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Data Science - High dimensional
regression

Summary
Linear models are popular methods for providing a regression of a
response variable Y , that depends on covariates (X1, . . . ,Xp). We
introduce the problem of high dimensional regression and provide
some real examples where standard linear models methods are not
well suited. Then, we propose some statistical resolution through the
LASSO estimator and the Boosting algorithm. A practical session
is proposed in the end of this Lecture, since the knowledge of these
modern methods is needed in many fields.

1 Back to linear models

1.1 Sum of squares minimization

In a standard linear model, we have at our disposal (Xi, Yi) supposed to be
linked with

Yi =X
t
iβ

∗
+ εi,1 ≤ i ≤ n.

In particular, each observation Xi is described by p variables (X1
i , . . . ,X

p
i ),

so that the former relation should be understood as

Yi =
p

∑
j=1

β∗jX
j
i + εi,1 ≤ i ≤ n.

We aim to recover the unknown β∗.

● A classical “optimal” estimator is the MLE :

β̂MLE ∶= arg max
β∈Rp

L(β, (Xi, Yi)1≤i≤n),

whereL denotes the likelihood of the parameter β given the observations
(Xi, Yi)1≤i≤n.

● Generically, (εi)1≤i≤n is assumed to be i.i.d. replications of a centered
and squared integrale noise

E[ε] = 0 E[ε2] <∞.

A standard assumption even relies on the Gaussian structure of the errors
εi ∼ N (0,1) and in this case, the log-likelihood leads to the minimiza-
tion of the sum of square and

β̂MLE ∶= arg min
β∈Rp

n

∑
i=1

∥Yi −X
t
iβ∥

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=J(β)

. (1)

1.2 Matricial traduction & resolution

From a matricial point of view, the linear model can we written as follows :

Y =Xβ0 + ε, Y ∈ Rn,X ∈Mn,p(R), β0 ∈ Rp

In this lecture, we will consider situations where p varies (typically increases)
with n.

It is an easy exercice to check that (1) leads to

β̂MLE ∶= (XtX)
−1XtY .
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2 Data Science - High dimensional regression

This can be obtained while remarking that J is a convex function, that pos-
sesses a unique minimizer if and only if XtX has a full rank, meaning that J
is indeed strongly convex :

D2J =XtX,

which is a squared p × p symmetric and positive matrix. It is non degenerate if
XtX has full rank, meaning that necessarily p ≤ n.

PROPOSITION 1. — β̂MLE is an unbiased estimator of β0 such that

● If ε ∼ N (0, σ2) : ∥X(
ˆbetaMLE−β

∗
)∥

2
2

σ2 ∼ χ2
p

●

E [
∥X(β̂MLE − β

∗)∥2
2

n
] =

σ2p

n

Main requirement : XtX must be full rank (invertible) !

1.3 Difficulties in large dimensional case

Example One measures micro-array datasets built from a huge amount of
profile genes expression. From a statistical point of view, we expect to find
among the p variables that describe X important ones.

Number of genes p (of order thousands). Number of samples n (of order
hundred).

-Yi expression level of one gene on sample i

-Xi = (Xi,1, . . . ,Xi,p) biological signal (DNA micro-arrays)

Diagnostic help : healthy or ill ?

● Select among the genes meaningful elements : discover a cognitive link
between DNA and the gene expression level.

● Find an algorithm with good prediction of the response ?

Linear model ? Difficult to imagine : p > n !

● XtX is an p × p matrix, but its rank is lower than n. If n << p, then

rk(XtX) ≤ n << p.

● Consequence : the Gram matrix XtX is not invertible and even very
ill-conditionned (most of the eigenvalues are 0 !)

● The linear model β̂MLE completely fails.
● One standard “improvement" : use the ridge regression with an additio-

nal penalty :

β̂Ridgen = arg min
β∈Rp

∥Y −Xβ∥2
2 + λ∥β∥

2
2

The ridge regression is a particular case of penalized regression. The
penalization is still convex w.r.t. β and can be easily solved.

