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I Introduction - Major issues in data science

Data science: Extract from data some knowledge for industrial or academic exploitation.

Involves:

1 Signal Processing (how to record the data and represent it?)
2 Modelization (What is the problem, what kind of mathematical

model and answer?)
3 Statistics (reliability of estimation procedures?)
4 Machine Learning (what kind of efficient optimization algorithm?)
5 Implementation (software needs)
6 Visualization (how can I represent the resulting knowledge?)

In its whole, this sequence of questions are at the core of Artificial Intelligence and may also
be referred to as Computer Science problems.

In this lecture, we will address some issues raised in red items. Each time, practical
examples will be provided

Most of our motivation comes from the Big Data world, encountered in image processing,
finance, genetics and many other fields where knowledge extraction is needed, when facing
to many observations described by many variables.
n: number of observations - p: number of variables per observations

p >> n >> O(1).
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I Introduction - Spam classification - Signal Processing
datasets

From a set of labelled messages (spam or not), build a classification for automatic spam rejection.

Select among the words meaningful elements?

Automatic classification?
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I Introduction - Micro-array analysis - Biological datasets

One measures micro-array datasets built from a huge amount of profile genes expression. Number
of genes p (of order thousands). Number of samples n (of order hundred).

Diagnostic help: healthy or ill?

Select among the genes meaningful elements?

Automatic classification?
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I Introduction - Fraud detection - Industrial datasets

Set of individual electrical consumption for some people in Medellin (Colombia).

Each individual provides a monthly electrical consumption.

The electrical firm measures the whole consumption for important hubs (they are formed by
a set of clients).

Want to detect eventual fraud.
Problems:

Missing data: completion of the table. How?

Noise in the several measurements: how does it degrages the fraud detection?

Can we exhibit several monthly behaviour of the clients?
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I Introduction - Data Completion & Recommandation
systems - Advertisement and e-business datasets

Recommandation problems:

And more recently:

What kind of database?

Reliable recommandation for clients?

Online strategy?
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I Introduction - Credit scoring - Actuaries datasets

Build an indicator (Q score) from a dataset for the probability of interest in a financial product
(Visa premier credit card).

1 Define a model, a question?

2 Use a supervised classification algorithm to rank the best clients.

3 Use logistic regression to provide a score.
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I Introduction - What about maths?

Various mathematical fields we will talk about:

Analysis: Convex optimization, Approximation theory

Statistics: Penalized procedures and their reliability

Probabilistic methods: concentration inequalities, stochastic processes, stochastic
approximations

Famous keywords:

Lasso

Boosting

Convex relaxation

Supervised classification

Support Vector Machine

Aggregation rules

Gradient descent

Stochastic Gradient descent

Sequential prediction

Bandit games, minimax policies

Matrix completion
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Convex functions

We recall some background material that is necessary for a clear understanding of how some
machine learning procedures work. We will cover some basic relationships between convexity,
positive semidefiniteness, local and global minimizers.

Definition (Convex sets, convex functions)

A set D is convex if for any (x1, x2) ∈ D2 and all α ∈ [0, 1], x = αx1 + (1− α)x2 ∈ D. A
function f is convex if

its domain D is convex

f(x) = f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2).

Definition (Positive Semi Definite matrix (PSD))

A p× p matrix H is (PSD) if for all p× 1 vectors z, we have ztHz ≥ 0.

There exists a strong link between SDP matrix and convex functions, given by the following
proposition.

Proposition

A smooth C2(D) function f is convex if and only if D2f is SDP at any point of D.

The proof follows easily from a second order Taylor expansion.
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Example of convex functions

Exponential function: θ ∈ R 7−→ exp(aθ) on R whatever a is.

Affine function: θ ∈ Rd 7−→ atθ + b

Entropy function: θ ∈ R+ 7−→ −θ log(θ)

p-norm: θ ∈ Rd 7−→ |θ‖p := p

√√√√ d∑
i=1

‖θi|p.

Quadratic form: θ ∈ Rd 7−→ θtPθ + 2qtθ + r where P is symetric and positive.
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Why convex functions are useful?

From external motivations:

Many problems in machine learning come from the minimization of a convex criterion and
provide meaningful results for the statistical initial task.

Many optimization problems admit a convex reformulation (SVM classification or regression,
LASSO regression, ridge regression, permutation recovery, . . . ).

From a numerical point of view:

Local minimizer = global minimizer. It is a powerful point since in general, descent methods
involve ∇f(x) (or something related to), which is a local information on f .

x is a local (global) minimizer of f if and only if 0 ∈ ∂f(x).

