Big Data - Lecture 1 Optimization reminders

S. Gadat

Toulouse, Octobre 2014

Big Data - Lecture 1 Optimization reminders

S. Gadat

Toulouse, Octobre 2014

Introduction

Standard Convex optimisation procedures Constrained Convex optimisation Conclusion Major issues Examples Mathematics

Schedule

I Introduction - Major issues in data science

- Data science: Extract from data some knowledge for industrial or academic exploitation.
- Involves:
 - Signal Processing (how to record the data and represent it?)
 - Modelization (What is the problem, what kind of mathematical model and answer?)
 - Statistics (reliability of estimation procedures?)
 - Machine Learning (what kind of efficient optimization algorithm?)
 - Implementation (software needs)
 - Visualization (how can I represent the resulting knowledge?)
- In its whole, this sequence of questions are at the core of Artificial Intelligence and may also be referred to as Computer Science problems.
- In this lecture, we will address some issues raised in red items. Each time, practical examples will be provided
- Most of our motivation comes from the *Big Data* world, encountered in image processing, finance, genetics and many other fields where knowledge extraction is needed, when facing to many observations described by many variables.
- n: number of observations p: number of variables per observations

p >> n >> O(1).

Major issues Examples Mathematics

I Introduction - Spam classification - Signal Processing datasets

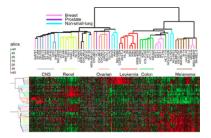
From a set of labelled messages (spam or not), build a classification for automatic spam rejection.

Variable	Mot ou Carac.	Modalités P/A	Variable	Mot ou Carac.	Modalités
make	make	make / Nmk	X650	650	650/N65
address	address	addr / Nad	lab	lab	lab / Nlb
all	all	all / Nal	labs	labs	labs / Nls
X3d	3d	3d / N3d	telnet	telnet	teln / Ntl
our	our	our / Nou	X857	857	857 / N87
over	over	over / Nov	data	data	data / Nda
remove	remove	remo / Nrm	X415	415	415 / N41
internet	internet	inte / Nin	X85	85	85 / N85
order	order	orde / Nor	technology	technology	tech / Ntc
mail	mail	mail / Nma	X1999	1999	1999/ N19
receive	receive	rece / Nrc	parts	parts	part / Npr
will	will	will / Nwi	pm	pm	pm / Npm
people	people	peop / Npp	direct	direct	dire / Ndr
report	report	repo / Nrp	cs	CS	cs/Ncs
addresses	addresses	adds / Nas	meeting	meeting	meet/Nmt
free	free	free / Nfr	original	original	orig / or
business	business	busi / Nbs	project	project	proj / Npj
email	email	emai / Nem	re	re	re / Nre
you	you	you / Nyo	edu	edu	edu / Ned
credit	credit	cred / Ncr	table	table	tab1/Ntb
vour	vour	vour / Nvr	conference	conferenc	e conf / Ncf
font	order	font / Nft	CsemiCol	:	Cscl/NCs
X000	000	000/N00	Cpar	(Cpar / NCp
money	money	mone/ Nmn	Ccroch	Í	Cero / NCc
hp	hp	hp / Nhp	Cexclam	1	Cexc / NCe
hpl	hpl	hp1/Nh1	Cdollar	s	Cdol / NCd
george	george	geor / Nge	Cdiese	#	Cdie / NCi

- Select among the words meaningful elements?
- Automatic classification?

I Introduction - Micro-array analysis - Biological datasets

One measures micro-array datasets built from a huge amount of profile genes expression. Number of genes p (of order thousands). Number of samples n (of order hundred).



Diagnostic help: healthy or ill?

- Select among the genes meaningful elements?
- Automatic classification?

Major issues Examples Mathematics

I Introduction - Fraud detection - Industrial datasets

Set of individual electrical consumption for some people in Medellin (Colombia).

- Each individual provides a monthly electrical consumption.
- The electrical firm measures the whole consumption for important hubs (they are formed by a set of clients).

