Mathematical Statistics 2, Part II:
 Confidence intervals and regions

Statistics Team TSE

2022-2023

Syllabus

(1) Confidence intervals

- Definition
- Examples
(2) Pivotal quantities
- Definition
- Examples
- From pivotal statistics to Cl
(3) Large-sample Cls
- General idea
- Variance stabilization strategy
- Cls for a difference of two means

Syllabus

(1) Confidence intervals

- Definition
- Examples
(2) Pivotal quantities
(3) Large-sample Cls

What is a confidence interval?

Consider a statistical model, indexed by a parameter $\theta \in \mathbb{R}^{1}$. Denote the observation as $X=\left(X_{1}, \ldots, X_{n}\right)$.

Fix $\alpha \in(0,1)$, which yields a confidence level $1-\alpha$.

Definition : A confidence interval (CI) for θ at confidence level $1-\alpha$ is an interval $[\operatorname{LB}(X), U B(X)]$ such that

- $L B(X)$ and $U B(X)$ are statistics (i.e., measurable functions of X)
- $\mathbb{P}_{\theta}[\theta \in[L B(X), U B(X)]] \geq 1-\alpha$ for any θ.

In general, we will denote the Cl as $\mathcal{I}_{n, \alpha}$ when $X=\left(X_{1}, \ldots, X_{n}\right)$.

What is a confidence region?

Consider a statistical model, indexed by a parameter $\theta \in \mathbb{R}^{d}$. Denote the observation as $X=\left(X_{1}, \ldots, X_{n}\right)$. Fix $\alpha \in(0,1)$, which yields a confidence level $1-\alpha$.

For $\theta \in \mathbb{R}^{d}$, one may define confidence regions (ellipsoids, rectangles, . . .)
Definition : A confidence region (CR) for θ at confidence level $1-\alpha$ is a set $C(X)$ such that :

- $C(X)$ is a measurable functions of X
- $\mathbb{P}_{\theta}[\theta \in C(X)] \geq 1-\alpha$ for any θ.

First example : Confidence interval for a proportion

Let $\left(X_{1}, \ldots, X_{n}\right)$ be a random sample from a Bernoulli distribution $\mathcal{B}(\theta)$ with $\theta \in \Theta=[0,1]$.

- We denote by \bar{X}_{n} the mean number of success :

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

- The Bienayme-Tchebychev inequality yields

$$
\mathbb{P}_{\theta}\left(\left|\bar{X}_{n}-\theta\right| \geq \delta\right) \leq \delta^{-2} \operatorname{Var}\left(\bar{X}_{n}\right)=\frac{\theta(1-\theta)}{n \delta^{2}} \leq \frac{1}{4 n \delta^{2}}
$$

- For any $\alpha \in(0,1)$ and $\theta \in \Theta$, we obtain

$$
\mathbb{P}_{\theta}\left(\theta \in \mathcal{I}_{n, \alpha}\right) \geq 1-\alpha \quad \text { with } \quad \mathcal{I}_{n, \alpha}:=\left[\bar{X}_{n} \pm \frac{1}{2 \sqrt{n \alpha}}\right]
$$

Second example: Confidence interval for the mean of a Gaussian distribution

Here we change the notation θ into μ (as it refers to the mean). Let $\left(X_{1}, \ldots, X_{n}\right)$ be a random sample from the $\mathcal{N}(\mu, 1)$ distribution. Denote as $z_{\beta}=\Phi^{-1}(\beta)$ the β-quantile of the standard normal. Since $\bar{X}_{n} \sim \mathcal{N}\left(\mu, \frac{1}{n}\right)$, we then have :

$$
\mathbb{P}_{\mu}\left[-z_{1-\alpha / 2} \leq \frac{\bar{X}_{n}-\mu}{\frac{1}{\sqrt{n}}} \leq z_{1-\alpha / 2}\right]=1-\alpha
$$

which rewrites with $\mathcal{I}_{n, \alpha}=\left[\bar{X}_{n} \pm z_{1-\alpha / 2}\right]: \mathbb{P}_{\mu}\left[\mu \in \mathcal{I}_{n, \alpha}\right]=1-\alpha$.
This is a Cl for μ, that is centered at \bar{X} (the estimator we adopted here).