● We will attempt to describe a better suited penalized regression for high
dimensional regression.

● Our goal : find a method that permits to find β̂n such that :
— Select features among the p variables.
— Can be easily computed with numerical softs.
— Possess some statistical guarantees.

1.4 Goals

Important and nowadays questions :

● What is a good framework for high dimensional regression ? A good
model is required.

● How can we estimate ? An efficient algorithm is necessary.
● How can we measure the performances : prediction of Y ? Feature se-

lection in β ? What are we looking for ?
● Statistical guarantees ? Some mathematical theorems ?
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2 Penalized regression

2.1 Important balance : bias-variance tradeoff

A classical result in statistics states that a good estimator should achieve a
balance between bias and variance.

Example : In high dimension :
● Optimize the fit to the observed data ?
● Reduce the variability ?

Standard question : find the best curve... In what sense ? Several regressions :
● Left : fit the best line (1-D regression)
● Middle : fit the best quadratic polynomial
● Right : fit the best 10-degree polynomial

Now I am interested in the prediction at point x = 0.5. What is the best ?

If we are looking for the best possible fit, a high dimensional regressor will be
convenient.

Nevertheless, our goal is to generally to predict y for new points x and a
standard matching criterion is

C(f̂) ∶= E(X,Y )[Y − f̂(X)]
2.

It is a quadratic loss here, and should be replaced by other criteria (in classifi-
cation for example).

● When the degree increases, the fit to the observed data (red curve) is
always decreasing.

● Over the rest of the population, the generalization error starts decreasing,
and after increases.

● Too simple sets of functions cannot contain the good function, and opti-
mization over simple sets introduces a bias.
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● Too complex sets of functions may contain the good function but are too
rich and generates high variance.

The former balance is illustrated by a very simple theorem.

Y = f(X) + ε with E[ε] = 0.

THÉORÈME 2. — For any estimator f̂ , one has

C(f̂) = E[Y − f̂(X)]
2

= E [Y −E[f̂(X)]]
2

+E [E[f̂(X)] − f̂(X)]
2

+E [Y − f(X)]
2

● The blue term is a bias term.
● The red term is a variance term.
● The green term is the Bayes risk and is independent on the estimator f̂ .

Statistical principle :

The empirical squared loss ∥Y − f̂(X)∥2
2,n mimics the bias. It is the sum of

squares in (1). Important needs to introduce something to quantify the variance
of estimation : this is provided by a penalty term.

2.2 Ridge regression as a preliminary (insufficient)
response

Ridge Ridge regression is like ordinary linear regression, but it shrinks the
estimated coefficients towards zero. The ridge coefficients are defined by sol-
ving

β̂Ridge ∶= arg min
β∈Rp

∥Y −Xtβ∥2
2 + λ∥β∥

2
2

Here λ ≥ 0 is a tuning parameter, which controls the strength of the penalty
term. Write β̂Ridge as the ridge solution. Note that :
● When λ = 0, we get the linear regression estimate

● When λ = +∞, we get β̂Ridge = 0
● For λ in between, we are balancing two ideas : fitting a linear model of
Y on X , and shrinking the coefficients.

Ridge with intercept When including an intercept term in the regression,
we usually leave this coefficient unpenalized. Otherwise we could add some
constant amount c to the vector Y , and this would not result in the same solu-
tion. Hence ridge regression with intercept solves

β̂Ridge ∶= arg min
c∈R,β∈Rp

∥Y − c −Xtβ∥2
2 + λ∥β∥

2
2

If we center the columns of X , then the intercept estimate ends up just being
ĉ = Ȳ , so we usually just assume that Y and X have been centered and don’t
include an intercept.

Also, the penalty term ∥β∥2
2 is unfair is the predictor variables are not on the

same scale. (Why ?) Therefore, if we know that the variables are not measured
in the same units, we typically scale the columns ofX (to have sample variance
1), and then we perform ridge regression.

