Probability and Statistics for Data Science

S. Gadat - Toulouse School of Economics Lecture 2 - Functions of Random Variables - Statistics

Outline

Technical sanity check

- 2 Key Tools
 - Generating function
 - Moment generating function
 - Characteristic function

3 Empirical observations

- Population sample
- Theoretical versus Empirical characteristics
- Applications of empirical quantiles

Outline

Technical sanity check

- Key Tools
 - Generating function
 - Moment generating function
 - Characteristic function
- 3 Empirical observations
 - Population sample
 - Theoretical versus Empirical characteristics
 - Applications of empirical quantiles

Transfer theorem

You are expected to be able to solve the following problems.

Exercise : For any random variable X of density f w.r.t. the Lebesgue measure, identify the distribution of $Y = e^X$. When $X \sim \mathcal{N}(\mu, \sigma^2)$, Y is a log-normal random variable.

Exercise : For any random variable X of density f w.r.t. the Lebesgue measure, identify the distribution of $Y = X^{-1}$.

When $X \sim \mathcal{N}(0, 1)$, identify the density of Y. When X is a centered Cauchy random variable, show that Y is also a Cauchy random variable.

Exercise : When $X \sim \mathcal{N}(0, 1)$, identify the density of $Y = X^2$ (chi-square distribution).

Exercise : When X and Y are *independent* $\mathcal{N}(0,1)$ random variable, identify the density of $(U, V) = \left(\frac{X+Y}{\sqrt{2}}, \frac{X-Y}{\sqrt{2}}\right)$.

Exercise : Consider X and Y two random variables, identify the density of U = XY and the density of $V = \frac{X}{Y}$. Simplify a bit the results when X and Y are independent.

Exercise : When X and Y are *independent* $\mathcal{N}(0,1)$ random variable, identify the density of $U = \frac{X}{Y}$.

Exercise : When X and Y are *independent* $\mathcal{N}(0,1)$ random variable, identify the density of $(R, \theta) = (\sqrt{X^2 + Y^2}, \tan^{-1}(Y/X))$.

Outline

Technical sanity check

- 2 Key Tools
 - Generating function
 - Moment generating function
 - Characteristic function

B Empirical observations

- Population sample
- Theoretical versus Empirical characteristics
- Applications of empirical quantiles

Goal

We aim to introduce some key tools that allow to make some easier computations. Among them :

• The generating function G_X , defined for any integer valued random variable X:

$$G_X: s \longmapsto \sum_{k=0}^{\infty} \mathbb{P}(X=k) s^k = \mathbb{E}[s^X]$$

• The moment generating function M_X :

$$M_X: s \longmapsto \mathbb{E}[e^{sX}]$$

 M_X also refers to the Laplace transform.

• The characteristic function φ_X :

$$\varphi_X: s \longmapsto \mathbb{E}[e^{\mathrm{i} s X}],$$

which is also the Fourier transform of the density of f.

S. Gadat

In what follows, X will denote an integer valued random variable, distributed according to to a statistical model, parametrized by $\mathbb{P}_{\theta}, \theta \in \Theta$.

• The generating function G_X , defined for any integer valued random variable X:

$$G_X:s\longmapsto\sum_{k=0}^\infty\mathbb{P}(X=k)s^k$$

- G_X is formally an infinite series, and I will not annoy you about theoretical convergence aspects. We will only keep in mind that G_X is defined $\forall s \in [0, 1]$.
- We observe that :

$$G_X(s) = \mathbb{E}[s^X]$$

• We furthermore have interesting relationships :

$$G'_X(1) = \mathbb{E}[X] \qquad G^{(n)}(0) = n! \mathbb{P}(X =_n)$$

Some computations

• $X \sim \mathcal{B}(p)$, Bernoulli distribution of parameter p. Compute G_X :

$$G_X(p) = 1 + p(s-1)$$

• $X \sim \mathcal{P}(\lambda)$, Poisson distribution of parameter λ . Compute G_X :

$$G_X(s) = e^{\lambda(s-1)}$$

• Each time, there is a one to one map between the parameter and G_X .

