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Confidence intervals Definition

What is a confidence interval ?

Consider a statistical model, indexed by a parameter θ ∈ R1.
Denote the observation as X = (X1, . . . ,Xn).

Fix α ∈ (0, 1), which yields a confidence level 1− α.

Definition : A confidence interval (CI) for θ at confidence level 1− α
is an interval [LB(X ),UB(X )] such that

LB(X ) and UB(X ) are statistics (i.e., measurable functions of X )

Pθ[θ ∈ [LB(X ),UB(X )]] ≥ 1− α for any θ.

In general, we will denote the CI as In,α when X = (X1, . . . ,Xn).
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Confidence intervals Definition

What is a confidence region ?

Consider a statistical model, indexed by a parameter θ ∈ Rd .
Denote the observation as X = (X1, . . . ,Xn). Fix α ∈ (0, 1), which yields a
confidence level 1− α.

For θ ∈ Rd , one may define confidence regions (ellipsoids, rectangles,. . .)

Definition : A confidence region (CR) for θ at confidence level 1− α
is a set C (X ) such that :

C (X ) is a measurable functions of X

Pθ[θ ∈ C (X )] ≥ 1− α for any θ.
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Confidence intervals Examples

First example : Confidence interval for a proportion

Let (X1, . . . ,Xn) be a random sample from a Bernoulli distribution B(θ)
with θ ∈ Θ = [0, 1].

We denote by X̄n the mean number of success :

X̄n =
1

n

n∑
i=1

Xi

The Bienayme-Tchebychev inequality yields

Pθ

(
|X̄n − θ| ≥ δ

)
≤ δ−2Var(X̄n) =

θ(1− θ)

nδ2
≤ 1

4nδ2
.

For any α ∈ (0, 1) and θ ∈ Θ, we obtain

Pθ(θ ∈ In,α) ≥ 1− α with In,α :=

[
X̄n ±

1

2
√
nα

]
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Confidence intervals Examples

Second example : Confidence interval for the mean of a
Gaussian distribution

Here we change the notation θ into µ (as it refers to the mean). Let
(X1, . . . ,Xn) be a random sample from the N (µ, 1) distribution.
Denote as zβ = Φ−1(β) the β-quantile of the standard normal.

Since X̄n ∼ N (µ, 1n ), we then have :

Pµ

[
− z1−α/2 ≤

X̄n − µ
1√
n

≤ z1−α/2

]
= 1− α,

which rewrites with In,α =
[
X̄n ± z1−α/2

]
: Pµ

[
µ ∈ In,α

]
= 1− α.

This is a CI for µ, that is centered at X̄ (the estimator we adopted here).

Statistics Team TSE Mathematical Statistics 2, Part II 2022–2023 7 / 37



Confidence intervals Examples

Second example : illustration

Take n = 50 and µ = 2.

One given realization of X1, . . . ,Xn yields X̄ = 2.038 and the CIs below :

1− α α/2 z1−α/2 LB UB UB-LB

0.90 0.05 1.64 1.80 2.27 0.465
0.95 0.025 1.95 1.76 2.31 0.554
0.99 0.005 2.57 1.67 2.40 0.730

If the confidence level increases, then the CI has a length that increases.
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Confidence intervals Examples

Second example : interpretation

Would we draw many samples (X1, . . . ,X50 from N (µ = 2, 1)), then
the proportion of CIs containing the true value µ = 2 would be ≈ 1− α.
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For 100 samples of size n=50 (confidence level: 95%)

Notation :

We will often write

X̄n ±
z1−α/2√

n

instead of

[X̄n −
z1−α/2√

n
, X̄n +

z1−α/2√
n

]
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Confidence intervals Examples

Final remarks

The two previous examples and contructions rely on an inequality “in
probability”. To obtain such inequalities, several solutions

Explicit knowledge of some distributions of some random variables :
Gaussian example

Use standard inequalities (Markov, Bienayme-Tchebychev, Chernoff,
Hoeffding, . . .) : Proportion example

Use large sample properties and convergence in distributions (Central
Limit Theorem) : see below
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Pivotal quantities Definition

Pivotal quantities - 1D situation

Definition : A random variable Q = q(X , θ) is a pivotal quantity for θ if

for all x , the function θ 7→ q(x , θ) is monotone (↗ or ↘)

the distribution of Q does not depend on θ.

We could extend this definition to the multivariate case while omitting the
monotonicity condition.
Big Warning !

In the previous definition, we do not ask for a random variable Q that
does not depend on θ !

Of course Q certainly depends on θ.

The definition is about the law of Q that regardless the value of θ,
the distribution of Q under the distribution Pθ is independent from θ.

FQ will be the cdf of Q.
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Pivotal quantities Examples

Example 1 - Gaussian distribution

To make things easier to understand, let us discuss on a first example.