Bias and variance of the ridge regression The bias and variance are not
quite as simple to write down for ridge regression as they were for linear re-
gression (see Proposition 1) but closed-form expressions are still possible. The
general trend is :
● The bias increases as λ (amount of shrinkage) increases
● The variance decreases as λ (amount of shrinkage) increases

Think : what is the bias at λ = 0 ? The variance at λ = +∞ ?
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● What you may (should) be thinking now : this only work for some values
of λ so how would we choose λ in practice ? As you can imagine, one
way to do this involves cross-validation.

● What happens when we none of the true coefficients are small ? In other
words, if all the true coefficients are moderate or large, is it still helpful to
shrink the coeffi- cient estimates ? The answer is (perhaps surprisingly)
still “yes”. But the advantage of ridge regression here is less dramatic,
and the corresponding range for good values of λ is smaller.

Variable selection To the other extreme (of a subset of small coefficients),
suppose that there is a group of true coefficients that are identically zero. That
is, that the mean outcome doesn’t depend on these predictors at all, so they are
completely extraneous.

The problem of picking out the relevant variables from a larger set is called
variable selection. In the linear model setting, it means estimating some co-
efficients to be exactly zero. Aside from predictive accuracy, this can be very
important for the purposes of model interpretation.

So how does ridge regression perform if a group of the true coefficients was
exactly zero ? The answer depends whether on we are interested in prediction
or interpretation. In terms of prediction, the answer is effectively exactly the
same as what happens with a group of small true coefficients–there is no real
difference in the case of a large number of covariates with a null effect.

But for interpretation purposes, ridge regression does not provide as much
help as we would like. This is because it shrinks components of its estimate to-

ward zero, but never sets these components to be zero exactly (unless λ = +∞,
in which case all components are zero). So strictly speaking, ridge regression
does not perform variable selection.

3 Sparsity : the Lasso re(s)volution

3.1 Sparsity assumption

An introductory example :
● In many applications, p >> n but . . .
● Important prior : many extracted feature in X are irrelevant
● In an equivalent way : many coefficients in β0 are "exactly zero".
● For example, if Y is the size of a tumor, it might be reasonable to suppose

that it can be expressed as a linear combination of genetic information
in the genome described in X . BUT most components of X will be zero
and most genes will be unimportant to predict Y :
— We are looking for meaningful few genes
— We are looking for the prediction of Y as well.

Dogmatic approach :
● Sparsity : assumption that the unknown β0 we are looking for possesses

its major coordinates null. Only s of them are important :

s ∶= Card{1 ≤ i ≤ p∣β0(i) ≠ 0} .

● Sparsity assumption :
s << n

● It permits to reduce the effective dimension of the problem.
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● Assume that the effective support of β0 is known, then

● If S is the support of β0, maybe Xt
SXS is full rank, and linear model

can be applied.
Major issue : How could we find S ?

3.2 Lasso relaxation

Ideally, we would like to find β such that

β̂n = arg min
β∶∥β∥0≤s

∥Y −Xβ∥2
2,

meaning that the minimization is embbeded in a `0 ball.

In the previous lecture, we have seen that it is a constrained minimization
problem of a convex function . . . A dual formulation is

arg min
β∶∥Y −Xβ∥2≤ε

{∥β∥0}

But : The `0 balls are not convex and not smooth !

● First (illusive) idea : explore all `0 subsets and minimize ! Bullshit since :

Csp subsets and p is large !

● Second idea (existing methods) : run some heuristic and greedy methods
to explore `0 balls and compute an approximation of β̂n. (See below)

● Good idea : use a convexification of the ∥∥0 norm (also referred to as a
convex relaxation method). How ?

Idea of the convex relaxation : instead of considering a variable z ∈ {0,1},
imagine that z ∈ [0,1].

DÉFINITION 3. — [Convex Envelope] The convex envelope f∗ of a function f
is the largest convex function below f .

THÉORÈME 4. — [Envelope of β z→ ∥β∥0]
● On [−1,1]d, the convex envelope of β z→ ∥β∥0 is β z→ ∥β∥1.
● On [−R,R]d, the convex envelope of β z→ ∥β∥0 is β z→ ∥β∥1

R
.

