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Introduction to hypothesis testing An introductory example

Historical Example : Zea mays plant

1878 : Darwin recorded some data on the heights of Zea mays plants.

Effect of cross/self-fertilization on the height of Zea mays.

Experiment : select cross/self-fertilized plants, grow them in the same
pot, and then later measure their heights.

Statistical question : are cross-fertilized plants generally taller than
self-fertilized plants ?
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Introduction to hypothesis testing An introductory example

Historical Example : Zea mays plant

Y : height of cross-fertilized plants, Z : height of self-fertilized plants

E[Y ] ≥ E[Z ]?

Denote X = Y − Z , that mimics the difference of height of plants
grown in the same pot and define

µ := E[X ]

Record X1 = Y1 − Z1, . . . ,Xn = Yn − Zn

H0 : µ = 0 vs H1 : µ > 0

This is not exactly an estimation problem. We have to take a decision
instead.
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Introduction to hypothesis testing Definition

What is testing ?

Consider a parametric statistical model, indexed by θ.

Testing is deciding between two (mutually exclusive) hypotheses :

the null hypothesis H0

the alternative hypothesis H1.

This defines a testing problem.

These hypotheses are claims about the distribution, i.e. about θ.
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Introduction to hypothesis testing Definition

A toy Gaussian example

Let (X1,X2, . . . ,Xn) be a random sample from the N (µ, 1) distribution.
We can test H0 : µ = 0 vs H1 : µ ̸= 0.

(X̄ = 0 is not a hypothesis !)

A hypothesis is simple when it fully fixes the distribution of the
observations.

A hypothesis that is not simple is said to be composite.

In this practical example, H0 is a simple hypothesis while H1 is composite.
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Introduction to hypothesis testing Definition

A toy Gaussian example

To choose between H0 and H1, we consider X̄n = 1
n

∑n
i=1 Xi

A test is a rule for deciding whether or not to reject H0 in favor of H1.

Here, it seems natural that

(i) a small value of |X̄n| is compatible with H0,

(ii) a large value of |X̄n| provides evidence in favor of H1.

We say that X̄n is the test statistic.

A resulting decision rule would be of the following form :

reject H0 iff |X̄n| ≥ sn,

where sn > 0 is a given threshold (or cutoff).

Key observation : under H0, all is known about L(X̄n) !
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Introduction to hypothesis testing Definition

A test on the mean of a Gaussian sample

Let X be the sample space (i.e., the set of possible observations).
Formally, a test will be a map φ : X → {0, 1}, where

r = 0 stands for non-rejection of H0, i.e. accept H0

r = 1 stands for rejection of H0, i.e. accept H1

In the example above, the values in X = Rn corresponding to the
condition |X̄n| > sn define the critical region (or rejection region) R :

R = {(X1, . . . ,Xn) ∈ X : |X̄n| ≥ sn} = φ−1({1}).

The complement of this region, A = φ−1({0}), is the “acceptance” region.
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Introduction to hypothesis testing Terminology

Qualities of a hypothesis

A simple hypothesis fully characterizes the distribution of the observations :
For X ∼ N(µ, 1), H0 : µ = 0 and H1 : µ = 1 are simple hypotheses.

A composite hypothesis is one that is not simple : for X ∼ N(µ, σ2),

H0 : µ ≤ 0, H1 : µ > 0,

H0 : µ = 0, H1 : µ = 1,

all are composite hypotheses.

Unilateral or one-sided testing problem : H0 : µ ≤ 0 vs H1 : µ > 0
(“H1 lies on one side of H0 only”)

Bilateral or two-sided testing problem : H0 : µ = 0 vs H1 : µ ̸= 0
(“H1 lies on both sides of H0”)
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Introduction to hypothesis testing Terminology

Classical testing problems

Testing about means : is a mean equal to a given prespecified value ?
Are two means equal to each other ?

Testing about proportions : is a proportion equal to a given value ?
Are two proportions equal to each other ?

Testing about variances : is a variance equal to a given value ?
Are two variances equal to each other ?

Goodness-of-fit testing : is a sample arising from a normal
distribution ? From some other prespecified class of distributions ?