Many fast algorithms for the optimization of convex function exist, and sometimes are
independent on the dimension d of the original space.
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Why convex functions are powerful?
Two kind of optimization problems:

On the left: non convex optimization problem, use of Travelling Salesman type method.
Greedy exploration step (simulated annealing, genetic algortihms).
On the right: convex optimization problem, use local descent methods with gradients or
subgradients.

Definition (Subgradient (nonsmooth functions?))

For any function f : Rd −→ R, and any x in Rd, the subgradient ∂f(x) is the set of all vectors g
such that

f(x)− f(y) ≤ 〈g, x− y〉.

This set of subgradients may be empty. Fortunately, it is not the case for convex functions.

Proposition

f : Rd −→ R is convex if and only if ∂f(x) 6= ∅ for any x of Rd.
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Convexity and gradient: Constrained case
In either constrained or unconstrained problems, descent methods are powerful with convex
functions. In particular, consider constrained problems in X ⊂ Rd. The most famous local descent
method relies on

yt+1 = xt − ηgt where gt ∈ ∂f(xt),

and
xt+1 = ΠX (yt+1),

where η > 0 is a fixed step-size parameters.

Théorème (Convergence of the projected gradient descent method, fixed step-size)

If f is convex over X with X ⊂ B(0, R) and ‖∂f‖∞ ≤ L, the choice η = R
L
√
t
leads to

f

(
1

t

t∑
s=1

xs

)
−min f ≤

RL
√
tS. Gadat Big Data - Lecture 1
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Convexity and gradient: Smooth unconstrained case
Results can be seriously improved with smooth functions with bounded second derivatives.

Definition

f is β smooth if ∇f is β Lipschitz:

‖∇f(x)−∇f(y)‖ ≤ β‖x− y‖.

Standard gradient descent over Rd becomes

xt+1 = xt − η∇f(xt),

Théorème (Convergence of the gradient descent method, β smooth function)

If f is a convex and β-smooth function, then η = 1
β leads to

f

(
1

t

t∑
s=1

xs

)
−min f ≤

2β‖x1 − x0‖2

t− 1

Remark

Note that the two past results do not depend on the dimension of the state space d.

The last result can be extended to the constrained situation.
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Constrained optimisation: Definition

Elements of the problem:

θ unknown vector of Rd to be recovered

J : Rd 7→ R function to be minimized

fi and gi differentiable functions defining a set of constraints.

Definition of the problem:

min
θ∈Rd J(θ) such that:

fi(θ) = 0, ∀i = 1, . . . , n

gi(θ) ≤ 0, ∀i = 1, . . . ,m

Set of admissible vectors:

Ω :=
{
θ ∈ Rd | fi(θ) = 0, ∀i and gj(θ) ≤ 0, ∀j

}
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Constrained optimisation: Example

Typical situation:

Ω: circle of radius
√

2
Optimal solution: θ? = (−1,−1)t and J(θ?) = −2.
Important restriction: we will restrict our study to convex functions J .
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Constrained convex optimisation

A constrained optimization problem is ”convex” if:

J is a convex function

fi are linear or affine functions

gi are convex functions
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Case of a unique equality constraint

min
θ
J(θ) such that a

t
θ − b = 0

Descent direction h: ∇J(θ)th < 0.

Admissible direction h: at(θ + h)− b = 0⇐⇒ ath = 0.

Optimality θ∗ is optimal if there is no admissible descent direction starting from θ∗. The only
possible case is when ∇J(θ∗) and a are linearly dependent:

∃λ ∈ R ∇J(θ
∗
) + λa = 0.

In this situation:

∇J(θ) =

(
2θ1 + θ2 − 2
θ1 + 2θ2 + 2

)
and a =

(
1
−1

)
Hence, we are looking for θ such that ∇J(θ) ∝ a. Computations lead to θ1 = −θ2. Optimal
value reached for θ1 = 1/2 (and J(θ∗) = −15/4).

S. Gadat Big Data - Lecture 1



Introduction
Standard Convex optimisation procedures

Constrained Convex optimisation
Conclusion

Definition
Equality constraint
Inequality constraint
Lagrangian in general settings
KKT Conditions

Lagrangian function

min
θ
J(θ) such that f(θ) := a

t
θ − b = 0

We have seen the important role of the scalar value λ above.

Definition (Lagrangian function)

L(λ, θ) = J(θ) + λf(θ)

λ is the Lagrange multiplier. The optimal choice of (θ∗, λ∗) corresponds to

∇θL(λ
∗
, θ
∗
) = 0 and ∇λL(λ

∗
, θ
∗
) = 0.

