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Decision theory

Decision theory

History : Wald (1939), Lehman (1950), Savage (1954)

Let (Ω,P) be a parametric model with

P = {Pθ; θ ∈ Θ}.

Belief : the DGP (“data generating process”) is the mechanism which
generates the data from the law Pθ0 where the value θ0 is called the
“truth”, or “state of nature”

Objective : guess the truth about the DGP (i.e. estimate and make
inference on θ0) using the available observed data.
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Decision theory

Decision rule

Depending upon the objectives of the statistician, one defines
a set of possible decisions D. What is a decision ?

A decision corresponds to some statement relative to θ.

The statistician must take one decision d ∈ D based on
one observation x ∈ Ω.

Definition of a decision rule : It is a map r which assigns exactly one
decision d ∈ D to each observation x ∈ Ω :

r : Ω → D
x 7→ r(x) = d .

A decision rule defines a strategy for the statistician.
We will denote by R the set of decision rules r .
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Decision theory

Example 1

We experiment a medical treatment on a population of n sick patients.

Let θ be the true proportion of patients cured by this treatment.

We cannot do the experiment on the whole population (too expensive),
and hence we cannot observe the true θ, but only an approximation θ̂ of θ
based on the available sample of sick patients.

We would like to solve questions relative to θ based on the proportion θ̂ of
patients cured by the treatment in the sample.

Which model to use ? If we associate to each patient i the r.v. Xi = 1 if
cured, and Xi = 0 otherwise, then

θ̂ =
1

n

n∑
i=1

Xi and nθ̂ ⇝ B (n, θ) .
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Decision theory

Example 1

Objective 1 : estimate the proportion θ of cured patients, we have an

estimation problem and a decision is an estimate θ̂ in D = [0, 1] ≡ Θ.

Objective 2 : decide whether or not the proportion θ is larger than a
given threshold θ∗ (could be the proportion of cured patients with a
former treatment), we have a test problem and there are two possible
decisions (yes or no, i.e., D = {0, 1}).
Objective 3 : give a bracket [θlow , θhigh] such that the true θ belongs
to this bracket with a high probability (confidence level), we have a CI
problem and a decision d = r(x) is an interval with bounds in [0, 1].
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Decision theory

Types of decision problems

1 Point estimation problem : D = Θ and r(x) = θ̂.

2 Test problem : D = {0, 1}, r(x) = 0 if θ ∈ H0 and r(x) = 1 if
θ ∈ H1 : a decision rule is therefore an indicator function

3 Confidence interval problem : D is the set of intervals with bounds in
Θ and r(x) = [L̂B, ÛB].

If r is a decision rule and x is a realization of X , then r(x) is a realization
of the random variable r(X ).

For a same problem, one can define several decision rules r
(e.g. one may construct different estimates θ̂ of θ from the same data x).
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Decision theory

Loss function

Loss function ? : it is a map

L : Θ×D 7→ R+

which assigns a non negative real number to each pair (θ, d) where θ ∈ Θ
and d ∈ D is a decision.

L(θ, d) measures the size of a possibly wrong decision d (when the
true probability law corresponds to the parameter θ).

the choice of L depends on the decision problem and is left to the
statistician or the decision maker, it is not dictated by the experiment.
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Loss function

1 Introduction

2 Loss function

3 Optimal decision rule
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Loss function

Loss function : examples

For estimation problems :

the most frequent loss function is the quadratic loss

L(θ, d) = (θ − d)2 if θ, d ∈ R;

an alternative is the absolute loss

L(θ, d) =| θ − d | .
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Loss function

Loss function : examples

For a test problem, assume we test H0 against H1. There are two possible
decisions and two possibilities for θ (it satisfies H0 or not), therefore there
are only four losses to define.

truth 7→
decision H0 H1

↓
H0 L = 0 L = L2
H1 L = L1 L = 0

L1 is the first type error, i.e. reject H0 whereas it is true
L2 is the second type error, i.e. do not reject H0 whereas it is wrong
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Loss function

Risk function

If d is a decision rule, then L(θ, d(X )) is a random variable
(where X follows Pθ).

In order to use this r.v. for choosing among decision rules, one needs to
summarize this random loss by taking its expectation, which yields the risk
function (risk of taking a possibly wrong or inaccurate decision rule) :

R(θ, d) = Eθ[L(θ, d(X ))].

Meaning of Eθ : expected value when X follows the distribution Pθ

corresponding to the value θ of the model parameter.

We will write also EX later with the same meaning when there is no
possible confusion about the value of θ.
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Loss function

Decomposition of quadratic risk

For quadratic loss :

L(θ, d) = (θ − d)2 if θ, d ∈ R

there is a classical decomposition of quadratic risk for an estimator
d(X ) = θ̂ of a real parameter θ.

