
Regret of Narendra Shapiro Bandit Algorithms

S. Gadat

Toulouse School of Economics
Joint work with F. Panloup and S. Saadane.

Oxford, April, 29 2015



I - Introduction
I - 1 Motivations
I - 2 Stochastic multi-armed bandit model
I - 3 Regret of Stochastic multi-armed bandit algorithms
I - 4 Roadmap

II Narendra Schapiro algorithm (NSa)
II - 1 An historical algorithm (1969)
II - 2 Improvement through penalization
II - 3 Over-penalized NSa

III Weak limit of the Over-penalized NSa
III - 1 Rescaling
III - 2 Trajectories of the rescaled over-penalized NSa
III - 3 Ergodicity and Invariant measure
III - 4 Ergodicity and mixing rate

IV Conclusion



I - 1 Motivations - Stochastic Bandit Games

Problem : You want to earn as much as possible in casino

� You are in a casino and want to play with slot machines

� Each one can give you a potential gain, but these gains are not equivalent

� You sequentially play with one of the arms of the bandit machine

How to design a good policy to sequentially optimize the gain ?



I - 1 Motivations - Dynamic Ressource Allocation

Problem : Optimization of a sequence of clinical trials

Imagine you are a doctor :

� A sequence of patients visit you sequentially (one after another) for a given
disease

� You choose one treatment/drug among (say) 5 availables

� The treatments are not equivalent

� You do not know where is the best drug, but you observe the effect of the
prescribed treatment on each patient

� You expect to find the best drug despite some uncertainty on the effect of each
treatment

How can we design a good sequence of clinical trials ?



I - 1 Motivations - Dynamic Ressource Allocation

Problem : “Fast fashion” retailer

Source : Farias & Madan, Operation Research, Vol. 9, No 2, 2011
Imagine you are a firm solding clothes :

� A population of customers visit you sequentially (one after another) each
week/day

� You observe weekly/daily sales and measure item’s popularity

� You want to restock popular items and weed out unpopular ones on-line

� You expect to maximize your benefit while finding the best items

How can we design a good sequence of fast-fashion operations ?



I - 1 Motivations - Dynamic Ressource Allocation

Other motivating examples

� Pricing a product with uncertain demand to maximize revenue

� Trading (sequentially allocate a ratio of fund to the more efficient trader)
� Recommender systems :

� advertisement
� website optimization
� news, blog posts

� Computer experiments
� A code can be simulated in order to optimize a criterion
� This simulation depends on a set of parameters
� Simulation is costly and only few choices of parameters are possible



I - 2 Stochastic multi-armed bandit model
Environment :

� At your disposal : d arms with unknown parameters θ1, . . . , θd.
� For any time t, and for any choice It P t1 . . . , du, you receive a reward :

AItt

� For any choice of an arm i, rewards are i.i.d. pAitqt¥0 � νθi .

Reward distribution :
� In general, the reward distributions νθ belong to a parametric family

(Exponential, Poisson, . . . )
� In this talk, simplest case of Bernoulli rewards νp � Bppq :

� you obtain a gain of 1 with probability p
� 0 otherwise (with probability 1� p).
� Unknown probability of success : pp1, . . . , pdq. Without l.o.g., we assume that

p1 ¡ max
2¤j¤d

pj .

Admissible policy :
The agent’s action follow a dynamical strategy, which is defined on-line :

It � π
�
A
It�1
t�1 . . . , AI11

	
.

Final goal : Maximize (in expectation) the cumulative rewards :

E

�
ņ

t�1

AItt

�
.



I - 3 Regret of Stochastic multi-armed bandit algorithms

Regret of an algorithm It yields the minimization of the expected regret Rn

ERn � E max
1¤j¤d

ņ

t�1

Ajt � E
ņ

t�1

AItt � E max
1¤j¤d

ņ

t�1

pAjt �AItt q

The expectation of the maximum makes the regret difficult to handle, but. . .

Proposition (Pseudo-regret)
If we define R̄n :� max1¤j¤dE

�°n
t�1pAjt �AItt q

�
, one has

ERn ¤ R̄n �
c
n log d

2
.

