Non-asymptotic bound for stochastic averaging

and some other related stuff

S. Gadat and F. Panloup

Toulouse School of Economics

CMAP Seminar, April 2018

I - Introduction

- I 1 Motivations
- I 2 Optimization
- I 3 Stochastic Optimization
- I 4 No novelty in this talk, as usual !

II Well known algorithms

- II 1 Stochastic Gradient Descent
- II 2 Heavy Ball with Friction
- II 3 Polyak-Ruppert Averaging
- II 4 In this talk

III Stochastic Heavy Ball with Friction

- III 1 Almost sure convergence
- III 2 Rates of convergence

IV Polyak averaging

- IV 1 Almost sure convergence
- IV 2 Beyond strong convexity ?
- IV 3 Averaging analysis
- IV 4 Linearisation and moments
- IV 5 Averaging Main result

I - 1 Optimization - Motivations : Statistical problems

• Objective : minimize a function $f : \mathbb{R}^d \longrightarrow \mathbb{R}_+$

$$f(\theta) := \mathbb{E}[f(\theta, X)] = \int_{\mathcal{X}} f(\theta, x) d\mathbb{Q}(x)$$

- Motivation : minimization originates from a statistical estimation problem
- M-estimation point of view : observations X_1, \ldots, X_N and

 $\hat{\theta}_N := \arg\min f_N(\theta)$

 f_N may be seen as a stochastic approximation of a hidden f.

- Among others, classical statistical problems :
 - Supervised regression : Linear Models
 - Supervised classification : Logistic regression
 - Other problems : Quantile estimation
- Important way of thinking :
 - the situations we are expecting to deal with are on-line
 - Why? May be the core of the application (!)
 - Why ? Too much observations to handle all of them in a single pass

I - 1 Optimization - Motivations : Supervised regression Assume $(X_i, Y_i)_{1 \le i \le N}$ comes from the statistical model

 $\forall i \in \{1 \dots N\} \qquad Y_i = \langle X_i, \theta^* \rangle + \epsilon_i.$

You observe $(X_i, Y_i)_{1 \le i \le N}$. $X_i \in \mathbb{R}^p$ and $Y_i \in \mathbb{R}$. θ^* is unknown.

You assume that $(\epsilon_i)_{1 \le i \le N}$ are centered and i.i.d.

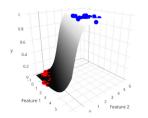
► Gaussian settings : if $(\epsilon_i)_{1 \leq i \leq N}$ are $\mathcal{N}(0, 1)$, the log-likelihood leads to the minimization of the sum of squares :

$$f_N(\theta) = \sum_{i=1}^N \|Y_i - \langle X_i, \theta \rangle\|^2.$$

• You can choose to minimize f_N regardless any assumption on ϵ . Important point :

$$\mathbb{E}\left[\frac{f_{N}(\theta)}{N}\right] = \underbrace{\mathbb{E}_{X,Y}[\|Y - \langle X, \theta \rangle\|^{2}]}_{:=f(\theta)} \quad \text{and} \quad \theta^{\star} = \arg\min f.$$

I - 1 Optimization - Motivations : Supervised classification



Assume $(X_i, Y_i)_{1 \le i \le N}$ comes from the statistical model :

 X_i are i.i.d. whose distribution is Q over ℝ^p (p=2 on the left)

•
$$Y_i \in \{-1, +1\}$$
 and

$$\mathbb{P}[Y_i = +1 | X = x] = \frac{1}{1 + e^{-\langle x, \theta^* \rangle}}$$

You observe $(X_i, Y_i)_{1 \le i \le N}$. $X_i \in \mathbb{R}^p$ and $Y_i \in \mathbb{R}$. θ^* is unknown. Write the log-likelihood to estimate θ^* :

$$f_N(heta) = \sum_{i=1}^N \log\left(1 + e^{-Y_i < X_i, heta >}
ight)$$

Important point :

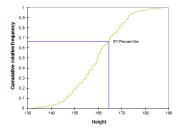
$$\mathbb{E}\left[\frac{f_N(\theta)}{N}\right] = \underbrace{\mathbb{E}_{X,Y}\log\left(1 + e^{-Y < X, \theta >}\right)}_{:=f(\theta)} \quad \text{and} \quad \theta^* = \arg\min f.$$

I - 1 Optimization - Motivations : Recursive quantile estimation

We observe $(X_i)_{1 \leq i \leq N}$ distributed according to \mathbb{Q} over \mathbb{R} .