Want to detect eventual fraud. Problems:

- Missing data: completion of the table. How?
- Noise in the several measurements: how does it degrages the fraud detection?
- Can we exhibit several monthly behaviour of the clients?

Major issues Examples Mathematics

I Introduction - Data Completion & Recommandation systems - Advertisement and e-business datasets

Recommandation problems:

amazon

Your Amazon.com Today's Deals Gift Cards Sell Help

And more recently:

- What kind of database?
- Reliable recommandation for clients?
- Online strategy?

Major issues Examples Mathematics

I Introduction - Credit scoring - Actuaries datasets

Build an indicator (Q score) from a dataset for the probability of interest in a financial product (Visa premier credit card).

Identif.	Libellé	Identif.	Libellé
matric	Matricale (identifiant client)	boppn	Nombre d'opérations à M-1
depts	Département de résidence	facan	Montant facturé dans l'année en francs
pvs.	Point de vente	Igagt	Engagement long terme
503.00	Sexe (qualitatif)	vienb	Nombre de produits contrats vie
aper	Age en années	vient	Montant des produits contrats vie en francs
famiq	Situation familiale	verab	Nombre de produits épargne monétaire
	(Fmar : marié, Fcel : célibataire, Ediv : divorcé,	wemm/s	Montant des produits d'épargne monétaire en francs
	Fuli :union libre, Fsep : séparé de corps, Fveu :veuf)	algab	Nombre de produits d'épargne logement
relat	Anciermeté de relation en mois	alent	Montant des produits d'épargne logement en francs
pespq	Catégorie socio-professionnelle (code num)	vivab	Nombre de comptes sur livret
coals	Code "qualité" client évalué par la banque	vivint	Montant des comptes sur livret en francs
G11G11S	plusieurs variables caractérisant les intendits	nbelts	Nombre de produits d'épargne long terme
	bancaires	matelts	Montant des produits d'épargne long terme en francs
impubs	Nombre d'impayés en cours	nbcats	Nombre de produits épurgne à terme
rejets	Montant total des rejets en francs	micats	Montant des produits épargne à terme
opgab	Nombre d'opérations par guichet dans le mois	abbecs	Nombre de produits bons et certificats
IDONTY	Moyenne des mouvements nets créditeurs	nthecs	Montant des produits bons et certificats en francs
	des 3 mois en Kf	rocub	Nombre de paiements par carte bancaire à M-1
lavep	Total des avoirs épargne monétaire en francs	ntcas	Nombre total de cartes
endet	Taux d'endettement	npt ag	Nombre de cartes point argent
gaget	Total des engagements en francs	segv2s	Segmentation version 2
EREC	Total des engagements court terme en francs	itave	Total des avoirs sur tous les comptes
gage(n)	Total des engagements moven terme en francs	havef	Total des avoirs épurgne financière en francs
kyunb	Nombre de comptes à vue	jnbjd1s	Nombre de jours à débit à M
quinty	Moyenne des soldes moyens sur 3 mois	jnbjd2s	Nombre de jours à débit à M-1
ocred	Moyenne des mouvements créditeurs en Kf	jnbjd3s	Nombre de jours à débit à M-2
davato	Age du dernier mouvement (en jours)	Cartyp	Possession de la carte VISA Premier

- Define a model, a question?
- 2 Use a supervised classification algorithm to rank the best clients.
- Ose logistic regression to provide a score.

I Introduction - What about maths?

Various mathematical fields we will talk about:

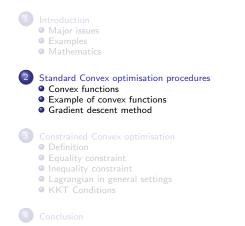
- Analysis: Convex optimization, Approximation theory
- Statistics: Penalized procedures and their reliability
- Probabilistic methods: concentration inequalities, stochastic processes, stochastic approximations

Famous keywords:

- Lasso
- Boosting
- Convex relaxation
- Supervised classification
- Support Vector Machine
- Aggregation rules
- Gradient descent
- Stochastic Gradient descent
- Sequential prediction
- Bandit games, minimax policies
- Matrix completion

Convex functions Example of convex functions Gradient descent method

Schedule



Convex functions Example of convex functions Gradient descent method

Convex functions

We recall some background material that is necessary for a clear understanding of how some machine learning procedures work. We will cover some basic relationships between convexity, positive semidefiniteness, local and global minimizers.

