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Technical sanity check

Transfer theorem

You are expected to be able to solve the following problems.
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Technical sanity check

Transfer theorem - 1D example

Exercise : For any random variable X of density f w.r.t. the Lebesgue
measure, identify the distribution of Y = eX .
When X ∼ N (µ, σ2), Y is a log-normal random variable.

S. Gadat Probability and Statistics for Data Science 2023 5 / 52



Technical sanity check

Transfer theorem - 1D example

Exercise : For any random variable X of density f w.r.t. the Lebesgue
measure, identify the distribution of Y = X−1.
When X ∼ N (0, 1), identify the density of Y . When X is a centered
Cauchy random variable, show that Y is also a Cauchy random variable.
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Technical sanity check

Transfer theorem - 1D example

Exercise : When X ∼ N (0, 1), identify the density of Y = X 2 (chi-square
distribution).

S. Gadat Probability and Statistics for Data Science 2023 7 / 52



Technical sanity check

Transfer theorem - 2D example

Exercise : When X and Y are independent N (0, 1) random variable,

identify the density of (U,V ) =
(
X+Y√

2
, X−Y√

2

)
.
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Technical sanity check

Transfer theorem - 2D example

Exercise : Consider X and Y two random variables, identify the density of
U = XY and the density of V = X

Y . Simplify a bit the results when X and
Y are independent.
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Technical sanity check

Transfer theorem - 2D example

Exercise : When X and Y are independent N (0, 1) random variable,
identify the density of U = X

Y .
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Technical sanity check

Transfer theorem - 2D example

Exercise : When X and Y are independent N (0, 1) random variable,
identify the density of (R, θ) = (

√
X 2 + Y 2, tan−1(Y /X )).
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Key Tools

Goal

We aim to introduce some key tools that allow to make some easier
computations. Among them :

The generating function GX , defined for any integer valued random
variable X :

GX : s 7−→
∞∑
k=0

P(X = k)sk = E[sX ]

The moment generating function MX :

MX : s 7−→ E[esX ]

MX also refers to the Laplace transform.

The characteristic function φX :

φX : s 7−→ E[e isX ],

which is also the Fourier transform of the density of f .
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Key Tools Generating function

Generating function

In what follows, X will denote an integer valued random variable,
distributed according to to a statistical model, parametrized by Pθ, θ ∈ Θ.

The generating function GX , defined for any integer valued random
variable X :

GX : s 7−→
∞∑
k=0

P(X = k)sk

GX is formally an infinite series, and I will not annoy you about
theoretical convergence aspects. We will only keep in mind that GX is
defined ∀s ∈ [0, 1].

We observe that :
GX (s) = E[sX ]

We furthermore have interesting relationships :

G ′
X (1) = E[X ] G (n)(0) = n!P(X =n)
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Key Tools Generating function

Generating function

Some computations

X ∼ B(p), Bernoulli distribution of parameter p. Compute GX :

GX (p) = 1 + p(s − 1)

X ∼ P(λ), Poisson distribution of parameter λ. Compute GX :

GX (s) = eλ(s−1)

Each time, there is a one to one map between the parameter and GX .
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Key Tools Generating function

Generating function

General result

Theorem

The map L(X ) 7−→ GX is injective, i.e. GX completely caracterizes
the distribution of X .

If X ,Y are two independent r.v., then

GX+Y (s) = GX (s)GY (s).

Assume that X1, . . . ,Xn are i.i.d. and define Sn = X1 + . . .+ Xn, then

GSn(s) = GX (s)
n.

S. Gadat Probability and Statistics for Data Science 2023 16 / 52



Key Tools Generating function

Generating function

Application. From the previous results, prove that :

If X ∼ P(λ) and Y ∼ P(µ) are independent, then
X + Y ∼ P(λ+ µ).

If X ∼ B(n, p) and Y ∼ B(m, p) are independent, then
X + Y ∼ B(n +m, p).

