Lecture 5: Gaussian Vectors and applications to linear models

Sébastien Gadat

TSE
November 19, 2023
(1) Gaussian Distributions

- Definitions and basic properties
- Sampling a (multivariate) Gaussian distribution
- Fourier Transform / Characteristic Function
- Moment Generating Function
(2) Important results on Gaussian Vectors for Statisticians

Gaussian Distributions

Let (Ω, \mathcal{P}) be a parametric model with

$$
\mathcal{P}=\left\{\mathbb{P}_{\theta} ; \theta \in \Theta\right\}
$$

- Objective 1: $\theta=\left(\mu, \sigma^{2}\right)$ for univariate random variables
- Objective 2: $\theta=\left(\mu, \Sigma^{2}\right)$ for multivariate random variables
- Beyond the simple definitions : key properties?
- Point estimation problem : How to estimate μ ? How to estimate Σ^{2} ?
- Mean Square Error (M.S.E. for short) in the linear model situation?

$$
R\left(\theta_{0}, \hat{\theta}_{n}\right)=\mathbb{E}_{\theta_{0}}\left[\left\|\theta_{0}-\hat{\theta}_{n}\right\|^{2}\right]
$$

Definition

Univariate Gaussian distribution : $\mathcal{N}\left(\mu, \sigma^{2}\right)$ defined through its p.d.f. :

$$
\gamma_{\mu, \sigma^{2}}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Proposition

μ is the mean and σ^{2} the variance of $\mathcal{N}\left(\mu, \sigma^{2}\right)$:

$$
\mu=\mathbb{E}_{\theta}[X] \quad \sigma^{2}=\mathbb{E}_{\theta}\left[(X-\mu)^{2} .\right]
$$

Definition

Multivariate Gaussian distribution : $\mathcal{N}\left(\mu, \Sigma^{2}\right)$ defined through its p.d.f. (Σ^{2} invertible) :

$$
\gamma_{\mu, \sigma^{2}}(x)=\frac{1}{\sqrt{\left|2 \pi \Sigma^{2}\right|}} e^{-\frac{(x-\mu)^{\top} \Sigma^{-2}(x-\mu)}{2}}
$$

Proposition
μ is the mean and Σ^{2} is the covariance of $\mathcal{N}\left(\mu, \Sigma^{2}\right)$:

$$
\mu=\mathbb{E}_{\theta}[X] \quad \Sigma^{2}=\mathbb{E}_{\theta}\left[(X-\mu)(X-\mu)^{T}\right] .
$$

Proof of these results?

- Starting point : study the case $\mathcal{N}\left(0, I_{d}\right)$:

$$
\mathbb{E}[X]=0 \quad \text { and } \quad \mathbb{E}\left[X X^{\top}\right]=I_{d} .
$$

- Prove that $X \sim \mathcal{N}\left(\mu, I_{d}\right) \Longrightarrow X-\mu \sim \mathcal{N}\left(0, I_{d}\right)$
- Prove that $X \sim \mathcal{N}\left(0, I_{d}\right) \Longrightarrow A X \sim \mathcal{N}\left(0, A A^{T}\right)$
- Prove that $X \sim \mathcal{N}\left(\mu, \Sigma^{2}\right) \Longrightarrow A X \sim \mathcal{N}\left(A \mu, A \Sigma^{2} A^{T}\right)$

Theorem

If $X \sim \mathcal{N}\left(\mu, \Sigma^{2}\right)$ and Σ^{2} invertible, then :

- $Y=\Sigma^{-1}(X-\mu) \sim \mathcal{N}\left(0, I_{d}\right)$.
- $X=\mathcal{L} \Sigma Y+\mu$ where $Y \sim \mathcal{N}\left(0, I_{d}\right)$
- If v is any vector of \mathbb{R}^{d}, then $\langle v, X\rangle \sim \mathcal{N}\left(\langle\mu, v\rangle,|\Sigma v|^{2}\right)$.

Sampling a univariate Gaussian distribution

Major issue : The C.D.F. is not explicit... The following method :

$$
F_{\mu, \sigma^{2}}^{-1}(\mathcal{U}) \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

is untractable!
Fortunately, the Box-Muller algorithm works!

- Sample $R>0$ with

$$
R=\sqrt{-2 \log (\mathcal{U}(0,1))}
$$

- Sample $\theta \sim \mathcal{U}(0,2 \pi)$

$$
X=R \cos (\theta) \quad \text { and } \quad Y=R \sin (\theta)
$$

- $(X, Y) \sim \mathcal{N}\left(0, I_{2}\right)$.

Sampling a multivariate Gaussian distribution

Starting point: $X \sim \mathcal{N}\left(\mu, \Sigma^{2}\right) \Longrightarrow X={ }^{\mathcal{L}} \mu+\Sigma Y$ where $Y \sim \mathcal{N}\left(0, I_{d}\right)$.

- Compute A such that

$$
A A^{T}=\Sigma^{2}
$$

- Sample $Y \sim \mathcal{N}\left(0, I_{d}\right)$ with the Box-Muller algorithm.
- Compute $X=\mu+A Y$.

