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Introduction

Loss function for the estimation problem

Let (Ω,P) be a parametric model with

P = {Pθ; θ ∈ Θ}.

Objective : guess the truth about the DGP (i.e. estimate θ0) using
the available observed data.

Among set of possible decisions D, what is the best achievable
one ?

Point estimation problem : D = Θ and r(x) = θ̂.

Below, we will focus on the Mean Square Error (M.S.E. for short) :

R(θ0, θ̂n) = Eθ0 [∥θ0 − θ̂n∥2]
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Introduction

Loss decomposition

Loss function : map L : Θ×D 7→ R+, which assigns a non negative real
number to each pair (θ, d) where θ ∈ Θ and d ∈ D is a decision :

L(θ1, θ2) = ∥θ1 − θ2∥2.

Important Result : Bias Variance decomposition :

R(θ0, θ̂n) = Bias2 + Var(θ̂n)

=
[
Eθ0 [θ̂n]− θ0

]2
+ Var(θ̂n).
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Introduction

Unbiased estimation : natural restriction ?

We sometimes restrict the class of estimators to unbiased ones :

Eθ0 [θ̂n] = θ0.

Example : Consider X1, . . . ,Xn i.i.d. U([0, θ])
θ̂
(1)
n = 1

n

∑n
i=1 Xi

θ̂
(2)
n = Xn:n

θ̂
(3)
n = λnXn:n where λn is computed to ensure that :

E[θ̂(3)n ] = θ0

Among the three estimators, what is the best one in terms of MSE ?
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Likelihood, Information and regular models

Regular models : definition of the Likelihood

Definition

We consider Θ ⊂ Rd and a statistical model P = {X ,X ,Pθ; θ ∈ Θ}.
We assume that all the distributions Pθ are a.c. w.r.t. a reference measure
µ, with a density pθ :

Pθ = pθ.µ

For any x ∈ X , we define the likelihood / log likelihood of x as :

L(θ, x) = pθ(x) and ℓ(θ, x) = log pθ(x)

The (log)-likelihood quantifies the plausibility to observe x when assuming
the value θ of the parameter.
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Likelihood, Information and regular models

Likelihood and regular models

(Log)-likelihood : key tool for our statistical / machine learning
purpose these two years.
Powerful for estimation, test, classification . . .

Assume that we observe (X1, . . . ,Xn), we denote by Ln/ℓn :

Ln(θ) = pθ(X1, . . . ,Xn) and ℓn(θ) = log Ln(θ).

Ln/ℓn is the (log)-likelihood computed at θ ∈ Θ
Ln is a random function as it depends on the sample (X1, . . . ,Xn).
When n = 1, we simply denote the (log)-Likelihood by Lθ(x) and
ℓθ(x).
When the sample is i.i.d., ℓn(θ) is a sum of individual log-likelihood :

ℓn(θ) =
n∑

i=1

log pθ(Xi ).
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Likelihood, Information and regular models

Likelihood : examples

Several easy computations : imagine we observe X1, . . . ,Xn i.i.d. Give the
reference measure µ and compute the log-likelihood of the next models.

Gaussian model N (µ, σ2), and N (µ,Σ2)

Exponential model E(θ)
Uniform model U([0, θ])
Poisson P(λ)

Bernoulli B(p)
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Likelihood, Information and regular models

Likelihood and regular models

We consider Θ an open set of Rd and a parametric model
P = {X ,X ,Pθ; θ ∈ Θ}.

Definition (Regular model)

For µ a.s. z , the function θ 7→ pθ(z) is cont. differentiable on Θ

We can switch ∇θ and Eθ :

∇θ

∫
pθ(z)dµ(z) =

∫
∇θpθ(z)dµ(z) = 0

∫
∥∇θℓ(θ, z)∥2pθ(z)dµ(z) < +∞
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Likelihood, Information and regular models

Fisher score

Assume that we have a regular model, we define the Fisher score as :

Definition (Fisher score)

For any r.v. Z and a parametric model P = {X ,X ,Pθ; θ ∈ Θ}, we define
the score as :

S(θ,Z ) = ∇θ[ℓθ(Z )].

For a regular model, the score is a centered random variable.
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Likelihood, Information and regular models

Likelihood and regular models : examples

Verify wether the three conditions for the following models hold or not.

Uniform model U([0, θ]) (is not regular)
Exponential model E(θ) (is regular)
Gaussian model N (µ, σ2), θ = (µ, σ2) (is regular)

Bernoulli model B(p) (is regular)
Poisson model P(λ) (is regular)

Geometric model G(p) (is regular)
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Likelihood, Information and regular models

Regular estimator

We assume that the statistical model P = {X ,X ,Pθ; θ ∈ Θ} is regular.