Assume that \mathbb{Q} has a density q w.r.t. λ (not necessarily compactly supported and lower bounded on this compact set).

Empirical cumulative distribution (Height)



Given any $\alpha > 0$, find q_{α} such that

$$\int_{-\infty}^{q_{\alpha}} p = 1 - \alpha.$$

Find the minimum of f such that $f'(\theta) = \int_{q_{\alpha}}^{\theta} p$:

$$f(\theta) := \int_{q_{\alpha}}^{\theta} \left[\int_{q_{\alpha}}^{u} p(s) ds \right] du$$

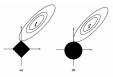
I - 1 Optimization - Motivations : large scale estimation problems ?

$$f(\theta) := \mathbb{E}[f(\theta, X)] = \int_{\mathcal{X}} f(\theta, x) d\mathbb{Q}(x)$$

A lot of observations that may be observed recursively : large N

Goal : manageable from a computational point of view.

- We handle in this talk only smooth problems :
 - f is assumed to be differentiable \implies no composite problems

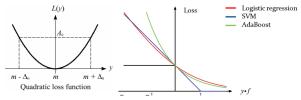


- Noisy/stochastic minimization :
 - the N observations are i.i.d. and are gathered in a channel of information
 - they feed the computation of the target function f_N , that mimics f
 - Idea : use at each iteration only one arrival in the channel

 $f_N(\theta) = f_{N-1}(\theta) + \ell_{(X_N, Y_N)}(\theta) \Longrightarrow \theta_N = \theta_{N-1} - \gamma_N g(\theta_{N-1}, X_N, Y_N)$

- I 2 Optimization convexity
 - ▹ Smooth minimization C² problem

Generally, f is also assumed to be convex/strongly convex Quadratic loss/Logistic loss :



- First order deterministic methods (with t evaluations of ∇f):
 - ▶ when *f* is assumed to be convex, polynomial rates (NAGD) :

$O(1/t^2)$

when f is strongly convex, linear rates (NAGD) :

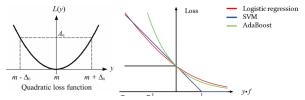
$O(e^{-\rho t})$

Last observation : minimax paradigm. Worst case in the class of functions with a fixed horizon t I - 3 Stochastic Optimization - convexity

▹ Smooth minimization C² problem

$$\arg\min_{\mathbb{R}^d} f.$$

Generally, f is also assumed to be convex/strongly convex Quadratic loss/Logistic loss :



- First order stochastic methods (with $\nabla f + \xi$ with $\mathbb{E}[\xi] = 0$) (NY83) :
 - when f is assumed to be convex :
 - $O(1/\sqrt{t})$
 - when f is strongly convex :

O(1/t)

Last observation : minimax paradigm. Worst case in the class of functions with a fixed horizon t I - 3 Stochastic Optimization - convexity Smooth minimization C^2 problem

 $\theta^{\star} := \arg\min_{\mathbb{R}^d} f.$

Build a recursive optimization method $(\theta_n)_{n \ge 1}$ with noisy gradients and ... Current hot questions ?

- Beyond convexity/strong convexity ?
 Example : recursive quantile estimation problem.
 Use of KL functional inequality ? Multiple wells situations ?
- Adaptivity of the method ? Methods *independent on/robust to* some unknown quantities : Hessian at the target point.
- Non asymptotic bound ? Exact/sharp constant ?

$$\forall n \ge \mathbb{N}$$
 $\mathbb{E} \|\theta_n - \theta^\star\|^2 \le \frac{Tr(V)}{n} + A/n^{1+\epsilon},$

 $\mathit{Tr}(V)$: asymptotic incompressible variance (Cramer-Rao lower bound.)