Second example : illustration

Take $n=50$ and $\mu=2$.
One given realization of X_{1}, \ldots, X_{n} yields $\bar{X}=2.038$ and the Cls below :

$1-\alpha$	$\alpha / 2$	$z_{1-\alpha / 2}$	LB	UB	UB-LB
0.90	0.05	1.64	1.80	2.27	0.465
0.95	0.025	1.95	1.76	2.31	0.554
0.99	0.005	2.57	1.67	2.40	0.730

If the confidence level increases, then the Cl has a length that increases.

Second example : interpretation

Would we draw many samples $\left(X_{1}, \ldots, X_{50}\right.$ from $\left.\mathcal{N}(\mu=2,1)\right)$, then the proportion of Cls containing the true value $\mu=2$ would be $\approx 1-\alpha$.

For 100 samples of size $\mathrm{n}=50$ (confidence level: 95%)

Notation :

We will often write
$\bar{X}_{n} \pm \frac{z_{1-\alpha / 2}}{\sqrt{n}}$
instead of
$\left[\bar{X}_{n}-\frac{z_{1-\alpha / 2}}{\sqrt{n}}, \bar{X}_{n}+\frac{z_{1-\alpha / 2}}{\sqrt{n}}\right]$

Final remarks

The two previous examples and contructions rely on an inequality "in probability". To obtain such inequalities, several solutions

- Explicit knowledge of some distributions of some random variables : Gaussian example
- Use standard inequalities (Markov, Bienayme-Tchebychev, Chernoff, Hoeffding, ...) : Proportion example
- Use large sample properties and convergence in distributions (Central Limit Theorem) : see below

Syllabus

(1) Confidence intervals

(2) Pivotal quantities

- Definition
- Examples
- From pivotal statistics to Cl
(3) Large-sample Cls

Pivotal quantities - 1D situation

Definition : A random variable $Q=q(X, \theta)$ is a pivotal quantity for θ if

- for all x, the function $\theta \mapsto q(x, \theta)$ is monotone (\nearrow or \searrow)
- the distribution of Q does not depend on θ.

We could extend this definition to the multivariate case while omitting the monotonicity condition.
Big Warning!

- In the previous definition, we do not ask for a random variable Q that does not depend on θ !
- Of course Q certainly depends on θ.
- The definition is about the law of Q that regardless the value of θ, the distribution of Q under the distribution \mathbb{P}_{θ} is independent from θ.
- F_{Q} will be the cdf of Q.

Example 1 - Gaussian distribution

To make things easier to understand, let us discuss on a first example.
If $\left(X_{1}, \ldots, X_{n}\right)$ is a random sample from the $\mathcal{N}(\mu, 1)$ distribution, then

$$
Q=\frac{\bar{X}-\mu}{\frac{1}{\sqrt{n}}}
$$

is a pivotal quantity for μ.

- Monotonicity?
- Distribution of Q ?

Example 2 - Uniform distribution

To make things easier to understand, let us discuss on a second example.
If $\left(X_{1}, \ldots, X_{n}\right)$ is a random sample from the uniform model $\mathcal{U}([0, \theta])$, $\theta \in \Theta=\mathbb{R}_{+}^{*}$, then :

$$
Q=\frac{\max \left(X_{1}, \ldots, X_{n}\right)}{\theta}
$$

is a pivotal quantity for θ.

- Monotonicity?
- Distribution of Q ?

Construction of a Cl from a pivotal quantity

(1) Since the distribution of $Q=q(X, \theta)$ does not depend on θ, we have

$$
\mathbb{P}_{\theta}\left[F_{Q}^{-1}(\alpha / 2) \leq q(X, \theta) \leq F_{Q}^{-1}(1-\alpha / 2)\right]=1-\alpha,
$$

where $F_{Q}(t)=P_{\theta}[Q \leq t]$ is the cdf of Q.
(2) The monotonicity assumption then allows us to write this as

$$
\mathbb{P}_{\theta}[L B(X) \leq \theta \leq U B(X)]=1-\alpha
$$

This second step is called "inverting the interval".

