Big Data
 TP 2 High dimensional regression

We remind shorty the formalism of penalized linear regression. We consider the following model

$$
Y=X \theta_{0}+\epsilon
$$

The noise is assumed to be centered and we aim to estimate θ_{0}.
In this exercice, we will consider three penalized methods: Ridge regression, Elastic Net, and the Lasso. The general form of these estimators solve the following optimization problem

$$
\begin{equation*}
\hat{\theta}_{\lambda}:=\arg \min _{\theta \in \mathbb{R}^{p}}\|Y-X \theta\|_{2}^{2}+\operatorname{pen}(\theta, \lambda) \tag{1}
\end{equation*}
$$

We define the penalties as

- $\operatorname{pen}(\theta, \lambda)=\lambda\|\theta\|_{2}^{2}$ (Ridge regression / Tikhonov regularization)
- $\operatorname{pen}(\theta, \lambda)=\lambda\|\theta\|_{1}$ (Lasso)
- $\operatorname{pen}(\theta, \lambda)=\lambda\|\theta\|_{1}+\mu\|\theta\|_{2}^{2}$ (Elastic Net).

The penalization parameter λ is a positive number for the Ridge and Lasso regression. It is a 2-dimensional vector of \mathbb{R}_{+}^{2} in the case of the Elastic Net.

Exercice 1. [Function for the generation of the data]

For the next experiments, it will be important to code a function that generates some data $\left(X_{i}, Y_{i}\right)_{1 \leq i \leq n}$. This R/matlab function should take in argument n, p as well as an integer L, K and a real vector θ.

1. We define a squared covariance matrix Σ of size $p \times p$, the structure is block-diagonal with K blocks of size $\ell \times \ell$. Draw the matrix Σ.
2. Each block is referred to as $\Sigma_{j j}$ and is defined as

$$
\Sigma_{j j}=\frac{j-1}{K} \mathbf{1}_{\ell \times \ell}+\frac{K+1-j}{K} I d_{\ell} .
$$

Write a R function or Matlab function that generates a matrix $\Sigma_{j j}$, as well as a whole matrix Σ.
3. Conclude with a R function or Matlab function that generates n independent replications of (X, Y) with

$$
X \sim \mathcal{N}(0, \Sigma)
$$

and

$$
Y=X \theta_{0}+\epsilon, \quad \text { where } \quad \epsilon \perp X .
$$

Exercice 2. [Generation of the data]

For each situation, build the data with using the previous code and identify if the data are sparse or dense, with correlated entries or not.

1. $n=100, K=1, \ell=50$ and

$$
\theta_{0}=(\underbrace{-2, \ldots-2}_{\ell \text { times }}, \underbrace{+2 \ldots,+2}_{(K-1) \times \ell \text { times }})
$$

2. $n=100, K=1, \ell=50$ and

$$
\theta_{0}=(\underbrace{-2, \ldots,-2}_{5 \text { times }}, \underbrace{0, \ldots, 0}_{40 \text { times }}, \underbrace{2, \ldots 2}_{5 \text { times }}) .
$$

3. $n=100, K=3, \ell=50$ and

$$
\theta_{0}=(\underbrace{-2, \ldots-2}_{\ell \text { times }}, \underbrace{+3 \ldots,+3}_{(K-1) \times \ell \text { times }})
$$

4. $n=100, K=3, \ell=50$ and

$$
\theta_{0}=(\underbrace{-2, \ldots,-2}_{5 \text { times }}, \underbrace{0, \ldots, 0}_{40 \text { times }}, \underbrace{2, \ldots 2}_{5 \text { times }}) .
$$

Exercice 3. [Solving the Ridge regression]

1. In R: Ridge function of the package MASS (use the lm.ridge function).
2. In Matlab: Ridge function has been previously built in the first session.

- Compute the ridge regression $\hat{\theta}(\lambda)$ for 30 different values of the regularization parameter λ according to a geometric grid:

$$
\lambda_{j}=e^{j}
$$

- Plot on the same graph the evolution of the several values of the estimator $\lambda \mapsto\left(\theta_{j}(\lambda)\right)_{1 \leq j \leq p}$
- The reading http://stat.genopole.cnrs.fr/_media/members/jchiquet/teachings/ ridge.pdf may be helpful.

Exercice 4. [Solving the Lasso regression]

1. In R: Use the Lars package and especially the function lars. The useful objects are object_lasso\$lambda where object_lasso=lars(X,Y,type="lasso").
2. In Matlab: Lasso is already developed here: http://www2.imm.dtu.dk/pubdb/views/ publication_details.php?id=3897 or in the statistical toolbox. Download either this package or use the statistical toolbox.

- Compute the Lasso regression $\hat{\theta}(\lambda)$ for 30 different values of the regularization parameter λ according to a geometric grid:

$$
\lambda_{j}=e^{j}
$$

- Plot on the same graph the evolution of the several values of the estimator $\lambda \mapsto\left(\theta_{j}(\lambda)\right)_{1 \leq j \leq p}$

Exercice 5. [Solving the Elastic Net regression]

1. In R: Use the Enet package and especially the function enet. It is also possible to use the GLMNET package.
2. In Matlab: Elastic Net is already developed here: http://www2.imm.dtu.dk/pubdb/ views/publication_details.php?id=3897 or in the statistical toolbox. Download either this package or use the statistical toolbox.

Exercice 6. [Evaluation]

- In each of the 4 situations, rank the three regression methods.
- We may be interested in the prediction error, as well as the support recovery abilities or the estimation errors. Recall the definitions of these three criteria.
- Use a cross-validation method or a test set to estimate these errors.