Independence testing : are two variables mutually independent ?
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Introduction to hypothesis testing Terminology

Methods for constructing tests

Neyman–Pearson tests

Likelihood ratio tests

Wald tests

Lagrange multiplier tests
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Tests and decision theory Definitions

General framework

In a statistical model (X ,F ,P = {Pθ : θ ∈ Θ ⊆ Rk}), we partition Θ into

Θ = Θ0 ∪Θ1,

which defines the testing problem

H0 : θ ∈ Θ0 (null hypothesis)
H1 : θ ∈ Θ1 (alternative hypothesis)

(The statistician must decide whether θ ∈ Θ0 or θ ∈ Θ1).

The set of decisions is modelled by {0, 1}.

A decision rule (a test φ) is therefore the indicator function of a subset of
X called the rejection region (described by a condition on a test statistic).

Statistics Team TSE Mathematical Statistics 2, Part III 2022–2023 15 / 57



Tests and decision theory Definitions

Loss function

There are two possible types of errors.

Type 1 error : H0 holds true and the statistician decides to reject H0.
The cost of this loss is assumed to be equal to L1.

Type 2 error : H1 holds true and the statistician decides to accept H0.
The cost of this loss is assumed to be equal to L2.

Of course, if the statistician makes the right decision, then the loss is zero.
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Tests and decision theory Definitions

Risk function

For a test φ, associated to the critical region R, the resulting risk function
θ 7→ R(θ, φ) is then as follows :

for θ ∈ Θ0,R(θ, φ) = L1 × Pθ[φ = 1]

for θ ∈ Θ1,R(θ, rC ) = L2 × Pθ[φ = 0] = L2 × (1− Pθ[φ = 1])

The risk is therefore completely determined by the power function

βφ : θ ∈ Θ 7−→ Pθ[φ = 1].

Type 1 risk at θ(∈ Θ0) : αφ(θ) = Pθ[φ = 1]
Size of the test :

α(φ) = sup
θ∈Θ0

αφ(θ)

Type 2 risk at θ(∈ Θ1) : 1− βφ(θ)
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Tests and decision theory Examples

Computing a power function : Example 1

In the Gaussian example above, the power function is βφ :

µ 7→ Pµ[φ = 1] = Pµ[|X̄n| > s] = P[|N (µ, 1n )| > s]

= P[N (µ, 1n ) < −s] + P[N (µ, 1n ) > s]

= P[N (0, 1) < −
√
n(s + µ)] + P[N (0, 1) >

√
n(s − µ)]

= Φ(−
√
n(s + µ)) + 1− Φ(

√
n(s − µ)),

where Φ(x) = P[N (0, 1) < x ] is the c.d.f. of the N (0, 1) distribution.
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Tests and decision theory Examples

Plot of a power function

Plot of this power function for (n, s) = (25, 1) and (n, s) = (25, 1.96)
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Tests and decision theory Test comparison

Comparing tests

The test φ (with rejection region R) is preferred to the test φ′ (with
critical region R′) if and only if

αφ(θ) ≤ αφ′(θ) ∀θ ∈ Θ0 and βφ(θ) ≥ βφ′(θ) ∀θ ∈ Θ1,

or equivalently, if and only if

Pθ[φ = 1] ≤ Pθ[φ
′ = 1] ∀θ ∈ Θ0 and Pθ[φ = 1] ≥ Pθ[φ

′ = 1] ∀θ ∈ Θ1.

The comparison is therefore independent of L1 and L2 and only involves
the power function of each test.
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Tests and decision theory Test comparison

The ideal test

The ideal test would be one for which

(i) the power function takes value 0 on Θ0, and

(ii) the power function takes value 1 on Θ1

(such a test would indeed be preferred to any other test).

But there is no such test ! (except in degenerate cases where one can
discriminate with certainty between H0 and H1).

However, one may use the above concept to restrict to admissible tests
(a test is said to be admissible if no other test will be preferred to it).
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Tests and decision theory Test comparison

Computing a power function : Example 2

We consider the Bernoulli model B(θ), θ ∈ [0, 1] and

H0 = {θ ≤ θ0} and H1 = {θ > θ0}.

We use the statistics

T =
n∑

i=1

Xi ∼ B(n, θ),

and define the test φc :
φc = 1T≥c .

We observe that θ 7−→ βφc (θ) = Pθ[φc = 1] is an increasing function of θ :

α(φc) = sup
θ≤θ0

βφc (θ) = βφc (θ0).
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Tests and decision theory Test comparison

Computing a power function : Example 2

H0 = {θ ≤ θ0} and H1 = {θ > θ0}.

