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Introduction

@ Introduction to optimality for estimation
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Introduction

Loss function for the estimation problem

Let (2, P) be a parametric model with
P = {Py; 0 € O}.

@ Objective : guess the truth about the DGP (i.e. estimate ) using
the available observed data.

@ Among set of possible decisions D, what is the best achievable
one?

e Point estimation problem : D = © and r(x) = 0.

@ Below, we will focus on the Mean Square Error (M.S.E. for short) :

R(60,0,) = Eg,[||00 — 0,]1%]
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Introduction

Loss decomposition

Loss function : map L : © x D+ R, which assigns a non negative real
number to each pair (0, d) where # € © and d € D is a decision :

L(61,62) = [|61 — 62].

Important Result : Bias Variance decomposition :

R(6o,0,) = Bias® + Var(d,)

= [Eeo [6] - 90]2 + Var(6,).
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Introduction

Unbiased estimation : natural restriction ?

We sometimes restrict the class of estimators to unbiased ones :
Eg,[0n] = 6.

Example : Consider Xi, ..., X, i.i.d. U([0,6])

o O3 = iy Xi
° 9572) = Xo:n

° 0A£,3) = ApXp:n Where A, is computed to ensure that :
E[IP] = 6o

Among the three estimators, what is the best one in terms of MSE ?
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Likelihood, Information and regular models

© Likelihood, Information and regular models

S. Gadat (TSE) Lecture 4: Decision theory and Cramer Rao November 5, 2023 6/24



Likelihood, Information and regular models

Regular models : definition of the Likelihood

Definition
We consider © C RY and a statistical model P = {X, X, Py; § € O}.
We assume that all the distributions Py are a.c. w.r.t. a reference measure
W, with a density pg :
Py = pg-pu

For any x € X, we define the likelihood / log likelihood of x as :

L(8,x) = po(x) and £(0, x) = log pa(x)

v

The (log)-likelihood quantifies the plausibility to observe x when assuming
the value 6 of the parameter.
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Likelihood, Information and regular models

Likelihood and regular models

o (Log)-likelihood : key tool for our statistical / machine learning
purpose these two years.
o Powerful for estimation, test, classification ...

Assume that we observe (Xi, ..., X,), we denote by L, /¢, :
La(0) = po(Xi,..., Xn) and 2n(0) = log Ln(6).

e L,/l, is the (log)-likelihood computed at # € ©

@ L, is a random function as it depends on the sample (Xi,..., X,).
@ When n =1, we simply denote the (log)-Likelihood by Ly(x) and
ly(x).

@ When the sample is i.i.d., £,(0) is a sum of individual log-likelihood :
0a(0) = log po(Xi).
i=1
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Likelihood, Information and regular models

Likelihood : examples

Several easy computations : imagine we observe Xi,..., X, i.i.d. Give the
reference measure 1 and compute the log-likelihood of the next models.

o Gaussian model N (u,0?), and N (p, £2)
e Exponential model £(0)

e Uniform model ([0, 6])

@ Poisson P()\)

e Bernoulli B(p)
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Likelihood, Information and regular models

Likelihood and regular models

We consider © an open set of RY and a parametric model
P ={X,X,Py; 0 € ©}.

Definition (Regular model)

@ For i a.s. z, the function 6 — py(z) is cont. differentiable on ©
@ We can switch Vy and Ey :

Vo / pol(2)du(z) = / Vopo(2)du(z) = 0

/||V05(972)||2P9(Z)du(z) < 400
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Likelihood, Information and regular models

Fisher score

Assume that we have a regular model, we define the Fisher score as :
Definition (Fisher score)

For any r.v. Z and a parametric model P = {X, X, [Py; 6 € O}, we define
the score as :

S(0,2) = Valle(2)]-

For a regular model, the score is a centered random variable.
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Likelihood, Information and regular models

Likelihood and regular models : examples

Verify wether the three conditions for the following models hold or not.
Uniform model 2([0, ]) (is not regular)
Exponential model £(0) (is regular)

Gaussian model N(u1,02),0 = (i, 02) (is regular)
Bernoulli model B(p) (is regular)
Poisson model P()) (is regular)

Geometric model G(p) (is regular)
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Likelihood, Information and regular models

Regular estimator

We assume that the statistical model P = {X, X, [Py; 6 € O} is regular.
Definition (Regular estimator)

An estimator T is a regular estimator of g(0) is

@ T(Z) has a second order moment for any 6 :
Eg[T(Z2)?] < 0.