Idea : Instead of solving the minimization problem :

∀s ∈ N min
∥β∥0≤s

∥Y −Xβ∥2
2, (2)

we are looking for

∀C > 0 min
∥.∥∗0(β)≤C

∥Y −Xβ∥2
2, (3)

What’s new ?
● The function ∥.∥∗0 is convex and thus the above problem is a convex

minimization problem with convex constraints.
● Since ∥.∥∗0(β) ≤ ∥β∥0, it is rather reasonnable to obtain sparse solutions.

In fact, solutions of (3) with a given C provide a lower bound of solu-
tions of (2) with s ≤ C.

● If we are looking for good solutions of (2), then there must exists even
better solution to (3).

3.3 Geometrical interpretation (in 2 D)

Left : Level sets of ∥Y − Xβ∥2
2 and intersection with `1 ball. Right : Same

with `2 ball.

The left constraint problem is likely to obtain a sparse solution. Oppositely,
the right constraint no !

In larger dimensions the balls are even more different :

http://wikistat.fr


7 Data Science - High dimensional regression

● Analytic point of view : why does the `1 norm induce sparsity ?
● From the KKT conditions (see Lecture 1), it leads to a penalized crite-

rion

min
β∈Rp∶∥β∥1≤C

∥Y −Xβ∥2
2 ⇐⇒ min

β∈Rp
∥Y −Xβ∥2

2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Mimics the bias

+

Controls the variance

λ∥β∥1

● In the 1d case : arg minα∈R
1
2
∣x − α∣2 + λ∣x∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=ϕλ(x)

:

● The minimal value of ϕλ is reached at point x∗ when 0 ∈ ∂ϕλ(x
∗). We

can check that x∗ is minimal iff
— x∗ ≠ 0 and (x∗ − α) + λsgn(x∗) = 0.
— x∗ = 0 and dϕ+λ(0) > 0 and dϕ−λ(0) < 0.
PROPOSITION 5. — [Analytical minimization of ϕλ]

x∗ = sgn(α)[∣α∣ − λ]+ = arg min
x∈R

{
1

2
∣x − α∣2 + λ∣x∣}

● For large values of λ, the minimum of ϕλ is reached at point 0.

3.4 Lasso estimator

We introduce the Least Absolute Shrinkage and Selection Operator :

∀λ > 0 β̂Lasson = arg min
β∈Rp

∥Y −Xβ∥2
2 + λ∥β∥1

The above criterion is convex w.r.t. β.

● Efficient algorithms to solve the LASSO, even for very large p.
● The minimizer may not be unique since the above criterion is not stron-

gly convex.
● Predictions Xβ̂Lasson are always unique.
● λ is a penalty constant that must be carefully chosen.
● A large value of λ leads to a very sparse solution, with an important bias.
● A low value of λ yields overfitting with no penalization (too much im-

portant variance).
● We will see that a careful balance between s, n and p exists. These para-

meters as well as the variance of the noise σ2 influence a “good " choice
of λ.

Alternative formulation :

β̂Lasson = arg min
β∈Rp∶∥β∥1≤C

∥Y −Xβ∥2
2

3.5 Principle of the MM algorithm

Algorithm is needed to solve the minimization problem

arg min
β∈Rp

∥Y −Xβ∥2
2 + λ∥β∥1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=ϕλ(β)

.

An efficient method follows the method of "Minimize Majorization" and is
referred to as MM method.
● MM are useful for the minimization of a convex function/maximization

of a concave one.
● Geometric illustration

http://wikistat.fr


8 Data Science - High dimensional regression

● Idea : Build a sequence (βk)k≥0 that converges to the minimum of ϕλ.
● A particular case of such a method is encountered with the E.M. algo-

rithm useful for clustering and mixture models.
● MM algorithms are powerful, especially they can convert non-

differentiable problems to smooth ones.