This upper bound is useful since

Proposition (Lower bound - (Auer, Cesa-Bianchi,Freund,Schapire 2002))
Uniformly among all policies π and among all Bernoulli distribution rewards :

min
π

$'&
'% max

sup
2¤j¤d

pj   p1
ERn

,/.
/- ¥

?
nd

20
.

Conclusion : Upper bounds of R̄n of the order
?
nd are competitive (optimal).



I - 4 Roadmap

In this talk, we will :

� Briefly describe a standard old-fashioned method

Xt�1 � Xt � γt�1hpXtq � γt�1∆Mt�1

� Introduce a new one whose regret will be studied :

@n P N� R̄n ¤ C
?
n?

� Provide an asymptotic limit of this penalized bandit up to a correct scaling

βnpXn � δ1q w�ÝÑ
nÑ�8

µ

� Describe ergodic properties of the rescaled process (Piecewise Deterministic
Markov Process)
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II - 1 An historical algorithm (1969)
The so-called Narendra-Shapiro bandit algorithm (NSa for short) defines a probability
vector of Sd

Xt � pX1
t , . . . , X

d
t q |

ḑ

j�1

Xj
t � 1.

Idea : Use Xt to sample one arm at step t and then upgrade this probability Xt
according to the obtained reward to deduce Xt�1.

� In the two-armed situation with p2   p1, denote Xt � pxt, 1� xtq

xt�1 � xt �

$'&
'%
γt�1p1� xtq if player 1 is selected and wins

�γt�1xt if player 2 is selected and wins

0 otherwise

� Multi-armed situation, It : arm sampled at time t, AItt : obtained reward. Upgrade

@j P t1 . . . du Xj
t � Xj

t�1 � γt
�
1tIt�ju �Xj

t�1

�
AItt

� To sum up :
� If you win : reinforce the probability to sample It w.r.t. the remaining weights

pXjt qj�It and decrease the probability to sample the other arms accordingly.

� If you loose (A
It
t � 0) : do nothing.

� Common step size :

γt � p1� t{Cq�α , α P p0, 1q with large enough C.



II - 1 An historical algorithm (1969)

Few words about NSa :

� Recursive stochastic
algorithm

� Anytime policy

� Involves nontrivial
mathematical difficulties

It can be written as mean drift + martingale increment

Xt�1 � Xt � γt�1hpXtq � γt�1∆Mt�1.

In the 2-armed setting (p2   p1 and Xt � pxt, 1� xtq), the drift on xt is

hpxq � pp1 � p2qxp1� xq.



II - 1 An historical algorithm (1969)

Xt � pxt, 1� xtq

xt�1 � xt�γt�1hpxtq�γt�1∆Mt�1.

with

hpxq � pp1 � p2qxp1� xq

� O.D.E. approximation 9x � hpxq, local trap at t0u and stable equilibrium at t1u.
� But : the conditional variance term vanishes at 0 and 1, making impossible the

use of Duflo’s argument about the escape of local traps.

� Indeed, for any sequence γt �
�

C
t�C

	α
, α P p0, 1q, the algorithm is fallible

P plimxt � 0q ¡ 0 ùñ ERn Á Cn ¡¡ ?
n



II - 2 Improvement through penalization

� What’s wrong with NSa ?
Gittins, JRSS(B)’79 :

Good regret properties only occur with an exploration/exploitation trade-off...

� NSa is almost a pure exploitation method : no exploration term to exit local traps.

� Main idea : Introduce a penalty term [Lamberton & Pages, EJP’09]

� In the 2-armed settings (p2   p1 and Xt � pxt, 1� xtq) :

Xt�1 � Xt �

$'''&
'''%
�γt�1p1�Xtq if arm 1 is selected and wins

�γt�1Xt if arm 2 is selected and wins

�ρt�1γt�1Xt if arm 1 is selected and loses

�ρt�1γt�1p1�Xtq if arm 2 is selected and loses

When one arm fails, decrease the
probability to sample it.

