Lecture 4: Decision theory and Cramer Rao efficiency

Sébastien Gadat

TSE

November 5, 2023

S. Gadat (TSE)

Lecture 4: Decision theory and Cramer Rao

1 Introduction to optimality for estimation

- Likelihood, Information and regular models
- 3 Exhaustive statistics
- 4 Cramer-Rao lower bound

Loss function for the estimation problem

Let (Ω, \mathcal{P}) be a parametric model with

$$\mathcal{P} = \{ \mathbb{P}_{\theta}; \ \theta \in \Theta \}.$$

- **Objective** : guess the truth about the DGP (*i.e.* estimate *θ*₀) using the available observed data.
- Among set of possible decisions \mathcal{D} , what is the best achievable one?
- Point estimation problem : $\mathcal{D} = \Theta$ and $r(x) = \hat{\theta}$.
- Below, we will focus on the Mean Square Error (M.S.E. for short) :

$$R(\theta_0, \hat{\theta}_n) = \mathbb{E}_{\theta_0}[\|\theta_0 - \hat{\theta}_n\|^2]$$

Loss decomposition

Loss function : map $L : \Theta \times \mathcal{D} \mapsto \mathbb{R}^+$, which assigns a non negative real number to each pair (θ, d) where $\theta \in \Theta$ and $d \in \mathcal{D}$ is a decision :

 $L(\theta_1,\theta_2) = \|\theta_1 - \theta_2\|^2.$

Important Result : Bias Variance decomposition :

$$egin{aligned} & \mathcal{R}(heta_0, \hat{ heta}_n) = \mathsf{Bias}^2 + \mathsf{Var}(\hat{ heta}_n) \ & = \left[\mathbb{E}_{ heta_0}[\hat{ heta}_n] - heta_0
ight]^2 + \mathsf{Var}(\hat{ heta}_n). \end{aligned}$$

Unbiased estimation : natural restriction?

We sometimes restrict the class of estimators to unbiased ones :

$$\mathbb{E}_{\theta_0}[\hat{\theta}_n] = \theta_0.$$

Example : Consider X_1, \ldots, X_n i.i.d. $\mathcal{U}([0, \theta])$

•
$$\hat{\theta}_n^{(1)} = \frac{1}{n} \sum_{i=1}^n X_i$$

• $\hat{\theta}_n^{(2)} = X_{n:n}$
• $\hat{\theta}_n^{(3)} = \lambda_n X_{n:n}$ where λ_n is computed to ensure that a

$$\mathbb{E}[\hat{\theta}_n^{(3)}] = \theta_0$$

Among the three estimators, what is the best one in terms of MSE?

Introduction to optimality for estimation

2 Likelihood, Information and regular models

3 Exhaustive statistics

Regular models : definition of the Likelihood

Definition

We consider $\Theta \subset \mathbb{R}^d$ and a statistical model $\mathcal{P} = \{X, \mathcal{X}, \mathbb{P}_{\theta}; \theta \in \Theta\}$. We assume that all the distributions \mathbb{P}_{θ} are a.c. w.r.t. a reference measure μ , with a density p_{θ} :

$$\mathbb{P}_{\theta} = p_{\theta}.\mu$$

For any $x \in \mathcal{X}$, we define the likelihood / log likelihood of x as :

$$L(\theta, x) = p_{\theta}(x)$$
 and $\ell(\theta, x) = \log p_{\theta}(x)$

The (log)-likelihood quantifies the plausibility to observe x when assuming the value θ of the parameter.

Likelihood and regular models

- (Log)-likelihood : key tool for our statistical / machine learning purpose these two years.
- Powerful for estimation, test, classification

Assume that we observe (X_1, \ldots, X_n) , we denote by L_n/ℓ_n :

 $L_n(\theta) = p_{\theta}(X_1, \dots, X_n)$ and $\ell_n(\theta) = \log L_n(\theta)$.

- L_n/ℓ_n is the (log)-likelihood computed at $\theta \in \Theta$
- L_n is a random function as it depends on the sample (X_1, \ldots, X_n) .
- When n = 1, we simply denote the (log)-Likelihood by $L_{\theta}(x)$ and $\ell_{\theta}(x)$.
- When the sample is i.i.d., $\ell_n(\theta)$ is a sum of individual log-likelihood :

$$\ell_n(\theta) = \sum_{i=1}^n \log p_{\theta}(X_i).$$

Likelihood : examples

Several easy computations : imagine we observe X_1, \ldots, X_n i.i.d. Give the reference measure μ and compute the log-likelihood of the next models.