Large deviations ?

$$\forall n \ge \mathbb{N} \quad \forall t \ge 0 \qquad \mathbb{P}\left(\|\theta_n - \theta^*\| \ge b(n) + t \right) \le e^{-R(t,n)}$$

• \mathbb{L}^p loss?

$$\mathbb{E}\|\theta_n-\theta^\star\|^{2p}\leqslant \frac{A_p}{n^p}+B_p/n^{p+\epsilon}$$

I - 4 No novelty in this talk, as usual !

We will consider some well known methods in this talk (!!)

- Stochastic Gradient Descent (SGD)
- Heavy Ball with Friction (HBF)
- Polyak Averaging $((\overline{\theta}_n)_{n \ge 1})$

I - Introduction

- I 1 Motivations
- 2 Optimization
- I 3 Stochastic Optimization
- I 4 No novelty in this talk, as usual !

II Well known algorithms

- II 1 Stochastic Gradient Descent
- II 2 Heavy Ball with Friction
- II 3 Polyak-Ruppert Averaging
- II 4 In this talk

III Stochastic Heavy Ball with Friction

- III 1 Almost sure convergence
- III 2 Rates of convergence

IV Polyak averaging

- IV 1 Almost sure convergence
- IV 2 Beyond strong convexity ?
- IV 3 Averaging analysis
- IV 4 Linearisation and moments
- IV 5 Averaging Main result

II - 1 Stochastic Gradient Descent (SGD) - Robbins-Monro 1951.

 $f(\theta) = \mathbb{E}_{X \sim \mathbb{Q}}[f(\theta, X)]$ X_1, \dots, X_n *i.i.d.* \mathbb{Q} .

- Idea : use the steepest descent with one observation each time.
- Homogeneization all along the iterations
- Build the sequence $(\theta_n)_{n \ge 1}$ as follows :

•
$$\theta_0 \in \mathbb{R}^d$$

• Iterate $\theta_{n+1} = \theta_n - \gamma_{n+1}g_n(\theta_n)$ with

 $g_n(\theta_n) = \nabla_{\theta} f(\theta_n, X_n) = \nabla f(\theta_n) + \xi_{n+1},$

where $(\xi_n)_{n \ge 1}$ is a sequence of Martingale increments :

 $\mathbb{E}[\xi_n \,|\, \mathcal{F}_n] = 0,$

where $\mathcal{F}_n = \sigma(\theta_0, \ldots, \theta_n)$.

Typical state of the art result

Theorem

Assume f is strongly convex $SC(\alpha)$:

• If $\gamma_n = \gamma n^{-\beta}$ with $\beta \in (0, 1)$ then $\mathbb{E}[\|\theta_n - \theta^\star\|^2] \leq C_\alpha \gamma_n$ • If $\gamma_n = \gamma n^{-1}$ with $\gamma \alpha > 1/2$, then $\mathbb{E}[\|\theta_n - \theta^\star\|^2] \leq C_\alpha n^{-1}$

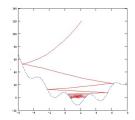
Pros : easy analysis, avoid traps (Pemantle 1990, Brandiere-Duflo 1996) Cons : Not adaptive, no sharp inequality, no KL settings, ...

II - 2 Heavy Ball with Friction

 Produce a second order discrete recursion from the HBF ODE of Polyak (1987) and Antipin (1994) :

$$\ddot{x}_t + a_t \dot{x}_t + \nabla f(x_t) = 0$$
 $a_t = \frac{2\alpha + 1}{t}$ or $a_t = a > 0$

Mimic the displacement of a ball rolling on the graph of the function f.



 Up to a time scaling modification, equivalent system to the NAGD (CEG09, SBC12, AD17) that may be rewritten as

$$X'_t = -Y_t$$
 and $Y'_t = r(t)(\nabla f(X_t) - Y_t)dt$ with $r(t) = \frac{\alpha + 1}{t}$ or $r(t) = r > 0$.

