# Big Data - Lecture 1 Optimization reminders

S. Gadat

Toulouse, Octobre 2014

# Big Data - Lecture 1 Optimization reminders

S. Gadat

Toulouse, Octobre 2014

#### Introduction

Standard Convex optimisation procedures Constrained Convex optimisation Conclusion Major issues Examples Mathematics

### Schedule



# I Introduction - Major issues in data science

- Data science: Extract from data some knowledge for industrial or academic exploitation.
- Involves:
  - Signal Processing (how to record the data and represent it?)
  - Modelization (What is the problem, what kind of mathematical model and answer?)
  - Statistics (reliability of estimation procedures?)
  - Machine Learning (what kind of efficient optimization algorithm?)
  - Implementation (software needs)
  - Visualization (how can I represent the resulting knowledge?)
- In its whole, this sequence of questions are at the core of Artificial Intelligence and may also be referred to as Computer Science problems.
- In this lecture, we will address some issues raised in red items. Each time, practical examples will be provided
- Most of our motivation comes from the *Big Data* world, encountered in image processing, finance, genetics and many other fields where knowledge extraction is needed, when facing to many observations described by many variables.
- n: number of observations p: number of variables per observations

#### p >> n >> O(1).

Major issues Examples Mathematics

# I Introduction - Spam classification - Signal Processing datasets

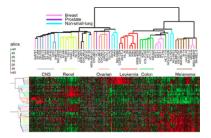
From a set of labelled messages (spam or not), build a classification for automatic spam rejection.

| Variable  | Mot ou Carac. | Modalités P/A | Variable   | Mot ou Carac. | Modalités    |
|-----------|---------------|---------------|------------|---------------|--------------|
| make      | make          | make / Nmk    | X650       | 650           | 650/N65      |
| address   | address       | addr / Nad    | lab        | lab           | lab / Nlb    |
| all       | all           | all / Nal     | labs       | labs          | labs / Nls   |
| X3d       | 3d            | 3d / N3d      | telnet     | telnet        | teln / Ntl   |
| our       | our           | our / Nou     | X857       | 857           | 857 / N87    |
| over      | over          | over / Nov    | data       | data          | data / Nda   |
| remove    | remove        | remo / Nrm    | X415       | 415           | 415 / N41    |
| internet  | internet      | inte / Nin    | X85        | 85            | 85 / N85     |
| order     | order         | orde / Nor    | technology | technology    | tech / Ntc   |
| mail      | mail          | mail / Nma    | X1999      | 1999          | 1999/ N19    |
| receive   | receive       | rece / Nrc    | parts      | parts         | part / Npr   |
| will      | will          | will / Nwi    | pm         | pm            | pm / Npm     |
| people    | people        | peop / Npp    | direct     | direct        | dire / Ndr   |
| report    | report        | repo / Nrp    | cs         | CS            | cs/Ncs       |
| addresses | addresses     | adds / Nas    | meeting    | meeting       | meet/Nmt     |
| free      | free          | free / Nfr    | original   | original      | orig / or    |
| business  | business      | busi / Nbs    | project    | project       | proj / Npj   |
| email     | email         | emai / Nem    | re         | re            | re / Nre     |
| you       | you           | you / Nyo     | edu        | edu           | edu / Ned    |
| credit    | credit        | cred / Ncr    | table      | table         | tab1/Ntb     |
| vour      | vour          | vour / Nvr    | conference | conferenc     | e conf / Ncf |
| font      | order         | font / Nft    | CsemiCol   | :             | Cscl/NCs     |
| X000      | 000           | 000/N00       | Cpar       | (             | Cpar / NCp   |
| money     | money         | mone/ Nmn     | Ccroch     | Í             | Cero / NCc   |
| hp        | hp            | hp / Nhp      | Cexclam    | 1             | Cexc / NCe   |
| hpl       | hpl           | hp1/Nh1       | Cdollar    | s             | Cdol / NCd   |
| george    | george        | geor / Nge    | Cdiese     | #             | Cdie / NCi   |

- Select among the words meaningful elements?
- Automatic classification?

# I Introduction - Micro-array analysis - Biological datasets

One measures micro-array datasets built from a huge amount of profile genes expression. Number of genes p (of order thousands). Number of samples n (of order hundred).



Diagnostic help: healthy or ill?

