Année 2014/2015

UNIVERSITÉ TOULOUSE I CAPITOLE

Big Data

TP 1 Convex optimisation

Short exercice on duality

Exercice 1. We define

$$J(\theta)=\frac{\theta_1^2+\theta_2^2+\theta_3^2}{2}$$

Constraints are

 $f_1(\theta) = \theta_1 + \theta_2 + 2\theta_3 = 1$ and $f_2(\theta) = \theta_1 + 4\theta_2 + 2\theta_3 = 3$.

- 1. Describe this optimization problem within a matricial form.
- 2. Describe the Lagrangian function $L(\theta, \lambda)$.
- 3. Write the KKT condition
- 4. Compute the dual function $\mathcal{L}(\lambda)$ and obtain the value of the Lagrange multiplier.
- 5. Come back to the initial constrained problem.

Optimization with Matlab

Exercice 2.

We aim to numerically test the simplest method of gradient descent with a constant step size γ on the standard problem of the ridge regression. We work on the *p* dimensional space \mathbb{R}^p and define

$$J(w) = \|y - w^t x\|_2^2 + \lambda \|w\|_2^2.$$

We consider p > n (for instance p = 100) and assume that $X \sim \mathcal{U}_{[0,1]^p}$. The response Y is a real response value defined by

$$Y = \theta_0^t X + \epsilon.$$

where θ_0 is unknown and $\epsilon \sim \mathcal{N}(0, \sigma^2 I_p)$.

- 1. Generate an i.i.d. sample of size n = 50, with p = 2n and θ_0 chosen as you want.
- 2. Compute theoretically the expression of the Ridge regression estimator built from the function J:

$$\hat{\theta}_n := \arg\min_{\theta \in \mathbb{R}^p} J(\theta)$$

3. Show that J is a convex function.

- 4. Compute the gradient of J. Is $J \beta$ smooth? strongly convex?
- 5. What kind of step size could we use for the gradient descent algorithm?
- 6. What happens when $\lambda \mapsto 0$?
- 7. Develop a Matlab code to solve the ridge regression estimation. Is the estimation convenient when p >> n?
- 8. Choose now a sparse vector θ_0 . Does the estimated $\hat{\theta}$ is satisfactory and select a sparse vector?

Duality

Exercice 3.

We consider $(\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n_+$ and define the following problem

$$\min_{x \in \mathbb{R}^n} -\sum_{i=1}^n \log(\alpha_i + x_i) \qquad \text{s.t.} \qquad (x_1, \dots, x_n) \in \mathcal{S}^{n-1}.$$

- 1. Write the Lagrangian and derive a dual problem. (We will use the notation λ for equality constraints, and μ for inequality constraints).
- 2. Write the KKT conditions.
- 3. Solve the dual problem with Matlab and come back to the initial one.