$\label{eq:Framework and motivation} Framework and motivation Control of the estimation error on a given class <math display="inline">\mathcal{C}\colon R(\hat{g}^*_{n,\mathcal{C}})-R(g^*_{\mathcal{C}})$

Statistical Learning and Empirical Risk Minimization

TSE Team

March 10, 2023

 $\label{eq:Framework and motivation} Framework and motivation Control of the estimation error on a given class <math display="inline">\mathcal{C}\colon R(\hat{g}^*_{n,\mathcal{C}})-R(g^*_{\mathcal{C}})$

Objectives

- Reminders on supervised learning
- Generative approaches
- Discriminative approaches Empirical Risk Minimization
 - \mapsto Definition, examples and trade-off (over-fitting)

 \mapsto Estimation error upper bounds (concentration inequalities) Motivation: Statistical Learning Basics !

1 Framework and motivation

2 Control of the estimation error on a given class C: $R(\hat{g}_{n,C}^*) - R(g_C^*)$

Supervised learning framework (reminders)

Phenomenon $(\mathbf{X}, Y) \sim \mathbb{P}$. **Task :** Predict *Y* with **X**.

- Decision rule (classifier, predictor) $g: X \rightarrow Y$ measurable
- Loss: $\ell(Y, g(\mathbf{X}))$
- **Risk:** $R(g) = \mathbb{E}[\ell(Y, g(\mathbf{X}))]$

Supervised learning framework (reminders)

Phenomenon $(\mathbf{X}, Y) \sim \mathbb{P}$. **Task :** Predict *Y* with **X**.

- Decision rule (classifier, predictor) $g: X \rightarrow Y$ measurable
- Loss: $\ell(Y, g(\mathbf{X}))$
- **Risk:** $R(g) = \mathbb{E}[\ell(Y, g(\mathbf{X}))]$

Bayesian classifier: $R(g^{Bayes}) \leq R(g), \forall g$

 \mapsto Previous slides: computation of the Bayesian classifier: regression, quadratic loss ,

classification, 0-1 loss

Supervised learning framework (reminders)

Phenomenon $(\mathbf{X}, Y) \sim \mathbb{P}$. **Task :** Predict *Y* with **X**.

- Decision rule (classifier, predictor) $g: X \rightarrow Y$ measurable
- Loss: $\ell(Y, g(\mathbf{X}))$
- **Risk:** $R(g) = \mathbb{E}[\ell(Y, g(\mathbf{X}))]$

Bayesian classifier: $R(g^{Bayes}) \leq R(g), \forall g$

 \mapsto Previous slides: computation of the Bayesian classifier: regression, quadratic loss ,

classification, 0-1 loss

Problem: g^{Bayes} depends of \mathbb{P} , unknown

• We observe a Learning Set :

$$D_n = \{ (\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n) \}$$
 (i.i.d. $\sim \mathbb{P}$)

 \mapsto We build a classifier \hat{g}_n .

Goal: Upper bound the excess risk $\mathcal{E}(\hat{g}_n) = R(\hat{g}_n) - R(g^{Bayes})$.

Regression

Classification

Generative approach (Reminder)

Approach

- **1** We **model** the joint law (\mathbf{X}, Y) with a (parametric) model: $\{\mathbb{P}_{\theta}, \theta \in \Theta\}$
- **2** We compute the Bayes' classifier g_{θ}^* for any value of θ and \mathbb{P}_{θ} .
- **3** We estimate θ^* with $\hat{\theta}_n$.

4 We define
$$\hat{g}_n = g^*_{\hat{\theta}_n}$$
 (plug-in).

Result (Tutorials) Under $\mathbb{P}_{n\theta}$, if $\hat{\theta}_n$ is consistent, under nice continuity properties, the excess risk goes to 0:

$$\mathbb{E}_n^{\theta}\left[R(g^*_{\hat{\theta}_n})-R(g^{Bayes})\right]{\longrightarrow} 0$$

 \mapsto Statistical Approach: we use a statistical model and we obtain some results for this model.