- Select among the genes meaningful elements?
- Automatic classification?

Major issues Examples Mathematics

### I Introduction - Fraud detection - Industrial datasets

Set of individual electrical consumption for some people in Medellin (Colombia).

- Each individual provides a monthly electrical consumption.
- The electrical firm measures the whole consumption for important hubs (they are formed by a set of clients).

Want to detect eventual fraud. Problems:

- Missing data: completion of the table. How?
- Noise in the several measurements: how does it degrages the fraud detection?
- Can we exhibit several monthly behaviour of the clients?

Major issues Examples Mathematics

# I Introduction - Data Completion & Recommandation systems - Advertisement and e-business datasets

Recommandation problems:

amazon

Your Amazon.com Today's Deals Gift Cards Sell Help

And more recently:



- What kind of database?
- Reliable recommandation for clients?
- Online strategy?

Major issues Examples Mathematics

# I Introduction - Credit scoring - Actuaries datasets

Build an indicator (Q score) from a dataset for the probability of interest in a financial product (Visa premier credit card).

| Identif. | Libellé                                                | Identif. | Libellé                                             |
|----------|--------------------------------------------------------|----------|-----------------------------------------------------|
| matric   | Matricale (identifiant client)                         | boppn    | Nombre d'opérations à M-1                           |
| depts    | Département de résidence                               | facan    | Montant facturé dans l'année en francs              |
| pvs.     | Point de vente                                         | Igagt    | Engagement long terme                               |
| 503.00   | Sexe (qualitatif)                                      | vienb    | Nombre de produits contrats vie                     |
| aper     | Age en années                                          | vient    | Montant des produits contrats vie en francs         |
| famiq    | Situation familiale                                    | verab    | Nombre de produits épargne monétaire                |
|          | (Fmar : marié, Fcel : célibataire, Ediv : divorcé,     | wemm/s   | Montant des produits d'épargne monétaire en francs  |
|          | Fuli :union libre, Fsep : séparé de corps, Fveu :veuf) | algab    | Nombre de produits d'épargne logement               |
| relat    | Anciermeté de relation en mois                         | alent    | Montant des produits d'épargne logement en francs   |
| pespq    | Catégorie socio-professionnelle (code num)             | vivab    | Nombre de comptes sur livret                        |
| coals    | Code "qualité" client évalué par la banque             | vivint   | Montant des comptes sur livret en francs            |
| G11G11S  | plusieurs variables caractérisant les intendits        | nbelts   | Nombre de produits d'épargne long terme             |
|          | bancaires                                              | matelts  | Montant des produits d'épargne long terme en francs |
| impubs   | Nombre d'impayés en cours                              | nbcats   | Nombre de produits épurgne à terme                  |
| rejets   | Montant total des rejets en francs                     | micats   | Montant des produits épargne à terme                |
| opgab    | Nombre d'opérations par guichet dans le mois           | abbecs   | Nombre de produits bons et certificats              |
| IDONTY   | Moyenne des mouvements nets créditeurs                 | nthecs   | Montant des produits bons et certificats en francs  |
|          | des 3 mois en Kf                                       | rocub    | Nombre de paiements par carte bancaire à M-1        |
| lavep    | Total des avoirs épargne monétaire en francs           | ntcas    | Nombre total de cartes                              |
| endet    | Taux d'endettement                                     | npt ag   | Nombre de cartes point argent                       |
| gaget    | Total des engagements en francs                        | segv2s   | Segmentation version 2                              |
| EREC     | Total des engagements court terme en francs            | itave    | Total des avoirs sur tous les comptes               |
| gage(n)  | Total des engagements moven terme en francs            | havef    | Total des avoirs épurgne financière en francs       |
| kyunb    | Nombre de comptes à vue                                | jnbjd1s  | Nombre de jours à débit à M                         |
| quinty   | Moyenne des soldes moyens sur 3 mois                   | jnbjd2s  | Nombre de jours à débit à M-1                       |
| ocred    | Moyenne des mouvements créditeurs en Kf                | jnbjd3s  | Nombre de jours à débit à M-2                       |
| davato   | Age du dernier mouvement (en jours)                    | Cartyp   | Possession de la carte VISA Premier                 |

- Define a model, a question?
- 2 Use a supervised classification algorithm to rank the best clients.
- Ose logistic regression to provide a score.