Consider X1, . . . ,Xn, . . . an infinite sequence of i.i.d. r.v. and N an
independent integer valued r.v. We define SN = X1 + . . .+ XN . Then

GSN (s) = GN(GX (s)).

Deduce that
E[SN ] = E[N]E[X ].
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Key Tools Moment generating function

Moment Generating function

Even close at the first sight, the MGF of a random variable X (also
referred to as the Laplace transform), is slightly different :

Definition (MGF)

We define ΛX as :
∀u > 0 ΛX (u) = E[euX ]

Several remarks :

ΛX is not defined for any u > 0 !

Compute the following MGF :

Bernoulli B(p)
Poisson P(λ)
Exponential E(λ)
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Key Tools Moment generating function

Moment Generating function

Important properties :

Theorem

For any pair of independent r.v. (X ,Y ) :

ΛX+Y (u) = ΛX (u)ΛY (u).

There is a one to one association between L(X ) and ΛX : the MGF
fully characterizes the distribution of X .

When the moments of X exist, we have

∀k ≥ 0 E[X k ] = Λ(k)(0).

The last property justifies the ”Moment Generating function” name.
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Key Tools Characteristic function

Characteristic function

Final important transform : the Fourier transform / characteristic function

Definition (Fourier transform)

We define φX as :
∀ξ ∈ R φX (ξ) = E[e iξX ]

Defined for any ξ ∈ Rd

Ultimate transform, powerful !

Necessitates to handle complex functions :-(

May be generalized to vectors :

∀ξ ∈ Rd φX (ξ) = E[e i⟨ξ,X ⟩]
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Key Tools Characteristic function

Characteristic function

Important properties :

Theorem

For any pair of independent r.v. (X ,Y ) :

φX+Y (ξ) = φX (ξ)φY (ξ).

There is a one to one association between L(X ) and φX : the
characteristic function fully characterizes the distribution of X .

For any a, b and X a r.v. :

φaX+b(ξ) = e ibξφX (aξ)
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Key Tools Characteristic function

Characteristic function

Some more or less easy computations

Bernoulli, Binomial, q = 1− p :

φX (ξ) = (q + pe iξ)n

Poisson distribution
φX (ξ) = eλ(e

iξ−1)

Geometric distribution

φX (ξ) =
pe iξ

1− qe iξ
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Key Tools Characteristic function

Characteristic function

Some more or less easy computations

Exponential

φX (ξ) =
λ

λ− iξ

Laplace

φX (ξ) =
1

1 + ξ2

Gaussian
φX (ξ) = e−ξ2/2

Cauchy
φX (ξ) = e−|ξ|
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Key Tools Characteristic function

Characteristic function

Fundamental result

Theorem (Levy theorem)

A sequence of r.v. (Xn) verifies Xn −→ X in distribution if and only if

∀ξ ∈ R φXn(ξ) −→ φX (ξ)

Basic tool to establish the central limit theorem.
We essentially use the characteristic function to identify distributions of
random variable, in particular when manipulating Gaussian vectors.

S. Gadat Probability and Statistics for Data Science 2023 24 / 52



Empirical observations

Outline

1 Technical sanity check

2 Key Tools
Generating function
Moment generating function
Characteristic function

3 Empirical observations
Population - sample
Theoretical versus Empirical characteristics
Applications of empirical quantiles

S. Gadat Probability and Statistics for Data Science 2023 25 / 52



Empirical observations Population - sample

Sampling experiment

A sampling experiment is the repetition of n identical and independent
primary experiments.

If (Ω,A,P) is the model adopted for one primary experiment, then the
model for the sampling experiment of size n is denoted by (Ω,A,P)

⊗
n

and given by

the population set is the cartesian product Ωn

the measurable events σ-algebra is generated by the set of cartesian
products B1 × · · · × Bn where Bj ’s are measurable events of the
σ-algebra A. Here : “generated” means that the events are obtained
by complement and by countable unions of such cartesian products.

if X is the r.v. of interest for the primary experiment, then let
X1, . . . ,Xn be the n independent and identically distributed r.v.
(resulting from the sampling experiment) with the same law as the
underlying X . Therefore, the set of probability laws of the sample
(X1, . . . ,Xn) defines the probability family of the model.
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Empirical observations Population - sample

Density in the sampling experiment

If P ≡ PX is the probability law of X in the primary experiment, we denote
by P

⊗
n the joint probability law of (X1, . . . ,Xn).