Cl for the mean of a $\mathcal{N}\left(\mu, \sigma^{2}\right)$ distribution, σ^{2} known

Let $\left(X_{1}, \ldots, X_{n}\right)$ be a random sample from the $\mathcal{N}\left(\mu, \sigma^{2}\right)$ distribution, with σ^{2} known. Clearly,

$$
Q=\frac{\bar{X}_{n}-\mu}{\frac{\sigma}{\sqrt{n}}}
$$

is a pivotal quantity for μ. For any $u \in(0, \alpha)$, we have

$$
\mathbb{P}_{\mu}\left[z_{\alpha-u} \leq \frac{\bar{X}_{n}-\mu}{\frac{\sigma}{\sqrt{n}}} \leq z_{1-u}\right]=1-\alpha
$$

which rewrites

$$
\mathbb{P}_{\mu}\left[\bar{X}_{n}-z_{1-u} \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X}_{n}-z_{\alpha-u} \frac{\sigma}{\sqrt{n}}\right]=1-\alpha .
$$

The Cl length is minimized for $u=\frac{\alpha}{2}$, which yields $C I=\bar{X} \pm z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}$.

Cl for the length of the support of $\mathcal{U}([0, \theta])$

If $\left(X_{1}, \ldots, X_{n}\right)$ is a random sample from the uniform model $\mathcal{U}([0, \theta])$, $\theta \in \Theta=\mathbb{R}_{+}^{*}$, then :

$$
Q=\frac{\max \left(X_{1}, \ldots, X_{n}\right)}{\theta}
$$

is a pivotal quantity for θ.
An easy computation shows that : $\forall t \in(0,1), \mathbb{P}_{\theta}[Q \leq t]=F_{Q}(t)=t^{n}$.
For any $\alpha \in(0,1)$, we define $t_{\alpha, n}$ s.t. : $t_{\alpha, n}^{n}=\alpha$, i.e. $t_{\alpha, n}=\alpha^{1 / n}$.
The Cl is obtained with $\mathbb{P}_{\theta}\left[1 \geq Q \geq t_{\alpha, n}\right]=1-\alpha$:

$$
\theta \in\left[\max \left(X_{1}, \ldots, X_{n}\right), \max \left(X_{1}, \ldots, X_{n}\right) \alpha^{-1 / n}\right] .
$$

Cl for the mean of a $\mathcal{N}\left(\mu, \sigma^{2}\right)$ distribution, σ^{2} unknown

If σ is unknown, then this does not provide a valid Cl .

But, if $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$ is the usual unbiased estimator of σ^{2}, then $Q=\frac{\bar{X}_{n}-\mu}{\frac{s}{\sqrt{n}}}\left(\sim t_{n-1}\right)$ is a pivotal quantity for μ. Thus, for any $u \in(0, \alpha)$,

$$
\mathbb{P}_{\mu, \sigma^{2}}\left[t_{n-1, \alpha-u} \leq \frac{\bar{X}_{n}-\mu}{\frac{s}{\sqrt{n}}} \leq t_{n-1,1-u}\right]=1-\alpha
$$

which rewrites

$$
\mathbb{P}_{\mu, \sigma^{2}}\left[\bar{X}_{n}-t_{n-1,1-u} \frac{s}{\sqrt{n}} \leq \mu \leq \bar{X}_{n}-t_{n-1, \alpha-u} \frac{s}{\sqrt{n}}\right]=1-\alpha .
$$

Again, the Cl obtained for $u=\frac{\alpha}{2}$ has minimal length.

Distribution of Q

Reminder : $T \sim t_{k}$ (or $S t u(k)$, Student with k degrees of freedom) iff T has the same distribution as $Z / \sqrt{k^{-1} W}$, where

- $Z \sim \mathcal{N}(0,1)$,
- $W \sim \chi_{k}^{2}$, and
- Z and W are independent.

In the previous slide, $Q=\frac{\bar{\chi}_{n}-\mu}{\frac{\sqrt{v}}{\sqrt{n}}} \sim t_{n-1}$ since

- $Z=\frac{\bar{X}_{n}-\mu}{\frac{\sqrt{\sqrt{n}}}{\sqrt{n}}} \sim \mathcal{N}(0,1)$,
- $W=\frac{(n-1) s^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$, and
- Z and W are independent.

Cl for the variance of a Gaussian distribution

Let $\left(X_{1}, \ldots, X_{n}\right)$ be a random sample from the $\mathcal{N}\left(\mu, \sigma^{2}\right)$ distribution, with both μ and σ^{2} unknown.