Theorem (Bias Variance decomposition)

R(θ, d) = Eθ[(θ − θ̂)2]

= [Eθ(θ̂)− θ]2 + varθ

= squared bias+ variance

S. Gadat (TSE) Lecture 3: Decision theory November 7, 2022 13 / 38



Loss function

Examples of Risk computation

Let (X1, . . . ,Xn) be a random sample from a Poisson distribution
with mean λ.

Using quadratic loss, evaluate the risk of the estimator λ̂ = X̄ .

Let (X1, . . . ,Xn) be a random sample from a Bernoulli distribution
with parameter p.

Using quadratic loss, evaluate the risk of the estimator p̂ = X̄ .
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Loss function

Evaluating risk

Exact finite distance computation (school exercise as seen in the
previous slide, but seldom possible in practice).

Asymptotic evaluation (when the sample size is large enough).

Bootstrap (see the prinicple in the next slide).
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Loss function

Bootstrap principle

Purpose of bootstrap : estimate bias, variance and mean squared error
of estimators θ̂ = T (X1, . . . ,Xn) when no closed formula is possible.

The general idea of the method is to use the initial sample X1, . . . ,Xn to

draw B samples, called bootstrap samples and denoted X
∗(b)
1 , . . . ,X

∗(b)
n ,

and to use these generated samples to evaluate the risk.

In the real world, a single sample implies a single estimate
θ̂ = T (X1, . . . ,Xn) of the unknown parameter θ, hence it is
impossible to estimate bias and variance.

In the bootstrap world (conditionally on the initial sample), what
plays the role of the unknown θ is θ̂. We can compute B estimates of

θ by θ̂∗(b) = T (X
∗(b)
1 , . . . ,X

∗(b)
n ), and their sample average is

¯̂
θ∗ =

1

B

B∑
b=1

θ̂∗(b) which estimates Eθ(θ̂).
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Loss function

Two kinds of bootstrap

The way these bootstrap samples are generated differs according to the
type of bootstrap :

nonparametric : draw B independent bootstrap samples of size n,

denoted by X
∗(b)
1 , . . . ,X

∗(b)
n , from the empirical cumulative

distribution function of the initial sample.

parametric :
1 choose a parametric family of distributions ;

2 fit this model to the initial sample to get parameters estimates ;

3 draw B independent bootstrap samples of size n, denoted by

X
∗(b)
1 , . . . ,X

∗(b)
n , from the fitted distribution obtained in step 2.
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Loss function

Bootstrap : risk evaluation

1 to estimate the bias (Eθ(θ̂)− θ) of θ̂ = T (X1, . . . ,Xn), first compute
¯̂
θ∗ = 1

B

∑B
b=1 θ̂

∗(b) and then

B̂ias =
¯̂
θ∗ − θ̂.

2 to estimate the variance Eθ

[(
θ̂ − Eθ(θ̂)

)2
]
of θ̂, use

V̂ar =
1

B

B∑
b=1

(
θ̂∗(b) − ¯̂

θ∗
)2

.

3 to estimate MSE = Eθ

[
(θ̂ − θ)2

]
= squared bias + variance, use

M̂SE =
1

B

B∑
b=1

(
θ̂∗(b) − θ̂

)2
= (B̂ias)2 + V̂ar.

Exercise : prove that the two formulas for M̂SE are equivalent.
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Loss function

Comparing decision rules using the risk function

The statistician will try to minimize the risk, but note that R(θ, d) is
a function of the unknown parameter θ.

Two functions θ 7→ R(θ, d1) and θ 7→ R(θ, d2), may not be
comparable...

Preference relations :

A decision d1 is preferred to d2 if its risk is entirely below that of d2 :

∀θ R(θ, d1) ≤ R(θ, d2)

A decision d1 is strictly preferred to d2 if

∀θ R(θ, d1) ≤ R(θ, d2) and ∃θ∗ R(θ∗, d1) < R(θ∗, d2).
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Loss function

Comparing decision rules using the risk function

The preference relation is a partial order : there exist rules which are not
comparable.

Example : Ω = {0, 1}, and P is the set of Bernoulli distributions with
parameter θ ∈ [0, 1].

Assume D = {0, 1} and L(θ, d) = (1− θ) · 1(d=1) + θ · 1(d=0)

Given an observation X , four possible decision rules :

d1 d2 d3 d4
If X = 0 0 1 0 1

If X = 1 0 0 1 1

We can compute the risks !

R(θ, d1) = θ, R(θ, d4) = 1− θ,

R(θ, d2) = (1− θ)2 + θ2, R(θ, d3) = 2θ(1− θ).

↪→ d3 is preferred to d2, ↪→ d1 and d4 are not comparable.
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Optimal decision rule
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2 Loss function

3 Optimal decision rule
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Optimal decision rule

Optimal decision rule

It is tempting to define an ideal decision rule by the following :

Definition : An optimal decision rule is a rule which is preferred to any
other rule.