# I Introduction - What about maths?

Various mathematical fields we will talk about:

- Analysis: Convex optimization, Approximation theory
- Statistics: Penalized procedures and their reliability
- Probabilistic methods: concentration inequalities, stochastic processes, stochastic approximations

Famous keywords:

- Lasso
- Boosting
- Convex relaxation
- Supervised classification
- Support Vector Machine
- Aggregation rules
- Gradient descent
- Stochastic Gradient descent
- Sequential prediction
- Bandit games, minimax policies
- Matrix completion

Convex functions Example of convex functions Gradient descent method

### Schedule



Convex functions Example of convex functions Gradient descent method

### Convex functions

We recall some background material that is necessary for a clear understanding of how some machine learning procedures work. We will cover some basic relationships between convexity, positive semidefiniteness, local and global minimizers.

#### Definition (Convex sets, convex functions)

A set D is convex if for any  $(x_1,x_2)\in D^2$  and all  $\alpha\in[0,1],\,x=\alpha x_1+(1-\alpha)x_2\in D.$  A function f is convex if

- its domain D is convex
- $f(x) = f(\alpha x_1 + (1 \alpha)x_2) \le \alpha f(x_1) + (1 \alpha)f(x_2).$

#### Definition (Positive Semi Definite matrix (PSD))

A  $p \times p$  matrix H is (PSD) if for all  $p \times 1$  vectors z, we have  $z^t H z \ge 0$ .

There exists a strong link between SDP matrix and convex functions, given by the following proposition.

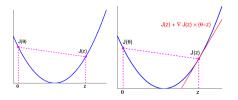
#### Proposition

A smooth  $C^2(D)$  function f is convex if and only if  $D^2f$  is SDP at any point of D.

The proof follows easily from a second order Taylor expansion.

Convex functions Example of convex functions Gradient descent method

### Example of convex functions



- Exponential function:  $\theta \in \mathbb{R} \mapsto \exp(a\theta)$  on  $\mathbb{R}$  whatever a is.
- Affine function:  $\theta \in \mathbb{R}^d \longmapsto a^t \theta + b$
- Entropy function:  $\theta \in \mathbb{R}_+ \mapsto -\theta \log(\theta)$

• *p*-norm: 
$$\theta \in \mathbb{R}^d \mapsto |\theta||_p := \sqrt[p]{\sum_{i=1}^d ||\theta_i|^p}.$$

• Quadratic form:  $\theta \in \mathbb{R}^d \mapsto \theta^t P \theta + 2q^t \theta + r$  where P is symetric and positive.

Convex functions Example of convex functions Gradient descent method

### Why convex functions are useful?

#### From external motivations:

- Many problems in machine learning come from the minimization of a convex criterion and provide meaningful results for the statistical initial task.
- Many optimization problems admit a convex reformulation (SVM classification or regression, LASSO regression, ridge regression, permutation recovery, ...).

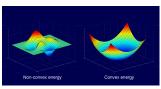
From a numerical point of view:

- Local minimizer = global minimizer. It is a powerful point since in general, descent methods involve ∇f(x) (or something related to), which is a local information on f.
- x is a local (global) minimizer of f if and only if  $0 \in \partial f(x)$ .
- Many fast algorithms for the optimization of convex function exist, and sometimes are independent on the dimension *d* of the original space.

Convex functions Example of convex functions Gradient descent method

# Why convex functions are powerful?

Two kind of optimization problems:



- On the left: non convex optimization problem, use of Travelling Salesman type method. Greedy exploration step (simulated annealing, genetic algorithms).
- On the right: convex optimization problem, use local descent methods with gradients or subgradients.

#### Definition (Subgradient (nonsmooth functions?))

For any function  $f: \mathbb{R}^d \longrightarrow \mathbb{R}$ , and any x in  $\mathbb{R}^d$ , the subgradient  $\partial f(x)$  is the set of all vectors g such that

$$f(x) - f(y) \le \langle g, x - y \rangle.$$

This set of subgradients may be empty. Fortunately, it is not the case for convex functions.

#### Proposition

 $f: \mathbb{R}^d \longrightarrow \mathbb{R}$  is convex if and only if  $\partial f(x) \neq \emptyset$  for any x of  $\mathbb{R}^d$ .