- Gaussian model $\mathcal{N}(\mu,\sigma^2)$, and $\mathcal{N}(\mu,\Sigma^2)$
- Exponential model $\mathcal{E}(\theta)$
- Uniform model U([0, θ])
- Poisson $\mathcal{P}(\lambda)$
- Bernoulli B(p)

Likelihood and regular models

We consider Θ an open set of \mathbb{R}^d and a parametric model $\mathcal{P} = \{X, \mathcal{X}, \mathbb{P}_{\theta}; \theta \in \Theta\}.$

Definition (Regular model)

- For μ a.s. z, the function $\theta \mapsto p_{\theta}(z)$ is cont. differentiable on Θ
- We can switch ∇_{θ} and \mathbb{E}_{θ} :

$$abla_ heta\int p_ heta(z)d\mu(z)=\int
abla_ heta p_ heta(z)d\mu(z)=0$$
 $\int \|
abla_ heta\ell(heta,z)\|^2p_ heta(z)d\mu(z)<+\infty$

۲

Fisher score

Assume that we have a regular model, we define the Fisher score as :

Definition (Fisher score)

For any r.v. Z and a parametric model $\mathcal{P} = \{X, \mathcal{X}, \mathbb{P}_{\theta}; \theta \in \Theta\}$, we define the score as :

$$S(\theta, Z) = \nabla_{\theta}[\ell_{\theta}(Z)].$$

For a regular model, the score is a centered random variable.

Likelihood and regular models : examples

Verify wether the three conditions for the following models hold or not.

- Uniform model $\mathcal{U}([0, \theta])$ (is not regular)
- Exponential model $\mathcal{E}(\theta)$ (is regular)
- Gaussian model $\mathcal{N}(\mu, \sigma^2), \theta = (\mu, \sigma^2)$ (is regular)
- Bernoulli model $\mathcal{B}(p)$ (is regular)
- Poisson model $\mathcal{P}(\lambda)$ (is regular)
- Geometric model $\mathcal{G}(p)$ (is regular)

Regular estimator

We assume that the statistical model $\mathcal{P} = \{X, \mathcal{X}, \mathbb{P}_{\theta}; \theta \in \Theta\}$ is regular.

Definition (Regular estimator)

An estimator T is a regular estimator of $g(\theta)$ is

• T(Z) has a second order moment for any θ :

$$\mathbb{E}_{\theta}[T(Z)^2] < \infty.$$

• The function $\theta \mapsto \mathbb{E}_{\theta}[\mathcal{T}(Z)]$ is differentiable over Θ and

$$orall heta \in \Theta \qquad
abla_ heta \mathbb{E}_ heta [\mathsf{T}(\mathsf{Z})] = \int \mathsf{T}(\mathsf{z})
abla_ heta [\mathsf{p}_ heta(\mathsf{z})] d\mu(\mathsf{z})$$

Fisher information

We assume that the statistical model $\mathcal{P} = \{X, \mathcal{X}, \mathbb{P}_{\theta}; \theta \in \Theta\}$ is regular. The final fundamental definition is as follows.

Definition (Fisher information)

The Fisher information of the model \mathcal{P} is defined as :

$$\mathbb{I}: \theta \longmapsto \mathbb{E}_{\theta} \left[S(\theta, Z) S(\theta, Z)^{T} \right].$$

- $\mathbb{I}(\theta)$ is a $d \times d$ symetric and positive matrix.
- Since the score is a centered random variable :

 $\mathbb{I}(\theta) = \operatorname{Cov}(S(\theta, Z)).$

Fisher information : examples

Compute the Fisher information in the following examples.

• Bernoulli model $\mathcal{B}(p)$

$$\mathbb{I}(p) = rac{1}{p(1-p)}$$

• Binomial model $\mathcal{B}(n,p)$

$$\mathbb{I}(p) = \frac{n}{p(1-p)}$$

• Gaussian model $\mathcal{N}(\mu, 1)$

$$\mathbb{I}(\mu) = 1$$

• Gaussian model $\mathcal{N}(\mu, \sigma^2)$

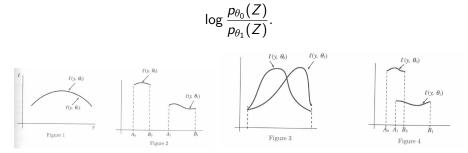
$$\mathbb{I}(\mu, \sigma^2) = \begin{pmatrix} rac{1}{\sigma^2} & 0 \\ 0 & rac{1}{2\sigma^2} \end{pmatrix}$$

S. Gadat (TSE)

Lecture 4: Decision theory and Cramer Rao

Why Fisher information?

Discuss a little about the term information, at least informally.