1. A function g(β,βk) is said to majorize f at point βk if

g(βk ∣βk) = f(βk) and g(β∣βk) ≥ f(β),∀β ∈ Rp.

2. Then, we define
βk+1 = arg min

β∈Rp
g(β∣βk)

3. We wish to find each time a function g(., βk) whose minimization is
easy.

4. An example with a quadratic majorizer of a non-smooth function :

5. Important remark : The MM is a descent algorithm :

f(βk+1) = g(βk+1∣βk) + f(βk+1) − g(βk+1∣βk)

≤ g(βk ∣βk) = f(βk) (4)

3.6 MM algorithm for the LASSO

We can deduce for the LASSO the coordinate descent algorithm

1. Define a sequence (βk)k≥0 ⇐⇒ find a suitable majorization.

2. g ∶ β z→ ∥Y − Xβ∥2 is convex, whose Hessian matrix is XtX . A
Taylor’s expansion leads to

∀y ∈ Rp g(y) ≤ g(x) + ⟨∇g(x), y − x⟩ + ρ(X)∥y − x∥2,

where ρ(X) is the spectral radius of X .

3. We are naturally driven to upper bound ϕλ as

ϕλ(β) ≤ ϕλ(βk) + ⟨∇g(βk), β − βk⟩ + ρ(X)∥β − βk∥
2
2 + λ∥β∥1

= ψ(βk) + ρ(X) ∥β − (βk −
∇g(βk)

ρ(X)
)∥

2

2

+ λ∥β∥1 ∶= ϕk(β)

The important point with this majorization is that it is “tensorized” : each
coordinates acts separately on ϕk(β).

4. To minimize the majorization of ϕλ, we then use the above proposition
of soft-thresholding :
● Define

β̃jk ∶= β
j
k −∇g(βk)

j
/ρ(X).

● Compute

βjk+1 = sgn(β̃
j
k)max [∣βjk ∣ −

2λ

ρ(X)
]
+

4 Running the Lasso

4.1 Choice of the regularization parameter

It is an important issue to obtain a good performance of the method, and
could be almost qualified as a “tarte à la crême” issue.

We won’t provide a sharp presentation of the best known results to keep the
level understandable.
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It is important to have in mind the extremely favorable situation of an almost
orthogonal design :

XtX

n
≃ Ip.

In this case solving the lasso is equivalent to

min
w

1

2n
∥Xty −w∥

2
2 + λ∥w∥1

Solutions are given by ST (Soft-Thresholding) :

wj = STλ (
1

n
Xt
jy) = STλ (θ0

j +
1

n
Xt
jε)

We would like to keep the useless coefficients to 0, which requires that

λ ≥
1

n
Xt
jε,∀j ∈ J

c
0 .

The random variables 1
n
Xt
jε are i.i.d. with a variance σ2/n.

PROPOSITION 6. — The expectation of the maximum of p − s Gaussian stan-
dard variables is

E[ max
1≤i≤p−s

Xi] ∼
√

2 log(p − s).

We are naturally driven to the choice

λ = Aσ

√
log p

n
, with A >

√
2.

Precisely :
P (∀j ∈ Jc0 ∶ ∣X

t
jε∣ ≤ nλ) ≥ 1 − p1−A2

/2.

4.2 Theoretical consistency

An additionnal remark is that we expect STλ z→ Id to obtain a consistency
result. It means that λz→ 0, so that

log p

n
z→ 0

Hence, a good behaviour of the lasso can be expected only if we have the next
dimensional settings :

pn = O(exp(n1−ξ
)).

THÉORÈME 7. — Assume that log p << n, X has norm 1 and εi ∼ N (0, σ2),
then under a coherence assumption on the design matrix XtX , one has

i) With high probability, J(θ̂n) ⊂ J0.

ii) There exists C such that, with high probability,

∥X(θn − θ0)∥
2
2

n
≤
C

κ2

σ2s0 log p

n
,

where κ2 is a positive constant that depends on the correlations inXtX .

One can also find results on the exact support recovery, as well as some
weaker results without any coherence assumption.