Convex functions Example of convex functions Gradient descent method

## Convexity and gradient: Constrained case

In either constrained or unconstrained problems, descent methods are powerful with convex functions. In particular, consider constrained problems in  $\mathcal{X} \subset \mathbb{R}^d$ . The most famous local descent method relies on

 $y_{t+1} = x_t - \eta g_t$  where  $g_t \in \partial f(x_t)$ ,

and

$$x_{t+1} = \Pi_{\mathcal{X}}(y_{t+1}),$$

where  $\eta > 0$  is a fixed step-size parameters.

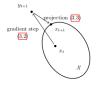


Fig. 3.2 Illustration of the Projected Subgradient Descent method.

Théorème (Convergence of the projected gradient descent method, fixed step-size)

If f is convex over  $\mathcal{X}$  with  $\mathcal{X} \subset B(0, R)$  and  $\|\partial f\|_{\infty} \leq L$ , the choice  $\eta = \frac{R}{L\sqrt{t}}$  leads to

$$f\left(\frac{1}{t}\sum_{s}^{t}x_{s}\right) - \min f \leq \frac{RL}{5}$$

Convex functions Example of convex functions Gradient descent method

# Convexity and gradient: Smooth unconstrained case

Results can be seriously improved with smooth functions with bounded second derivatives.

#### Definition

f is  $\beta$  smooth if  $\nabla f$  is  $\beta$  Lipschitz:

$$\|\nabla f(x) - \nabla f(y)\| \le \beta \|x - y\|.$$

Standard gradient descent over  $\mathbb{R}^d$  becomes

 $x_{t+1} = x_t - \eta \nabla f(x_t),$ 

Théorème (Convergence of the gradient descent method,  $\beta$  smooth function)

If f is a convex and  $\beta\text{-smooth function, then }\eta=\frac{1}{\beta}$  leads to

$$f\left(\frac{1}{t}\sum_{s=1}^{t}x_{s}\right) - \min f \le \frac{2\beta \|x_{1} - x_{0}\|^{2}}{t-1}$$

#### Remark

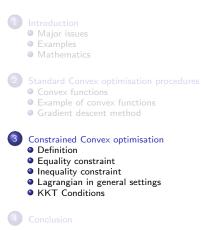
• Note that the two past results do not depend on the dimension of the state space d.

• The last result can be extended to the constrained situation.

#### Definition

Equality constraint Inequality constraint Lagrangian in general settings KKT Conditions

# Schedule



Definition Equality constraint Inequality constraint Lagrangian in general settings KKT Conditions

### Constrained optimisation: Definition

Elements of the problem:

- $\theta$  unknown vector of  $\mathbb{R}^d$  to be recovered
- $J: \mathbb{R}^d \mapsto \mathbb{R}$  function to be minimized
- $f_i$  and  $g_i$  differentiable functions defining a set of constraints.

Definition of the problem:

- $\min_{\theta \in \mathbb{R}^d} J(\theta)$  such that:
- $f_i(\theta) = 0, \forall i = 1, \dots, n$
- $g_i(\theta) \leq 0, \forall i = 1, \dots, m$

Set of admissible vectors:

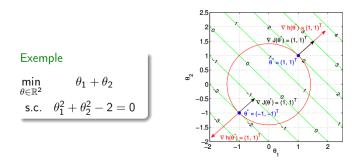
$$\Omega := \left\{ \boldsymbol{\theta} \in \mathbb{R}^{d} \, | \, f_{i}(\boldsymbol{\theta}) = 0, \forall i \text{ and } g_{j}(\boldsymbol{\theta}) \leq 0, \forall j \right\}$$

Definition

Equality constraint Inequality constraint Lagrangian in general settings KKT Conditions

### Constrained optimisation: Example

#### Typical situation:



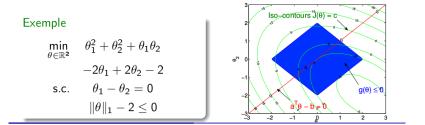
Ω: circle of radius  $\sqrt{2}$ Optimal solution:  $θ^* = (-1, -1)^t$  and  $J(θ^*) = -2$ . Important restriction: we will restrict our study to convex functions J.