Definition (Regular estimator)

An estimator T is a regular estimator of g(θ) is

T (Z ) has a second order moment for any θ :

Eθ[T (Z )2] <∞.

The function θ 7−→ Eθ[T (Z )] is differentiable over Θ and

∀θ ∈ Θ ∇θEθ[T (Z )] =

∫
T (z)∇θ[pθ(z)]dµ(z)
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Likelihood, Information and regular models

Fisher information

We assume that the statistical model P = {X ,X ,Pθ; θ ∈ Θ} is regular.
The final fundamental definition is as follows.

Definition (Fisher information)

The Fisher information of the model P is defined as :

I : θ 7−→ Eθ

[
S(θ,Z )S(θ,Z )T

]
.

I(θ) is a d × d symetric and positive matrix.

Since the score is a centered random variable :

I(θ) = Cov (S(θ,Z )).
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Likelihood, Information and regular models

Fisher information : examples

Compute the Fisher information in the following examples.

Bernoulli model B(p)
I(p) =

1

p(1− p)

Binomial model B(n, p)

I(p) =
n

p(1− p)

Gaussian model N (µ, 1)
I(µ) = 1

Gaussian model N (µ, σ2)

I(µ, σ2) =
(

1
σ2 0
0 1

2σ2

)
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Likelihood, Information and regular models

Why Fisher information ?

Discuss a little about the term information, at least informally.

log
pθ0(Z )

pθ1(Z )
.

1 Fig1 : Z does not permit to distinguish between θ0 and θ1. I is zero.
2 Fig2 : Z ∈ [A0,B0] : S is infinite. We can perfectly distinguish

between θ0 and θ1
3 Fig3 : We cannot distinguish between θ0 and θ1 except with a real

number. The log is positive when pθ0(Z ) > pθ1(Z ).
4 Fig4 : Mix between 2 and 3.
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Likelihood, Information and regular models

Why Fisher information ?

Discuss a little about the term information, at least informally.

log
pθ0(Z )

pθ1(Z )
.

Implicitely, I is infinite when it is possible to perfectly identify θ without
any mistake. It appears to be possible in Fig. 2 and Fig. 4.
Oppositely, I is 0 when it is impossible.
Reasonnably : situations like Fig 3. stand for the general case.
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Exhaustive statistics

Exhaustivity

Imagine that you have at your disposal Y = (X1, . . . ,Xn), an i.i.d. sample
of a Bernoulli model B(p).

Instead of giving you Y , we only give you

Sn =
n∑

i=1

Xi

Is there a loss of information ?

In our example, identify L(Y |Sn) :

P [Y = x |Sn = s] =
P [Y = x&Sn = s]

P [Sn = s]

=

{
0 if

∑n
i=1 xi ̸= s

ps(1−p)n−s

C s
np

s(1−p)n−s if
∑n

i=1 xi = s

The conditional distribution is independent from p : means that once Sn is
known the whole dependency of Y through p is determined.
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Exhaustive statistics

Exhaustivity : definition

Definition (Exhaustive statistics)

We consider a statistical model P = {X ,X ,Pθ; θ ∈ Θ}. A statistics S is
exhaustive if and only if

∀θ ∈ Θ L(X |S) is independent from θ.

We can state a powerful criterion for exhaustivity.

Theorem (Factorization criterion for exhausitivity)

Consider a statistical model for which Pθ is a.c. w.r.t. µ of density pθ. S is
exhaustive if and only if we can find g and ψ such that :

pθ(x) = g(x)ψθ(S(x))
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Exhaustive statistics

Exhaustivity : examples

Consider the Gaussian model of n i.i.d. samples X = (X1, . . . ,Xn) of
N (µ, 1). We verify that :

pθ(x) =
n∏

i=1

exp(−(Xi − µ)2/2)√
2π

= (2π)−n/2 exp

(
−1

2

n∑
i=1

(Xi − µ)2

)

= (2π)−n/2 exp

(
−1

2

n∑
i=1

X 2
i

)
exp

(
µ

n∑
i=1

Xi − nµ2/2

)
.

We observe that Sn defined below is exhaustive :

Sn =
n∑

i=1

Xi

We just have to use the factorization criterion !
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Exhaustive statistics

Exhaustivity and Information

We consider X a random variable and S a statistics. We denote by IS(θ)
the Fisher information on θ brought by S in the image model.

Theorem

IS(θ) ≤ IX (θ)
If S is exhaustive, then : IS(θ) = IX (θ).
If S and T are independent, then I(S ,T )(θ) = IS(θ) + IT (θ).
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Cramer-Rao lower bound

Cramer-Rao lower bound

To be continued in Semester 2.
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