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Framework and motivation
Control of the estimation error on a given class C: R(ĝ∗n,C)−R(g∗C)

Objectives

Reminders on supervised learning

Generative approaches

Discriminative approaches - Empirical Risk Minimization

7→ Definition, examples and trade-off (over-fitting)

7→ Estimation error upper bounds (concentration inequalities)

Motivation: Statistical Learning Basics !
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Framework and motivation
Control of the estimation error on a given class C: R(ĝ∗n,C)−R(g∗C)

Supervised learning framework (reminders)

Phenomenon (X, Y ) ∼ P.
Task : Predict Y with X.

Decision rule (classifier, predictor) g : X → Y
measurable

Loss: ℓ(Y, g(X))

Risk: R(g) = E[ℓ(Y, g(X))]

Bayesian classifier: R(gBayes) ≤ R(g),∀g
7→ Previous slides: computation of the Bayesian classifier:
regression, quadratic loss ,

classification, 0-1 loss

Problem: gBayes depends of P, unknown
We observe a Learning Set :
Dn = {(X1, Y1), . . . , (Xn, Yn)} (i.i.d. ∼ P)
7→ We build a classifier ĝn.

Regression

Classification

Goal: Upper bound the excess risk E(ĝn) = R(ĝn)−R(gBayes).
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Generative approach (Reminder)

Approach
1 We model the joint law (X, Y ) with a (parametric) model:

{Pθ, θ ∈ Θ}
2 We compute the Bayes’ classifier g∗θ for any value of θ and Pθ.

3 We estimate θ⋆ with θ̂n.
4 We define ĝn = g∗

θ̂n
(plug-in).

Result (Tutorials) Under Pnθ, if θ̂n is consistent, under nice continuity
properties, the excess risk goes to 0:

Eθ
n

[
R(g∗

θ̂n
)−R(gBayes)

]
−→0

7→ Statistical Approach: we use a statistical model and we obtain some
results for this model.

Methods: LDA, QDA, Logistic classification, Gaussian regression, K
nearest neighbour...
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Generative approach - classification examples

LDA/QDA
Model: X|(Y = i) ∼ N (µi,Σi), Y ∼ B(p)
Parameters: (p, (µi), (Σi))
Decision: linear or quadratic
Typical estimator: MLE

Logistic Regression
Model : Y |X ∼ B(σ(βTX))
Parameter: β
Decision : Linear
Typical estimator: MLE (conditionnally to
the Xi)

Naive Bayes / KNN
Models: non-parametric
Decision: non linear

Problem: Model choice!

TSE Team Statistical Learning and ERM



Framework and motivation
Control of the estimation error on a given class C: R(ĝ∗n,C)−R(g∗C)
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Discriminative approach, Empirical Risk Minimization

Idea: Choose a good predictor for the learning set {(Xi, Yi)1≤i≤n}.
We can compute the empirical risk R̂n(g) ...

R̂n(g) =
1

n

n∑
i=1

ℓ(g(Xi), Yi),

Choice of C ?
We must restrict the class of functions.

Indeed, if C = RX , since ℓ(y, y) = 0, it is
enough to choose ĝ(Xi) = Yi for any
i ∈ {1, . . . , n} and ĝ(x) = 0 if
x ̸∈ {x1, . . . , xn}.
Problem: Generalization this classifier does
not generalize anything.

R̂n(ĝ
∗
n,C) ≪ R(ĝ∗n,C)

7→ Different classes - different estimators.
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Discriminative approach, Empirical Risk Minimization

Idea: Choose a good predictor for the learning set {(Xi, Yi)1≤i≤n}.
We can compute the empirical risk R̂n(g) ... and minimize it !

R̂n(g) =
1

n

n∑
i=1

ℓ(g(Xi), Yi), ĝ∗n,C = argmin
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Choice of C - Examples in regression, quadratic loss.

C = Affine functions R3[X] R20[X] Dense NN

d

R̂n(ĝ
∗
n,C)

R(ĝ∗n,C)

Problem

Demo Colab

TSE Team Statistical Learning and ERM

https://colab.research.google.com/drive/1ZNKJKnSLzYJWOGfI6MAXFjNbnkKnEMsJ?usp=sharing
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Decomposition of the excess risk for a given C

Let g∗C
s.t. R(g∗C) = infg∈C R(g).

Let ĝn,C an estimator in C.

E(ĝn,C) = R(ĝn,C)−R(gBayes) = R(ĝn,C)−R(g∗C)︸ ︷︷ ︸
Estimation Error

+R(g∗C)−R(gBayes)︸ ︷︷ ︸
Approximation Error

Approx. Err. Estim. Err.