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Erreur 1ere espece

seuil critique

R
is

qu
e 

1e
re

 e
sp

ec
e

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Erreur 2eme espece

seuil critique

R
is

qu
e 

2e
m

e 
es

pe
ce

Neyman approach : we fix an amount α of admissible Type 1 error and
then calibrate the test φc accordingly :

cα = inf{c : βφc (θ0) ≤ α}.

Numerical example
α = 0.05, n = 1000, θ0 = 0.5, cα = 526

α = 0.01, n = 1000, θ0 = 0.5, cα = 537
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Tests and decision theory Test comparison

Computing a power function : Example 2

Switch the position of H0 and H1.

H̃0 = {θ > θ0} and H̃1 = {θ ≤ θ0}.

φ̃c becomes
φ̃c = 1T≤c .

The power function βφ̃c (θ) = Pθ[φ̃c = 1], decreases with θ.

α(φ̃c) = sup
θ>θ0

βφ̃c (θ) = Pθ0 [φ̃c = 1] = Pθ0 [T ≤ c]

Neyman approach : Numerical example

α = 0.05, n = 1000, θ0 = 0.5, cα = 474

α = 0.01, n = 1000, θ0 = 0.5, cα = 463
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Tests and decision theory Test comparison

Computing a power function : Example 2

Imagine that we observe with n = 1000

T =
n∑

i=1

Xi = 510.

Define θ0 = 0.5, and α = 0.05.

H0 = {θ ≤ θ0} and H1 = {θ > θ0}.

We are led to accept H0 since 510 < 526.

H̃0 = {θ > θ0} and H̃1 = {θ ≤ θ0}.

We are led to accept H̃0 too since 510 > 474.

The choice of H0 is therefore fundamental !
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Tests and decision theory Neyman principle

Neyman principle with a level of a test

To calibrate a statistical test, we need to :

Specify a statistical model Pθ, θ ∈ Θ0

Identify H0 and H1 (or equivalently Θ0 and Θ1)

Propose a family of tests φc , c being a threshold.

Significance level or size of a test : α (maximal Type 1 error).

Neyman principle. Find a test φcα such that :

βcα := sup
θ∈Θ0

Pθ[φc = 1] ≤ α.

Important point : the calibration of the test φcα essentially depends on H0

(and not on H1) !
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Tests and decision theory Neyman principle

P-Value

In practice, the Neyman principle leads to an indexation of tests with α :

α 7−→ φα

The region of rejection Rα may also be parametrized with the help of α :

Rα := {φα = 1}

It is an easy exercise to observe in practical situation that :

α′ < α =⇒ Rα′ ⊂ Rα.

If α = 1, we always reject H0 (regardless the sample) :

R1 = X n

If α = 0, we never reject H0 (regardless the sample) :

R0 = ∅
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Tests and decision theory Neyman principle

P-Value

Definition : A p-value of a sample X is the smallest value of α that leads
to reject H0 :

p − value(X ) = inf{α ∈ [0, 1] : X ∈ Rα}.

It is a level of significance of a test.

For α < p − value(X ), we accept H0.

For α > p − value(X ), we reject H0.

Hence, given a p − value(X ) small is in favor of rejecting H0
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Tests and decision theory Computing the significance level

Computing the significance level of a test

In our Gaussian example, with n = 25 (and s ≥ 0) :

The significance level of the test is α = P0[φs ] = 2Φ(−5s)

(which gives P0[φ0.8] = 6.3× 10−5 or P0[φ0.5] = 0.012)

If we observe X̄n = 1.5, then the empirical significance level is
P0[|X̄n| ≥ 1.5] = 2Φ(−5× 1.5) = 6.3× 10−14

In this example :

- If s ↗, then the significance level ↘
- If |X̄n| ↗, then the empirical level ↘

- If the true value of |µ| ↗, then the Type 2 risk ↘
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Tests and decision theory Computing the significance level

Testing using a level or a p-value

In practice, there are two ways to conduct a test :

1 given a target level α, find the corresponding critical region and see
whether or not the observation belongs to this critical region.

2 compute the empirical significance level (p-value) and let the final
user choose its own level. The rule is then to reject H0 if the p-value
is strictly smaller than the chosen level.

