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Statistics vs Learning

Statistics:
Observations (Xi)1≤i≤n

Model selection (Z,Z, {Pθ, θ ∈ Θ}).
7→ Estimation of θ
7→ Test
Evaluation of the overall procedure on θ.

Learning:
Observations (Xi, Yi)1≤i≤n

Goal: forecast Y as a funtion of X.
7→ Approach 1: Define a model on the joint law of (X,Y ), learn the
parameters and deduce a decision rule
7→ Approach 2: Choose a class of functions, a loss measurement and find the
best rule in the class according to the risk measure
Evaluation through a risk on the classification rule
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Example: Spam detection

Dataset: e-mails

Input: (texts, headers - senders, receivers, smtp, ...)

Output : ”Spam”/”Non Spam”
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Handwritten recognition

Dataset: images of numbers (each image is a 28× 28 = 784 dimensional
vector - greyscale level)

Input: Image

Output: recognized number
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Image segmentation

Learning set: annotated and segmented images

Output: object
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2 examples with a univariate input X (d = 1)

Height & Gender:

Age & Cardiovascular disease:
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Supervised learning

Supervised learning

Inputs: X ∈ X = Rd

Outputs: Y ∈ Y.

(X, Y ) ∼ P where P is unknown.
– Y ∈ {0, 1} (or {−1, 1}) - binary classification,
– Y ∈ {0, 1, 2, . . . ,K − 1} - multiclass problem
– Y ∈ R - regression.

A classifier or predictor is a function g : X → Y measurable.

Goal

Learning set : Dn = {(X1, Y1), . . . , (Xn, Yn)} (i.i.d. ∼ P)
Build a predictor / classifier ĝn from Dn
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Loss and risk

Loss function

Loss function : ℓ(y, g(x)) quantifies the quality of forecasting of y with
g(x).

Examples:
0-1 loss (classification): ℓ(y, g(x)) = 1{y ̸=g(x)}, y ∈ Y = {0, 1}
Quadratic loss (regression): ℓ(y, g(x)) = ∥y − g(x)∥2, yıRd

Risk of a decision rule

Risk: R(g) = E[ℓ(Y, g(X))] =
∫
ℓ(y, g(x))dP(x, y)

Examples:
0-1 risk (classification) : R(g) = P(Y ̸= g(X))
Quadratic risk (regression): R(g) = E[∥Y − g(X)∥2]
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Supervised learning: summary

Learning set : Dn = {(X1, Y1), . . . , (Xn, Yn)} (i.i.d. ∼ P)
Decision rule (classifier, predictor): g : X → Y measurable

Loss: ℓ(Y, g(X))

Risk: R(g) = E[ℓ(Y, g(X))] =
∫
ℓ(y, g(x))dP(x, y)

Questions ?

Existence of a decision rule g∗ optimal, R(g∗) ≤ R(g) for any other
decision rule g ?

How to build ĝn ?

Can we assess a result on R(ĝn)−R(g∗) ?
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Bayes risk / Bayes Classifier

Definition

Let ℓ : Y × Y → [0,∞) a loss function, P a probability distribution on X× Y.
The minimum risk

R∗
ℓ,P := inf

{
Rℓ,P(g) =

∫
ℓ(y, g(x))dP(x, y) , g : X → Y measurable

}
is the Bayes risk relative to P and ℓ. A measurable function g∗ℓ,P : X → Y that
satisfies

Rℓ,P
(
g∗ℓ,P
)
= R∗

ℓ,P

is a Bayes decision rule

For the sake of simplicity we will denote R∗
ℓ,P = R∗
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Conditional risk

Rℓ,P(g)
def
= E [ℓ(Y, g(X))] = E [E [ ℓ(Y, g(X)) |X]] =

∫
Rℓ,P(g,x)dP(x)

where Rℓ,P(g,x) is the conditional risk:

Rℓ,P(g,x) =

∫
ℓ(y, g(x))dPY |X(y | x)

The Bayesian decision rule is obtained, for any x ∈ X, while minimizing the
conditional risk, i.e.

Rℓ,P(g
∗
ℓ,P(x),x) ≤ Rℓ,P(g,x)

so that:

g∗ℓ,P(x) = inf
a

∫
ℓ(y, a)dPY |X(y | x)

We skip some technical details (including the definition of the conditional distribution of Y |X).
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1. Regression: Bayesian predictor

Theorem

For any predictor g : Rd → R,

E[(Y − g∗(X))2] ≤ E[(Y − g(X))2]

where g∗(X) = E [Y |X]

Proof.

Definition of the conditional expectation!