We consider two cases depending on whether P is discrete or continuous
(note : mixtures do exist) :

1 Discrete case : the law P
⊗

n of (X1, . . . ,Xn) is described by its p.m.f.

P(X1 = x1, . . . ,Xn = xn) = Πn
i=1P(X = xi )

where P(X = x) ≡ PX (x) is the p.m.f. of the underlying
distribution P ;

2 Continuous case : the law P
⊗

n is described by its p.d.f.

fX1,...,Xn(x1, . . . , xn) = Πn
i=1fX (xi )

where fX (x) is the p.d.f. of the underlying distribution P.
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Empirical observations Population - sample

Sampling experiment for an exponential model

Theorem

If (Ω,A,P) is an exponential model in the primary experiment, then the
resulting model (Ω,A,P)

⊗
n in the sampling experiment of size n is also

an exponential model.

If T1, . . . ,Tr are the “sufficient statistics” of the primary model, then the
following statistics

n∑
i=1

T1(Xi ), . . . ,
n∑

i=1

Tr (Xi )

are “sufficient statistics” for the sampling model.
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Empirical observations Population - sample

The empirical distribution

In the sampling experiment, if (x1, . . . , xn) is a realization of the random
sample (X1, . . . ,Xn), we define a discrete law Pn called the empirical law
associated to the sample in the following way :

• Pn is the discrete uniform law on the sample values {x1, . . . , xn}
which puts a mass equal to 1

n on each data point xi .

• Its corresponding cumulative distribution function Fn, called the
empirical distribution function, is given by

Fn(x) =
1

n

n∑
i=1

1(Xi ≤ x)

• The empirical c.d.f. Fn(x) is an approximation of the population c.d.f.
FX (x) = P(X ≤ x) : we will prove that Fn(x) converges to FX (x)
when the sample size n increases to infinity.
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Empirical observations Population - sample

Graph of the empirical distribution function : case of no
ties

F10 <- ecdf(rnorm(10))

plot(F10)
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Empirical observations Population - sample

Graph of the empirical distribution function : case of ties

F2=ecdf(c(1,1,2,5,7,7,7))

plot(F2)
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Empirical observations Population - sample

What is a statistic ?

Let (Ω,A,P) be a model.

A statistic T : x = obs ∈ Ω 7→ T (x) is a measurable map
from Ω to a measurable space Y.

Example : Consider a sampling experiment of size n based on the second
example (slide 9), where each Xi represents the number of claims for
year i .

In this example, the quantity T (x1, x2, . . . , xn) =
1
n

∑n
i=1xi is a statistic

with Y equal to the set of real numbers R equipped with the Borel
sigma-algebra.

Here : T (X1, . . . ,Xn) =
1
n

∑n
i=1 Xi is a random variable, also called a

statistic by misuse of language. To make short, one usually write rather
T = 1

n

∑n
i=1 Xi . In practical terms, a statistic is a measurable function

T (X1, . . . ,Xn) of the observed random variables.
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Empirical observations Theoretical versus Empirical characteristics

Population versus Sample characteristics

The characteristics of a probability law are :
its density, its distribution function, its mean, its variance,
more generally its moments, its quantiles, etc.

In the sampling experiment,

the population characteristics (or theoretical characteristics) are
the characteristics of the underlying population or theoretical law PX

(unknown) ;

the empirical characteristics (or sample characteristics) are the
characteristics of the corresponding empirical law Pn.