If (X1, . . . ,Xn) is a random sample from the N (µ, 1) distribution, then

Q =
X̄ − µ

1√
n

is a pivotal quantity for µ.

Monotonicity ?

Distribution of Q ?

Statistics Team TSE Mathematical Statistics 2, Part II 2022–2023 13 / 37



Pivotal quantities Examples

Example 2 - Uniform distribution

To make things easier to understand, let us discuss on a second example.

If (X1, . . . ,Xn) is a random sample from the uniform model U([0, θ]),
θ ∈ Θ = R∗

+, then :

Q =
max(X1, . . . ,Xn)

θ

is a pivotal quantity for θ.

Monotonicity ?

Distribution of Q ?
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Pivotal quantities From pivotal statistics to CI

Construction of a CI from a pivotal quantity

(1) Since the distribution of Q = q(X , θ) does not depend on θ, we have

Pθ[F
−1
Q (α/2) ≤ q(X , θ) ≤ F−1

Q (1− α/2)] = 1− α,

where FQ(t) = Pθ[Q ≤ t] is the cdf of Q.

(2) The monotonicity assumption then allows us to write this as

Pθ[LB(X ) ≤ θ ≤ UB(X )] = 1− α.

This second step is called “inverting the interval”.
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Pivotal quantities From pivotal statistics to CI

CI for the mean of a N (µ, σ2) distribution, σ2 known

Let (X1, . . . ,Xn) be a random sample from the N (µ, σ2) distribution,
with σ2 known. Clearly,

Q =
X̄n − µ

σ√
n

is a pivotal quantity for µ. For any u ∈ (0, α), we have

Pµ

[
zα−u ≤ X̄n − µ

σ√
n

≤ z1−u

]
= 1− α,

which rewrites

Pµ

[
X̄n − z1−u

σ√
n
≤ µ ≤ X̄n − zα−u

σ√
n

]
= 1− α.

The CI length is minimized for u = α
2 , which yields CI = X̄ ± z1−α/2

σ√
n
.

Statistics Team TSE Mathematical Statistics 2, Part II 2022–2023 16 / 37



Pivotal quantities From pivotal statistics to CI

CI for the length of the support of U([0, θ])

If (X1, . . . ,Xn) is a random sample from the uniform model U([0, θ]),
θ ∈ Θ = R∗

+, then :

Q =
max(X1, . . . ,Xn)

θ

is a pivotal quantity for θ.
An easy computation shows that : ∀t ∈ (0, 1), Pθ[Q ≤ t] = FQ(t) = tn.
For any α ∈ (0, 1), we define tα,n s.t. : tnα,n = α, i.e. tα,n = α1/n.
The CI is obtained with Pθ[1 ≥ Q ≥ tα,n] = 1− α :

θ ∈ [max(X1, . . . ,Xn),max(X1, . . . ,Xn)α
−1/n].
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Pivotal quantities From pivotal statistics to CI

CI for the mean of a N (µ, σ2) distribution, σ2 unknown

If σ is unknown, then this does not provide a valid CI.

But, if s2 = 1
n−1

∑n
i=1(Xi − X̄n)

2 is the usual unbiased estimator of σ2,

then Q = X̄n−µ
s√
n
(∼ tn−1) is a pivotal quantity for µ. Thus, for

any u ∈ (0, α),

Pµ,σ2

[
tn−1,α−u ≤ X̄n − µ

s√
n

≤ tn−1,1−u

]
= 1− α,

which rewrites

Pµ,σ2

[
X̄n − tn−1,1−u

s√
n
≤ µ ≤ X̄n − tn−1,α−u

s√
n

]
= 1− α.

Again, the CI obtained for u = α
2 has minimal length.
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Pivotal quantities From pivotal statistics to CI

Distribution of Q

Reminder : T ∼ tk (or Stu(k), Student with k degrees of freedom) iff
T has the same distribution as Z/

√
k−1W , where

Z ∼ N (0, 1),

W ∼ χ2
k , and

Z and W are independent.

In the previous slide, Q = X̄n−µ
s√
n

∼ tn−1 since

Z = X̄n−µ
σ√
n

∼ N (0, 1),

W = (n−1)s2

σ2 ∼ χ2
n−1, and

Z and W are independent.
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Pivotal quantities From pivotal statistics to CI

CI for the variance of a Gaussian distribution

Let (X1, . . . ,Xn) be a random sample from the N (µ, σ2) distribution, with
both µ and σ2 unknown.

Exercise :

(i) Show that (n−1)s2

σ2 is a pivotal quantity for σ2 (recall the previous slide !)

(ii) Check that a resulting CI for σ2 at confidence level 1− α is[
(n − 1)s2

χ2
n−1,1−α/2

,
(n − 1)s2

χ2
n−1,α/2

]
.