Methods: LDA, QDA, Logistic classification, Gaussian regression, K nearest neighbour...

Generative approach - classification examples

LDA/QDA

Model: $\mathbf{X}|(Y = i) \sim \mathcal{N}(\mu_i, \Sigma_i), Y \sim \mathcal{B}(p)$ Parameters: $(p, (\mu_i), (\Sigma_i))$ Decision: linear or quadratic Typical estimator: MLE

Logistic Regression

 $\begin{array}{l} \mathsf{Model}: \ Y | \mathbf{X} \sim \mathcal{B}(\sigma(\beta^T \mathbf{X})) \\ \mathsf{Parameter:} \ \beta \\ \mathsf{Decision}: \ \mathsf{Linear} \\ \mathsf{Typical estimator:} \ \mathsf{MLE} \ (\mathsf{conditionnally to} \\ \mathsf{the} \ \mathbf{X}_i) \end{array}$

Naive Bayes / KNN

Models: non-parametric Decision: non linear

Generative approach - classification examples

LDA/QDA

Model: $\mathbf{X}|(Y = i) \sim \mathcal{N}(\mu_i, \Sigma_i), Y \sim \mathcal{B}(p)$ Parameters: $(p, (\mu_i), (\Sigma_i))$ Decision: linear or quadratic Typical estimator: MLE

Logistic Regression

 $\begin{array}{l} \mathsf{Model}: \ Y | \mathbf{X} \sim \mathcal{B}(\sigma(\beta^T \mathbf{X})) \\ \mathsf{Parameter:} \ \beta \\ \mathsf{Decision}: \ \mathsf{Linear} \\ \mathsf{Typical estimator:} \ \mathsf{MLE} \ (\mathsf{conditionnally to} \\ \mathsf{the} \ \mathbf{X}_i) \end{array}$

Naive Bayes / KNN

Models: non-parametric Decision: non linear Problem: Model choice!

 $\label{eq:Framework and motivation} Framework and motivation Control of the estimation error on a given class <math display="inline">\mathcal{C}\colon R(\hat{g}^*_{n,\mathcal{C}})-R(g^*_{\mathcal{C}})$

Discriminative approach, Empirical Risk Minimization

Idea: Choose a good predictor for the learning set $\{(\mathbf{X}_i, Y_i)_{1 \le i \le n}\}$.

• We can compute the empirical risk $\widehat{\mathrm{R}}_n(g)$...

$$\widehat{\mathbf{R}}_n(g) = \frac{1}{n} \sum_{i=1}^n \ell(g(\mathbf{X}_i), Y_i),$$

Framework and motivation Control of the estimation error on a given class \mathcal{C} : $R(\hat{g}^*_{n,\mathcal{C}}) - R(g^*_{\mathcal{C}})$

Discriminative approach, Empirical Risk Minimization

Idea: Choose a good predictor for the learning set $\{(\mathbf{X}_i, Y_i)_{1 \le i \le n}\}$. • We can compute the empirical risk $\widehat{\mathbf{R}}_n(g)$... and minimize it !

$$\widehat{\mathbf{R}}_n(g) = \frac{1}{n} \sum_{i=1}^n \ell(g(\mathbf{X}_i), Y_i), \qquad \qquad \widehat{g}_{n,\mathcal{C}}^* = \underset{g \in \mathcal{C}}{\arg\min} \,\widehat{\mathbf{R}}_n(g)$$

Framework and motivation Control of the estimation error on a given class \mathcal{C} : $R(\hat{g}^*_{n,\mathcal{C}}) - R(g^*_{\mathcal{C}})$

Discriminative approach, Empirical Risk Minimization

Idea: Choose a good predictor for the learning set $\{(\mathbf{X}_i, Y_i)_{1 \le i \le n}\}$. • We can compute the empirical risk $\widehat{\mathbf{R}}_n(g)$... and minimize it !