We will also prove that the empirical characteristics converge to the
population ones when the sample size n increases to infinity.
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Empirical observations Theoretical versus Empirical characteristics

Population and Empirical mean

In the sampling experiment,

the population mean (or theoretical mean) is the mean of PX which is
equal to E(X ) ;

the empirical mean is the mean of Pn which is equal to

x̄ :=
1

n

n∑
i=1

xi .

One can define a random version, also called empirical mean, by

X̄ :=
1

n

n∑
i=1

Xi .

As such, x̄ is a realization of the random variable X̄ .
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Empirical observations Theoretical versus Empirical characteristics

Population and Empirical moments

The population (theoretical) moment of order k is :

1 E(X k) (uncentered)

2 E[(X − E(X ))k ] (centered)

The empirical moments of order k is :

1 1
n

∑n
i=1 x

k
i (uncentered)

2 1
n

∑n
i=1(xi − x̄)k (centered)

Empirical variance is :

1

n

n∑
i=1

(xi − x̄)2
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Empirical observations Theoretical versus Empirical characteristics

Example : an empirical cdf

Population (or theoretical) law :
Consider the uniform discrete distribution on the set {1, 2, 3}.

A sample of size 5 yields : 1, 3, 2, 2, 1.

Population (or theoretical) probability mass function (denoted by
PX ) :

PX (1) = PX (2) = PX (3) =
1

3

Empirical probability mass function (denoted by P5)

P5(1) =
2

5
, P5(2) =

2

5
, P5(3) =

1

5
.
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Empirical observations Theoretical versus Empirical characteristics

Same example : moments

Population (or theoretical) mean

E(X ) =
1 + 2 + 3

3
= 2

Empirical mean (or sample mean)

x̄ =
1 + 3 + 2 + 2 + 1

5
=

9

5

S. Gadat Probability and Statistics for Data Science 2023 37 / 52



Empirical observations Theoretical versus Empirical characteristics

Population quantiles : examples

Recall that the quantile of order α ∈]0, 1] of the population distribution
PX is

qα(X ) = F−1
X (α) = inf{x ∈ R : FX (x) ≥ α}.

Examples :

If X ∼ N (µ, σ2), and if Φ is the cdf of N (0, 1) then

qα = µ+ σΦ−1(α).

If X follows the logistic distribution with pdf

fX (x) =
exp(− x−a

b )

b(1 + exp(− x−a
b ))2

,

then

qα = a+ b ln

(
α

1− α

)
.
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Empirical observations Theoretical versus Empirical characteristics

Empirical quantiles

Let X(1), . . . ,X(n) be the order statistics
(sample values X1, . . . ,Xn sorted in increasing order).

The previous rules applied to the empirical distribution function yield two
cases in the scenario of no ties :

1 First case : nα is an integer

q̂α = X(nα) = X([nα])

2 Second case : nα is not an integer

q̂α = X([nα]+1)

where [nα] is the integer part of nα.

Alternatively in this second case :

q̂α =
1

2
(X([nα]) + X([nα]+1))

which coincides with classical empirical median when α = 1/2.
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Empirical observations Applications of empirical quantiles

Empirical quantiles applications : boxplots

Box Plot Anatomy :
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Empirical observations Applications of empirical quantiles

Box Plot (cont’d)
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Empirical observations Applications of empirical quantiles

Empirical quantiles applications : Probability plots

A probability plot is a graphical tool for comparing two data sets :

either two sets of empirical observations,

or one empirical set against a theoretical set,

or (more rarely) two theoretical sets against each other.

It commonly means one of these three plots :

P-P plot, ”Probability-Probability” or ”Percent-Percent” plot
[plot of FX (z) against FY (z)] ;

Q-Q plot, ”Quantile-Quantile” plot
[plot of F−1

X (α) against F−1
Y (α)] ;

(special case :) Normal probability plot,
a Q-Q plot against the standard normal distribution.
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Empirical observations Applications of empirical quantiles

Normal probability plot : preliminary lemmas

Lemma 1

If the R.V. X has a cdf FX and if U has a uniform distribution on
[0, 1], then the random variable F−1

X (U) has the same distribution as
X .