Definition (Convex sets, convex functions)

A set D is convex if for any $(x_1,x_2)\in D^2$ and all $\alpha\in[0,1],\,x=\alpha x_1+(1-\alpha)x_2\in D.$ A function f is convex if

- its domain D is convex
- $f(x) = f(\alpha x_1 + (1 \alpha)x_2) \le \alpha f(x_1) + (1 \alpha)f(x_2).$

Definition (Positive Semi Definite matrix (PSD))

A $p \times p$ matrix H is (PSD) if for all $p \times 1$ vectors z, we have $z^t H z \ge 0$.

There exists a strong link between SDP matrix and convex functions, given by the following proposition.

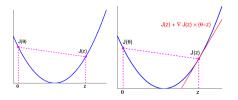
Proposition

A smooth $C^2(D)$ function f is convex if and only if D^2f is SDP at any point of D.

The proof follows easily from a second order Taylor expansion.

Convex functions Example of convex functions Gradient descent method

Example of convex functions



- Exponential function: $\theta \in \mathbb{R} \mapsto \exp(a\theta)$ on \mathbb{R} whatever a is.
- Affine function: $\theta \in \mathbb{R}^d \longmapsto a^t \theta + b$
- Entropy function: $\theta \in \mathbb{R}_+ \mapsto -\theta \log(\theta)$

• *p*-norm:
$$\theta \in \mathbb{R}^d \mapsto |\theta||_p := \sqrt[p]{\sum_{i=1}^d ||\theta_i|^p}.$$

• Quadratic form: $\theta \in \mathbb{R}^d \mapsto \theta^t P \theta + 2q^t \theta + r$ where P is symetric and positive.

Convex functions Example of convex functions Gradient descent method

Why convex functions are useful?

From external motivations:

- Many problems in machine learning come from the minimization of a convex criterion and provide meaningful results for the statistical initial task.
- Many optimization problems admit a convex reformulation (SVM classification or regression, LASSO regression, ridge regression, permutation recovery, ...).

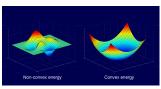
From a numerical point of view:

- Local minimizer = global minimizer. It is a powerful point since in general, descent methods involve ∇f(x) (or something related to), which is a local information on f.
- x is a local (global) minimizer of f if and only if $0 \in \partial f(x)$.
- Many fast algorithms for the optimization of convex function exist, and sometimes are independent on the dimension *d* of the original space.

Convex functions Example of convex functions Gradient descent method

Why convex functions are powerful?

Two kind of optimization problems:



- On the left: non convex optimization problem, use of Travelling Salesman type method. Greedy exploration step (simulated annealing, genetic algorithms).
- On the right: convex optimization problem, use local descent methods with gradients or subgradients.

Definition (Subgradient (nonsmooth functions?))

For any function $f: \mathbb{R}^d \longrightarrow \mathbb{R}$, and any x in \mathbb{R}^d , the subgradient $\partial f(x)$ is the set of all vectors g such that

$$f(x) - f(y) \le \langle g, x - y \rangle.$$

This set of subgradients may be empty. Fortunately, it is not the case for convex functions.

Proposition

 $f: \mathbb{R}^d \longrightarrow \mathbb{R}$ is convex if and only if $\partial f(x) \neq \emptyset$ for any x of \mathbb{R}^d .

Convex functions Example of convex functions Gradient descent method

Convexity and gradient: Constrained case

In either constrained or unconstrained problems, descent methods are powerful with convex functions. In particular, consider constrained problems in $\mathcal{X} \subset \mathbb{R}^d$. The most famous local descent method relies on

 $y_{t+1} = x_t - \eta g_t$ where $g_t \in \partial f(x_t)$,

and

$$x_{t+1} = \Pi_{\mathcal{X}}(y_{t+1}),$$

where $\eta > 0$ is a fixed step-size parameters.