Definition Equality constraint Inequality constraint Lagrangian in general settings KKT Conditions

### Constrained convex optimisation

A constrained optimization problem is "convex" if:

- J is a convex function
- f<sub>i</sub> are linear or affine functions
- g<sub>i</sub> are convex functions



Definition Equality constraint Inequality constraint Lagrangian in general settings KKT Conditions

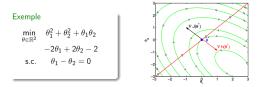
### Case of a unique equality constraint

 $\min_{\theta} J(\theta) \quad \text{ such that } \quad a^t \theta - b = 0$ 

- Descent direction h:  $\nabla J(\theta)^t h < 0$ .
- Admissible direction h:  $a^t(\theta + h) b = 0 \iff a^t h = 0$ .

Optimality  $\theta^*$  is optimal if there is no admissible descent direction starting from  $\theta^*$ . The only possible case is when  $\nabla J(\theta^*)$  and a are linearly dependent:

 $\exists \lambda \in \mathbb{R} \qquad \nabla J(\theta^*) + \lambda a = 0.$ 



In this situation:

$$\nabla J(\theta) = \begin{pmatrix} 2\theta_1 + \theta_2 - 2\\ \theta_1 + 2\theta_2 + 2 \end{pmatrix} \quad \text{and} \quad a = \begin{pmatrix} 1\\ -1 \end{pmatrix}$$

Hence, we are looking for  $\theta$  such that  $\nabla J(\theta) \propto a$ . Computations lead to  $\theta_1 = -\theta_2$ . Optimal value reached for  $\theta_1 = 1/2$  (and  $J(\theta^*) = -15/4$ ).

Definition Equality constraint Inequality constraint Lagrangian in general settings KKT Conditions

### Lagrangian function

$$\min_{a} J(\theta) \quad \text{ such that } \quad f(\theta) := a^{t} \theta - b = 0$$

We have seen the important role of the scalar value  $\lambda$  above.

Definition (Lagrangian function)

 $L(\lambda, \theta) = J(\theta) + \lambda f(\theta)$ 

 $\lambda$  is the Lagrange multiplier. The optimal choice of  $(\theta^*, \lambda^*)$  corresponds to

 $\nabla_{\theta} L(\lambda^*, \theta^*) = 0$  and  $\nabla_{\lambda} L(\lambda^*, \theta^*) = 0.$ 

Argument:  $\theta^*$  is optimal if there is no admissible descent directions h. Hence,  $\nabla J$  and  $\nabla f$  are linearly dependent. As a consequence, there exists  $\lambda$  such that

$$\nabla_{\theta} L(\lambda^*, \theta^*) = \nabla J(\theta) + \lambda \nabla f(\theta) = 0 \qquad \text{(Dual equation)}$$

Since  $\theta$  must be admissible, we have

 $\nabla_{\theta} L(\lambda^*, \theta^*) = f(\theta^*) = 0$  (Primal equation)

Definition Equality constraint Inequality constraint Lagrangian in general settings KKT Conditions

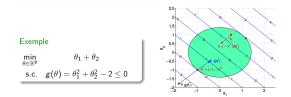
## Case of a unique inequality constraint

 $\min_{\theta} J(\theta) \qquad \text{such that} \qquad g(\theta) \leq 0$ 

- Descent direction  $h: \nabla J(\theta)^t h < 0.$
- Admissible direction h:  $\nabla g(\theta)^t h \leq 0$  guarantees that  $g(\theta + \alpha h)$  is decreasing with  $\alpha$ .

Optimality  $\theta^*$  is optimal if there is no admissible descent direction starting from  $\theta^*$ . The only possible case is when  $\nabla J(\theta^*)$  and  $\nabla g(\theta^*)$  are linearly dependent and opposite:

$$\exists \lambda \in \mathbb{R} \qquad \nabla J(\theta^*) = -\mu \nabla g(\theta^*) \qquad \text{with} \qquad \mu \geq 0.$$



We can check that  $\theta^* = (-1, -1)$ .