N.B. : Such a coherence is measured through the almost orthogonality of the
colums of X . It can be traduced in terms of

∣ sup
i≠j

⟨Xi,Xj⟩∣ ≤ ε.

4.3 Practical calibration of λ

In practice, λ is generally chosen according to a criterion that is data de-
pendent, e.g. a criterion that is calibrated on the observations through a cross-
validation approach. In general, the packages implement this automatic choice
of the regularization parameter with a CV option.
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5 Numerical example

5.1 Very brief R code

5.1.1 About the use of the Ridge regression

library(lars)
data(diabetes)
library(MASS)
diabetes.ridge <- lm.ridge(diabetes$y ~ diabetes$x,

lambda=seq(0,10,0.05))
plot(diabetes.ridge, lwd=3)

0 2 4 6 8 10

−
40

−
20

0
20

x$lambda

t(
x$

co
ef

)

We can see that the influence of the regularization parameter λ of the ridge
regression is important ! But a good choice of λ is difficult and should be data-
driven. That is why a cross-validation procedure is needed. Does the ridge
regression performs variable selection ?

5.1.2 About the use of the Lasso regression

library(lars)
data(diabetes)
diabetes.lasso = lars(diabetes$x, diabetes$y,

type=’lasso’)
plot(diabetes.lasso)

Lars algorithm : solves the Lasso less efficiently than the coordinate descent
algorithm.

* * * * * * * * * * * * *

0.0 0.2 0.4 0.6 0.8 1.0

−
50

0
0

50
0

|beta|/max|beta|

S
ta

nd
ar

di
ze

d 
C

oe
ffi

ci
en

ts

* * * * *
* *

* * * * * *

*
*

*
*

* * * * * * * * *

* * *
*

* * * * * * * * *

* * * * * * *
*

* *

* *

*

* * * * * * * * * *

* *

*

* * * *
* * * *

* *
* *

*
* * * * * * * *

* * * * *

* *

*
*

* * *
* * *

* *
*

* * * * * * * * * * * * *

LASSO
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4
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9

0 2 3 4 5 7 8 10 12

Typical output of the Lars software :
● The greater `1 norm, the lower λ
● Sparse solution with small values of the ∥.∥1 norm.

We can see that each variable of the diabetes dataset enter the model suc-
cessively as long as λ decreases to 0. Again, the choice of λ should be done
carefully with a data-driven criterion.

5.2 Removing the bias of the Lasso

Signal processing example :

http://wikistat.fr


11 Data Science - High dimensional regression

We have n = 60 noisy observations Y (i) = f(i/n) + εi. f is an unknown
periodic function defined on [0,1], sampled at points (i/n). εi are independent
realizations of Gaussian r.v. We use the 50 first Fourier coefficients :

ϕ0(x) = 1, ϕ2j(x) = sin(2jπx) ϕ2j+1(x) = cos(2jπx),

to approximate f . The OLS estimator is

f̂OLS(x) =
p

∑
j=1

β̂OLSj ϕj(x) with β̂OLS = arg min
β

n

∑
i=1

(Yi−
p

∑
j=0

βjϕj(i/n))
2.

The OLS does not perform well on this example.

We experiment here the Lasso estimator with λ = 3σ
√

2 log p
n

and obtain

We define

f̂Gauss
= πĴ0(Y ) with Ĵ0 = Supp(θ̂Lasso

),

where πĴ0 is the L2 projection of the observations on the features selected by
the Lasso.

The Adaptive Lasso is almost equivalent :

βAdaptive Lasso
= arg min

β∈Rp

⎧⎪⎪
⎨
⎪⎪⎩

∥Y −Xβ∥2
2 + µ

p

∑
j=1

∣βj ∣

∣β̂Gauss
j ∣

⎫⎪⎪
⎬
⎪⎪⎭

This minimization remains convex and the penalty term aims to mimic the `0

penalty.

The Adaptive Lasso is very popular and tends to select more accurately the
variables than the Gauss-Lasso estimator.