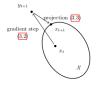


Fig. 3.2 Illustration of the Projected Subgradient Descent method.

Théorème (Convergence of the projected gradient descent method, fixed step-size)

If f is convex over \mathcal{X} with $\mathcal{X} \subset B(0, R)$ and $\|\partial f\|_{\infty} \leq L$, the choice $\eta = \frac{R}{L\sqrt{t}}$ leads to

$$f\left(\frac{1}{t}\sum_{s}^{t}x_{s}\right) - \min f \leq \frac{RL}{5}$$

Convex functions Example of convex functions Gradient descent method

Convexity and gradient: Smooth unconstrained case

Results can be seriously improved with smooth functions with bounded second derivatives.

Definition

f is β smooth if ∇f is β Lipschitz:

$$\|\nabla f(x) - \nabla f(y)\| \le \beta \|x - y\|.$$

Standard gradient descent over \mathbb{R}^d becomes

 $x_{t+1} = x_t - \eta \nabla f(x_t),$

Théorème (Convergence of the gradient descent method, β smooth function)

If f is a convex and $\beta\text{-smooth function, then }\eta=\frac{1}{\beta}$ leads to

$$f\left(\frac{1}{t}\sum_{s=1}^{t}x_{s}\right) - \min f \le \frac{2\beta \|x_{1} - x_{0}\|^{2}}{t-1}$$

Remark

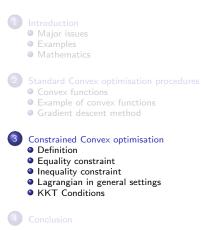
• Note that the two past results do not depend on the dimension of the state space d.

• The last result can be extended to the constrained situation.

Definition

Equality constraint Inequality constraint Lagrangian in general settings KKT Conditions

Schedule



Definition Equality constraint Inequality constraint Lagrangian in general settings KKT Conditions

Constrained optimisation: Definition

Elements of the problem:

- θ unknown vector of \mathbb{R}^d to be recovered
- $J: \mathbb{R}^d \mapsto \mathbb{R}$ function to be minimized
- f_i and g_i differentiable functions defining a set of constraints.

Definition of the problem:

- $\min_{\theta \in \mathbb{R}^d} J(\theta)$ such that:
- $f_i(\theta) = 0, \forall i = 1, \dots, n$
- $g_i(\theta) \leq 0, \forall i = 1, \dots, m$

Set of admissible vectors:

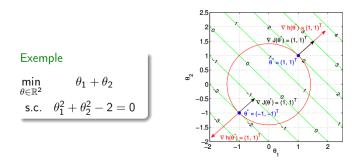
$$\Omega := \left\{ \boldsymbol{\theta} \in \mathbb{R}^{d} \, | \, f_{i}(\boldsymbol{\theta}) = 0, \forall i \text{ and } g_{j}(\boldsymbol{\theta}) \leq 0, \forall j \right\}$$

Definition

Equality constraint Inequality constraint Lagrangian in general settings KKT Conditions

Constrained optimisation: Example

Typical situation:



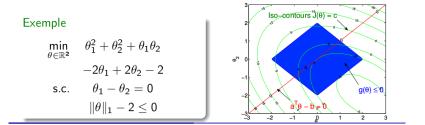
Ω: circle of radius $\sqrt{2}$ Optimal solution: $θ^* = (-1, -1)^t$ and $J(θ^*) = -2$. Important restriction: we will restrict our study to convex functions J.