$$\widehat{\mathbf{R}}_n(g) = \frac{1}{n} \sum_{i=1}^n \ell(g(\mathbf{X}_i), Y_i), \qquad \qquad \widehat{g}_{n,\mathcal{C}}^* = \operatorname*{arg\,min}_{g \in \mathcal{C}} \widehat{\mathbf{R}}_n(g)$$

Minimize $\widehat{\mathbf{R}}_n$ (ERM): $\hat{g}_{n,\mathcal{C}}^*$

Framework and motivation Control of the estimation error on a given class $C: R(\hat{g}_{n,C}^*) - R(g_{C}^*)$

Discriminative approach, Empirical Risk Minimization

Idea: Choose a good predictor for the learning set $\{(\mathbf{X}_i, Y_i)_{1 \le i \le n}\}$. • We can compute the empirical risk $\widehat{\mathbf{R}}_n(g)$... and minimize it !

$$\widehat{\mathbf{R}}_n(g) = \frac{1}{n} \sum_{i=1}^n \ell(g(\mathbf{X}_i), Y_i), \qquad \qquad \widehat{g}_{n,\mathcal{C}}^* = \operatorname*{arg\,min}_{g \in \mathcal{C}} \widehat{\mathbf{R}}_n(g)$$

Minimize $\widehat{\mathbf{R}}_n$ (ERM): $\hat{g}_{n,\mathcal{C}}^*$

Hope: For any g, since $R(g) = \mathbb{E}[\ell(\mathbf{X}, Y)]$,

- $\widehat{\mathrm{R}}_n(g)$ is an unbiased estimator of R(g)
- The LLN shows that $\widehat{\mathrm{R}}_n(g) \xrightarrow{\mathbb{P}-\mathrm{prob}} R(g)$

Framework and motivation Control of the estimation error on a given class $C: R(\hat{g}_{n,C}^*) - R(g_{C}^*)$

Discriminative approach, Empirical Risk Minimization

Idea: Choose a good predictor for the learning set $\{(\mathbf{X}_i, Y_i)_{1 \le i \le n}\}$.

• We can compute the empirical risk $\widehat{\mathrm{R}}_n(g)$... and minimize it !

$$\widehat{\mathbf{R}}_n(g) = \frac{1}{n} \sum_{i=1}^n \ell(g(\mathbf{X}_i), Y_i), \qquad \qquad \widehat{g}_{n,\mathcal{C}}^* = \operatorname*{arg\,min}_{g \in \mathcal{C}} \widehat{\mathbf{R}}_n(g)$$

Minimize $\widehat{\mathbf{R}}_n$ (ERM): $\hat{g}_{n,\mathcal{C}}^*$

Choice of ${\mathcal C}$?

• We must restrict the class of functions. Indeed, if $C = \mathbb{R}^X$, since $\ell(y, y) = 0$, it is enough to choose $\hat{g}(X_i) = Y_i$ for any $i \in \{1, \ldots, n\}$ and $\hat{g}(x) = 0$ if $x \notin \{x_1, \ldots, x_n\}$.

 Problem: Generalization this classifier does not generalize anything.

$$\widehat{\mathbf{R}}_n(\widehat{g}_{n,\mathcal{C}}^*) \ll R(\widehat{g}_{n,\mathcal{C}}^*)$$

Framework and motivation Control of the estimation error on a given class $C: R(\hat{g}_{n,C}^*) - R(g_{C}^*)$

Choice of C - Examples in regression, quadratic loss.

 $R(\hat{g}_{n,\mathcal{C}}^*)$

d

Problem

Demo Colab

 $\label{eq:Framework and motivation} Framework and motivation Control of the estimation error on a given class <math display="inline">\mathcal{C}\colon R(\hat{g}^*_{n,\mathcal{C}})-R(g^*_{\mathcal{C}})$

Decomposition of the excess risk for a given C

- Let $g_{\mathcal{C}}^*$ s.t. $R(g_{\mathcal{C}}^*) = \inf_{g \in \mathcal{C}} R(g).$
- Let $\hat{g}_{n,\mathcal{C}}$ an estimator in \mathcal{C} .