15 / 52

General result

Theorem

- The map L(X) → G_X is injective, i.e. G_X completely caracterizes the distribution of X.
- If X, Y are two independent r.v., then

$$G_{X+Y}(s) = G_X(s)G_Y(s).$$

• Assume that X_1, \ldots, X_n are i.i.d. and define $S_n = X_1 + \ldots + X_n$, then

$$G_{S_n}(s) = G_X(s)^n.$$

Application. From the previous results, prove that :

- If $X \sim \mathcal{P}(\lambda)$ and $Y \sim \mathcal{P}(\mu)$ are independent, then $X + Y \sim \mathcal{P}(\lambda + \mu)$.
- If $X \sim \mathcal{B}(n, p)$ and $Y \sim \mathcal{B}(m, p)$ are independent, then $X + Y \sim \mathcal{B}(n + m, p)$.
- Consider X_1, \ldots, X_n, \ldots an infinite sequence of i.i.d. r.v. and N an independent integer valued r.v. We define $S_N = X_1 + \ldots + X_N$. Then

$$G_{S_N}(s) = G_N(G_X(s)).$$

Deduce that

$$\mathbb{E}[S_N] = \mathbb{E}[N]\mathbb{E}[X].$$

Moment Generating function

Even close at the first sight, the MGF of a random variable X (also referred to as the Laplace transform), is slightly different :

Definition (MGF)

We define Λ_X as :

$$\forall u > 0 \qquad \Lambda_X(u) = \mathbb{E}[e^{uX}]$$

Several remarks :

- Λ_X is not defined for any u > 0!
- Compute the following MGF :
 - Bernoulli $\mathcal{B}(p)$
 - Poisson $\mathcal{P}(\lambda)$
 - Exponential $\mathcal{E}(\lambda)$

Moment Generating function

Important properties :

Theorem

• For any pair of independent r.v. (X, Y) :

$$\Lambda_{X+Y}(u) = \Lambda_X(u)\Lambda_Y(u).$$

- There is a one to one association between L(X) and Λ_X : the MGF fully characterizes the distribution of X.
- When the moments of X exist, we have

$$\forall k \geq 0$$
 $\mathbb{E}[X^k] = \Lambda^{(k)}(0).$

The last property justifies the "Moment Generating function" name.

19/52

Final important transform : the Fourier transform / characteristic function

Definition (Fourier transform)

We define φ_X as :

$$\forall \xi \in \mathbb{R} \qquad \varphi_X(\xi) = \mathbb{E}[e^{i\xi X}]$$

- Defined for any $\xi \in \mathbb{R}^d$
- Ultimate transform, powerful !
- Necessitates to handle complex functions :-(
- May be generalized to vectors :

$$\forall \xi \in \mathbb{R}^d \qquad \varphi_X(\xi) = \mathbb{E}[e^{i\langle \xi, X \rangle}]$$

Important properties :

Theorem

• For any pair of independent r.v. (X, Y) :

$$\varphi_{X+Y}(\xi) = \varphi_X(\xi)\varphi_Y(\xi).$$

- There is a one to one association between L(X) and φ_X : the characteristic function fully characterizes the distribution of X.
- For any a, b and X a r.v. :

$$\varphi_{aX+b}(\xi) = e^{\mathrm{i}b\xi}\varphi_X(a\xi)$$

21 / 52

Some more or less easy computations

• Bernoulli, Binomial, q = 1 - p:

$$\varphi_X(\xi) = (q + pe^{\mathrm{i}\xi})^n$$

Poisson distribution

$$\varphi_X(\xi) = e^{\lambda(e^{i\xi}-1)}$$

Geometric distribution

$$arphi_X(\xi) = rac{p e^{\mathrm{i} \xi}}{1-q e^{\mathrm{i} \xi}}$$

Some more or less easy computations

• Exponential

$$\varphi_X(\xi) = rac{\lambda}{\lambda - \mathfrak{i}\xi}$$

Laplace
 φ_x(ξ)

$$arphi_X(\xi) = rac{1}{1+\xi^2}$$

Gaussian

$$\varphi_X(\xi) = e^{-\xi^2/2}$$

• Cauchy

$$\varphi_X(\xi) = e^{-|\xi|}$$

Fundamental result

Theorem (Levy theorem)

A sequence of r.v. (X_n) verifies $X_n \longrightarrow X$ in distribution if and only if

$$\forall \xi \in \mathbb{R} \qquad \varphi_{X_n}(\xi) \longrightarrow \varphi_X(\xi)$$

Basic tool to establish the central limit theorem.