LP’09 : Up to technical conditions on pρt, γtq : penalized 2-armed bandit is infallible
(a.s. convergence to the good target)



II - 3 Over-penalized NSa
This additional penalty term will be inefficient from the minimax regret point of view.
As a last resort : increase the penalty effect to reinforce the escape from local traps :

Xt�1 � Xt �

$'''&
'''%
�γt�1p1�Xtq�ρt�1γt�1Xt if arm 1 is selected and wins

�γt�1Xt�ρt�1γt�1p1�Xtq if arm 2 is selected and wins

�ρt�1γt�1Xt if arm 1 is selected and loses

�ρt�1γt�1p1�Xtq if arm 2 is selected and loses

Whatever happens with the selected arm, it is penalized (escape from local traps).

A multi-armed version :

Xj
t � Xj

t�1 � γt
�
1It�j �Xj

t�1

�
AItt

�γtρtXIt
t�1

�
1It�j �

1� 1It�j
d� 1

�



II - 3 Over-penalized NSa and infallibility
Write Xt � Xt�1 � γthpXtq � γtρtκpXtq � γt∆Mt. Drift :

hipx1, . . . , xdq � xi

�
�p1� xiqpi �

¸
j�i

xjpj

�
� ,@i P t1, . . . , du

Equilibria of 9X � hpXq : Dirac masses on each arm. Stable one : p1, 0, . . . , 0q.
The Kushner-Clarck theorem ùñ a.s. convergence towards an equilibrium (which ?)

Theorem (Infallibility of the Over-penalized NSa)
If pd ¤ pd�1 ¤ . . . ¤ p2   p1 and γt � γ1t�α, ρt � ρ1t�β , then

0 ¤ β ¤ α and α� β ¤ 1 ùñ lim
tÑ�8

Xt � p1, 0 . . . , 0q a.s.

Sketch of proof : The penalty term induced by κ is

κipxq � �x2
i p1� piq � 1

d� 1

¸
j�i

x2
j p1� pjq,@i P t1, . . . , du

If X18 � 0, κ1pX8q ¡ 0 and :

�

α ¤ β ùñ lim sup

°
t γt∆Mt°
γtρt

¥ 0

�

α� β ¤ 1 ùñ
¸
γtρt � �8 ùñ

¸
γtρtκpXtq � �8



II - 4 Non-asymptotic upper bound of the regret

We detail the picture for the two-armed over-penalized NSa

R̄n � max
jPt1,2u

E
ņ

t�1

Ajt �AItt

� E
ņ

t�1

�
p1 � pX1

t p1 � p1�X
1

t qp2q
�

� pp1 � p2q
ņ

t�1

ρt
1�X

1

t

ρtlooomooon
:�Yt

In S.A., we expect a “CLT” Yn
w�ÝÑ

nÑ�8
µ and if supn¥1 EYn   8, then

R̄n À
ņ

t�1

ρt.

Choose β in ρt � ρ1

tβ
as large as possible s.t. β ¤ α, α� β ¤ 1. Optimal calibration :

γt � γ1?
t

and ρt � ρ1?
t
.



II - 4 Non-asymptotic upper bound of the regret

We are turned to the study of the random dynamical system induced by pYtqt¥1.
Again :

Yt�1 � Yt � γtϕtpYtq � γt∆Mt�1.

Beyond the analytic formula of ϕt, a simple picture :

Figure: Drift for non penalized (left) and overpenalized (right) NSa when y P r0, γ�1
t s.

To control the increments of Yt, the right situation is much better :

Large value of Yt are naturally decreased by ϕt



II - 4 Non-asymptotic upper bound of the regret
� Difficulty : obtaining a uniform bound over all the values 0 ¤ p2   p1 ¤ 1.

� Lyapunov arguments and painful computations lead to non asymptotic bound.

� Key quantity that induces the understanding of the good scaling

π � p1 � p2.

Theorem (Upper bound of the regret : 2-armed over-penalized NSa)

@n P N sup
p2 p1

R̄n ¤ 30
?

2n.

Optimal settings : γn � 9
10
?
n

and ρn � 1
3
?
n

.