Stochastic version, two sequences :

 $X_{n+1} = X_n - \gamma_{n+1}Y_n$ and $Y_{n+1} = Y_n + r_n\gamma_{n+1}(g_n(X_n) - Y_n)$

II - 3 Polyak-Ruppert Averaging

• Start from a SGD sequence $(\theta_n)_{n \ge 1}$

 $\theta_{n+1} = \theta_n - \gamma_{n+1}g_n(\theta_n)$ with $\gamma_n = \gamma n^{-\beta}, \beta \in (0,1).$

- Idea : Cesaro averaging all along the sequence
- Build the mean sequence over the past iterations :

$$\overline{\theta}_n = \frac{1}{n} \sum_{j=1}^n \theta_j$$

Typical state of the art result

Theorem (PJ92)

If f is strongly convex $SC(\alpha)$ and $C_L^1(\mathbb{R}^d)$ and $\beta \in (1/2, 1)$:

$$\sqrt{n}(\overline{\theta}_n - \theta^*) \longrightarrow N(0, V)$$
 as $n \longrightarrow +\infty$.

V possesses an optimal trace and $(\overline{\theta}_n)_{n \ge 1}$ attains the Cramer-Rao lower bound asymptotically.

Theorem (BM11,B14,G16)

For several particular cases of convex minimization problems (logistic, least squares, quantile with "convexity") :

$$\mathbb{E}\|\overline{\theta}_n - \theta^\star\|^2 \leqslant \frac{C}{n}$$

II - 4 In this talk

We propose two contributions on the previous second order methods :

- For the stochastic HBF (joint work with S. Saadane and F. Panloup) :
 - Almost sure consistency, multiple wells study
 - ▶ L² rates of convergence (not optimal)
 - Spectral explanation of "why not adaptive ?"
- For the Polyak-Ruppert averaging algorithm (joint work with F. Panloup) :
 - Relax the convexity assumption (KL inequality instead), very mild assumption on the data Works for any convex semi-algebric function, recursive quantile, logistic regression, strongly convex functions, ...
 - Incidentally easy \mathbb{L}^p consistency rate of SGD (!)
 - Sharp non asymptotic minimax \mathbb{L}^2 rate for $\overline{\theta}_n$
 - Spectral explanation of "why it works?"

I - Introduction

- I 1 Motivations
- I 2 Optimization
- I 3 Stochastic Optimization
- I 4 No novelty in this talk, as usual !

II Well known algorithms

- II 1 Stochastic Gradient Descent
- II 2 Heavy Ball with Friction
- II 3 Polyak-Ruppert Averaging
- II 4 In this talk

III Stochastic Heavy Ball with Friction

- III 1 Almost sure convergence
- III 2 Rates of convergence

IV Polyak averaging

- IV 1 Almost sure convergence
- IV 2 Beyond strong convexity ?
- IV 3 Averaging analysis
- IV 4 Linearisation and moments
- IV 5 Averaging Main result

III - 1 Almost sure convergence

General function *f*

Recursive scheme :

 $X_{n+1} = X_n - \gamma_{n+1}Y_n$ and $Y_{n+1} = Y_n + r_n\gamma_{n+1}(g_n(X_n) - Y_n)$

- Find a mean-reverting effect on the random dynamical system.
- Use former works on dissipative systems (H91, DV01, CEG09, ...): construct a Lyapunov function as

$$V_n(x,y) = a_n f(x) + b_n \|y\|^2 - c \langle \nabla f(x), y \rangle$$

and prove that

$$\mathbb{E}\left[V_{n}(X_{n+1}, Y_{n+1}) \mid \mathcal{F}_{n}\right] \leq (1 + C\gamma_{n+1}^{2}r_{n})V_{n}(X_{n}, Y_{n}) \\ -c_{1}\gamma_{n+1} \|Y_{n}\|^{2} - c_{2}\gamma_{n+1}r_{n} \|\nabla f(X_{n})\|^{2} + O(\gamma_{n+1}^{2}r_{n})$$

Deduce that $\sum \left\{ \gamma_{n+1} \|Y_n\|^2 + \gamma_{n+1} r_n \|\nabla f(X_n)\|^2 \right\} < +\infty$ a.s.

