) - Robbins-Monro 1951.

f pθq “ EX„Qrf pθ,Xqs X1, . . . ,Xn i.i.d. Q.

§ Idea : use the steepest descent with one observation each time.
§ Homogeneization all along the iterations
§ Build the sequence pθnqně1 as follows :

§ θ0 P Rd

§ Iterate θn`1 “ θn ´ γn`1gnpθnq with

gnpθnq “ ∇θ f pθn,Xnq “ ∇f pθnq ` ξn`1,

where pξnqně1 is a sequence of Martingale increments :

Erξn |Fns “ 0,

where Fn “ σpθ0, . . . , θnq.

§ Typical state of the art result

Theorem
Assume f is strongly convex SCpαq :

§ If γn “ γn´β with β P p0, 1q then Er}θn ´ θ‹}2s ď Cαγn
§ If γn “ γn´1 with γα ą 1{2, then Er}θn ´ θ‹}2s ď Cαn´1

Pros : easy analysis, avoid traps (Pemantle 1990, Brandiere-Duflo 1996)
Cons : Not adaptive, no sharp inequality, no KL settings, . . .



II - 2 Heavy Ball with Friction
§ Produce a second order discrete recursion from the HBF ODE of Polyak

(1987) and Antipin (1994) :

:xt ` at 9xt `∇f pxtq “ 0 at “
2α` 1

t
or at “ a ą 0

§ Mimic the displacement of a ball rolling on the graph of the function f .

§ Up to a time scaling modification, equivalent system to the NAGD
(CEG09, SBC12, AD17) that may be rewritten as

X1t “ ´Yt and Y 1t “ rptqp∇f pXtq´Ytqdt with rptq “
α` 1

t
or rptq “ r ą 0.

§ Stochastic version, two sequences :

Xn`1 “ Xn ´ γn`1Yn and Yn`1 “ Yn ` rnγn`1pgnpXnq ´ Ynq



II - 3 Polyak-Ruppert Averaging
§ Start from a SGD sequence pθnqně1

θn`1 “ θn ´ γn`1gnpθnq with γn “ γn´β , β P p0, 1q.

§ Idea : Cesaro averaging all along the sequence
§ Build the mean sequence over the past iterations :

θn “
1
n

n
ÿ

j“1

θj

§ Typical state of the art result

Theorem (PJ92)
If f is strongly convex SCpαq and C1

LpRd
q and β P p1{2, 1q :

?
npθn ´ θ

‹
q ÝÑ Np0,Vq as n ÝÑ `8.

V possesses an optimal trace and pθnqně1 attains the Cramer-Rao lower
bound asymptotically.

Theorem (BM11,B14,G16)
For several particular cases of convex minimization problems (logistic, least
squares, quantile with “convexity”) :

E}θn ´ θ
‹
}

2
ď

C
n



II - 4 In this talk

We propose two contributions on the previous second order methods :

§ For the stochastic HBF (joint work with S. Saadane and F. Panloup) :
§ Almost sure consistency, multiple wells study
§ L2 rates of convergence (not optimal)
§ Spectral explanation of “why not adaptive ?”

§ For the Polyak-Ruppert averaging algorithm (joint work with F. Panloup) :
§ Relax the convexity assumption (KL inequality instead), very mild

assumption on the data
Works for any convex semi-algebric function, recursive quantile, logistic
regression, strongly convex functions, . . .

§ Incidentally easy Lp consistency rate of SGD ( !)
§ Sharp non asymptotic minimax L2 rate for θn
§ Spectral explanation of “why it works ?”
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III - 1 Almost sure convergence

General function f

§ Recursive scheme :

Xn`1 “ Xn ´ γn`1Yn and Yn`1 “ Yn ` rnγn`1pgnpXnq ´ Ynq

§ Find a mean-reverting effect on the random dynamical system.
§ Use former works on dissipative systems (H91, DV01, CEG09, . . . ) :

construct a Lyapunov function as

Vnpx, yq “ anf pxq ` bn}y}2
´ cx∇f pxq, yy

and prove that

E rVnpXn`1, Yn`1q |Fns ď p1` Cγ2
n`1rnqVnpXn, Ynq

´c1γn`1}Yn}
2
´ c2γn`1rn}∇f pXnq}

2
` Opγ2

n`1rnq

Deduce that
ř

 

γn`1}Yn}
2
` γn`1rn}∇f pXnq}

2(
ă `8 a.s.

Theorem
If f is coercive with bounded hessian, if supně1 E}ξn}

2
ă 8, and if the set of

critical points is discrete, then Xn a.s. converges towards a critical point of f .



III - 1 Almost sure convergence Minimum/maximum

If f has several wells

§ Well known fact : S.A. avoids local traps (result for SGD)
§ Does-it hold for stochastic HBF ?
§ Major difficulty : the martingale noise only acts on the Y coordinate
§ Key result : Poincaré Lemma around hyperbolic equilibria.

Local maxima can be shown to be repulsive for the deterministic vector
field. Then use/modify an argument of Pemantle to show that

Theorem
If the noise is elliptic (non negative variance in any direction of Rd) and
sub-Gaussian, then a.s. convergence towards a local minimum of f .