Density case: we compute

g∗(x) =

∫
Rd

ypY |X(y|x)dy,

with

pY |X(y|x) = pY,X(y,x)

pX(x)
.
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label: (Y,Y, ν) = (R,B(R),Leb), Covariates:
(X,X , µ) = (Rd,B(Rd),Leb)
qX|Y (x|y) conditional density of the covariates X given the output Y
Marginal density of Y : pY (y)

Joint distribution

pY,X(y,x) = qX|Y (x|y)pY (y)

Marginal distribution of the covariates

pX(x) =

∫
Y

pY,X(y,x)dy

Conditional distribution of the output given the covariates

pY |X(y|x) = pY,X(y,x)

pX(x)
=

qX|Y (x|y)p(y)∫
Y
qX|Y (x|y′)pY (y′)dy′
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2. Classification - Bayesian classifier

Framework: Y ∈ {0, 1}.
Loss: ℓ01(y, g(x)) = 1{y ̸=g(x)}, y ∈ Y = {0, 1}

We define η(X) = E [Y |X] = P (Y = 1 |X) as the regression function.

Theorem (Bayesien classifier)

For any classifier g : Rd → {0, 1},

E[ℓ01(Y, g∗(X))] ≤ E[ℓ01(Y, g(X))]

where g∗(X) = 1{η(X)≥1/2}.

It essentially corresponds to return the most likely label when seeing X.

Theorem (Excess risk)

For any g the excess risk satisfies:

R01(g)−R01(g
∗) = E

[
|2η(X)− 1|1{g∗(X)̸=g(X)}

]
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Proof
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Explicitation of the Bayesian rule

Label: (Y,Y, ν) = ({0, 1},P({0, 1}), c) where c = δ{0} + δ{1} is the
counting measure. We denote B(p) the Bernoulli distribution of parameter
p ∈ [0, 1],

L(Y ) = B(p)

Covariates: (X,X , µ) = (Rd,B(Rd),Leb)

q0, q1 densities of the covariates given the class 0, 1

L(X |Y = 0) = q0Leb L(X |Y = 1) = q1Leb

Marginal distribution of the labels y 7→ p1{1}(y) + (1− p)1{0}(y)

Joint distribution of the labels and covariates

pY,X(y,x) = pq1(x)1{1}(y) + (1− p)q0(x)1{0}(y)
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Regression function

Marginal distribution of the covariates

pX(x) =

∫
Y

pY,X(y,x) c(dy) = pq1(x) + (1− p)q0(x)

Marginal distribution of the labels given the covariates

{
pY |X(1|x) =

pY,X(1,x)

pX(x)
= pq1(x)

pq1(x)+(1−p)q0(x)

pY |X(0|x) =
pY,X(0,x)

pX(x)
= (1−p)q0(x)

pq1(x)+(1−p)q0(x)

Regression function

η(x) := pY |X(1|x) = pq1(x)

pq1(x) + (1− p)q0(x)
.
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Bayesian classifier

Recall that:

g∗(x) =

{
1 if η(x) ≥ 1/2

0 otherwise,

Figure: Example of the Bayes decision rule: pf1/(pf1 + (1− p)f0) is the probability of
Y = 1 given X
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Summary: Bayesian classifier

Problem: In practice, we do not know the joint distribution (L(X, Y )).

Theoretical fact: the Bayesian classifier is optimal but is not a function of
the observations.

Solution Learning set : Dn = {(X1, Y1), . . . , (Xn, Yn)} (i.i.d. ∼ P)
Bayesian error is solely a theoretical object we will compare with!

There are two random sources: the one of the new X, Y and the one
brought by Dn.
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Leading idea

1 We model (X, Y ) with a (parametric): {Pθ, θ ∈ Θ}
2 We compute g∗θ under any Pθ.

3 We estimate θ with a statistical method θ̂n.

4 We use the plug-in rule ĝn = g∗
θ̂n

(plug-in θ̂n in θ 7→ g∗θ ).

Remark : model the joint law (X, Y )

Solution 1: model Y |X and X (logistic regression, KNN, linear regression)

Solution 2: model X|Y and Y (LDA, QDA, Naive Bayes).
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Discriminant analysis:

Model the conditional distribution of X|Y for any value of Y with a
Gaussian distribution

qi ∈
{
N(µi,Γi) : µi ∈ Rd,Γi ∈ S+

d

}
where S+

d is the set of symetric positive definite matrices.