Definition Equality constraint Inequality constraint Lagrangian in general settings KKT Conditions

Constrained convex optimisation

A constrained optimization problem is "convex" if:

- J is a convex function
- f_i are linear or affine functions
- g_i are convex functions



Definition Equality constraint Inequality constraint Lagrangian in general settings KKT Conditions

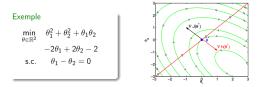
Case of a unique equality constraint

 $\min_{\theta} J(\theta) \quad \text{ such that } \quad a^t \theta - b = 0$

- Descent direction h: $\nabla J(\theta)^t h < 0$.
- Admissible direction h: $a^t(\theta + h) b = 0 \iff a^t h = 0$.

Optimality θ^* is optimal if there is no admissible descent direction starting from θ^* . The only possible case is when $\nabla J(\theta^*)$ and a are linearly dependent:

 $\exists \lambda \in \mathbb{R} \qquad \nabla J(\theta^*) + \lambda a = 0.$



In this situation:

$$\nabla J(\theta) = \begin{pmatrix} 2\theta_1 + \theta_2 - 2\\ \theta_1 + 2\theta_2 + 2 \end{pmatrix} \quad \text{and} \quad a = \begin{pmatrix} 1\\ -1 \end{pmatrix}$$

Hence, we are looking for θ such that $\nabla J(\theta) \propto a$. Computations lead to $\theta_1 = -\theta_2$. Optimal value reached for $\theta_1 = 1/2$ (and $J(\theta^*) = -15/4$).

Definition Equality constraint Inequality constraint Lagrangian in general settings KKT Conditions

Lagrangian function

$$\min_{a} J(\theta) \quad \text{ such that } \quad f(\theta) := a^{t} \theta - b = 0$$

We have seen the important role of the scalar value λ above.

Definition (Lagrangian function)

 $L(\lambda, \theta) = J(\theta) + \lambda f(\theta)$

 λ is the Lagrange multiplier. The optimal choice of (θ^*, λ^*) corresponds to

 $\nabla_{\theta} L(\lambda^*, \theta^*) = 0$ and $\nabla_{\lambda} L(\lambda^*, \theta^*) = 0.$

Argument: θ^* is optimal if there is no admissible descent directions h. Hence, ∇J and ∇f are linearly dependent. As a consequence, there exists λ such that

$$\nabla_{\theta} L(\lambda^*, \theta^*) = \nabla J(\theta) + \lambda \nabla f(\theta) = 0 \qquad \text{(Dual equation)}$$

Since θ must be admissible, we have

 $\nabla_{\theta} L(\lambda^*, \theta^*) = f(\theta^*) = 0$ (Primal equation)

Definition Equality constraint Inequality constraint Lagrangian in general settings KKT Conditions

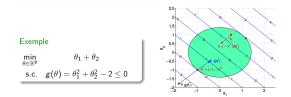
Case of a unique inequality constraint

 $\min_{\theta} J(\theta) \qquad \text{such that} \qquad g(\theta) \leq 0$

- Descent direction $h: \nabla J(\theta)^t h < 0.$
- Admissible direction h: $\nabla g(\theta)^t h \leq 0$ guarantees that $g(\theta + \alpha h)$ is decreasing with α .

Optimality θ^* is optimal if there is no admissible descent direction starting from θ^* . The only possible case is when $\nabla J(\theta^*)$ and $\nabla g(\theta^*)$ are linearly dependent and opposite:

$$\exists \lambda \in \mathbb{R} \qquad \nabla J(\theta^*) = -\mu \nabla g(\theta^*) \qquad \text{with} \qquad \mu \geq 0.$$



We can check that $\theta^* = (-1, -1)$.