If the R.V. X has a cdf FX which is invertible, then the variable
FX (X ) has a uniform distribution on [0, 1].

This lemma is used by statistical softwares to generate samples from a
given law starting with uniform samples.

Lemma 2 If U1, . . . ,Un is a sample from the uniform distribution on the
interval [0, 1], then

E(U(r)) =
r

n + 1
.
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Empirical observations Applications of empirical quantiles

Normal probability plot : theory

Given a sample (X1, . . . ,Xn), the normal probability plot is the plot of
the points (

X(r),Φ
−1

( r

n + 1

))
for r = 1, . . . , n.

It is a Q-Q plot for F−1
n against Φ−1.

The principle is based on the following theorem :

Theorem. If X1, . . . ,Xn are i.i.d. with cdf F , then

E
[
F
(
X(r)

)]
=

r

n + 1
.

Application : R function ‘qqnorm’
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Empirical observations Applications of empirical quantiles

QQ plot for location – scale family

Similarly, one can see whether the distribution of X belongs to a given
location–scale family of distributions :

FX (x) = F0(
x − µ

σ
),

where µ is the location parameter and σ is the scale parameter.

Same theorem ↣ plot of
(
X(r),F

−1
0

(
r

n+1

))
is approximately aligned.

Examples : R function ‘qqt’ of package ‘limma’, ‘qqPlot’ from package
‘qualityTools’ for Beta, Cauchy, χ2, Poisson, etc.
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Empirical observations Applications of empirical quantiles

Normal probability plot : practice

Application : forget about the expectation in the theorem, roughly the

points
(
X(r),Φ

−1
(

r
n+1

))
should be aligned if the sample comes from a

gaussian N (µ, σ2).

In practice, the quantile order r
n+1 is replaced by more sophisticated forms.

As a reference, a straight line can be fit to the points :
The further the points deviate from this line, the greater the indication of
departure from normality.

Appreciation depends upon the sample size.
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Empirical observations Applications of empirical quantiles

Normal probability plot : examples

Sample of size 50 from a gaussian, from Wikipedia Commons

S. Gadat Probability and Statistics for Data Science 2023 47 / 52



Empirical observations Applications of empirical quantiles

Normal probability plot : examples

Sample of size 50 from a right-skewed distribution, from Wikipedia Commons
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Empirical observations Applications of empirical quantiles

Normal probability plot : examples

Sample of size 50 from a uniform, S-shape, from Wikipedia Commons
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Empirical observations Applications of empirical quantiles

Normal probability plot : examples

Fat tail distribution
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Empirical observations Applications of empirical quantiles

Quantiles : application to actuarial risk appraisal

In actuarial science, an aggregate loss is a random variable.
The Value at Risk (VaR) is a quantile of the distribution of aggregated
losses (over a given time period) at a high probability level p ;
It is used in the determination of capital necessary to withstand such
adverse outcomes (severe losses) :

Varp(X ) = F−1
X (p) for p close to 1 (high quantile).

The Tail-Value at risk (or expected shortfall) is another more informative
measure. Given a probability level p, the TVarp(X ) is equal to the expected
loss given that the loss exceeds the pth quantile of X (i.e. Varp(X )) :

TVarp(X ) = E(X | X > F−1
X (p))

It can be shown that it is an average of all VaR values above the security
level p and thus contains more information about the distribution of X in
the tails than the VaR.
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Empirical observations Applications of empirical quantiles

Quantiles : application to financial risk appraisal

Example : if Varp(X ) = 100,000 euros for p = 0.99 and the time period is
one year, it means that there is a probability of

1− p = 0.01

that the company will experience a loss of more than 100,000 euros over
the next year.

If moreover TVarp(X ) = 150,000 euros for p = 0.99 and the time period is
one year, it means that the expected loss will be 150,000 euros knowing
that the company experiences a loss exceeding 100,000 euros next year.
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