● Lasso estimator reproduces the oscillations of f but these oscillations
are shrunked to 0.

● When considering the initial minimization problem, the `1 penalty se-
lect nicely the good features, but introduces also a bias (introduces a
shrinkage of the parameters).

● Strategy : select features with the Lasso and run an OLS estimator using
the good variables.
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6 Aggregation Boosting

6.1 Aggregation of estimators

Boosting refers to a widespread family of method for aggregating weak lear-
ners and producing reliable estimators. The underlying idea of aggregation is
as follows. You assume you have in your hands a set of predictors (fi)1≤i≤k.
Each predictor is a function from X Ð→ R and we observe some realizations
of

Y = g(X) + ε.

We assume that each predictor fi is estimated according to a training set
Dn ∶= (X1, Y1), . . . , (Xn, Yn). The idea of aggregation is to produce a ro-
bust estimation according to the preliminary estimators (fi)i≤k while using a
set of weights wi that are "optimal" from a statistical point of view. The final
estimator obtained at the end of the algorithm is then of the form

f̂Aggregation ∶=
k

∑
i=1

wifi.

and we expect that the loss of f̂Aggregation is much better than the loss of each
individual predictor fi. Therefore, the main questions are :
● How to build the preliminary estimators (fi) ?
● How to compute the weights of aggregation ?

We need to design good procedures for these two steps, and to do this, we have
to use the learning set Dn.

We should end this introductory paragraph saying that we can boost some
weak predictors for optimizing regression task as well as classification task.
Below, we will focus on the particular case of regression, as it is the main
subject of this lecture.

6.2 L2-Boosting (Buhlmann & Yu)

6.2.1 Approximation procedure

The L2-Boosting estimator works as follows. We approach a (centered) li-
near function

m =

p

∑
j=1

ajfj

with a recursive strategy.

We need a set of weak learners (dictionary) that are centered and norma-
lized :

∀1 ≤ j ≤ p < fj >= ∫
X
fj = 0 and ∥fj∥ = ∫

X
f2
j = 1

Algorithm 1 Weak greedy approximation - WGA
Input Shrinkage parameter ν. Function m. Weak learners (fj)1≤j≤p

Initialization : Define your prediction as G0 = 0 and your rest R0 =m.
Iterate Choose ĵk such that

∣⟨fĵk ,Rk−1⟩∣ = max
1≤j≤p

∣⟨fj ,Rk−1⟩∣ (5)

Update the prediction as

Gk = Gk−1 + ν⟨Rk−1, fĵk⟩ and Rk = Rk−1 − ν⟨Rk−1, fĵk⟩

Output : limkÐ→+∞Gk

6.2.2 Estimation procedure

Of course, to adapt this approximation method to the empirical setting, we
need to handle the empirical inner product instead of the theoretical one. This
adaptation produces the L2-boosting algorithm.

6.2.3 Theoretical result

The L2 boosting algorithm is shown to be efficient from a statistical point of
view, again under statistical sparsity assumption on the linear model or on the
decomposition with any dictionary.

THÉORÈME 8. — Assume that ∥fj∥2
2 = 1 and that a ξ > 0 exists such that

log(pn) = O(n1−ξ
)

. At last, assume that ∥a∥0 ≤ s, then if ∣aj ∣ > n−κ1aj≠0 with κ > 0 and some
coherence assumption holds on XtX , then a early stopping procedure at ite-
ration kn ∝ C log(n) satisfies with high probability :
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Algorithm 2 L2-boosting algorithm.
Input Shrinkage parameter ν. Dataset (Xi, Yi). Weak learners (fj)1≤j≤p

Initialization : Define your prediction as G0 = 0.
Iterate Choose ĵk such that

∣⟨fĵk , Y −Gk−1⟩∣ = max
1≤j≤p

∣⟨fj , Y −Gk−1⟩∣ (6)

Update the prediction as

Gk = Gk−1 + ν⟨Y −Gk−1, fĵk⟩

Output : Gkn

● The estimated support is included in the one of a.
● ∥akn − a∥Ð→ 0.