Theorem

If *f* is coercive with bounded hessian, if $\sup_{n \ge 1} \mathbb{E} \|\xi_n\|^2 < \infty$, and if the set of critical points is discrete, then X_n a.s. converges towards a critical point of *f*.

III - 1 Almost sure convergence Minimum/maximum

If f has several wells

- Well known fact : S.A. avoids local traps (result for SGD)
- Does-it hold for stochastic HBF?
- Major difficulty : the martingale noise only acts on the Y coordinate
- · Key result : Poincaré Lemma around hyperbolic equilibria.

Local maxima can be shown to be repulsive for the deterministic vector field. Then use/modify an argument of Pemantle to show that

Theorem

If the noise is elliptic (non negative variance in any direction of \mathbb{R}^d) and sub-Gaussian, then a.s. convergence towards a local minimum of f.

III - 2 Rates of convergence

If f is strongly convex with a unique minimizer θ^*

- Idea : study first the quadratic case for f (linear drift situation)
- Use a linearization argument to handle general functions f

$$\begin{cases} X_{n+1} = X_n - \gamma_{n+1} Y_n \\ Y_{n+1} = Y_n + \gamma_{n+1} r_n (SX_n - Y_n) + \gamma_{n+1} r_n \xi_{n+1} \end{cases}$$

• Up to a change of basis (suitable for S), manage $d \{2 \times 2\}$ systems

$$Z_{n+1}^{(i)} = \left(I_2 + \gamma_{n+1} \begin{pmatrix} 0 & -1 \\ \lambda^{(i)} r_n & -r_n \end{pmatrix} \right) Z_n^{(i)} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \xi_n^{(i)}$$

Characteristic polynomial :

$$\chi_{c_n}(t) = \left(t + \frac{r_n}{2}\right)^2 + \frac{r_n(4\lambda - r_n)}{4}.$$

III - 2 Rates of convergence - linear case

Theorem If $Sp(S) \subset [\lambda, +\infty[$ and $r_n = r$. Assume that $\gamma_n = \gamma n^{-\beta}$. Set : $\alpha_r = \begin{cases} r\left(1 - \sqrt{1 - \frac{4\lambda}{r}}\right), & \text{if } r \ge 4\lambda \\ r & \text{if } r < 4\lambda, \end{cases}$

(*i*) If $\beta < 1$, then a constant $c_{r,\lambda,\gamma}$ exists such that :

$$\forall n \ge 1$$
 $\mathbb{E}\left[\|X_n\|^2 + \|Y_n\|^2\right] \le c_{r,\lambda,\gamma}\gamma_n.$

(*ii*) If $\beta = 1$, then a constant $c_{r,\lambda,\gamma}$ exists such that :

$$\forall n \geq 1 \qquad \mathbb{E}\left[\left\|X_n\right\|^2 + \left\|Y_n\right\|^2\right] \leq c_{r,\lambda,\gamma} n^{-(1\wedge\gamma\alpha_r)} \log(n)^{\mathbf{1}_{\{\gamma\alpha_r=1\}}}.$$

- Optimal rate n^{-1} possible when $\gamma \alpha_r > 1$
- $\max_r \alpha_r = 4\lambda > 2\lambda$
- When $r \longrightarrow +\infty$, $\alpha_r \longrightarrow 2\lambda$ (identical to a standard SGD)
- No adaptive procedure (optimality depends on λ), confirmed by a CLT
- can be generalized to strongly convex functions...

I - Introduction

- I 1 Motivations
- I 2 Optimization
- I 3 Stochastic Optimization
- I 4 No novelty in this talk, as usual !