Definition Equality constraint Inequality constraint Lagrangian in general settings KKT Conditions

Lagrangian in general settings

We consider the minimization problem:

- $\min_{\theta} J(\theta)$ such that
- $g_j(\theta) \leq 0, \forall j = 1, \dots, m$
- $f_i(\theta) = 0, \forall i = 1, \dots, n$

Definition (Lagrangian function)

We associate to this problem the Lagrange multipliers $(\lambda, \mu) = (\lambda_1, \dots, \lambda_n, \mu_1, \dots, \mu_m)$.

$$L(\theta, \lambda, \mu) = J(\theta) + \sum_{i=1}^{n} \lambda_i f_i(\theta) + \sum_{j=1}^{m} \mu_j g_j(\theta)$$

- θ primal variables
- (λ, μ) dual variables

Definition Equality constraint Inequality constraint Lagrangian in general settings KKT Conditions

KKT Conditions

Definition (KKT Conditions)

If J and f, g are smooth, we define the Karush-Kuhn-Tucker (KKT) conditions as

- Stationarity: $\nabla_{\theta} L(\lambda, \mu, \theta) = 0.$
- Primal Admissibility: $f(\theta) = 0$ and $g(\theta) \le 0$.
- Dual admissibility $\mu_j \ge 0, \forall j = 1, \dots, m$.

Theorem

A convex minimization problem of J under convex constraints f and g has a solution θ^* if and only if there exists λ^* and μ^* such that KKT conditions hold.

Example:

$$J(\theta) = \frac{1}{2} \|\theta\|_2^2$$
 s.t. $\theta_1 - 2\theta_2 + 2 \le 0$

We get $L(\theta,\mu) = \frac{\|\theta\|_2^2}{2} + \mu(\theta_1 + 2\theta_2 + 2)$ with $\mu \ge 0$. Stationarity: $(\theta_1 + \mu, \theta_2 - 2\mu) = 0$.

$$\theta_2 = -2\theta_1$$
 with $\theta_2 \leq 0$.

We deduce that $\theta^* = (-2/5, 4/5)$.

Definition Equality constraint Inequality constraint Lagrangian in general settings KKT Conditions

Dual problems (1)

We introduce the *dual* function:

$$\mathcal{L}(\lambda,\mu) = \min_{\theta} L(\theta,\lambda,\mu).$$

We have the following important result

Theorem

Denote the optimal value of the constrained problem $p^* = \min \{J(\theta) | f(\theta) = 0, g(\theta) \le 0\}$, then

 $\mathcal{L}(\lambda,\mu) \le p^*.$

Remark:

- The dual function \mathcal{L} is lower than p^* , for any $(\lambda, \mu) \in \mathbb{R}^n \times \mathbb{R}^m_+$
- We aim to make this lower bound as close as possible to p^* : idea to maximize w.r.t. λ, μ the function \mathcal{L} .

Definition (Dual problem)

$$\max_{\lambda \in \mathbb{R}^n, \mu \in \mathbb{R}^m_+} \mathcal{L}(\lambda, \mu).$$

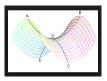
 $L(\theta, \lambda, \mu)$ affine function on λ, μ and thus convex. Hence, \mathcal{L} is convex and almost unconstrained.

S. Gadat Big Data - Lecture 1

Definition Equality constraint Inequality constraint Lagrangian in general settings KKT Conditions

Dual problems (2)

- Dual problems are easier than primal ones (because of almost constraints omissions).
- Dual problems are equivalent to primal ones: maximization of the dual ⇔ minimization of the primal (not shown in this lecture).
- Dual solutions permit to recover primal ones with KKT conditions (Lagrange multipliers).



Example:

- Lagrangian: $L(\theta, \mu) = \frac{\theta_1^2 + \theta_2^2}{2} + \mu(\theta_1 2\theta_2 + 2).$
- Dual function $\mathcal{L}(\mu) = \min_{\theta} L(\theta, \mu) = -\frac{5}{2}\mu^2 + 2\mu.$
- Dual solution: max L(µ) such that µ ≥ 0: µ = 2/5.
- Primal solution: KKT $\implies \theta = (-\mu, 2\mu) = (-2/5, 4/5).$

Take home message

- Big Data problems arise in a large variety of fields. They are complicated for a computational reason (and also for a statistical one, see later).
- Many Big Data problems will be traduced in an optimization of a convex problem.
- Efficient algorithms are available to optimize them:

independently on the dimension of the underlying space.

- Primal Dual formulations are important to overcome some constraints on the optimization.
- Numerical convex solvers are widely and freely distributed.