Here, working with symmetric tail probabilities does not minimize length
(see JASA 1959, vol 54, page 674 for a minimal-length CI).
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Large-sample CIs General idea

Large-sample CIs

Finding a pivotal quantity (with a known distribution) is often difficult !

Assume that (θ̂n) is such that
√
n(θ̂n − θ)

L→ N (0, σ2(θ)). Then,

√
n(θ̂n − θ)

σ(θ)

possibly qualifies as an “asymptotic pivotal quantity”, leading to

Pθ

[
− z1−α/2 ≤

√
n(θ̂n − θ)

σ(θ)
≤ z1−α/2

]
→ 1− α.

If inversion is possible, then this yields an asymptotic CI for θ at
confidence level 1− α.
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Large-sample CIs General idea

Large-sample CIs

If inversion is not possible, then, under minimal assumptions on σ(θ),

√
n(θ̂n − θ)

σ(θ̂n)

L→ N (0, 1),

which leads to

Pθ

[
− z1−α/2 ≤

√
n(θ̂n − θ)

σ(θ̂n)
≤ z1−α/2

]
→ 1− α.

This can always be inverted into

Pθ

[
θ̂n − z1−α/2

σ(θ̂n)√
n

≤ θ ≤ θ̂n + z1−α/2
σ(θ̂n)√

n

]
→ 1− α.

Statistics Team TSE Mathematical Statistics 2, Part II 2022–2023 23 / 37



Large-sample CIs General idea

Large-sample CIs : Example 1

Let X = (X1, . . . ,Xn) be a random sample from the density

fθ(x) = θ exp(−θx)1I[0,∞)(x),

with θ > 0 (exponential with mean 1/θ).

The MLE of θ, namely θ̂n = 1/X̄n, satisfies

√
n(θ̂n − θ)

L→ N (0, σ2(θ) = θ2),

which yields

Pθ

[
− z1−α/2 ≤

√
n(θ̂n − θ)

θ
≤ z1−α/2

]
→ 1− α.
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Large-sample CIs General idea

Large-sample CIs : Example 1

Here, inversion is possible :

Pθ

[
− z1−α/2 ≤

√
n(θ̂n − θ)

θ
≤ z1−α/2

]
→ 1− α

is inverted into the asymptotic CI

Pθ

[
θ̂n

1 +
z1−α/2√

n

≤ θ ≤ θ̂n

1− z1−α/2√
n

]
→ 1− α.
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Large-sample CIs General idea

Large-sample CIs : Example 2

Let X = (X1, . . . ,Xn) be a random sample from the Bernoulli distribution
with mean θ. The MLE of θ, namely θ̂n = X̄ , satisfies

√
n(θ̂n − θ)

L→ N (0, σ2(θ) = θ(1− θ)),

which yields

Pθ

[
− z1−α/2 ≤

√
n(θ̂n − θ)√
θ(1− θ)

≤ z1−α/2

]
→ 1− α.

Wilson method. Inversion is possible and yields the asymptotic CI

CI =

(
θ̂n +

z21−α/2

2n
±

z1−α/2√
n

√
θ̂n(1− θ̂n) +

z21−α/2

4n

)/(
1 +

z21−α/2

n

)
.
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Large-sample CIs General idea

Large-sample CIs : Example 2

However this formula is complex, which motivates the second method.

Wald method. Inverting instead

Pθ

[
− z1−α/2 ≤

√
n(θ̂n − θ)√
θ̂n(1− θ̂n)

≤ z1−α/2

]
→ 1− α

yields the simpler asymptotic CI

CI = X̄ ± z1−α/2

√
θ̂n(1− θ̂n)
√
n

·

If the lower (upper) bound is < 0 (> 1), then we replace it by 0 (1).
In the binom package, the method is called “asymptotic”.
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Large-sample CIs Variance stabilization strategy

Large-sample CIs : variance stabilization

Main idea : Use the CLT and the Delta method jointly !

Assume that we know :

√
n(θ̂n − θ)

L→ N
(
0, σ2(θ)),

Consider ϕ a smooth function of θ, then the Delta method yields :

√
n(ϕ(θ̂n)− ϕ(θ))

L→ N
(
0, (ϕ′(θ))2σ2(θ)),

Leading nice idea : choose ϕ such that the limiting variance factor is
independent from θ, i.e. for example, choose ϕ :

(ϕ′(θ))2σ2(θ) = 1

The constant 1 above may be replaced by any constant number.

Finally, use a CI of the Gaussian and then “inverse” the ϕ application.
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Large-sample CIs Variance stabilization strategy

Large-sample CIs : variance stabilization - Example 1

Consider a Bernoulli model X = (X1, . . . ,Xn) based on B(θ).
We compute the limiting variance factor :

σ2(θ) = θ(1− θ)

We solve the differential equation :

(ϕ′(θ))2θ(1− θ) = 1 ⇐= ϕ(θ) = 2 arcsin(
√
θ)

We obtain the CI :
√
n(ϕ(θ̂n)− ϕ(θ))

L→ N
(
0, 1
)
.