Sketch of proof :

Define Z
prq
t � p1�Xtqr

γt
and exhibit a mean-reverting effect for r sufficiently large

ErZprqt�1|Fts � Z
prq
t � Pt,rpZprqt q.

� Find r such that Pt,r is negative on rCpγt, πq, γ�1
t s where Cpγt, πq � opγ�1

t q and

sup
t¥0

ErZprqt s   8.

� Exhibit a recursion between ErZprqt s and ErZpr�1q
t s for a result on supt¥0 ErYts



II - 4 Numerical simulations

Figure: Evolution of n ÞÑ suppp1,p2qPr0,1s,p2¤p1

R̄n?
n

for over-penalized NSa (continuous

colored line) and penalized NSa (dashed colored line) and KL UCB (black line).

� Over-penalization is important for a competitive regret
� Practical : R̄n ¤ ?

n - Theoretical : R̄n ¤ 30
?

2n
� Defeated by UCB-like algorithms from a statistical regret point of view

(R̄n ¤ ?
n{2)

� Computation time very low compared to MOSS or UCB-like algorithms



II - 4 Numerical simulations

Figure: Evolution of the probability of Arm 1 (best one) with respect to n while p1 � p2 � 0.1.
Left : ρ1{γ1 is varying. Right : p2 is increasing.

Seems to behave quite particularly (maybe after a good rescaling ?)

� Some jumps randomly distributed ? (more or less frequent according to the
parameters)

� Almost deterministic evolution between jumps when n is large

� Much more faster than KL-UCB (ratio of time needed : 1/100).



II - 4 Numerical simulations

Time for a short movie . . .
5 arms, p � r0.9, 0.88, 0.8, 0.75, 0.7s.

Let’s go back to the mathematics . . .
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III - 1 Rescaling

We fix p1 ¡ maxpp2, . . . , pdq, the “good” rescaling of what is left over by X1
n is

X̄n � pX2
n, . . . , X

d
nq

ρn

Proposition
For any f P C2pRd�1,Rq :

E
�
fpX̄n�1q|Fn

� � fpX̄nq � γn�1LdpfqpX̄nq � oP pγn�1q,

where Ld is the Markov generator given by

Ldpfqpx̄q �
ḑ

j�2

pj

g
x̄jloomoon

jump rate

rfpx̄� g1jq � fpx̄qsloooooooooooomoooooooooooon
jump size

�
ḑ

j�2

�
1� p1

d� 1
� p1x̄j

�
Bjfpx̄qlooooooooooooooomooooooooooooooon

deterministic part

.

� The amount of jump is low when g � γ1
ρ1

is large (seen in simulations).

� The size of jumps is large when g is large.



III - 1 Rescaling

As a tensorized process, it is enough to study the following Markov generator :

Lpfqpx̄q � pa� bx̄qf 1px̄q � cxrfpx̄� gq � fpx̄qs

� Family of Piecewise Deterministic Markov Process (PDMP for short)

� Random dynamical systems with an increasing interest (encountered in many
modelisation problems)

� Famous examples (among many others) :
� Telegraph process [Kac, ’74]
� Storage models [Roberts & Tweedie,’00]
� Randomly switched ODE [Benäım et al.,’14] & Parrondo-like paradox
� TCP models [Guillin, Malrieu et al.’13, Cloez & Hairer’13]

What the dynamic looks like exactly in the over-penalized NSa case ?

� Set

a � 1� p1

d� 1
, b � p1, cj � pj

g
, g � γ1

ρ1

� Between jumps, the evolution is deterministic and follow a differential flow

9φpξ, tq �
�

1� p1

d� 1
� p1ξ

�
Bξφpξ, tq

� Poisson jumps with an instantaneous average push of
pj
g
x̄j � g.

Here, the size of the jumps are deterministic.



III - 2 Trajectories of the rescaled over-penalized NSa

� Ld acts as a tensorized Markov generator on each coordinate.