Exercise :

(i) Show that $\frac{(n-1) s^{2}}{\sigma^{2}}$ is a pivotal quantity for σ^{2} (recall the previous slide!)
(ii) Check that a resulting Cl for σ^{2} at confidence level $1-\alpha$ is

$$
\left[\frac{(n-1) s^{2}}{\chi_{n-1,1-\alpha / 2}^{2}}, \frac{(n-1) s^{2}}{\chi_{n-1, \alpha / 2}^{2}}\right] .
$$

Here, working with symmetric tail probabilities does not minimize length (see JASA 1959, vol 54, page 674 for a minimal-length CI).

Syllabus

(1) Confidence intervals
(2) Pivotal quantities
(3) Large-sample Cls

- General idea
- Variance stabilization strategy
- Cls for a difference of two means

Large-sample Cls

Finding a pivotal quantity (with a known distribution) is often difficult!

Assume that $\left(\hat{\theta}_{n}\right)$ is such that $\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \sigma^{2}(\theta)\right)$. Then,

$$
\frac{\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)}{\sigma(\theta)}
$$

possibly qualifies as an "asymptotic pivotal quantity", leading to

$$
\mathbb{P}_{\theta}\left[-z_{1-\alpha / 2} \leq \frac{\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)}{\sigma(\theta)} \leq z_{1-\alpha / 2}\right] \rightarrow 1-\alpha
$$

If inversion is possible, then this yields an asymptotic Cl for θ at confidence level $1-\alpha$.

Large-sample Cls

If inversion is not possible, then, under minimal assumptions on $\sigma(\theta)$,

$$
\frac{\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)}{\sigma\left(\hat{\theta}_{n}\right)} \stackrel{\mathcal{L}}{\rightarrow} \mathcal{N}(0,1)
$$

which leads to

$$
\mathbb{P}_{\theta}\left[-z_{1-\alpha / 2} \leq \frac{\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)}{\sigma\left(\hat{\theta}_{n}\right)} \leq z_{1-\alpha / 2}\right] \rightarrow 1-\alpha
$$

This can always be inverted into

$$
\mathbb{P}_{\theta}\left[\hat{\theta}_{n}-z_{1-\alpha / 2} \frac{\sigma\left(\hat{\theta}_{n}\right)}{\sqrt{n}} \leq \theta \leq \hat{\theta}_{n}+z_{1-\alpha / 2} \frac{\sigma\left(\hat{\theta}_{n}\right)}{\sqrt{n}}\right] \rightarrow 1-\alpha .
$$

Large-sample Cls : Example 1

Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a random sample from the density

$$
f_{\theta}(x)=\theta \exp (-\theta x) \mathbf{1}_{[0, \infty)}(x)
$$

with $\theta>0$ (exponential with mean $1 / \theta$).
The MLE of θ, namely $\hat{\theta}_{n}=1 / \bar{X}_{n}$, satisfies

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \sigma^{2}(\theta)=\theta^{2}\right)
$$

which yields

$$
\mathbb{P}_{\theta}\left[-z_{1-\alpha / 2} \leq \frac{\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)}{\theta} \leq z_{1-\alpha / 2}\right] \rightarrow 1-\alpha
$$

Large-sample Cls : Example 1

Here, inversion is possible :

$$
\mathbb{P}_{\theta}\left[-z_{1-\alpha / 2} \leq \frac{\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)}{\theta} \leq z_{1-\alpha / 2}\right] \rightarrow 1-\alpha
$$

is inverted into the asymptotic Cl

$$
\mathbb{P}_{\theta}\left[\frac{\hat{\theta}_{n}}{1+\frac{z_{1-\alpha / 2}}{\sqrt{n}}} \leq \theta \leq \frac{\hat{\theta}_{n}}{1-\frac{z_{1-\alpha / 2}}{\sqrt{n}}}\right] \rightarrow 1-\alpha
$$

Large-sample Cls : Example 2

Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a random sample from the Bernoulli distribution with mean θ. The MLE of θ, namely $\hat{\theta}_{n}=\bar{X}$, satisfies

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \sigma^{2}(\theta)=\theta(1-\theta)\right),
$$

which yields

$$
\mathbb{P}_{\theta}\left[-z_{1-\alpha / 2} \leq \frac{\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)}{\sqrt{\theta(1-\theta)}} \leq z_{1-\alpha / 2}\right] \rightarrow 1-\alpha
$$