Definition Equality constraint Inequality constraint Lagrangian in general settings KKT Conditions

### Lagrangian in general settings

We consider the minimization problem:

- $\min_{\theta} J(\theta)$  such that
- $g_j(\theta) \leq 0, \forall j = 1, \dots, m$
- $f_i(\theta) = 0, \forall i = 1, \dots, n$

#### Definition (Lagrangian function)

We associate to this problem the Lagrange multipliers  $(\lambda, \mu) = (\lambda_1, \dots, \lambda_n, \mu_1, \dots, \mu_m)$ .

$$L(\theta, \lambda, \mu) = J(\theta) + \sum_{i=1}^{n} \lambda_i f_i(\theta) + \sum_{j=1}^{m} \mu_j g_j(\theta)$$

- θ primal variables
- $(\lambda, \mu)$  dual variables

Definition Equality constraint Inequality constraint Lagrangian in general settings KKT Conditions

### **KKT** Conditions

#### Definition (KKT Conditions)

If J and f, g are smooth, we define the Karush-Kuhn-Tucker (KKT) conditions as

- Stationarity:  $\nabla_{\theta} L(\lambda, \mu, \theta) = 0.$
- Primal Admissibility:  $f(\theta) = 0$  and  $g(\theta) \le 0$ .
- Dual admissibility  $\mu_j \ge 0, \forall j = 1, \dots, m$ .

#### Theorem

A convex minimization problem of J under convex constraints f and g has a solution  $\theta^*$  if and only if there exists  $\lambda^*$  and  $\mu^*$  such that KKT conditions hold.

#### Example:

$$J(\theta) = \frac{1}{2} \|\theta\|_2^2$$
 s.t.  $\theta_1 - 2\theta_2 + 2 \le 0$ 

We get  $L(\theta,\mu) = \frac{\|\theta\|_2^2}{2} + \mu(\theta_1 + 2\theta_2 + 2)$  with  $\mu \ge 0$ . Stationarity:  $(\theta_1 + \mu, \theta_2 - 2\mu) = 0$ .

$$\theta_2 = -2\theta_1$$
 with  $\theta_2 \leq 0$ .

We deduce that  $\theta^* = (-2/5, 4/5)$ .

Definition Equality constraint Inequality constraint Lagrangian in general settings KKT Conditions

# Dual problems (1)

We introduce the *dual* function:

$$\mathcal{L}(\lambda,\mu) = \min_{\theta} L(\theta,\lambda,\mu).$$

We have the following important result

#### Theorem

Denote the optimal value of the constrained problem  $p^* = \min \{J(\theta) | f(\theta) = 0, g(\theta) \le 0\}$ , then

 $\mathcal{L}(\lambda,\mu) \le p^*.$ 

Remark:

- The dual function  $\mathcal{L}$  is lower than  $p^*$ , for any  $(\lambda, \mu) \in \mathbb{R}^n \times \mathbb{R}^m_+$
- We aim to make this lower bound as close as possible to  $p^*$ : idea to maximize w.r.t.  $\lambda, \mu$  the function  $\mathcal{L}$ .

Definition (Dual problem)

$$\max_{\lambda \in \mathbb{R}^n, \mu \in \mathbb{R}^m_+} \mathcal{L}(\lambda, \mu).$$

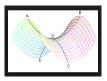
 $L(\theta, \lambda, \mu)$  affine function on  $\lambda, \mu$  and thus convex. Hence,  $\mathcal{L}$  is convex and almost unconstrained.

S. Gadat Big Data - Lecture 1

Definition Equality constraint Inequality constraint Lagrangian in general settings KKT Conditions

## Dual problems (2)

- Dual problems are easier than primal ones (because of almost constraints omissions).
- Dual problems are equivalent to primal ones: maximization of the dual ⇔ minimization of the primal (not shown in this lecture).
- Dual solutions permit to recover primal ones with KKT conditions (Lagrange multipliers).



Example:

- Lagrangian:  $L(\theta, \mu) = \frac{\theta_1^2 + \theta_2^2}{2} + \mu(\theta_1 2\theta_2 + 2).$
- Dual function  $\mathcal{L}(\mu) = \min_{\theta} L(\theta, \mu) = -\frac{5}{2}\mu^2 + 2\mu.$
- Dual solution: max L(µ) such that µ ≥ 0: µ = 2/5.
- Primal solution: KKT  $\implies \theta = (-\mu, 2\mu) = (-2/5, 4/5).$

### Take home message

- Big Data problems arise in a large variety of fields. They are complicated for a computational reason (and also for a statistical one, see later).
- Many Big Data problems will be traduced in an optimization of a convex problem.
- Efficient algorithms are available to optimize them:

independently on the dimension of the underlying space.

- Primal Dual formulations are important to overcome some constraints on the optimization.
- Numerical convex solvers are widely and freely distributed.