� The problem is reduced to the study of the random dynamic system described by

Lpfqpx̄q � pa� bx̄qf 1px̄q � cxrfpx̄� gq � fpx̄qs,
� Examples of rescaled trajectories for several values of pa, b, c, gq

� Asymptotic direction : a{b. Bottom left : transient behaviour when cg ¡ b . . . but
in the bandit algorithm

cg � b � pj � p1   0 p!q



III - 3 Ergodicity and Invariant measure

Ergodicity can be helpful to derive confidence bounds. It requires to obtain some
mixing properties around an/the invariant measure.

Lpfqpx̄q � pa� bxqf 1px̄q � cxrfpx̄� gq � fpx̄qs,
For over-penalized NSa, the process should be studied only when cg � b   0.

Proposition (Invariant measure - rescaled over-penalized NSa)
The PDMP X̄t has a unique invariant measure µ supported by

�
1� p1

p1pd� 1q ,�8
�d�1

.

Sketch of proof : existence and uniqueness through a Lyapunov certificate :

LpIdq � a� pb� cgqId.

But . . . Some real difficulties :

� No explicit formula for µ . . . We are far from a standard CLT with a Gaussian
distribution and even far from the simplest case of the TCP process

� Less is known about the smoothness of µ . . . Intricate situation as pointed by
[Bakhtin & Hurth & Mattingly ’14].



III - 4 Ergodicity and mixing rate

L is a non-reversible Markov operator, which is usual for this kind of kinetic models
The question : Obtaining an upper bound of the mixing rate :

dpLpXtq, µq ¤ εptq ÝÑ 0 as t ÝÑ �8.

� Traditional distance

}LpXtq � µ}
L2pµqý � sup

f : }f}L2pµq�1
}ErfpX̄x

t qs � µpfq}L2pµq

Non-reversible generators : difficult to handle with the L2 distance, require
informations on µ (Modified norms [Villani,’09], Lie brackets [Gadat & Miclo’13])

� Resort less sophisticated distances induced by trajectorial properties (instead of
functional ones)
Wasserstein distance :

Wppν1, ν2q � inf
!
E ppX � Y qpqq 1

p |LpXq � ν1, LpY q � ν2

)
Total Variation distance :

dTV pν1, ν2q � max
Ω�E

|ν1pΩq � ν2pΩq|
� Use some coupling techniques to derive quantiative bounds



III - 4 Ergodicity and mixing rate

The simple idea :

� Build a non independent coupling pX̄t, Ytq such that X̄t and Yt follow the
dynamic given by L and Y0 � µ

� Try to make X̄t and Yt close to each others for the Wasserstein results

Theorem (Wasserstein ergodicity)
An explicit constant γp exists such that

WppLpX̄tq, µq ¤ γpe
�tπ{p,

where π � p1 � p2 is the difference between the 2 probabilities of success of the 2
best arms

Optimal for W1. Open questions for Wp.

� Try to make the two processes X̄t � Yt stucked rapidly for the TV results

Theorem (Total Variation ergodicity)
Some explicit constants C and α exist such that

dTV pLpX̄tq, µq ¤ Ce�απt.

Suspected to be far from the optimal exponents.
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IV Conclusion

Statistics :

� Standard NSa Algorithm is fallible . . .

� Penalized bandits are infallible

� Over-penalization : relevant for regret bounds

� Over-penalization : traduces a vanishing repelling effect on each corner of the
simplex.

� Minimax result in the two-armed case :

R̄n ¤ C
?

2n,

� Much more faster than what is already existing in Bandit methods while
statistically competitive (not as good as KL UCB)

Probability :

� Rescaled process as a PDMP.

� Random jumps come from the binary rewards given by each arm.

� Ergodic properties

Anecdotal :

� Used in some trading firms in ! La Defense " . . .



IV Conclusion
Open questions :
� Regret with d arms ? Numerical simulations lead to the conjecture

R̄n ¤ C
?
dn,

which is the known minimax rate for d-armed bandit.

Over-Penalized NSa seems to behave well . . .
� What should be a generalization of Over-Penalized NSa for continuous rewards ?

What is the rescaled process (suspected to be a diffusion instead of a jump
process . . . )

� Many challenging questions with the PDMP :
� Spectral results and L2 convergence
� Wasserstein lower bounds
� Smoothness of the invariant measure

Thank you for your attention
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