Argument: θ∗ is optimal if there is no admissible descent directions h. Hence, ∇J and ∇f are
linearly dependent. As a consequence, there exists λ such that

∇θL(λ
∗
, θ
∗
) = ∇J(θ) + λ∇f(θ) = 0 (Dual equation)

Since θ must be admissible, we have

∇θL(λ
∗
, θ
∗
) = f(θ

∗
) = 0 (Primal equation)
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Case of a unique inequality constraint

min
θ
J(θ) such that g(θ) ≤ 0

Descent direction h: ∇J(θ)th < 0.

Admissible direction h: ∇g(θ)th ≤ 0 guarantees that g(θ + αh) is decreasing with α.

Optimality θ∗ is optimal if there is no admissible descent direction starting from θ∗. The only
possible case is when ∇J(θ∗) and ∇g(θ∗) are linearly dependent and opposite:

∃λ ∈ R ∇J(θ
∗
) = −µ∇g(θ∗) with µ ≥ 0.

We can check that θ∗ = (−1,−1).

S. Gadat Big Data - Lecture 1



Introduction
Standard Convex optimisation procedures

Constrained Convex optimisation
Conclusion

Definition
Equality constraint
Inequality constraint
Lagrangian in general settings
KKT Conditions

Lagrangian in general settings

We consider the minimization problem:

minθ J(θ) such that

gj(θ) ≤ 0, ∀j = 1, . . . ,m

fi(θ) = 0, ∀i = 1, . . . , n

Definition (Lagrangian function)

We associate to this problem the Lagrange multipliers (λ, µ) = (λ1, . . . , λn, µ1, . . . , µm).

L(θ, λ, µ) = J(θ) +

n∑
i=1

λifi(θ) +

m∑
j=1

µjgj(θ)

θ primal variables

(λ, µ) dual variables
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KKT Conditions

Definition (KKT Conditions)

If J and f, g are smooth, we define the Karush-Kuhn-Tucker (KKT) conditions as

Stationarity: ∇θL(λ, µ, θ) = 0.

Primal Admissibility: f(θ) = 0 and g(θ) ≤ 0.

Dual admissibility µj ≥ 0, ∀j = 1, . . . ,m.

Theorem

A convex minimization problem of J under convex constraints f and g has a solution θ∗ if and
only if there exists λ∗ and µ∗ such that KKT conditions hold.

Example:

J(θ) =
1

2
‖θ‖22 s.t. θ1 − 2θ2 + 2 ≤ 0

We get L(θ, µ) =
‖θ‖22

2 + µ(θ1 + 2θ2 + 2) with µ ≥ 0. Stationarity: (θ1 + µ, θ2 − 2µ) = 0.

θ2 = −2θ1 with θ2 ≤ 0.

We deduce that θ∗ = (−2/5, 4/5).
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Dual problems (1)
We introduce the dual function:

L(λ, µ) = min
θ
L(θ, λ, µ).

We have the following important result

Theorem

Denote the optimal value of the constrained problem p∗ = min {J(θ)|f(θ) = 0, g(θ) ≤ 0}, then

L(λ, µ) ≤ p∗.

Remark:

The dual function L is lower than p∗, for any (λ, µ) ∈ Rn × Rm+
We aim to make this lower bound as close as possible to p∗: idea to maximize w.r.t. λ, µ
the function L.

Definition (Dual problem)

max
λ∈Rn,µ∈Rm

+

L(λ, µ).

L(θ, λ, µ) affine function on λ, µ and thus convex. Hence, L is convex and almost unconstrained.
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Dual problems (2)

Dual problems are easier than primal ones (because of almost constraints omissions).

Dual problems are equivalent to primal ones: maximization of the dual ⇔ minimization of
the primal (not shown in this lecture).

Dual solutions permit to recover primal ones with KKT conditions (Lagrange multipliers).

Example:

Lagrangian: L(θ, µ) =
θ21+θ22

2 + µ(θ1 − 2θ2 + 2).

Dual function L(µ) = minθ L(θ, µ) = − 5
2µ

2 + 2µ.

Dual solution: maxL(µ) such that µ ≥ 0: µ = 2/5.

Primal solution: KKT =⇒ θ = (−µ, 2µ) = (−2/5, 4/5).
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Take home message

Big Data problems arise in a large variety of fields. They are complicated for a
computational reason (and also for a statistical one, see later).

Many Big Data problems will be traduced in an optimization of a convex problem.

Efficient algorithms are available to optimize them:

independently on the dimension of the underlying space.

Primal - Dual formulations are important to overcome some constraints on the optimization.

Numerical convex solvers are widely and freely distributed.
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