We essentially use the characteristic function to identify distributions of random variable, in particular when manipulating Gaussian vectors.

Outline

Technical sanity check

- 2 Key Tools
 - Generating function
 - Moment generating function
 - Characteristic function

3 Empirical observations

- Population sample
- Theoretical versus Empirical characteristics
- Applications of empirical quantiles

Sampling experiment

A sampling experiment is the repetition of *n* identical and independent primary experiments.

If $(\Omega, \mathcal{A}, \mathcal{P})$ is the model adopted for one primary experiment, then the model for the sampling experiment of size *n* is denoted by $(\Omega, \mathcal{A}, \mathcal{P})^{\bigotimes n}$ and given by

- the population set is the cartesian product Ω^n
- the measurable events σ-algebra is generated by the set of cartesian products B₁ ×···× B_n where B_j's are measurable events of the σ-algebra A. Here : "generated" means that the events are obtained by complement and by countable unions of such cartesian products.
- if X is the r.v. of interest for the primary experiment, then let X_1, \ldots, X_n be the *n* independent and identically distributed r.v. (resulting from the sampling experiment) with the same law as the underlying X. Therefore, the set of probability laws of the sample (X_1, \ldots, X_n) defines the probability family of the model.

Density in the sampling experiment

If $P \equiv P_X$ is the probability law of X in the primary experiment, we denote by $P^{\bigotimes n}$ the joint probability law of (X_1, \ldots, X_n) .

We consider two cases depending on whether P is discrete or continuous (note : mixtures do exist) :

1 Discrete case : the law $P^{\bigotimes n}$ of (X_1, \ldots, X_n) is described by its p.m.f.

$$\mathbb{P}(X_1 = x_1, \ldots, X_n = x_n) = \prod_{i=1}^n \mathbb{P}(X = x_i)$$

where $\mathbb{P}(X = x) \equiv P_X(x)$ is the p.m.f. of the underlying distribution P;

2 Continuous case : the law $P^{\bigotimes n}$ is described by its p.d.f.

$$f_{X_1,\ldots,X_n}(x_1,\ldots,x_n)=\prod_{i=1}^n f_X(x_i)$$

where $f_X(x)$ is the p.d.f. of the underlying distribution P.

Sampling experiment for an exponential model

Theorem

If $(\Omega, \mathcal{A}, \mathcal{P})$ is an exponential model in the primary experiment, then the resulting model $(\Omega, \mathcal{A}, \mathcal{P})^{\bigotimes n}$ in the sampling experiment of size *n* is also an exponential model.

If T_1, \ldots, T_r are the "sufficient statistics" of the primary model, then the following statistics

$$\sum_{i=1}^n T_1(X_i), \ldots, \sum_{i=1}^n T_r(X_i)$$

are "sufficient statistics" for the sampling model.

The empirical distribution

In the sampling experiment, if (x_1, \ldots, x_n) is a realization of the random sample (X_1, \ldots, X_n) , we define a discrete law P_n called the **empirical law** associated to the sample in the following way :

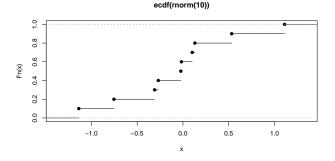
- *P_n* is the discrete uniform law on the sample values {*x*₁,..., *x_n*} which puts a mass equal to ¹/_n on each data point *x_i*.
- Its corresponding cumulative distribution function F_n , called the **empirical distribution** function, is given by

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(X_i \le x)$$

• The empirical c.d.f. $F_n(x)$ is an approximation of the population c.d.f. $F_X(x) = \mathbb{P}(X \le x)$: we will prove that $F_n(x)$ converges to $F_X(x)$ when the sample size *n* increases to infinity.