Regression function:

η(x) =
pq1(x)

pq1(x) + (1− p)q0(x)

Classification rule:

η(x) ≥ 1/2 ⇐⇒ pq1(x) ≥ (1− p)q0(x)

or in a similar way:

log q1(x)− log q0(x) + log

(
p

1− p

)
≥ 0 .
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Discriminant analysis and Gaussian modelling: practical setup

Gaussian case,

log q1(x)− log q0(x) =
1

2
log

(
|Γ0|
|Γ1|

)
+ log

(
p

1− p

)
+

1

2
(x− µ0)

TΓ−1
0 (x− µ0)−

1

2
(x− µ1)

TΓ−1
1 (x− µ1)

If Γ0 = Γ1 [same intra-class covariance matrix], the decision rule is linear
(see tutorials): LDA: Linear Discriminant Analysis.

If Γ0 ̸= Γ1, the decision rule is quadratic: QDA (Quadratic Discriminant
Analysis).
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Parameters estimation and plug-in.

For any class, estimation of the mean and covariance [for example, MLE]

µ̂i =

∑n
k=1 1{i}(Yk)Xk∑n

k=1 1{i}(Yk)
i ∈ {0, 1}

Γ̂i =

∑n
k=1 1{i}(Yk)(Xk − µ̂i)(Xk − µ̂i)

T∑n
k=1 1{i}(Yi)

p̂ = n−1
n∑

i=1

1{1}(Yi)

Plug-in: Decision rule

1

2
log

(
|Γ̂0|
|Γ̂1|

)
+ log

(
p̂

1− p̂

)
+

1

2
(x− µ̂0)

T Γ̂−1
0 (x− µ̂0)−

1

2
(x− µ̂1)

T Γ̂−1
1 (x− µ̂1) ≥ 0
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Example: LDA
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Naive Bayes method

Naive Bayes

The conditional distributions are assumed to be independent

qi(x) =

d∏
j=1

q̃i,j(x
(j)) , x = (x(1), . . . , x(d))

Example:
- Numerical variable: q̃i,j with mean µi,j and variance σ2

i,j

- Categorical variable: binomial or multinomial distribution.

If all numerical variables are Gaussian, approach equivalent to LDA or
QDA with diagonal covariance matrices

Advantage Simple to set up even in very large dimensions!
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Example: Naive Bayes
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Example : Naive Bayes

For numerical variables, we can replace the Gaussian model by more
sophisticated density models like mixture models

qi,j(x
(j)) =

r∑
j=1

πi,j,r N(µi,j,r, σ
2
i,j,r)

It is also possible to use non-parametric statistics to estimate qi,j , with
kernel estimators

q̂i,j(x
(j)) =

∑n
ℓ=1 1{i}(Yℓ)K(x(j) −X

(j)
ℓ )∑n

ℓ=1 1{i}(Yℓ)

where K is a kernel,
∫
K(x)dx = 1, K(x) = K(−x)
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Goal: learn a decision rule ĝ from the learning set Dn

7→ Generative approache

Solution: Estimate the regression function η(X) = P (Y = 1 |X) and
substitute (plug-in) this estimator inside the Bayes’ rule: Linear models, kernel
methods, k-nearest neighbors, Naive Bayes,...

7→ Optimization approach

Solution: Minimize the empirical risk (or an upper bound of the empirical risk):
support vector machines, boosting, neural networks,...

Canonical example

Restrict the decision rules g to the set of linear separations G
– Linear classification: G =

{
g(b,w)(x) = 1b+wT x≥0 : (b,w) ∈ R× Rd

}
Minimize the empirical risk:

ĝ = argmin
g∈G

1

n

n∑
i=1

ℓ(Yi, g(Xi))
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Example: linear discrimination (left) or more complex class (right)
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Risk decomposition

General framework:
G: classification rules
Optimal classifier: g∗ Bayes’ rule
Optimal classifier in G:
g∗G = argming∈G R(g)

𝓖

𝑔𝒢
∗

𝑔∗

ෞ𝑔𝒢

Risk decomposition

R(ĝG)−R(g∗) = R(g∗G)−R(g∗)︸ ︷︷ ︸
Approximation error

+R(ĝG)−R(g∗G)︸ ︷︷ ︸
Estimation error

The approximation error may be large
if G is not well chosen

The estimation error may be large if
G is too complex (to be properly
defined later on).

7→ Next slides: upper bound the estimation error!
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Over-fitting / Under-fitting

0 2 4 6 8 10
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Figure: General behaviour of the Approximation risk and Estimation risk with respect
to the complexity of the model
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Additional Example: k- nearest neighbor (with k = 3)

1 2

3 4
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Additional Example: k- nearest neighbor (with k = 4)
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Example: KNN I
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Example: KNN II
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Example: KNN III
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Example: KNN IV
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Example: KNN V
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Example: KNN VI
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Example: KNN VII
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Example: KNN VIII
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