 $g^{Bayes}_+ g^*_{\mathcal{C}}$ С $\hat{g}_{n,\mathcal{C}}$

 $\label{eq:Framework and motivation} Framework and motivation Control of the estimation error on a given class <math display="inline">\mathcal{C}\colon R(\hat{g}^*_{n,\mathcal{C}})-R(g^*_{\mathcal{C}})$

Decomposition of the excess risk for a given C

- Let $g_{\mathcal{C}}^*$ s.t. $R(g_{\mathcal{C}}^*) = \inf_{g \in \mathcal{C}} R(g).$
- Let $\hat{g}_{n,\mathcal{C}}$ an estimator in \mathcal{C} .

$$\mathcal{E}(\hat{g}_{n,\mathcal{C}}) = R(\hat{g}_{n,\mathcal{C}}) - R(g^{Bayes}) = \underbrace{R(\hat{g}_{n,\mathcal{C}}) - R(g^*_{\mathcal{C}})}_{R(g^*_{\mathcal{C}})} + \underbrace{R(g^*_{\mathcal{C}}) - R(g^{Bayes})}_{R(g^*_{\mathcal{C}})}$$

Estimation Error

Approximation Error

 $\label{eq:Framework and motivation} Framework and motivation Control of the estimation error on a given class <math display="inline">\mathcal{C}\colon R(\hat{g}_{n,\mathcal{C}}^*)-R(g_{\mathcal{C}}^*)$

Decomposition of the excess risk for a given C

- Let $g_{\mathcal{C}}^*$ s.t. $R(g_{\mathcal{C}}^*) = \inf_{g \in \mathcal{C}} R(g).$
- Let $\hat{g}_{n,\mathcal{C}}$ an estimator in \mathcal{C} .

$$\mathcal{E}(\hat{g}_{n,\mathcal{C}}) = R(\hat{g}_{n,\mathcal{C}}) - R(g^{Bayes}) = \underbrace{R(\hat{g}_{n,\mathcal{C}}) - R(g^*_{\mathcal{C}})}_{\text{Estimation Error}} + \underbrace{R(g^*_{\mathcal{C}}) - R(g^{Bayes})}_{\text{Approximation Error}}$$

 \mathcal{C} increases

n increases

- The estimation error translates our partial knowledge of the distribution (X, Y).
- The approximation error depends on the choice of C.

TSE Team

Summary 1: Minimization of the Empirical Risk Minimization

Discriminative approach. We minimize the ERM on $\ensuremath{\mathcal{C}}.$

$$\hat{g}_{n,\mathcal{C}}^* = \arg\min_{g\in\mathcal{C}} \left\{ \widehat{\mathbf{R}}_n(g) = n^{-1} \sum_{i=1}^n \ell(g(\mathbf{X}_i), Y_i) \right\}$$

- 3 inter-connected questions:
 - **1** How should we choose C ?
 - Examples in régression
 - Decomposition in approximation error/ estimation
 - Overfitting
 - In pratice, cross validation

Summary 1: Minimization of the Empirical Risk Minimization

Discriminative approach. We minimize the ERM on $\ensuremath{\mathcal{C}}.$

$$\hat{g}_{n,\mathcal{C}}^* = \arg\min_{g\in\mathcal{C}} \left\{ \widehat{\mathbf{R}}_n(g) = n^{-1} \sum_{i=1}^n \ell(g(\mathbf{X}_i), Y_i) \right\}$$

- 3 inter-connected questions:
 - **1** How should we choose C ?
 - Examples in régression
 - Decomposition in approximation error/ estimation
 - Overfitting
 - In pratice, cross validation