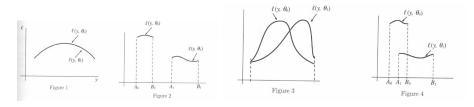


- **①** Fig1 : *Z* does not permit to distinguish between θ_0 and θ_1 . I is zero.
- **②** Fig2 : Z ∈ [A₀, B₀] : S is infinite. We can perfectly distinguish between θ_0 and θ_1
- Sig3 : We cannot distinguish between θ₀ and θ₁ except with a real number. The log is positive when p_{θ0}(Z) > p_{θ1}(Z).
- Fig4 : Mix between 2 and 3.

S. Gadat (TSE)

Why Fisher information?

Discuss a little about the term *information*, at least informally.



Implicitely, I is infinite when it is possible to perfectly identify θ without any mistake. It appears to be possible in Fig. 2 and Fig. 4. Oppositely, I is 0 when it is *impossible*. Reasonnably : situations like Fig 3. stand for the general case.

S. Gadat (TSE)

1 Introduction to optimality for estimation

Likelihood, Information and regular models

3 Exhaustive statistics

Exhaustivity

Imagine that you have at your disposal $Y = (X_1, \ldots, X_n)$, an i.i.d. sample of a Bernoulli model $\mathcal{B}(p)$.

• Instead of giving you Y, we only give you

$$S_n = \sum_{i=1}^n X_i$$

• Is there a loss of information? In our example, identify $\mathcal{L}(Y|S_n)$:

$$\mathbb{P}[Y = x | S_n = s] = \frac{\mathbb{P}[Y = x \& S_n = s]}{\mathbb{P}[S_n = s]}$$
$$= \begin{cases} 0 \quad \text{if} \quad \sum_{i=1}^n x_i \neq s \\ \frac{p^s (1-p)^{n-s}}{C_n^s p^s (1-p)^{n-s}} \quad \text{if} \quad \sum_{i=1}^n x_i = s \end{cases}$$

The conditional distribution is independent from p: means that once S_n is known the whole dependency of Y through p is determined.

S. Gadat (TSE)

Exhaustivity : definition

Definition (Exhaustive statistics)

We consider a statistical model $\mathcal{P} = \{X, \mathcal{X}, \mathbb{P}_{\theta}; \theta \in \Theta\}$. A statistics S is exhaustive if and only if

 $\forall \theta \in \Theta$ $\mathcal{L}(X|S)$ is independent from θ .

We can state a powerful criterion for exhaustivity.

Theorem (Factorization criterion for exhausitivity)

Consider a statistical model for which \mathbb{P}_{θ} is a.c. w.r.t. μ of density p_{θ} . S is exhaustive if and only if we can find g and ψ such that :

$$p_{\theta}(x) = g(x)\psi_{\theta}(S(x))$$

Exhaustivity : examples

Consider the Gaussian model of *n* i.i.d. samples $X = (X_1, \ldots, X_n)$ of $\mathcal{N}(\mu, 1)$. We verify that :

$$\begin{aligned} p_{\theta}(x) &= \prod_{i=1}^{n} \frac{\exp(-(X_{i} - \mu)^{2}/2)}{\sqrt{2\pi}} \\ &= (2\pi)^{-n/2} \exp\left(-\frac{1}{2} \sum_{i=1}^{n} (X_{i} - \mu)^{2}\right) \\ &= (2\pi)^{-n/2} \exp\left(-\frac{1}{2} \sum_{i=1}^{n} X_{i}^{2}\right) \exp\left(\mu \sum_{i=1}^{n} X_{i} - n\mu^{2}/2\right). \end{aligned}$$

We observe that S_n defined below is exhaustive :

$$S_n = \sum_{i=1}^n X_i$$

We just have to use the factorization criterion !

S. Gadat (TSE)

ļ

Lecture 4: Decision theory and Cramer Rao

Exhaustivity and Information

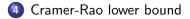
We consider X a random variable and S a statistics. We denote by $\mathbb{I}_{S}(\theta)$ the Fisher information on θ brought by S in the image model.

Theorem

- $\mathbb{I}_{\mathcal{S}}(\theta) \leq \mathbb{I}_{\mathcal{X}}(\theta)$
- If S is exhaustive, then : $\mathbb{I}_{S}(\theta) = \mathbb{I}_{X}(\theta)$.
- If S and T are independent, then $\mathbb{I}_{(S,T)}(\theta) = \mathbb{I}_{S}(\theta) + \mathbb{I}_{T}(\theta)$.

1 Introduction to optimality for estimation

- Likelihood, Information and regular models
- 3 Exhaustive statistics



Cramer-Rao lower bound

To be continued in Semester 2.