Characteristic function of a Gaussian distribution

Standard normal case

Theorem
Consider $\xi \in \mathbb{R}^{d}$ and $X \sim \mathcal{N}\left(0, I_{d}\right) n$ then :

$$
\varphi_{X}(\xi)=\mathbb{E}\left[e^{\mathfrak{i}\langle\xi, X\rangle}\right]=e^{-\frac{1}{2}\|\xi\|^{2}}
$$

Multivariate normal case

Theorem
Consider $\xi \in \mathbb{R}^{d}$ and $X \sim \mathcal{N}\left(\mu, \Sigma^{2}\right)$ then :

$$
\varphi_{X}(\xi)=\mathbb{E}\left[e^{\mathrm{i}\langle\xi, X\rangle}\right]=e^{\mathrm{i}\langle\mu, \xi\rangle-\frac{1}{2} \xi^{\top} \Sigma^{2} \xi}
$$

Moment Generating Function of a Gaussian distribution

Theorem
Consider $t \in \mathbb{R}$ and $X \sim \mathcal{N}(0,1)$ then :

$$
\mathbb{E}\left[e^{t X}\right]=e^{t^{2} / 2}
$$

If $Y \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then

$$
\mathbb{E}\left[e^{t Y}\right]=e^{t \mu+\sigma^{2} t^{2} / 2}
$$

Important consequence (either with M.G.F. of Fourier transform)
Theorem
If $\left(X_{1}, \ldots, X_{n}\right)$ are n independent Gaussian r.v. $X_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)$, then

$$
\sum_{i=1}^{n} a_{i} X_{i} \sim \mathcal{N}\left(\sum_{i=1}^{n} a_{i} \mu_{i}, \sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}\right)
$$

(1) Gaussian Distributions

(2) Important results on Gaussian Vectors for Statisticians

- Chi-square distribution
- Independence and Projections
- Linear model

Chi-square distribution

Consider $d \geq 1$ and X_{1}, \ldots, X_{d} i.i.d. $\mathcal{N}(0,1)$, then :

$$
Z=\sum_{i=1}^{d} X_{i}^{2} \sim \chi^{2}(d) \quad \text { and } \quad \mathbb{E}[Z]=d \quad \text { and } \quad \operatorname{Var}(Z)=2 d
$$

Proposition

The density of $Z \sim \chi^{2}(d)$ is :

$$
\forall x \in \mathbb{R} \quad f_{d}(x)=\frac{1}{2^{d / 2} \Gamma(d / 2)} x^{d / 2-1} e^{-x / 2} \nVdash x \geq 0 .
$$

Independence of Gaussian vectors

Proposition
Assume that X, Y are two Gaussian vectors, then X and Y are independent if and only if $\operatorname{Cov}(X, Y)=0$.

This result is straightforward using the characteristic function of the random variable (X, Y) !

Projections of Gaussian vectors

We define :

$$
\forall d \geq r \geq 1 \quad J_{r}=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right) .
$$

Consider P an orthogonal projection matrix of rank r :

$$
P^{2}=P \quad \text { and } \quad \exists Q \quad P=Q^{T} J_{r} Q \quad \text { with } Q^{-1}=Q^{T} .
$$

Theorem (Cochran's theorem)
Assume that $X \sim \mathcal{N}\left(0, I_{d}\right)$, then $\|P X\|^{2} \sim \chi^{2}(r)$ and
$P X$ and $X-P X$ are independent random variables

Linear model

We observe $\left(X_{i}, Y_{i}\right)_{1 \leq i \leq n}$ i.i.d. and assume a Gaussian linear model $\left(\mathbb{P}_{\theta}\right)_{\theta \in \mathbb{R}^{d}}$:

$$
Y=\langle X, \theta\rangle+\varepsilon \quad \text { with } \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Notation : $\mathbb{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$ and $\mathbb{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{T}$.

$$
\hat{\theta}=\left(\mathbb{X}^{T} \mathbb{X}\right)^{-1} \mathbb{X}^{T} \mathbb{Y} \sim \mathcal{N}\left(\theta, \sigma^{2}\left(\mathbb{X}^{T} \mathbb{X}\right)^{-1}\right) \quad \text { and } \quad \hat{\sigma}^{2}=\frac{\|\mathbb{Y}-\mathbb{X} \hat{\theta}\|^{2}}{n}
$$

We observe that $P=\mathbb{X}\left(\mathbb{X}^{T} \mathbb{X}\right)^{-1} \mathbb{X}^{T}$ satisfies :

$$
P^{2}=P \quad \text { and } \quad\langle P y, y-P y\rangle=0
$$

Consequence : P is a matrix projection on \mathbb{X}.

Linear model

We observe $\left(X_{i}, Y_{i}\right)_{1 \leq i \leq n}$ i.i.d. and assume a Gaussian linear model $\left(\mathbb{P}_{\theta}\right)_{\theta \in \mathbb{R}^{d}}$:

$$
Y=\langle X, \theta\rangle+\varepsilon \quad \text { with } \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Consequence on the variance :

$$
n \frac{\hat{\sigma}^{2}}{\sigma^{2}} \sim \chi^{2}(n-d)
$$

Consequence for statistics :
$\hat{\theta}$ and $\hat{\sigma}$ are independent
Consequence for statistical testing :

$$
H_{0}: " \theta_{j}=0^{\prime \prime}: \frac{\sqrt{n} \hat{\theta}_{j}}{\sqrt{\hat{\sigma}^{2}\left(\mathbb{X}^{\top} \mathbb{X}\right)_{j, j}^{-1}}} \sim \frac{\mathcal{N}(0,1)}{\sqrt{\chi^{2}(n-d)}} \sim \mathcal{T}_{n-p}
$$