C increases

n increases

The estimation error translates our partial knowledge of the
distribution (X, Y ).
The approximation error depends on the choice of C.
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Estimation Error

+R(g∗C)−R(gBayes)︸ ︷︷ ︸
Approximation Error

Approx. Err. Estim. Err.

C increases

n increases

The estimation error translates our partial knowledge of the
distribution (X, Y ).
The approximation error depends on the choice of C.

TSE Team Statistical Learning and ERM



Framework and motivation
Control of the estimation error on a given class C: R(ĝ∗n,C)−R(g∗C)

Summary 1: Minimization of the Empirical Risk
Minimization

Discriminative approach. We minimize the ERM on C.

ĝ∗n,C = argmin
g∈C

{
R̂n(g) = n−1

n∑
i=1

ℓ(g(Xi), Yi)

}

3 inter-connected questions:

1 How should we choose C ?

Examples in régression
Decomposition in approximation error/ estimation
Overfitting
In pratice, cross validation

2 Upper bound of the estimation error R(ĝ∗n,C)−R(g∗C) ?

3 How to compute ĝ∗n,C ? Accuracy?
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Estimation error and deviation of the ERM
Concentration inequality
Application to the risk upper bound of the ERM

Estimation error of ERM over C
Goal : upper bound R(ĝ∗n,C)−R(g∗C)︸ ︷︷ ︸

Estimation Error

, with

{
ĝ∗n,C = argming∈C R̂n (g)

g∗C = argming∈C R(g)

Remarks: - we consider a minimiser - solely the value of the min is
important: we compute infg∈C R(g) instead of R(g∗C).

Theorem

We have: R(ĝ∗n,C)− inf
g∈C

R(g) ≤ 2 sup
g∈C

| R̂n(g)−R(g)| , a.s.

E
[
R(ĝ∗n,C)− inf

g∈C
R(g)

]
≤ E

[
sup
g∈C

| R̂n(g)−R(g)|
]
.

The excess risk of ERM is upper bounded by the deviations
between the risk and the ERM over the class.
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Estimation error and deviation of the ERM
Concentration inequality
Application to the risk upper bound of the ERM

Proof (completed)

Observations:

1 R̂n(ĝ
∗
n,C) ≤ R̂n(g) for any g ∈ C.

2 | R̂n(ĝ
∗
n,C)−R(ĝ∗n,C)| ≤ supg∈C | R̂n(g)−R(g)| .

We use R̂n(ĝ
∗
n,C) ≤ R̂n(g

∗
C)

R(ĝ∗n,C)− inf
g∈C

R(g) = R(ĝ∗n,C)− R̂n(ĝ
∗
n,C) + R̂n(ĝ

∗
n,C)− inf

g∈C
R(g)

≤ R(ĝ∗n,C)− R̂n(ĝ
∗
n,C) + R̂n(g

∗
C)−R(g∗C) .

We deduce that:

R(ĝ∗n,C)− inf
g∈C

R(g) ≤ 2 sup
g∈C

| R̂n(g)−R(g)| .

E
[
R(ĝ∗n,C)− inf

g∈C
R(g)

]
≤ E

[
sup
g∈C

| R̂n(g)−R(g)|
]
. □
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Estimation error and deviation of the ERM
Concentration inequality
Application to the risk upper bound of the ERM

Upper bound of the estimation error on C

Theorem (Reminder)

We have: R(ĝ∗n,C)− inf
g∈C

R(g) ≤ 2 sup
g∈C

| R̂n(g)−R(g)| , a.s.

E
[
R(ĝ∗n,C)− inf

g∈C
R(g)

]
≤ E

[
sup
g∈C

| R̂n(g)−R(g)|
]
.

The excess risk of the ERM is upper bounded by the deviations
between the risk and the ERM over the class.

Type of upper bound? R(ĝ∗n,C) is a random variable !

1 Expectation upper bound?

2 With overwhelming overwhelming probability, :
P(R(ĝ∗n,C)−R(g∗C) ≤ ∆n,δ(C)) ≥ 1− δ
where ∆n,δ(C) depends on the n (#Dn), δ (the confidence level).

7→ we need to derive some upper bounds on the uniform deviations of the
random variables relatively to their means.
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Estimation error and deviation of the ERM
Concentration inequality
Application to the risk upper bound of the ERM

Uniform deviation upper bounds, 0-1 loss

We only deal with the 0-1 loss: for any g ∈ C,
n R̂n(g) =

∑n
k=1 1{g(Xk )̸=Yk} is distributed according to a Binomial

distribution of parameters Bin(n,R(g)).