However in general, there exists no such rule ! !
The set of rules is too large implying too many constraints.

A more realistic requirement that an acceptable decision rule must fulfill is
the following :

Definition : A decision rule d is admissible if there exists no decision
which is strictly preferred to d .

If d is admissible, it does not mean that d is preferred to any other rule.
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Optimal decision rule

Principles to decide between decision rules

The preference relation is partial : there exist rules that are not
comparable

The optimality is useless : typically there exists no decision which is
preferred to any other rule

Consequence : the statistician must resort to principles such as :

minimax principle

bayesian principle

optimality in a subclass

maximum likelihood

asymptotics
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Optimal decision rule Minimax principle

Minimax principle

Goal : Summarize the risk in a unique number.
Tool : RM : the minimax risk of a decision rule d is the highest risk
R(θ, d) when θ varies in the space of parameters Θ.

Definition d∗ is a minimax rule in a given class of rules D1 if its minimax
risk is minimum in this class :

RM(d∗) = inf
d∈D1

sup
θ∈Θ

R(θ, d)

Remark :

D1 may be a strict subset of D.

d∗ is trying to do as well as possible in the worst case, which is
somewhat sad ;)
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Optimal decision rule Minimax principle

Minimax principle : example

Ω = {0, 1} and P is the set of bernoulli distributions with parameter
θ ∈ [0, 1]. Let X1, . . . ,Xn be a sample from this model and θ̂1 = X̄ be the
sample mean.
Prove that with the squared error loss :

R(θ, X̄ ) =
θ(1− θ)

n
,

RM(X̄ ) =
1

4n
.

Let

θ̂2 =
nX̄ +

√
n
2

n +
√
n
.

Prove that

RM(θ̂2) =
1

4(
√
n + 1)2

and therefore that X̄ is not minimax.
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Optimal decision rule Bayesian rules

Review on conditional expectation

Given a pair of r.v. (T ,X ), the conditional expectation denoted by :

E(X |T )

is a measurable function of T and satisfies :
1 minimizes E[X − f (T )]2 when f varies in the measurable functions.
2 E(X |T = t) : mean of the conditional distribution of X given T = t.

Interpretation : E(X |T ) is the closest r.v. to X in terms of the mean
squared deviation E[X − f (T )]2.
Example : if (T ,X ) is continuous, then :

E(X |T = t) =

∫ +∞

−∞
x fX |T (x | t)dx =

∫ +∞

−∞
x
f(T ,X )(t, x)

fT (t)
dx

if (T ,X ) is discrete, then :

E(X |T = t) =
∑
x ∈X

x P(X = x | T = t) =
∑
x ∈X

x
P(X = x ,T = t)

P(T = t)
.
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Optimal decision rule Bayesian rules

Law of total expectation

For a measurable function h,

EX ,T [h(X ,T )] = ET

(
EX |T [h(X ,T ) | T ]

)
.

In this equality, on the l-h.s the expectation is with respect to the joint
distribution of X and T .

The first expectation on the r-h.s is based on the distribution of T ,
and the second expectation is based on the conditional distribution of X
given T .

When h(X ,T ) = X , the law of total expectation reads as :

EX (X ) = ET

(
EX |T [X | T ]

)
.
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Optimal decision rule Bayesian rules

Bayesian principle

Bayesian statistics try to introduce expert knowledge in the decision.

To represent expert knowledge, the parameter is modeled as random
with a distribution called the prior distribution.

If the parameter of interest is λ (denoted θ before), we will denote by Λ
the corresponding r.v. for which λ is a realization (it is hypothesized that
the true parameter λ is drawn from the expert distribution of Λ).

In this context, Pλ is not any more the distribution PX of the r.v. of
interest X , but is the conditional distribution PX |Λ=λ of X
given the value of the parameter Λ = λ.

Similarly, the risk R(λ, d) is interpreted as the conditional risk of d given
that Λ = λ :

R(λ, d) = EX |Λ[L (λ, d(X ))|Λ = λ].
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Optimal decision rule Bayesian rules

Bayesian principle

In order to summarize the risk in a unique number, we define the bayesian
risk RB(d) of a decision rule d for the prior law of Λ as :

RB(d) = EΛ(R(Λ, d)) = EΛ

(
EX |Λ[L (Λ, d(X ))|Λ]

)
.

The law of total expectation leads to :

RB(d) = EX ,Λ[L(Λ, d(X ))],

where the expectation is with respect to the joint law of X and Λ.

Definition d∗ is a bayesian rule for the prior law of Λ if its bayesian risk is
minimum.
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Optimal decision rule Bayesian rules

Bayesian principle

A posterior distribution : it is the law of Λ given the observation X = x .

It reflects an update of the prior Λ through the information X = x .