@ The function 8 — Ey[T(Z)] is differentiable over © and

Ve  VeE[T(Z)] = / T(2)Volps(2)]du(2)
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Likelihood, Information and regular models

Fisher information

We assume that the statistical model P = {X, X', [Pg; 6 € O} is regular.
The final fundamental definition is as follows.

Definition (Fisher information)

The Fisher information of the model P is defined as :

1:60—s B, [5(9, 2)5(0,2)7] .

e I(0) is a d x d symetric and positive matrix.

@ Since the score is a centered random variable :

1(6) = Cov (S(6, Z)).
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Likelihood, Information and regular models

Fisher information : examples

Compute the Fisher information in the following examples.

@ Bernoulli model B(p)

1
= a—n
e Binomial model B(n, p)
n
ip) = p(1—p)
o Gaussian model N (, 1)
I(p) =1

e Gaussian model N(u,0?)
1
= 0
I, 0%) = (‘62 1)
202
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Why Fisher information ?

Discuss a little about the term information, at least informally.

po,(Z)
lo '
pe, (Z)
Bep e

Kigure 3 Figure 4

Figl : Z does not permit to distinguish between 0y and 61. I is zero.
Fig2 : Z € [Ao, Bo] : S is infinite. We can perfectly distinguish

between 0p and 64

Fig3 : We cannot distinguish between 6y and 6; except with a real
number. The log is positive when pg,(Z) > po,(Z).

Figd : Mix between 2 and 3.
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Likelihood, Information and regular models

Why Fisher information ?

Discuss a little about the term information, at least informally.

P@O(Z)

lo .
& 00,(2)

£y, 6) 0, 6)

00 6)

Ay A B B,

Kigure 3 Figure 4

Implicitely, T is infinite when it is possible to perfectly identify 6 without
any mistake. It appears to be possible in Fig. 2 and Fig. 4.

Oppositely, T is O when it is impossible.

Reasonnably : situations like Fig 3. stand for the general case.
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Exhaustive statistics

© Exhaustive statistics
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Exhaustivity

Imagine that you have at your disposal Y = (Xi,..

of a Bernoulli model B(p).
@ Instead of giving you Y, we only give you

oS
i=1

@ Is there a loss of information ?
In our example, identify L(Y'|S,) :

P[Y = x&S, =
PIY = xS, — 5] = LLY = x&50 =]

P[S, = 5]
0 if Yl xi#s
— ) _pPl-p if
CGp*(1—p)"—s

diaXi=s

., Xn), an i.i.d. sample

The conditional distribution is independent from p : means that once S, is
known the whole dependency of Y through p is determined.
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Exhaustivity : definition

Definition (Exhaustive statistics)

We consider a statistical model P = {X, X, Py; 6 € ©}. A statistics S is
exhaustive if and only if

vVl € © L(X|S) is independent from 6.

We can state a powerful criterion for exhaustivity.

Theorem (Factorization criterion for exhausitivity)

Consider a statistical model for which Py is a.c. w.r.t. p of density py. S is
exhaustive if and only if we can find g and 1 such that :

po(x) = &(x)¥p(S(x))
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Exhaustive statistics

Exhaustivity : examples

Consider the Gaussian model of n i.i.d. samples X = (Xi,..., X,) of

N (i, 1). We verify that :

n

PH(X) _ H exp(—(X,- - M)2/2)

il V2r
Y 1<
= (2m) "% exp (2 ;(Xi - u)2>

1 n n
_ —n/2 - 2 . 2
= (2n) exp (—2;X;>exp (u;X,—nu /2)

We observe that S, defined below is exhaustive :

5oSx
i=1

We just have to use the factorization criterion !
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Exhaustive statistics

Exhaustivity and Information

We consider X a random variable and S a statistics. We denote by Is(0)
the Fisher information on 6 brought by S in the image model.

Theorem
o Is(0) < Ix(6)
e If S is exhaustive, then : 1s(0) = Ix(6).
o IfS and T are independent, then I(s 1(0) = Is(0) +I7(0).
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Cramer-Rao lower bound

@ Cramer-Rao lower bound
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Cramer-Rao lower bound

Cramer-Rao lower bound

To be continued in Semester 2.
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