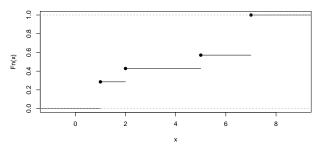
Graph of the empirical distribution function : case of no ties

F10 <- ecdf(rnorm(10)) plot(F10)</pre>



Graph of the empirical distribution function : case of ties

F2=ecdf(c(1,1,2,5,7,7,7)) plot(F2)



ecdf(c(1, 1, 2, 5, 7, 7, 7))

What is a statistic?

Let $(\Omega, \mathcal{A}, \mathcal{P})$ be a model.

A statistic $T : x = obs \in \Omega \mapsto T(x)$ is a measurable map from Ω to a measurable space \mathcal{Y} .

Example : Consider a sampling experiment of size n based on the second example (slide 9), where each X_i represents the number of claims for year i.

In this example, the quantity $T(x_1, x_2, ..., x_n) = \frac{1}{n} \sum_{i=1}^n x_i$ is a statistic with \mathcal{Y} equal to the set of real numbers \mathbb{R} equipped with the Borel sigma-algebra.

Here : $T(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^n X_i$ is a random variable, also called a statistic by misuse of language. To make short, one usually write rather $T = \frac{1}{n} \sum_{i=1}^n X_i$. In practical terms, a statistic is a measurable function $T(X_1, ..., X_n)$ of the observed random variables.

Population versus Sample characteristics

The characteristics of a probability law are : its density, its distribution function, its mean, its variance, more generally its moments, its quantiles, etc.

In the sampling experiment,

- the population characteristics (or theoretical characteristics) are the characteristics of the underlying population or theoretical law P_X (unknown);
- the empirical characteristics (or sample characteristics) are the characteristics of the corresponding empirical law P_n .

We will also prove that the empirical characteristics converge to the population ones when the sample size n increases to infinity.

Population and Empirical mean

In the sampling experiment,

- the population mean (or theoretical mean) is the mean of P_X which is equal to E(X);
- the empirical mean is the mean of P_n which is equal to

$$\bar{\mathbf{x}} := \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i.$$

One can define a random version, also called empirical mean, by

$$\bar{X} := \frac{1}{n} \sum_{i=1}^{n} X_i.$$

As such, \bar{x} is a realization of the random variable \bar{X} .

Population and Empirical moments

The population (theoretical) moment of order k is :

- **2** $\mathbb{E}[(X \mathbb{E}(X))^k]$ (centered)

The empirical moments of order k is :

 $\begin{array}{l} \bullet \quad \frac{1}{n} \sum_{i=1}^{n} x_i^k \quad (\text{uncentered}) \\ \bullet \quad \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^k \quad (\text{centered}) \end{array}$

Empirical variance is :

$$\frac{1}{n}\sum_{i=1}^n (x_i - \bar{x})^2$$

Example : an empirical cdf

Population (or theoretical) law :

Consider the uniform discrete distribution on the set $\{1, 2, 3\}$.

A sample of size 5 yields : 1, 3, 2, 2, 1.

• Population (or theoretical) probability mass function (denoted by \mathbb{P}_X):

$$\mathbb{P}_X(1)=\mathbb{P}_X(2)=\mathbb{P}_X(3)=rac{1}{3}$$

• Empirical probability mass function (denoted by \mathbb{P}_5)

$$\mathbb{P}_5(1) = rac{2}{5}, \quad \mathbb{P}_5(2) = rac{2}{5}, \quad \mathbb{P}_5(3) = rac{1}{5}.$$

Same example : moments

Population (or theoretical) mean

$$\mathbb{E}(X) = \frac{1+2+3}{3} = 2$$

Empirical mean (or sample mean)

$$\bar{x} = \frac{1+3+2+2+1}{5} = \frac{9}{5}$$

Population quantiles : examples

Recall that the quantile of order $\alpha \in]0,1]$ of the population distribution P_X is

$$q_{\alpha}(X) = F_X^{-1}(\alpha) = \inf\{x \in \mathbb{R} : F_X(x) \ge \alpha\}.$$