III - 2 Rates of convergence

If f is strongly convex with a unique minimizer θ‹

§ Idea : study first the quadratic case for f (linear drift situation)
§ Use a linearization argument to handle general functions f

#

Xn`1 “ Xn ´ γn`1Yn

Yn`1 “ Yn ` γn`1rnpSXn ´ Ynq ` γn`1rnξn`1,

§ Up to a change of basis (suitable for S), manage d t2ˆ 2u systems

Zpiqn`1 “

ˆ

I2 ` γn`1

ˆ

0 ´1
λpiqrn ´rn

˙˙

Zpiqn `

ˆ

0 0
0 1

˙

ξpiqn

§ Characteristic polynomial :

χCn
ptq “

´

t `
rn

2

¯2
`

rnp4λ´ rnq

4
.



III - 2 Rates of convergence - linear case

Theorem
If SppSq Ă rλ,`8r and rn “ r. Assume that γn “ γn´β . Set :

αr “

$

&

%

r
´

1´
b

1´ 4λ
r

¯

, if r ě 4λ

r if r ă 4λ,
.

piq If β ă 1, then a constant cr,λ,γ exists such that :

@n ě 1 E
”

}Xn}
2
` }Yn}

2
ı

ď cr,λ,γγn.

piiq If β “ 1, then a constant cr,λ,γ exists such that :

@n ě 1 E
”

}Xn}
2
` }Yn}

2
ı

ď cr,λ,γn´p1^γαrq logpnq1tγαr“1u .

§ Optimal rate n´1 possible when γαr ą 1
§ maxr αr “ 4λ ą 2λ
§ When r ÝÑ `8, αr ÝÑ 2λ (identical to a standard SGD)
§ No adaptive procedure (optimality depends on λ), confirmed by a CLT
§ can be generalized to strongly convex functions...
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IV - 1 Almost sure convergence

§ Use a SGD sequence pθnqně1 with step size pγnqně1.
§ Averaging

θn “
1
n

n
ÿ

k“1

θk, n ě 1

§

θn`1 “ θn

ˆ

1´
1

n` 1

˙

`
1

n` 1
pθn ´ γn`1gnpθnqq.

Free result :
If unique minimizer of f (what is assumed below from now on), the a.s.
convergence of pθnqně1 comes from the one of pθnqně1.
Goals :

§ Optimality
§ Non asymptotic behaviour
§ Adaptivity
§ Weaken the convexity assumption

For deterministic problems : behaviour of f around θ‹ is important

For stochastic problems : behaviour of f around θ‹ and near 8 are important



IV - 2 Beyond strong convexity ?

Definition (Kurdyka-Lojasiewicz type inequality Hr
kl)

f pθ‹q “ 0 is the unique (local/global) minimizer of f , D2f pθ‹q invertible and

D r P r0, 1{2s lim inf
|x|ÝÑ`8

f´r
|∇f | ą 0 and lim sup

|x|ÝÑ`8
f´r
|∇f | ą 0

Implicitly :
§ Unique critical point
§ Typically sub-quadratic situation (C1

L)
§ Desingularizes the function f near θ‹

§ f does not need to be convex

Proposition
If Hr

kl holds for r P r0, 1{2s, then define ϕpxq “ p1` |x|2q
1
2´r and

D 0 ă m ă M @x P Rd
ztθ‹u : m ď ϕ1pf pxqq|∇f pxq|2 `

|∇f pxq|2

f pxq
ď M.

Moreover, lim inf|x|Ñ`8 f pxq|x|´
1

1´r ą 0.



IV - 2 Beyond Strong convexity ?

Few references :
§ Seminal contributions of Kurdyka (1998) & Łojasiewicz (1958),
§ Error bounds in many situations (see Bolte et al. linear convergence rate

of the FoBa proximal splitting for the lasso)
§ Many many functions satisfy KL : convex, coercive, semi-algebraic

For us, it makes it possible to handle :
§ Recursive least squares problems r “ 1{2
§ Online logistic regression r “ 0
§ Recursive quantile problem r “ 0

Last assumption (restrictive for the sake of readability)

Assumption (Martingale noise)

sup
ně1
}ξn`1} ă `8

Can be largely weakened with additional technicalities



IV - 3 Averaging analysis (θ‹ “ 0)

θn`1 “ θn

ˆ

1´
1

n` 1

˙

`
1

n` 1
pθn ´ γn`1gnpθnqq.

Linearisation : Introduce Zn “ pθn, θnq and

Zn`1 “

˜

Id ´ γn`1Λn 0
1

n`1 pId ´ γn`1Λnq p1´ 1
n`1 qId

¸

Zn ` γn`1

˜

ξn`1
ξn`1
n`1

¸

,

where Λn “
ş1

0 D2f ptθnqdt : ΛnZn “ ∇f pZnq. Replace formally Λn by D2f pθ‹q
Key matrix : for any µ ą 0 and any integer n :

Eµ,n :“

˜

1´ γn`1µ 0
1´µγn`1

n`1 1´ 1
n`1

¸

.