If the test rejects H0, then the test is said to be significant.
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Tests and decision theory Sample size dependency

Testing with large samples

“Unless the data follow a parametric model extremely closely, almost any
model will be rejected when using a sufficiently large set of data”.

In our running example (X1,X2, . . . ,Xn are i.i.d. N (µ, 1)) :

If 0 < s < 1, then Pµ[φs = 1] → 1 as n → ∞ : with a large enough
sample of size n, we will asymptotically reject H0 under the alternative
with probability 1 !

Conclusion : the threshold should be chosen as a function of n.
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Tests and decision theory From CI to tests and reciprocally

CIs =⇒ Tests

H0 := {θ = θ0} and H1 := {θ ̸= θ0}
Imagine that we are able to build a CI of level 1− α

Pθ[θ ∈ [LB(X ),UB(X )]] = 1− α.

We can define φα = 1θ/∈[LB(X ),UB(X )].
As a construction, the test satisfies : Pθ0 [φα = 1] = α.
Example Let X = (X1, . . . ,Xn), where the Xi ’s are i.i.d. N (µ, 1).

[LB(X ),UB(X )] =
[
X̄n − z1−α/2

1√
n
, X̄n + z1−α/2

1√
n

]
is a CI at confidence level 1− α.
Hence, for testing H0 : µ = µ0 vs H1 : µ ̸= µ0,

φα = 1µ0 /∈[LB(X ),UB(X )]

is a test of size α.
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Tests and decision theory From CI to tests and reciprocally

Tests =⇒ CIs

H0 := {θ = ν} and H1 := {θ ̸= ν}

Imagine that we are able to test at level α with a test φν .

Pν [φν = 1] = α

We observe X and introduce :

CI (X ) = {ν : φν(X ) = 0}

We then observe that

∀ν Pν [ν ∈ CI (X )] = Pν [φν(X ) = 0] = 1− α

CI (X ) is then a CI of guarantee 1− α.
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Application to statistical testing in linear model

A simple regression example

1980 1985 1990 1995 2000 2005 2010
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Yi = β0 + β1ti + σϵi (θ) where
θ = (β0, β1, σ) and
ti = Yeari − 1979.
We assume that {ϵi (θ)}ni=1} i.i.d.
standard Gaussian.

MSE :

(β̂0, β̂1) = arg min
(β0,β1)

n∑
i=1

(Yi − β0 − β1ti )
2

σ̂2 = (n − 2)−1
n∑

i=1

(Yi − β̂0 − β̂1ti )
2

Statistics Team TSE Mathematical Statistics 2, Part III 2022–2023 35 / 57



Application to statistical testing in linear model

A simple regression example

1980 1985 1990 1995 2000 2005 2010
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2.5 % 97.5 %

(Intercept) 7.55 8.34
Year-1979 -0.11 -0.07

(
β̂1
β̂2

)
∼ N

((
β1
β2

)
,
σ2

ns

(
∥t∥2

n −t̄
−t̄ 1

))
where 1 = (1, . . . , 1)T and t = (t1, . . . , tn)

T ,
s = n−1∥t∥2 − (t̄)2 and t̄ = n−1

∑n
i=1 ti .

We shall verify (not so obvious) :
(n − 2)σ̂2/σ2 ∼ χ2(n − 2) and
(n − 2)σ̂2/σ2 and (β̂1, β̂2) are independent.

n
√
s(β̂1 − β1)

∥t∥σ̂
and

√
ns(β̂2 − β2)

σ̂

are pivotal statistics.
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Application to statistical testing in linear model

A simple regression example
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For this given sample, we
obtain : p-value :

1.76 · 10−10!

Should we decide to accept or
reject H0 ?

√
ns(β̂2−β2)

σ̂ is a pivotal function for any
θ = (β1, β2, σ

2). We shall verify that :

Pθ

(
β2 ∈

[
β̂2 ±

σ̂tn−2
1−α/2√
ns

])
= 1− α.

We consider the test :

H0 := {β2 = 0} vsH1{β2 ̸= 0}.

From the construction CI =⇒ test, we deduce
that :

ϕ(Z ) = 1
0∈

[
β̂2±

σ̂t
n−2
1−α/2√

ns

]

has level α.
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Neyman–Pearson theory

Introduction to the optimality problem

Towards an optimal testing strategy ?
Consider testing H0 : θ = θ0 vs H1 : θ = θ1. Fix α ∈ (0, 1).