Wilson method. Inversion is possible and yields the asymptotic Cl

$$
\mathrm{CI}=\left(\hat{\theta}_{n}+\frac{z_{1-\alpha / 2}^{2}}{2 n} \pm \frac{z_{1-\alpha / 2}}{\sqrt{n}} \sqrt{\hat{\theta}_{n}\left(1-\hat{\theta}_{n}\right)+\frac{z_{1-\alpha / 2}^{2}}{4 n}}\right) /\left(1+\frac{z_{1-\alpha / 2}^{2}}{n}\right) .
$$

Large-sample Cls : Example 2

However this formula is complex, which motivates the second method.
Wald method. Inverting instead

$$
\mathbb{P}_{\theta}\left[-z_{1-\alpha / 2} \leq \frac{\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)}{\sqrt{\hat{\theta}_{n}\left(1-\hat{\theta}_{n}\right)}} \leq z_{1-\alpha / 2}\right] \rightarrow 1-\alpha
$$

yields the simpler asymptotic Cl

$$
\mathrm{CI}=\bar{X} \pm z_{1-\alpha / 2} \frac{\sqrt{\hat{\theta}_{n}\left(1-\hat{\theta}_{n}\right)}}{\sqrt{n}}
$$

If the lower (upper) bound is $<0(>1)$, then we replace it by 0 (1). In the binom package, the method is called "asymptotic".

Large-sample Cls : variance stabilization

Main idea : Use the CLT and the Delta method jointly!

- Assume that we know :

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \sigma^{2}(\theta)\right),
$$

- Consider ϕ a smooth function of θ, then the Delta method yields :

$$
\sqrt{n}\left(\phi\left(\hat{\theta}_{n}\right)-\phi(\theta)\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0,\left(\phi^{\prime}(\theta)\right)^{2} \sigma^{2}(\theta)\right),
$$

- Leading nice idea : choose ϕ such that the limiting variance factor is independent from θ, i.e. for example, choose ϕ :

$$
\left(\phi^{\prime}(\theta)\right)^{2} \sigma^{2}(\theta)=1
$$

- The constant 1 above may be replaced by any constant number.
- Finally, use a Cl of the Gaussian and then "inverse" the ϕ application.

Large-sample Cls : variance stabilization - Example 1

Consider a Bernoulli model $X=\left(X_{1}, \ldots, X_{n}\right)$ based on $\mathcal{B}(\theta)$.

- We compute the limiting variance factor:

$$
\sigma^{2}(\theta)=\theta(1-\theta)
$$

- We solve the differential equation :

$$
\left(\phi^{\prime}(\theta)\right)^{2} \theta(1-\theta)=1 \Longleftarrow \phi(\theta)=2 \arcsin (\sqrt{\theta})
$$

- We obtain the $\mathrm{CI}: \sqrt{n}\left(\phi\left(\hat{\theta}_{n}\right)-\phi(\theta)\right) \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$.

Exercise : check that this leads to the asymptotic Cl

$$
\mathrm{CI}=\left[\sin ^{2}\left(\arcsin \sqrt{\hat{\theta}_{n}}-\frac{z_{1-\alpha / 2}}{2 \sqrt{n}}\right), \sin ^{2}\left(\arcsin \sqrt{\hat{\theta}_{n}}+\frac{z_{1-\alpha / 2}}{2 \sqrt{n}}\right)\right] .
$$

Large-sample Cls : variance stabilization - Example 2

Gaussian model $X=\left(X_{1}, \ldots, X_{n}\right)$ based on $\mathcal{N}\left(0, \sigma^{2}\right), \mathrm{Cl}$ on σ^{2} ?

- CLT application : define $\hat{\sigma}_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}$ and observe that :

$$
\sqrt{n}\left(\hat{\sigma}_{n}^{2}-\sigma^{2}\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \operatorname{Var}\left(X^{2}\right)\right) .
$$

- We compute the limiting variance factor:

$$
\operatorname{Var}\left(X^{2}\right)=2 \sigma^{4}
$$

- We solve the differential equation :

$$
2\left(\phi^{\prime}\left(\sigma^{2}\right)\right)^{2} \sigma^{4}=2 \Longleftarrow \phi(t)=\log t
$$

- We obtain the $\mathrm{Cl}: \sqrt{n}\left(\log \left(\hat{\sigma}_{n}^{2}\right)-\log \sigma^{2}\right) \xrightarrow{\mathcal{L}} \mathcal{N}(0,2)$.