Mathematically, one obtains the posterior by the Bayes formula.

In the continuous case, the posterior density is given by :

f (λ | x) =
fΛ,X (λ, x)

fX (x)
,

where the marginal itself fX (x) is obtained as

fX (x) =

∫
fΛ,X (λ, x)dλ.
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Optimal decision rule Bayesian rules

Computation of bayesian rule for quadratic loss

Theorem. When the set of parameters is an interval of R and the loss is
quadratic, the bayesian estimator of λ is given by the posterior mean

r∗(x) = E(Λ | X = x).

(see slide 28 for the definition of a bayesian rule r∗)

To apply the theorem one must follow these steps :

the joint law of X and Λ (multiply the conditional distribution of X
given Λ by the prior of Λ)

the marginal law of X (integrate the joint wrt λ)

the conditional law of Λ given X (posterior law)

the mean of this conditional law (posterior mean)
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Optimal decision rule Bayesian rules

Example of Bayesian estimator for quadratic loss

X ∼ B(n, λ), λ ∈ [0, 1]. A priori law of λ : Beta distribution(a,b), its pdf

g(λ) = λa−1(1− λ)b−1/B(a, b)

where B(a, b) =
∫ 1
0 ua−1(1− u)b−1du. Mean of this Beta : a

a+b .

Show that the bayesian estimator of λ under squared error loss is given by

λ̂ =
n

n + a+ b

X

n
+

a+ b

n + a+ b

a

a+ b

Weighted average of the empirical mean X
n and the a priori mean a

a+b :
this shows how the bayesian principle combines prior information and data.
It is not always the case !
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Optimal decision rule Bayesian rules

Example of Bayesian estimator for non quadratic loss

X ∼ B(n, λ), λ ∈ [0, 1]. A priori law of λ : uniform on [0, 1].

Find the bayesian estimator of λ under the square error loss

Same question with the following loss function :

L(λ, d) =
(λ− d)2

λ(1− λ)
.
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Optimal decision rule Bayesian rules

Discussion of Bayesian rules

1 Pro : construction of estimators with good properties (most bayesian
rules are admissible)

2 Cons1 : the choice of the a priori knowledge is often criticized (more
driven by mathematical convenience than by expert knowledge)

3 Cons2 : the posterior distribution may not be explicit, and we shall
need some simulation algorithms to compute it. See Lecture : “
Stochastic methods for Optimization and Sampling.”
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Optimal decision rule Optimality in a subclass

Optimality in a subclass

To relax the optimality condition, we can restrict the set of rules to a
subclass. It is usual to use the class of unbiased rules.

Preliminary notation : because the true distribution Pθ is unknown, the
expectation symbol will be indexed by the true value of the parameter : Eθ

Definition : A decision d is unbiased if for any two values of the
parameter θ1 and θ2 we have

Eθ1 [L(θ1, d(X ))] ≤ Eθ1 [L(θ2, d(X ))]

It means that for any value of the true parameter θ1, the decision d(X ) is
closer on average to the true decision θ1 than to any other erroneous
decision corresponding to θ2. Note that this applies to the point
estimation problem as well as to the test problem.
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Optimal decision rule Optimality in a subclass

Optimality in a subclass

Theorem In the case of the point estimation problem with squared error
loss, an estimator θ̂ such that Eθ(θ̂) belongs to the set of parameters Θ is
unbiased if and only if for all θ ∈ Θ :

Eθ(θ̂) = θ.

This leads us to the definition of optimality in the subclass of unbiased
decision rules :

Definition An estimator is optimal in the class of unbiased estimators if it
is preferred to any other estimator (in the sense described in slide 19).

Theorem In the case of the point estimation problem with squared error
loss, an estimator θ̂ is optimal in the class of unbiased estimators if and
only if it has Minimal Variance among Unbiased Estimators for any value
of the true parameter.
This theorem explains the acronym MVUE
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Optimal decision rule Optimality in a subclass

Optimality in a subclass : Gauss-Markov theorem

Linear model
Y = Xβ + ϵ

Conditions : ϵ are centered and independent r.v. with bounded variance.

1 Prove that the OLS estimator of β is given by

β̂ = (X ′X )−1X ′Y .

It is a linear function of Y .

2 Show that the OLS estimator β̂ of β is the best estimator in the
subclass of linear unbiased estimators under squared error loss.
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Optimal decision rule Optimality in a subclass

Optimality in a subclass : limitation

Even if an estimator is MVUE it may not be admissible !

Example : In the model with a random sample from P the set of gaussian
random variables with mean zero and variance σ2 (σ > 0), let θ = σ2 and

θ̂ =
1

n

n∑
i=1

X 2
i .

1 Prove that θ̂ is unbiased.

2 Show that there exists a positive real α such that θ̂α = αθ̂ has a
smaller MSE than that of θ̂.
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