2 Upper bound of the estimation error $R(\hat{g}_{n,\mathcal{C}}^*) - R(g_{\mathcal{C}}^*)$?

3 How to compute $\hat{g}_{n,\mathcal{C}}^*$? Accuracy?

1 Framework and motivation

- 2 Control of the estimation error on a given class C: $R(\hat{g}_{n,C}^*) R(g_C^*)$ • Estimation error and deviation of the ERM
 - Concentration inequality
 - Application to the risk upper bound of the ERM

Framework and motivation Control of the estimation error on a given class $C: R(\hat{g}_{n,C}^{*}) - R(g_{C}^{*})$

Estimation error of ERM over $\ensuremath{\mathcal{C}}$

 $\begin{array}{l} \textbf{Goal: upper bound} \underbrace{R(\hat{g}_{n,\mathcal{C}}^{*}) - R(g_{\mathcal{C}}^{*})}_{\text{Estimation Error}}, \text{ with} \\ \left\{ \begin{array}{l} \hat{g}_{n,\mathcal{C}}^{*} = \arg\min_{g \in \mathcal{C}} \widehat{\mathbf{R}}_{n}\left(g\right) \\ g_{\mathcal{C}}^{*} = \arg\min_{g \in \mathcal{C}} R(g) \end{array} \right. \end{array}$

Remarks: - we consider a minimiser - solely the value of the min is important: we compute $\inf_{g \in \mathcal{C}} R(g)$ instead of $R(g_{\mathcal{C}}^*)$.

Framework and motivation Control of the estimation error on a given class $C: R(\hat{g}^*_{n,C}) - R(g^*_{C})$

Estimation error of ERM over \mathcal{C}

Goal : upper bound $\underbrace{R(\hat{g}_{n,\mathcal{C}}^*) - R(g_{\mathcal{C}}^*)}_{\text{Estimation Error}}$, with

 $\begin{cases} \hat{g}_{n,\mathcal{C}}^* = \arg\min_{g\in\mathcal{C}} \widehat{\mathbf{R}}_n(g) \\ g_{\mathcal{C}}^* = \arg\min_{g\in\mathcal{C}} R(g) \end{cases}$

Remarks: - we consider a minimiser - solely the value of the min is important: we compute $\inf_{g \in \mathcal{C}} R(g)$ instead of $R(g^*_{\mathcal{C}})$.

Theorem

We have:

$$\mathbb{E}\left[R(\hat{g}_{n,\mathcal{C}}^{*}) - \inf_{g \in \mathcal{C}} R(g) \le 2 \sup_{g \in \mathcal{C}} |\widehat{\mathbf{R}}_{n}(g) - R(g)|, \text{ a.s.} \\ \mathbb{E}\left[R(\hat{g}_{n,\mathcal{C}}^{*}) - \inf_{g \in \mathcal{C}} R(g)\right] \le \mathbb{E}\left[\sup_{g \in \mathcal{C}} |\widehat{\mathbf{R}}_{n}(g) - R(g)|\right]$$

The excess risk of ERM is upper bounded by the deviations between the risk and the ERM over the class.

Framework and motivation Control of the estimation error on a given class $\mathcal{C}\colon R(\hat{g}^*_{n,\,\mathcal{C}})-R(g^*_{\mathcal{C}})$

Estimation error and deviation of the ERM Concentration inequality Application to the risk upper bound of the ERM

Proof (completed)

Observations:

- $\widehat{\mathbf{R}}_n(\hat{g}_{n,\mathcal{C}}^*) \leq \widehat{\mathbf{R}}_n(g) \quad \text{for any } g \in \mathcal{C}.$
- $|\widehat{\mathbf{R}}_n(\widehat{g}_{n,\mathcal{C}}^*) R(\widehat{g}_{n,\mathcal{C}}^*)| \le \sup_{g \in \mathcal{C}} |\widehat{\mathbf{R}}_n(g) R(g)|.$
- We use $\widehat{\mathrm{R}}_n(\widehat{g}_{n,\mathcal{C}}^*) \leq \widehat{\mathrm{R}}_n(g_{\mathcal{C}}^*)$

$$R(\hat{g}_{n,\mathcal{C}}^*) - \inf_{g \in \mathcal{C}} R(g) = R(\hat{g}_{n,\mathcal{C}}^*) - \widehat{R}_n(\hat{g}_{n,\mathcal{C}}^*) + \widehat{R}_n(\hat{g}_{n,\mathcal{C}}^*) - \inf_{g \in \mathcal{C}} R(g)$$
$$\leq R(\hat{g}_{n,\mathcal{C}}^*) - \widehat{R}_n(\hat{g}_{n,\mathcal{C}}^*) + \widehat{R}_n(g_{\mathcal{C}}^*) - R(g_{\mathcal{C}}^*) .$$

We deduce that:

$$R(\hat{g}_{n,\mathcal{C}}^*) - \inf_{g \in \mathcal{C}} R(g) \leq 2 \sup_{g \in \mathcal{C}} |\widehat{\mathbf{R}}_n(g) - R(g)| .$$
$$\mathbb{E}\left[R(\hat{g}_{n,\mathcal{C}}^*) - \inf_{g \in \mathcal{C}} R(g)\right] \leq \mathbb{E}\left[\sup_{g \in \mathcal{C}} |\widehat{\mathbf{R}}_n(g) - R(g)|\right] .$$

Framework and motivation Control of the estimation error on a given class $\mathcal{C}\colon R(\hat{g}_{n,\mathcal{C}}^*)-R(g_{\mathcal{C}}^*)$

Estimation error and deviation of the ERM Concentration inequality Application to the risk upper bound of the ERM

Upper bound of the estimation error on $\mathcal C$

Theorem (Reminder)

We

have:

$$\begin{aligned} R(\hat{g}_{n,\mathcal{C}}^{*}) &- \inf_{g \in \mathcal{C}} R(g) \leq 2 \sup_{g \in \mathcal{C}} |\widehat{\mathbf{R}}_{n}(g) - R(g)| , \text{ a.s.} \\ \mathbb{E}\left[R(\hat{g}_{n,\mathcal{C}}^{*}) - \inf_{g \in \mathcal{C}} R(g) \right] \leq & \mathbb{E}\left[\sup_{g \in \mathcal{C}} |\widehat{\mathbf{R}}_{n}(g) - R(g)| \right]. \end{aligned}$$

The excess risk of the ERM is upper bounded by the deviations between the risk and the ERM over the class.

Type of upper bound? $R(\hat{g}_{n,C}^*)$ is a random variable !

- 1 Expectation upper bound?
- 2 With overwhelming overwhelming probability, :

 $\mathbb{P}(R(\hat{g}_{n,\mathcal{C}}^*) - R(g_{\mathcal{C}}^*) \le \Delta_{n,\delta}(\mathcal{C})) \ge 1 - \delta$

where $\Delta_{n,\delta}(\mathcal{C})$ depends on the n (# \mathcal{D}_n), δ (the confidence level).

 \mapsto we need to derive some upper bounds on the uniform deviations of the random variables relatively to their means.

Uniform deviation upper bounds, 0-1 loss

We only deal with the 0-1 loss: for any $g \in C$, $n \widehat{R}_n(g) = \sum_{k=1}^n \mathbb{1}_{\{g(X_k) \neq Y_k\}}$ is distributed according to a Binomial distribution of parameters Bin(n, R(g)).