Exercise : What is the Cl obtained in this way?

Syllabus

(1) Confidence intervals

(2) Pivotal quantities
(3) Large-sample Cls

- General idea
- Variance stabilization strategy
- Cls for a difference of two means

Cls for the difference of two means

Several cases

- Independent Gaussian samples
(1) known variances
(2) unknown, equal, variances
- Independent samples, large sample size
(1) known variances
(2) unknown, equal, variances
- Dependent samples : matched pairs experiment

Independent Gaussian samples; known variances

Let $X_{1}, \ldots, X_{n_{1}}$ i.i.d. $\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y_{1}, \ldots, Y_{n_{2}}$ i.i.d. $\mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ be two independent samples, with $\sigma_{1}^{2}, \sigma_{2}^{2}$ known.

Building a Cl for $\mu_{1}-\mu_{2}$ is based on the pivotal quantity

$$
Q=\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}
$$

and leads to

$$
\mathrm{CI}=\bar{X}-\bar{Y} \pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} .
$$

Independent Gaussian samples ; unknown, equal, variances

Consider the case where $\sigma_{1}^{2}, \sigma_{2}^{2}$ are unknown.
Then, under the additional assumption $\sigma_{1}^{2}=\sigma_{2}^{2}$, the pooled estimator

$$
s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}=\frac{\sum_{i=1}^{n_{1}}\left(X_{i}-\bar{X}\right)^{2}+\sum_{i=1}^{n_{2}}\left(Y_{i}-\bar{Y}\right)^{2}}{n_{1}+n_{2}-2}
$$

is an unbiased estimator of $\sigma^{2}\left(\stackrel{\text { def }}{=} \sigma_{1}^{2}=\sigma_{2}^{2}\right)$, which follows, e.g., from

$$
\begin{aligned}
& \frac{\left(n_{1}+n_{2}-2\right) s_{p}^{2}}{\sigma^{2}}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{\sigma^{2}} \\
& \quad=\frac{\left(n_{1}-1\right) s_{1}^{2}}{\sigma_{1}^{2}}+\frac{\left(n_{2}-1\right) s_{2}^{2}}{\sigma_{2}^{2}} \sim \chi_{n_{1}+n_{2}-2}^{2}
\end{aligned}
$$

Independent Gaussian samples; unknown, equal, variances

The construction is then based on the pivotal quantity

$$
Q=\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{s_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \sim t_{n_{1}+n_{2}-2}
$$

and leads to

$$
\mathrm{CI}=\bar{X}-\bar{Y} \pm t_{n_{1}+n_{2}-2,1-\alpha / 2} s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} .
$$

Independent samples, large sample sizes

Case 1: known variances
The same quantity Q as for the Gaussian case (known variances) is now asymptotically pivotal.

We obtain the same expression for the Cl as for the Gaussian case with known variances.

Case 2 : equal, unknown, variances
The same quantity Q as for the Gaussian case (unknown variances) is now asymptotically pivotal.

The expression for the Cl is obtained from the one in the Gaussian case with unknown equal variances by replacing t-quantiles with Gaussian ones.

Dependent samples, matched pairs

When X_{i} and Y_{i} are dependent because, e.g., they are measured on the same subject, we work on the differences $D_{i}=X_{i}-Y_{i}$.

The variance $\sigma_{D}^{2}=\operatorname{Var}\left[D_{i}\right]=\operatorname{Var}\left[X_{i}\right]+\operatorname{Var}\left[Y_{i}\right]-2 \operatorname{Cov}\left[X_{i}, Y_{i}\right]$ is usually smaller than in the independent case (differences between twins tend to be smaller than between independently selected people).

With $s_{D}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(D_{i}-\bar{D}\right)^{2}\left(\right.$ an unbiased estimator of $\left.\sigma_{D}^{2}\right)$,

$$
Q=\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\frac{s_{D}}{\sqrt{n}}}\left(\sim t_{n-1}\right)
$$

is a pivotal quantity for $\mu_{1}-\mu_{2}$, which leads to

$$
\mathrm{CI}=\bar{X}-\bar{Y} \pm t_{n-1,1-\alpha / 2} \frac{s_{D}}{\sqrt{n}}
$$