Exercise : check that this leads to the asymptotic CI

CI =

[
sin2
(
arcsin

√
θ̂n −

z1−α/2

2
√
n

)
, sin2

(
arcsin

√
θ̂n +

z1−α/2

2
√
n

)]
.
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Large-sample CIs Variance stabilization strategy

Large-sample CIs : variance stabilization - Example 2

Gaussian model X = (X1, . . . ,Xn) based on N (0, σ2), CI on σ2 ?

CLT application : define σ̂2
n = 1

n

∑n
i=1 X

2
i and observe that :

√
n(σ̂2

n − σ2)
L→ N

(
0,Var(X 2)

)
.

We compute the limiting variance factor :

Var(X 2) = 2σ4

We solve the differential equation :

2(ϕ′(σ2))2σ4 = 2 ⇐= ϕ(t) = log t

We obtain the CI :
√
n(log(σ̂2

n)− log σ2)
L→ N

(
0, 2
)
.

Exercise : What is the CI obtained in this way ?
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Large-sample CIs CIs for a difference of two means

CIs for the difference of two means

Several cases

Independent Gaussian samples
1 known variances
2 unknown, equal, variances

Independent samples, large sample size
1 known variances
2 unknown, equal, variances

Dependent samples : matched pairs experiment
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Large-sample CIs CIs for a difference of two means

Independent Gaussian samples ; known variances

Let X1, . . . ,Xn1 i.i.d. N (µ1, σ
2
1) and Y1, . . . ,Yn2 i.i.d. N (µ2, σ

2
2) be two

independent samples, with σ2
1, σ

2
2 known.

Building a CI for µ1 − µ2 is based on the pivotal quantity

Q =
X̄ − Ȳ − (µ1 − µ2)√

σ2
1

n1
+

σ2
2

n2

and leads to

CI = X̄ − Ȳ ± z1−α
2

√
σ2
1

n1
+

σ2
2

n2
·
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Large-sample CIs CIs for a difference of two means

Independent Gaussian samples ; unknown, equal, variances

Consider the case where σ2
1, σ

2
2 are unknown.

Then, under the additional assumption σ2
1 = σ2

2, the pooled estimator

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
=

∑n1
i=1(Xi − X̄ )2 +

∑n2
i=1(Yi − Ȳ )2

n1 + n2 − 2

is an unbiased estimator of σ2(
def
= σ2

1 = σ2
2), which follows, e.g., from

(n1 + n2 − 2)s2p
σ2

=
(n1 − 1)s21 + (n2 − 1)s22

σ2

=
(n1 − 1)s21

σ2
1

+
(n2 − 1)s22

σ2
2

∼ χ2
n1+n2−2.
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Large-sample CIs CIs for a difference of two means

Independent Gaussian samples ; unknown, equal, variances

The construction is then based on the pivotal quantity

Q =
X̄ − Ȳ − (µ1 − µ2)√

s2p(
1
n1

+ 1
n2
)

∼ tn1+n2−2

and leads to

CI = X̄ − Ȳ ± tn1+n2−2,1−α/2sp

√
1

n1
+

1

n2
·

Statistics Team TSE Mathematical Statistics 2, Part II 2022–2023 35 / 37



Large-sample CIs CIs for a difference of two means

Independent samples, large sample sizes

Case 1 : known variances

The same quantity Q as for the Gaussian case (known variances) is now
asymptotically pivotal.

We obtain the same expression for the CI as for the Gaussian case with
known variances.

Case 2 : equal, unknown, variances

The same quantity Q as for the Gaussian case (unknown variances) is now
asymptotically pivotal.

The expression for the CI is obtained from the one in the Gaussian case
with unknown equal variances by replacing t-quantiles with Gaussian ones.
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Large-sample CIs CIs for a difference of two means

Dependent samples, matched pairs

When Xi and Yi are dependent because, e.g., they are measured on the
same subject, we work on the differences Di = Xi − Yi .

The variance σ2
D = Var[Di ] = Var[Xi ] +Var[Yi ]− 2Cov[Xi ,Yi ] is usually

smaller than in the independent case (differences between twins tend to be
smaller than between independently selected people).

With s2D = 1
n−1

∑n
i=1(Di − D̄)2 (an unbiased estimator of σ2

D),

Q =
X̄ − Ȳ − (µ1 − µ2)

sD√
n

(∼ tn−1)

is a pivotal quantity for µ1 − µ2, which leads to

CI = X̄ − Ȳ ± tn−1,1−α/2
sD√
n
·
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