The Neyman principle consists in searching, among all tests with level ≤ α,
the one with (uniformly) most power under H1.

Said differently, we are looking for φ⋆
α such that :

φ⋆
α has size α :

Pθ0 [φ
⋆
α = 1] ≤ α

φ⋆
α is optimal in this class :

∀ψ : Pθ0 [ψ = 1] ≤ α Pθ1 [ψ = 1] ≤ Pθ1 [φ
⋆
α = 1]

φ⋆
α is referred to as a Uniformly Most Powerful test of size α.
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Neyman–Pearson theory Likelihood Ratio Test
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Neyman–Pearson theory Likelihood Ratio Test

Likelihood Ratio Test

Warning : we assume that Pθ is absolutely continuous w.r.t. Lebesgue
measure and > 0. This may be relaxed (beyond the scope of the lecture)...
Definition : For testing H0 : θ = θ0 vs H1 : θ = θ1, the LRT rK defined as

rK = 1{
L(θ0;x)
L(θ1;x)

≤K

} = 1{
L(θ1;x)
L(θ0;x)

≥1/K

}
(where L(θ; x) is the likelihood function of the model) is a Neyman test
associated to the threshold K (> 0).

Remarks :

The quantity L(θ0; x)/L(θ1; x) is called a likelihood ratio

This is a likelihood-based rule : it rejects H0 if x is sufficiently more
likely under θ1 than under θ0

Choosing K fully defines the Neyman test and its level
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Neyman–Pearson theory Likelihood Ratio Test

The Neyman–Pearson Theorem

Neyman–Pearson Theorem : For any α ∈]0, 1[, a Kα exists such that

The Neyman test rKα satisfies :

Pθ0 [rKα = 1] = α

rKα is UMP.

The Neyman test is unbiased, i.e. its power under the alternative is
larger than or equal to its level α.

One further result :

If T is a sufficient statistic, then any Neyman test is a function of T .

Statistics Team TSE Mathematical Statistics 2, Part III 2022–2023 42 / 57



Neyman–Pearson theory Likelihood Ratio Test

The Neyman–Pearson Theorem on Gaussian distributions

Assume that :

H0 := {N (µ0, σ
2
0)} vs H1 := {N (µ1, σ

2
1)}.

The LR is given by :

∀x ∈ R r(x) =
σ0
σ1

exp

(
− 1

2σ21
(x − µ1)

2 +
1

2σ20
(x − µ0)

2

)
.

The rejection region is given by :

− 1

2σ21
(x − µ1)

2 +
1

2σ20
(x − µ0)

2 > logKα +
1

2
log

(
σ21
σ20

)
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Neyman–Pearson theory Composite hypotheses : UMP tests for MLR families
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Neyman–Pearson theory Composite hypotheses : UMP tests for MLR families

MLR families of distributions

Definition : A family of distributions with densities {fθ(x) : θ ∈ Θ}, where
Θ is an interval, has the monotone likelihood ratio (MLR) property if there
exists a statistic T = T (X ) such that any likelihood ratio

fθ2(X )

fθ1(X )
, with θ1 < θ2,

is a monotone (↗ or ↘) function of T .

Examples : the Poisson family, the Gamma family, etc.
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Neyman–Pearson theory Composite hypotheses : UMP tests for MLR families

The Lehmann theorem

(1) For testing H0 : θ ≤ θ0 vs H1 : θ > θ0, in a family having the MLR
property with LRs ↗ (resp., ↘) in T , any test with critical region

φs = 1x∈X :T (x) ≥ (resp., ≤) s

is UMP at its own level (this level is then equal to Pθ0 [φs = 1]).

(2) For testing H0 : θ ≥ θ0 vs H1 : θ < θ0, in a family having the MLR
property with LRs ↗ (resp., ↘) in T , any φs :

φs = 1T (x) ≤ (resp., ≥) s

is UMP at its own level (still equal to Pθ0 [φs = 1]).
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The Lehmann theorem

Consider testing H0 : θ ≤ θ0 vs H1 : θ > θ0.