We will upper bound supg∈C
∣∣n−1

∑n
i=1{1{g(Xi )̸=Yi} −R(g)}

∣∣.
1 Over C a finite class

2 With overwhelming probability and in expectation.

Approach:

1 For any fixed g, P(| R̂n(g)−R(g)| > ...) is small
7→ Concentration inequality.

2 Union bound:
P(supg∈C | R̂n(g)−R(g)| > ...) ≤

∑
g∈C P(| R̂n(g)−R(g)| > ...)
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Estimation error and deviation of the ERM
Concentration inequality
Application to the risk upper bound of the ERM

Concentration inequality: from Markov to Hoeffding

If Z ≥ 0, then P(Z > t) ≤ E[Z]
t . which implies the Chebyshev

inequality: if Z has a bounded variance: P(|Z −E[Z]| ≥ ε) ≤ Var(Z)
ε2

If X1, . . . , Xn i.i.d. and Z = 1
n

∑n
i=1 Xi, we have Var(Z) = Var(X1)

n

P

(∣∣∣∣∣ 1n
n∑

i=1

Xi − E[X1]

∣∣∣∣∣ > ε

)
≤ Var(X1)

nε2

Theorem (Hoeffding inequality)

Let X1, . . . , Xn n independent random variables in [0, 1]. For any ε > 0,

P

(∣∣∣∣∣ 1n
n∑

i=1

{Xi − E[Xi]}

∣∣∣∣∣ ≥ ε

)
≤ 2e−2nε2 .

No i.i.d., just independence!
Extension to Xi ∈ [ai, bi], upper bound 2e−2n2ε2/

∑n
i=1(bi−ai)

2
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Estimation error and deviation of the ERM
Concentration inequality
Application to the risk upper bound of the ERM

Upper bound on the risk

P
(
sup
g∈C

| R̂n(g)−R(g)| > ε

)
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Estimation error and deviation of the ERM
Concentration inequality
Application to the risk upper bound of the ERM

Upper bound on the risk (completed)

Theorem

Assume that |C| < ∞. Then, for any n ∈ N and ε > 0,

P
(
sup
g∈C

R̂n(g)−R(g) > ε

)
≤ |C| e−2nε2 ,

P
(
sup
g∈C

| R̂n(g)−R(g)| > ε

)
≤ 2 |C| e−2nε2 .

Proof.

Denote C = {gi}|C|i=1. The union bound shows that:

P
(
sup
g∈C

| R̂n(g)−R(g)| > ε

)
≤

|C|∑
i=1

P(| R̂n(gi)−R(gi)| > ε) .

The union bounds come from the Hoeffding inequality using that
{1{g(Xi )̸=Yi}}ni=1 are distributed according to a Bernoulli
distribution.
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Estimation error and deviation of the ERM
Concentration inequality
Application to the risk upper bound of the ERM

Conclusion: upper bound in probability

Estimation error upper bound, finite class C, 0-1 loss.
1 We have:

R(ĝ∗n,C)−R(g∗C) ≤ 2 sup
g∈C

| R̂n(g)−R(g)|

2 Furthermore, with probability 1− δ,

sup
g∈C

| R̂n(g)−R(g)| ≤
√

log(2 |C| /δ)
2n

3 As a consequence, with a probability larger than 1− δ

R(ĝ∗n,C)−R(g∗C) ≤ 2

√
log(2 |C| /δ)

2n

Remarks:

1 depends on |C|
2 depends on n
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Estimation error and deviation of the ERM
Concentration inequality
Application to the risk upper bound of the ERM

Conclusion: upper bound in expectation

We have E
[
R(ĝ∗n,C)−R(g∗C)

]
≤ E

[
maxg∈C | R̂n(g)−R(g)|

]
.

Theorem (Pisier Inequality)

Let Z1, . . . , Zm m sub-gaussian r.v., i.e. s.t., ∀λ ∈ R

E[eλZi ] ≤ eλ
2σ2/2

Then,
E
[
max

1≤i≤m
|Zi|
]
≤ σ

√
2 log(2m) .

Denote Zj = R̂n(gj)−R(gj), j ∈ {1, . . . , |C|}. For any λ ≥ 0,

E[eλZj ] = E
[
e(λ/n)

∑n
i=1{1{gj(Xi) ̸=Yi}−R(gj)}

]
=
(
E
[
e(λ/n){1{gj(X1)̸=Y1}−R(gj)}

])n
≤ eλ

2/8n

using the Hoeffding Lemma, E
[
e(λ/n){1{gj(X1)̸=Y1}−R(gj)}

]
≤ eλ

2/(8n2)
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Estimation error and deviation of the ERM
Concentration inequality
Application to the risk upper bound of the ERM

Bound for the integrated risk

Theorem

If ĝ∗n,C minimizes the ERM over C, then:

E[R(ĝ∗n,C)−R(g∗C)] ≤
√

log(2 |C|)
2n
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