We will upper bound $\sup_{g \in \mathcal{C}} \left| n^{-1} \sum_{i=1}^{n} \{ \mathbb{1}_{\{g(\mathbf{X}_i) \neq Y_i\}} - R(g) \} \right|.$

1 Over C a finite class

2 With overwhelming probability and in expectation.

Approach:

1 For any fixed g, $\mathbb{P}(|\widehat{\mathbf{R}}_n(g) - R(g)| > ...)$ is small \mapsto Concentration inequality.

2 Union bound:

 $\mathbb{P}(\sup_{g \in \mathcal{C}} |\widehat{\mathbf{R}}_n(g) - R(g)| > \ldots) \leq \sum_{g \in \mathcal{C}} \mathbb{P}(|\widehat{\mathbf{R}}_n(g) - R(g)| > \ldots)$

Framework and motivation Control of the estimation error on a given class $C: R(\hat{g}_{n,C}^*) - R(g_C^*)$

Concentration inequality: from Markov to Hoeffding

- If Z ≥ 0, then P(Z > t) ≤ E[Z]/t. which implies the Chebyshev inequality: if Z has a bounded variance: P(|Z − E[Z]| ≥ ε) ≤ Var(Z)/ε²
- If X_1, \ldots, X_n i.i.d. and $Z = \frac{1}{n} \sum_{i=1}^n X_i$, we have $\operatorname{Var}(Z) = \frac{\operatorname{Var}(X_1)}{n}$

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mathbb{E}[X_{1}]\right|>\varepsilon\right)\leq\frac{\operatorname{Var}(X_{1})}{n\varepsilon^{2}}$$

Theorem (Hoeffding inequality)

Let X_1, \ldots, X_n n independent random variables in [0, 1]. For any $\varepsilon > 0$,

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n} \{X_i - \mathbb{E}[X_i]\}\right| \ge \varepsilon\right) \le 2\mathrm{e}^{-2n\varepsilon^2}$$

- No i.i.d., just independence!
- Extension to $X_i \in [a_i, b_i]$, upper bound $2e^{-2n^2 \varepsilon^2 / \sum_{i=1}^n (b_i a_i)^2}$

Framework and motivation Control of the estimation error on a given class $\mathcal{C}\colon R(\hat{g}^*_{n,\,\mathcal{C}})-R(g^*_{\mathcal{C}})$

Estimation error and deviation of the ERM Concentration inequality Application to the risk upper bound of the ERM

Upper bound on the risk

$$\mathbb{P}\left(\sup_{g\in\mathcal{C}}|\widehat{\mathbf{R}}_n(g) - R(g)| > \varepsilon\right)$$

Framework and motivation Control of the estimation error on a given class $\mathcal{C}\colon R(\hat{g}_{n,\mathcal{C}}^{*})-R(g_{\mathcal{C}}^{*})$

Estimation error and deviation of the ERM Concentration inequality Application to the risk upper bound of the ERM

Upper bound on the risk (completed)

Theorem

Assume that $|\mathcal{C}| < \infty$. Then, for any $n \in \mathbb{N}$ and $\varepsilon > 0$,

$$\mathbb{P}\left(\sup_{g\in\mathcal{C}}\widehat{\mathbf{R}}_{n}(g) - R(g) > \varepsilon\right) \leq |\mathcal{C}| e^{-2n\varepsilon^{2}} ,$$
$$\mathbb{P}\left(\sup_{g\in\mathcal{C}}|\widehat{\mathbf{R}}_{n}(g) - R(g)| > \varepsilon\right) \leq 2 |\mathcal{C}| e^{-2n\varepsilon^{2}}$$

Proof.

• Denote $C = \{g_i\}_{i=1}^{|C|}$. The union bound shows that:

$$\mathbb{P}\left(\sup_{g\in\mathcal{C}}|\widehat{\mathbf{R}}_n(g)-R(g)|>\varepsilon\right)\leq\sum_{i=1}^{|\mathcal{C}|}\mathbb{P}(|\widehat{\mathbf{R}}_n(g_i)-R(g_i)|>\varepsilon)\;.$$

• The union bounds come from the Hoeffding inequality using that $\{\mathbb{1}_{\{g(X_i)\neq Y_i\}}\}_{i=1}^n$ are distributed according to a Bernoulli distribution.