Examples :

• If $X \sim \mathcal{N}(\mu, \sigma^2)$, and if Φ is the cdf of $\mathcal{N}(0, 1)$ then

$$q_{\alpha} = \mu + \sigma \, \Phi^{-1}(\alpha).$$

• If X follows the logistic distribution with pdf

$$f_X(x) = \frac{\exp(-\frac{x-a}{b})}{b(1+\exp(-\frac{x-a}{b}))^2},$$

then

$$q_{lpha} = \mathbf{a} + b \ln \left(rac{lpha}{1-lpha}
ight).$$

Probability and Statistics for Data Science

38 / 52

Empirical quantiles

Let $X_{(1)}, \ldots, X_{(n)}$ be the order statistics (sample values X_1, \ldots, X_n sorted in increasing order).

The previous rules applied to the empirical distribution function yield two cases in the scenario of no ties :

① First case : $n\alpha$ is an integer

$$\hat{q}_{\alpha} = X_{(n\alpha)} = X_{([n\alpha])}$$

2 Second case : $n\alpha$ is not an integer

$$\hat{q}_{\alpha} = X_{([n\alpha]+1)}$$

where $[n\alpha]$ is the integer part of $n\alpha$.

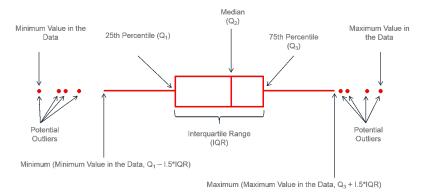
Alternatively in this second case :

$$\hat{q}_{\alpha} = \frac{1}{2}(X_{([n\alpha])} + X_{([n\alpha]+1)})$$

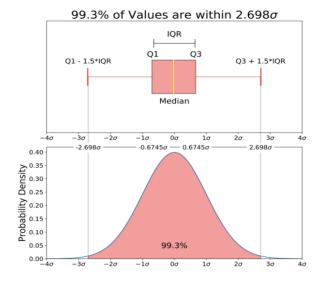
which coincides with classical empirical **median** when $\alpha = 1/2$.

Empirical quantiles applications : boxplots

Box Plot Anatomy :



Box Plot (cont'd)



Empirical quantiles applications : Probability plots

A probability plot is a graphical tool for comparing two data sets :

- either two sets of empirical observations,
- or one empirical set against a theoretical set,
- or (more rarely) two theoretical sets against each other.

It commonly means one of these three plots :

- P-P plot, "Probability-Probability" or "Percent-Percent" plot [plot of F_X(z) against F_Y(z)];
- Q-Q plot, "Quantile-Quantile" plot [plot of $F_X^{-1}(\alpha)$ against $F_Y^{-1}(\alpha)$];
- (special case :) Normal probability plot, a Q-Q plot against the standard normal distribution.

Normal probability plot : preliminary lemmas

Lemma 1

- If the R.V. X has a cdf F_X and if U has a uniform distribution on [0, 1], then the random variable $F_X^{-1}(U)$ has the same distribution as X.
- If the R.V. X has a cdf F_X which is invertible, then the variable $F_X(X)$ has a uniform distribution on [0, 1].

This lemma is used by statistical softwares to generate samples from a given law starting with uniform samples.

Lemma 2 If U_1, \ldots, U_n is a sample from the uniform distribution on the interval [0, 1], then

$$\mathbb{E}(U_{(r)})=\frac{r}{n+1}.$$

Normal probability plot : theory

Given a sample (X_1, \ldots, X_n) , the **normal probability plot** is the plot of the points

$$\left(X_{(r)}, \Phi^{-1}\left(\frac{r}{n+1}\right)\right)$$
 for $r = 1, \ldots, n$.

It is a Q-Q plot for F_n^{-1} against Φ^{-1} .