II Well known algorithms

- II 1 Stochastic Gradient Descent
- II 2 Heavy Ball with Friction
- II 3 Polyak-Ruppert Averaging
- II 4 In this talk

III Stochastic Heavy Ball with Friction

- III 1 Almost sure convergence
- III 2 Rates of convergence

IV Polyak averaging

- IV 1 Almost sure convergence
- IV 2 Beyond strong convexity ?
- IV 3 Averaging analysis
- IV 4 Linearisation and moments
- IV 5 Averaging Main result

IV - 1 Almost sure convergence

- Use a SGD sequence $(\theta_n)_{n \ge 1}$ with step size $(\gamma_n)_{n \ge 1}$.
- Averaging

$$\overline{\theta}_n = \frac{1}{n} \sum_{k=1}^n \theta_k, \quad n \ge 1$$

$$\overline{ heta}_{n+1} = \overline{ heta}_n \left(1 - rac{1}{n+1}
ight) + rac{1}{n+1}(heta_n - \gamma_{n+1}g_n(heta_n)).$$

Free result :

If unique minimizer of f (what is assumed below from now on), the a.s. convergence of $(\overline{\theta}_n)_{n \ge 1}$ comes from the one of $(\theta_n)_{n \ge 1}$. Goals :

- Optimality
- Non asymptotic behaviour
- Adaptivity
- Weaken the convexity assumption

For deterministic problems : behaviour of f around θ^{\star} is important

For stochastic problems : behaviour of f around θ^{\star} and near ∞ are important

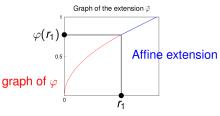
IV - 2 Beyond strong convexity?

Definition (Kurdyka-Lojasiewicz type inequality $\mathbf{H}_{\mathbf{kl}}^{\mathbf{r}}$) $f(\theta^{\star}) = 0$ is the unique (local/global) minimizer of f, $D^{2}f(\theta^{\star})$ invertible and

 $\exists r \in [0, 1/2] \qquad \liminf_{|x| \longrightarrow +\infty} f^{-r} |\nabla f| > 0 \qquad \text{and} \qquad \limsup_{|x| \longrightarrow +\infty} f^{-r} |\nabla f| > 0$

Implicitly :

- Unique critical point
- ▶ Typically sub-quadratic situation (C¹_L)
- Desingularizes the function f near θ^*
- f does not need to be convex



Proposition

If $\mathbf{H}_{\mathbf{kl}}^{\mathbf{r}}$ holds for $r \in [0, 1/2]$, then define $\varphi(x) = (1 + |x|^2)^{\frac{1}{2}-r}$ and

 $\exists 0 < m < M \quad \forall x \in \mathbb{R}^d \setminus \{\theta^\star\} : \qquad m \leqslant \varphi'(f(x)) |\nabla f(x)|^2 + \frac{|\nabla f(x)|^2}{f(x)} \leqslant M.$

Moreover, $\liminf_{|x|\to+\infty} f(x)|x|^{-\frac{1}{1-r}} > 0.$

IV - 2 Beyond Strong convexity ?

Few references :

- Seminal contributions of Kurdyka (1998) & Łojasiewicz (1958),
- Error bounds in many situations (see Bolte *et al.* linear convergence rate of the FoBa proximal splitting for the lasso)
- Many many functions satisfy KL : convex, coercive, semi-algebraic

For us, it makes it possible to handle :

- Recursive least squares problems r = 1/2
- Online logistic regression r = 0
- Recursive quantile problem r = 0

Last assumption (restrictive for the sake of readability)

Assumption (Martingale noise)

$$\sup_{n\geq 1}\|\xi_{n+1}\|<+\infty$$

Can be largely weakened with additional technicalities

IV - 3 Averaging analysis ($\theta^* = 0$)

$$\overline{\theta}_{n+1} = \overline{\theta}_n \left(1 - \frac{1}{n+1} \right) + \frac{1}{n+1} (\theta_n - \gamma_{n+1} g_n(\theta_n)).$$