When LRs are ↗ (resp., ↘) in T ,

L(θ0; x)

L(θ1; x)
≤ K ⇔ L(θ1; x)

L(θ0; x)
≥ 1/K ⇔ T (x) ≥ (resp., ≤) s,

so that, in both cases, the UMP test obtained from the Lehmann theorem
coincides with the Neyman test for testing H0 : θ = θ0 vs H1 : θ = θ1
(irrespective of the chosen θ1 > θ0).
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The Lehmann theorem in exponential families

In the exponential family with densities

fθ(x) = C (θ)h(x) exp (Q(θ)T (x)) ,

with Q(θ) ↗ in θ, the test depends only on the sufficient statistic T (x).

Distribution T for T for n
one observation n i.i.d. observations

Poisson P(θ) X X̄
Binomial B(n, θ) X X̄
N(θ, σ2), with σ2 known X X̄
Gamma γ(θ) logX n−1 ∑n

i=1 logXi
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Likelihood ratio tests

Consider testing

H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ̄0,

where Θ0 is an affine subspace of Θ with dimension q.

Examples :

For Θ = {θ ∈ R}, testing H0 : θ = θ0 vs H1 : θ ̸= θ0

For Θ = {θ =
(
θ1
θ2

)
∈ R2}, testing H0 : θ1 − θ2 = 2 vs H1 :

θ1 − θ2 ̸= 2
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Likelihood ratio tests

In the same way as the MLE of θ is defined as

θ̂ = argmax
θ∈Θ

L(θ; x),

we define the restricted MLE of θ under H0 as

θ̃ = arg max
θ∈Θ0

L(θ; x).

The likelihood ratio statistic is then

λ =
L(θ̃; x)

L(θ̂; x)
·

The likelihood ratio test rejects H0 when λ ≤ s
(where the threshold s is to be determined by the target level of the test).
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Likelihood ratio tests : an example

For a random sample X1, . . . ,Xn from the N (µ, σ2) distribution with both
µ and σ2 unknown, the LR test for testing H0 : µ = µ0 vs H1 : µ ̸= µ0 is
associated with the critical region

Cs = {(X1, . . . ,Xn) : |T | ≥ s},

where we let

T =
X̄ − µ0√

s2/n
·

This is equivalent to the classical Student test !

(Beware of the two different quantities s above)
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Likelihood ratio tests : asymptotic properties

Consider testing H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ̄0.

We assume that we are in a sampling model with densities satisfying
fθ(x) > 0 ∀x ∀θ. Then, under some mild regularity assumptions,

−2 log(λ) L→ χ2
p−q under H0,

with p = dim(Θ) and q = dim(Θ0) (so that p − q is the number of
parameters “fixed by the constraint H0”).

This allows us to construct tests with an asymptotic level equal to α :

lim
n→∞

sup
θ∈Θ0

Pθ[C ] = α
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Likelihood ratio tests and the Fisher test

Fix z ∈ Rr and R an r × p full-rank matrix (r < p). Consider then testing
H0 : Rβ = z vs H1 : Rβ ̸= z in the classical linear model

Y = Xβ + ε.

Then the Fisher test rejects H0 for large values of

F =
∥Y − X β̃∥2 − ∥Y − X β̂∥2/r

∥Y − X β̂∥2/(n − p)
,

where β̂ = (X ′X )−1X ′Y is the Gaussian MLE of β (the usual OLS) and
β̃ = β̂ + (X ′X )−1R ′(R(X ′X )−1R ′)−1(z − Rβ̂) is the restricted MLE of β.
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Likelihood ratio tests and the Fisher test

Here, the likelihood ratio statistic is

λ =

(
∥Y − X β̂∥2

∥Y − X β̃∥2

)n/2

and it can be checked that

F =
n − p

r

(
1

λ2/n
− 1

)
.

Clearly, λ ≤ K is equivalent to F ≥ C , so that the Fisher test is equivalent
to the likelihood ratio test.
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Three classical tests

Further developments possible...
Single-parameter case : In a model with parameter θ ∈ R,
we consider testing H0 : θ = θ0 vs H1 : θ ̸= θ0.

Multi-parameter case : In a model with parameter θ ∈ Rp,
we consider testing H0 : Rθ = z vs H1 : Rθ ̸= z , with R a full-rank r × k
matrix and z ∈ Rr .

For these situations, there exist three classical tests :

the Likelihood Ratio test (LRT)

the Wald test (WT)

the Lagrange Multiplier test (LMT)

(the last test is also called the score test).
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