Obvious eigenvalues and ... p0, θnq is living on the “good” eigenvector ;)

§ Conclusion 1 : Expect a behaviour of pθnqně1 independent from D2f pθ‹q
§ Conclusion 2 : Expect a rate of n´1

Difficulties :
Eµ,n is not symmetric ùñ non orthonormal eigenvectors
Eµ,n varies with n
Requires a careful understanding of the eigenvectors variations



IV - 3 Averaging analysis : linear case

Linear case :
How to produce a sharp upper bound ? Derive an inequality of the form

Er}rZn`1}
2
|Fns ď

ˆ

1´
1

n` 1
` δn,β

˙2

}rZn}
2
`

TrpVq
pn` 1q2

,

where
V “ D2f pθ‹q´1Σ‹D2f pθ‹q´1.

δn,β is an error term : variation of the eigenvectors from n to n` 1.
If δn,β is shown to be small enough, then we obtain

Er}rZn}
2
s ď

TrpVq
n

` εn,β
loomoon

:“Opn´p1`υβqq

Linearisation :
We need to replace Λn by D2f pθ‹q and we are done !



IV - 4 Averaging analysis : cost of the linearisation

§ We need to replace Λn by D2f pθ‹q
§ Needs some preliminary controls on the SGD pθnqně1 (moments)
§ Known state of the art results when f SC or in particular situations

Theorem
For β P r0, 1s, under Hr

KL, a collection of constants Cp,r exists such that

E
”

}θn ´ θ
‹
}

2p
ı

ď Cp,rγ
p
n

Key argument : define a Lyapunov function :

Vppθq “ f pθqpeϕpf pθqq

and prove a mean reverting effect property (without any recursion on p) :

@n P N‹ E rVppθn`1q |Fns ď

´

1´
α

2
γn`1 ` c1γ

2
n`1

¯

Vppθnq ` c2tγn`1u
p`1.

Remarks :
Important role of ϕ !
Painful second order Taylor expansion . . .



IV - 5 Averaging - Main result

We can state our main result with β P p1{2, 1q, γn “ γ1n´β :

Theorem
Under Hr

KL, a constant Cr exists such that

@n P N‹ E
”

}θn ´ θ
‹
}

2
ı

ď
TrpVq

n
` Crn´tpβ`1{2q^p2´βqu.

The “optimal” choice β “ 3{4 satisfies the upper bound :

@n P N‹ E
”

}θn ´ θ
‹
}

2
ı

ď
TrpVq

n
` Crn´5{4.

§ Non asymptotic optimal variance term (Cramer-Rao lower bound)
§ Adaptive to the unknown value of the Hessian
§ Only requires invertibility of D2f pθ‹q
§ No strong convexity
§ β “ 3{4 no real understanding on this optimality (just computations)
§ Second order term seems to be of the good size (with simulations)
§ State of the art : second order term only explicit in [BM11], of size n´7{6



IV - 5 Averaging - Main result

Setting Cramer-Rao 2nd order υn

Our work

Strong. Convex
Convex (Smooth KL)
Logist. Reg. (KL)
Recurs. Quantile (KL)

Yes : TrpVq
n

n´pβ`
1
2 q^p2´βq,

υ‹n “ Opn´
5
4 q

BM(11) Strong. Convex Yes : TrpVq
n

n´pβ`
1
2 q^p

3
2´βq,

υ‹n “ Opn´
7
6 q

BM(11)
Convex
Logist. Reg.
Recurs. Quantile

No : Opn´1{2q

No : Opn´1{2q

H

H

B(14) Logist. Reg. No : O
ˆ

1
nλ2

mintD
2f pθ‹qu

˙

H

CCGB(17) Recurs. Quantile No : O
´

1
n

¯ n´pβ`
1
2 q^p

3
2´βq,

υ‹n “ Opn´
7
6 q

TABLE : Overview of our results and comparisons with the literature. υ‹n refers to the
optimal (smallest) size of the second-order term when β is chosen equal to β‹.



IV - 5 Averaging - Second order term
We can theoretically improve the second order term when f is locally
symmetric around θ‹ (D3f pθ‹q “ 0)
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FIGURE : n ÞÑ nρ
´

Er|θ̂n ´ θ‹|2s ´
TrpΣ‹q

n

¯

. Blue curve : ρ “ 5
4 and β “ 3

4 for a non

locally symmetric function f1. Red curve : ρ “ 4
3 and β “ 2

3 for a locally symmetric
function f2.



Conclusion

Conclusions :

§ In stochastic cases, Ruppert-Polyak performs better than Nesterov/HBF
systems

§ May be shown to be optimal for quite general functions with a unique
minimizer

§ Conclusions may be different when dealing with multiple wells situations
§ Tight bounds for recursive quantile, logistic regression, linear models,. . .

Developments :

§ Sharp large deviation on pθnqně1 ? Good idea to use the spectral
representation.

§ Moments of pθnqně1 ? Other losses ?
§ Non-smooth situations ?
§ Improve the second order term with non-flat/uniform averaging ?

Thank you for your attention !

Optimal non-asymptotic bound of the Ruppert-Polyak averaging without strong
convexity, with F. Panloup, 2017
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