Linearisation : Introduce $Z_n = (\theta_n, \overline{\theta}_n)$ and

$$Z_{n+1} = \begin{pmatrix} I_d - \gamma_{n+1}\Lambda_n & 0\\ \frac{1}{n+1}(I_d - \gamma_{n+1}\Lambda_n) & (1 - \frac{1}{n+1})I_d \end{pmatrix} Z_n + \gamma_{n+1} \begin{pmatrix} \xi_{n+1}\\ \frac{\xi_{n+1}}{n+1} \end{pmatrix},$$

where $\Lambda_n = \int_0^1 D^2 f(t\theta_n) dt$: $\Lambda_n Z_n = \nabla f(Z_n)$. Replace formally Λ_n by $D^2 f(\theta^*)$ Key matrix : for any $\mu > 0$ and any integer n :

$$E_{\mu,n} := \begin{pmatrix} 1 - \gamma_{n+1}\mu & 0\\ \frac{1 - \mu\gamma_{n+1}}{n+1} & 1 - \frac{1}{n+1} \end{pmatrix}$$

Obvious eigenvalues and ... $(0, \overline{\theta}_n)$ is living on the "good" eigenvector;)

- Conclusion 1 : Expect a behaviour of $(\overline{\theta}_n)_{n\geq 1}$ independent from $D^2 f(\theta^*)$
- Conclusion 2 : Expect a rate of n⁻¹

Difficulties :

 $E_{\mu,n}$ is not symmetric \implies non orthonormal eigenvectors $E_{\mu,n}$ varies with nRequires a careful understanding of the eigenvectors variations

IV - 3 Averaging analysis : linear case

Linear case :

How to produce a sharp upper bound ? Derive an inequality of the form

$$\mathbb{E}[\|\widetilde{Z}_{n+1}\|^2 \,|\, \mathcal{F}_n] \leqslant \left(1 - \frac{1}{n+1} + \delta_{n,\beta}\right)^2 \|\widetilde{Z}_n\|^2 + \frac{Tr(V)}{(n+1)^2},$$

where

$$V = D^2 f(\theta^{\star})^{-1} \Sigma^{\star} D^2 f(\theta^{\star})^{-1}.$$

 $\delta_{n,\beta}$ is an error term : variation of the eigenvectors from *n* to *n* + 1. If $\delta_{n,\beta}$ is shown to be small enough, then we obtain

$$\mathbb{E}[\|\widetilde{Z}_n\|^2] \leq \frac{Tr(V)}{n} + \underbrace{\epsilon_{n,\beta}}_{:=o(n^{-(1+\upsilon_\beta)})}$$

Linearisation :

We need to replace Λ_n by $D^2 f(\theta^*)$ and we are done !

IV - 4 Averaging analysis : cost of the linearisation

- We need to replace Λ_n by $D^2 f(\theta^*)$
- ▶ Needs some preliminary controls on the SGD $(\theta_n)_{n \ge 1}$ (moments)
- Known state of the art results when f SC or in particular situations

Theorem

For $\beta \in [0, 1]$, under $\mathbf{H}_{\mathbf{KL}}^{\mathbf{r}}$, a collection of constants $C_{p,r}$ exists such that

$$\mathbb{E}\left[\left\|\theta_n - \theta^{\star}\right\|^{2p}\right] \leqslant C_{p,r}\gamma_n^p$$

Key argument : define a Lyapunov function :

$$V_p(heta) = f(heta)^p e^{\varphi(f(heta))}$$

and prove a mean reverting effect property (without any recursion on p) :

$$\forall n \in \mathbb{N}^{\star} \qquad \mathbb{E}\left[V_p(\theta_{n+1}) \mid \mathcal{F}_n\right] \leqslant \left(1 - \frac{\alpha}{2}\gamma_{n+1} + c_1\gamma_{n+1}^2\right)V_p(\theta_n) + c_2\{\gamma_{n+1}\}^{p+1}.$$

Remarks :

Important role of φ !

Painful second order Taylor expansion ...