The principle is based on the following theorem :

Theorem. If X_1, \ldots, X_n are i.i.d. with cdf F, then

$$\mathbb{E}\left[F(X_{(r)})\right] = \frac{r}{n+1}.$$

Application : R function 'qqnorm'

QQ plot for location – scale family

Similarly, one can see whether the distribution of X belongs to a given **location**-scale family of distributions :

$$F_X(x) = F_0(\frac{x-\mu}{\sigma}),$$

where μ is the location parameter and σ is the scale parameter.

Same theorem
$$\mapsto$$
 plot of $\left(X_{(r)}, F_0^{-1}\left(\frac{r}{n+1}\right)\right)$ is approximately aligned.

<u>Examples</u> : R function 'qqt' of package 'limma', 'qqPlot' from package 'qualityTools' for Beta, Cauchy, χ^2 , Poisson, etc.

45 / 52

Normal probability plot : practice

Application : forget about the expectation in the theorem, roughly the points $(X_{(r)}, \Phi^{-1}(\frac{r}{n+1}))$ should be aligned if the sample comes from a gaussian $\mathcal{N}(\mu, \sigma^2)$.

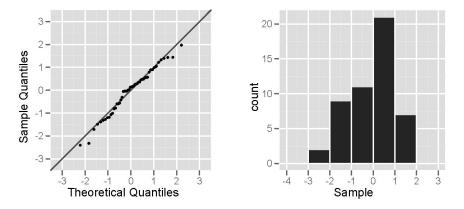
In practice, the quantile order $\frac{r}{n+1}$ is replaced by more sophisticated forms.

As a reference, a straight line can be fit to the points :

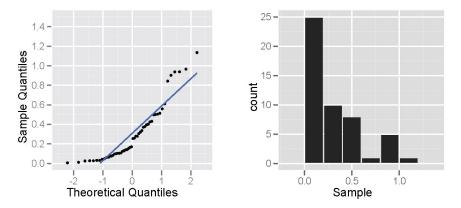
The further the points deviate from this line, the greater the indication of departure from normality.

Appreciation depends upon the sample size.

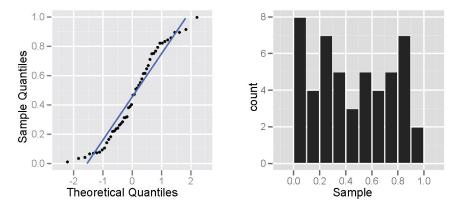
Sample of size 50 from a gaussian, from Wikipedia Commons

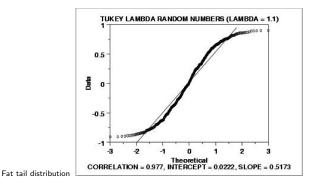


Sample of size 50 from a right-skewed distribution, from Wikipedia Commons



Sample of size 50 from a uniform, S-shape, from Wikipedia Commons





Quantiles : application to actuarial risk appraisal

In actuarial science, an aggregate loss is a random variable. The **Value at Risk** (VaR) is a quantile of the distribution of aggregated losses (over a given time period) at a high probability level p; It is used in the determination of capital necessary to withstand such adverse outcomes (severe losses) :

$$Var_p(X) = F_X^{-1}(p)$$
 for p close to 1 (high quantile).

The **Tail-Value at risk** (or expected shortfall) is another more informative measure. Given a probability level p, the $TVar_p(X)$ is equal to the expected loss given that the loss exceeds the pth quantile of X (*i.e.* $Var_p(X)$) :

$$TVar_p(X) = \mathbb{E}(X \mid X > F_X^{-1}(p))$$

It can be shown that it is an average of all VaR values above the security level p and thus contains more information about the distribution of X in the tails than the VaR.

S. Gadat

Quantiles : application to financial risk appraisal

Example : if $Var_p(X) = 100,000$ euros for p = 0.99 and the time period is one year, it means that there is a probability of

1 - p = 0.01

that the company will experience a loss of more than 100,000 euros over the next year.

If moreover $TVar_p(X) = 150,000$ euros for p = 0.99 and the time period is one year, it means that the expected loss will be 150,000 euros knowing that the company experiences a loss exceeding 100,000 euros next year.