What should be kept in mind is that Boosting procedures are shown to be
consistent when the number of iterations is reasonable, meaning that it can
overfit when the number of iteration becomes too large.

6.2.4 Implementation

The boosting procedure is very easy to implement. Try it ! ν should be cho-
sen of the order 0.1,0.2...

6.3 Exponential weighting Aggregation

6.3.1 Bayesian point of view

We briefly discuss on another family of aggregation procedures that relies
on a Bayesian point of view which is defined through a prior distribution on
θ ∈ Rp and a posterior distribution πn.

A prior distribution π0 is a probability distribution on Rp and the posterior
distribution is described through the Bayes rule. This posterior distribution is
proportional to

P[Dn∣θ]π0(θ)dθ

where Dn = (X1, Y1), . . . , (Xn, Yn). The Gaussian assumption on the rela-

tionship between Y and ⟨X,θ⟩ then shows that

P[Dn∣θ]∝ exp(−
n

∑
i=1

[Yi − ⟨Xi, θ⟩]
2
) .

Hence, the posterior distribution is then proportional to

πn(θ)∝ exp(−
n

∑
i=1

[Yi − ⟨Xi, θ⟩]
2
+ log(π0(θ))) .

6.3.2 What to do with a Bayesian approach ?

Bayesian approaches are powerful because they make it possible to produce
estimators, as well as confidence intervals. A natural Bayesian estimator is
generally obtained with the help of the posterior mean :

θ̂posterior ∶= ∫
Θ
θπn(θ).

Indeed, it is expected that the posterior distribution πn converges when n Ð→
+∞ towards δθ⋆ where θ⋆ is the true parameter that links X and Y . Hence, the
posterior mean should also behave as a consistant estimator of θ⋆.

It is thus intuitive trying computing θ̂posterior with the help of simulations
of πn. In some cases, this simulation is possible exactly (as if we were trying
to sample a Gaussian distribution, or a Laplace distribution, . . . .

In a more general situation, πn may not be sampled exactly, but thanks to
Markov chains approximation, it is however possible to produce rapidly an
approximation of πn with the help of Langevin Markov stochastic processes or
Metropolis-Hastings Markov chains. We will not explain why such approaches
produce these invariant distributions and instead explain an efficient algorithm
to sample πn and then compute θ̂posterior in our large dimensional settings.

6.3.3 Prior distribution

The prior distribution is defined by

logπ0(θ) =
p

∑
j=1

w(αθj) + 2 log(τ2
+ θ2

j ).
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where w(u) equals u2 if ∣u∣ ≤ 1 and equals 2∣u∣−1 otherwise. Hence, the prior
distribution involves an heavy tail distribution (the Cauchy distribution with
exp(−2 log(τ2 + θ2

j )) and a Laplace distribution close to the Lasso penalty `1.

It can be shown the following result.

THÉORÈME 9. — Assume that θ⋆ is sparse and τ2 = 16/(np) and α =
√

n
p
/16, then

E[∣θ̂posterior − θ
⋆
∣
2
] ≲

σ2s log(p)

n
.

6.3.4 Algorithm

We introduce

Un(θ) =
n

∑
i=1

[Yi − ⟨Xi, θ⟩]
2
+ log(π0(θ)) +

p

∑
j=1

w(αθj) + 2 log(τ2
+ θ2

j ).

Now, the baseline stochastic process (Xt) solves the differential equation

dXt = −∇Un(Xt)dt + dBt

that can be efficiently sampled with the following iterative scheme :

X(k+1)δ =Xkδ − δ∇Un(Xkδ) +
√
δξk (7)

where ξk is a sequence of i.i.d. Gaussian distributions N (0,1). Then,
θ̂posterior is approximated by

θ̂δ,T =
1

T

T

∑
t=1

Xtδ,

i.e. the Cesaro average of the simulated iterative scheme (7)

6.3.5 Challenging simulation part

Program this estimation ! Code with Python !
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