IV - 5 Averaging - Main result

We can state our main result with $\beta \in (1/2, 1), \gamma_n = \gamma_1 n^{-\beta}$:

Theorem

Under $\mathbf{H}_{\mathbf{KL}}^{\mathbf{r}}$, a constant C_r exists such that

$$\forall n \in \mathbb{N}^{\star} \qquad \mathbb{E}\left[\left\|\overline{\theta}_{n} - \theta^{\star}\right\|^{2}\right] \leq \frac{Tr(V)}{n} + C_{r}n^{-\left\{(\beta+1/2)\wedge(2-\beta)\right\}}.$$

The "optimal" choice $\beta = 3/4$ satisfies the upper bound :

$$\forall n \in \mathbb{N}^{\star} \qquad \mathbb{E}\left[\left\|\overline{\theta}_n - \theta^{\star}\right\|^2\right] \leq \frac{Tr(V)}{n} + C_r n^{-5/4}$$

- Non asymptotic optimal variance term (Cramer-Rao lower bound)
- Adaptive to the unknown value of the Hessian
- Only requires invertibility of $D^2 f(\theta^*)$
- No strong convexity
- $\beta = 3/4$ no real understanding on this optimality (just computations)
- · Second order term seems to be of the good size (with simulations)
- State of the art : second order term only explicit in [BM11], of size $n^{-7/6}$

IV - 5 Averaging - Main result

	Setting	Cramer-Rao	2^{nd} order v_n
Our work	Strong. Convex Convex (Smooth KL) Logist. Reg. (KL) Recurs. Quantile (KL)	Yes : $\frac{Tr(V)}{n}$	$n^{-(\beta+\frac{1}{2})\wedge(2-\beta)},$ $v_n^{\star} = O(n^{-\frac{5}{4}})$
BM(11)	Strong. Convex	$\operatorname{Yes}: \frac{Tr(V)}{n}$	$n^{-(\beta+\frac{1}{2})\wedge(\frac{3}{2}-\beta)},$ $v_n^{\star} = O(n^{-\frac{7}{6}})$
BM(11)	Convex Logist. Reg. Recurs. Quantile	No : $O(n^{-1/2})$ No : $O(n^{-1/2})$ \varnothing	Ø
B(14)	Logist. Reg.	No: $O\left(\frac{1}{n\lambda_{\min}^2\{D^2f(\theta^\star)\}}\right)$	Ø
CCGB(17)	Recurs. Quantile	No : $O\left(\frac{1}{n}\right)$	$n^{-(\beta+\frac{1}{2})\wedge(\frac{3}{2}-\beta)},$ $v_n^{\star} = O(n^{-\frac{7}{6}})$

TABLE : Overview of our results and comparisons with the literature. v_n^* refers to the optimal (smallest) size of the second-order term when β is chosen equal to β^* .

IV - 5 Averaging - Second order term

We can theoretically improve the second order term when f is locally symmetric around θ^* ($D^3 f(\theta^*) = 0$)

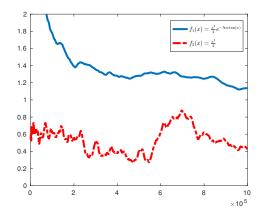


FIGURE : $n \mapsto n^{\rho} \left(\mathbb{E}[|\hat{\theta}_n - \theta^{\star}|^2] - \frac{\operatorname{Tr}(\Sigma^{\star})}{n} \right)$. Blue curve : $\rho = \frac{5}{4}$ and $\beta = \frac{3}{4}$ for a non locally symmetric function f_1 . Red curve : $\rho = \frac{4}{3}$ and $\beta = \frac{2}{3}$ for a locally symmetric function f_2 .

Conclusion

Conclusions :

- In stochastic cases, Ruppert-Polyak performs better than Nesterov/HBF systems
- May be shown to be optimal for quite general functions with a unique minimizer
- · Conclusions may be different when dealing with multiple wells situations
- Tight bounds for recursive quantile, logistic regression, linear models,...

Developments :

- ▶ Sharp large deviation on $(\overline{\theta}_n)_{n \ge 1}$? Good idea to use the spectral representation.
- Moments of $(\overline{\theta}_n)_{n \ge 1}$? Other losses?
- Non-smooth situations ?
- Improve the second order term with non-flat/uniform averaging?

Thank you for your attention !

Optimal non-asymptotic bound of the Ruppert-Polyak averaging without strong convexity, with F. Panloup, 2017