Conclusion: upper bound in probability

Estimation error upper bound, finite class *C***, 0-1 loss.** We have:

$$R(\hat{g}_{n,\mathcal{C}}^*) - R(g_{\mathcal{C}}^*) \le 2\sup_{g\in\mathcal{C}} |\widehat{\mathbf{R}}_n(g) - R(g)|$$

2 Furthermore, with probability $1 - \delta$,

$$\sup_{g \in \mathcal{C}} |\widehat{\mathbf{R}}_n(g) - R(g)| \le \sqrt{\frac{\log(2|\mathcal{C}|/\delta)}{2n}}$$

3 As a consequence, with a probability larger than $1-\delta$

$$R(\hat{g}_{n,\mathcal{C}}^*) - R(g_{\mathcal{C}}^*) \le 2\sqrt{\frac{\log(2|\mathcal{C}|/\delta)}{2n}}$$

Remarks:

- **1** depends on $|\mathcal{C}|$
- **2** depends on n

Framework and motivation Control of the estimation error on a given class $\mathcal{C}\colon R(\hat{g}_{n,\mathcal{C}}^{*})-R(g_{\mathcal{C}}^{*})$

Estimation error and deviation of the ERM Concentration inequality Application to the risk upper bound of the ERM

Conclusion: upper bound in expectation

We have
$$\mathbb{E}\left[R(\hat{g}_{n,\mathcal{C}}^*) - R(g_{\mathcal{C}}^*)\right] \leq \mathbb{E}\left[\max_{g\in\mathcal{C}} |\widehat{\mathbf{R}}_n(g) - R(g)|\right]$$

Theorem (Pisier Inequality)

Let Z_1, \ldots, Z_m m sub-gaussian r.v., i.e. s.t., $\forall \lambda \in \mathbb{R}$

 $\mathbb{E}[\mathrm{e}^{\lambda Z_i}] \le \mathrm{e}^{\lambda^2 \sigma^2/2}$

Then,

$$\mathbb{E}\left[\max_{1 \le i \le m} |Z_i|\right] \le \sigma \sqrt{2\log(2m)} \;.$$

Denote $Z_j = \widehat{\mathbb{R}}_n(g_j) - R(g_j), j \in \{1, \dots, |\mathcal{C}|\}$. For any $\lambda \ge 0$, $\mathbb{E}[\mathrm{e}^{\lambda Z_j}] = \mathbb{E}\left[\mathrm{e}^{(\lambda/n)\sum_{i=1}^n \{\mathbbm{1}_{\{g_j(X_i) \neq Y_i\}} - R(g_j)\}}\right]$ $= \left(\mathbb{E}\left[\mathrm{e}^{(\lambda/n)\{\mathbbm{1}_{\{g_j(X_1) \neq Y_1\}} - R(g_j)\}}\right]\right)^n \le \mathrm{e}^{\lambda^2/8n}$

using the Hoeffding Lemma, $\mathbb{E}\left[e^{(\lambda/n)\{\mathbb{1}_{\{g_j(X_1)\neq Y_1\}}-R(g_j)\}}\right] \leq e^{\lambda^2/(8n^2)}$ TSE Team Statistical Learning and ERM Framework and motivation Control of the estimation error on a given class $C: R(\hat{g}_{n,C}^{*}) - R(g_{C}^{*})$

Estimation error and deviation of the ERM Concentration inequality Application to the risk upper bound of the ERM

Bound for the integrated risk

Theorem

If $\hat{g}_{n,\mathcal{C}}^*$ minimizes the ERM over \mathcal{C} , then:

$$\mathbb{E}[R(\hat{g}_{n,\mathcal{C}}^*) - R(g_{\mathcal{C}}^*)] \le \sqrt{\frac{\log(2|\mathcal{C}|)}{2n}}$$